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Abstract. We propose a novel framework for the classification of hyper-
spectral data corrupted by severe degradation. We propose an opti-
mization framework for extracting discriminative features from noisy
hyperspectral data which are then passed onto a simple classifier which
exploits both the spatial and spectral correlations in the data. Instead
of directly extracting the features from the noisy input data, we learn
a basis matrix from the underlying clean data using a combination of
non-negative matrix factorization and nuclear-norm minimization. The
input degraded data are then projected onto the basis vectors to obtain
features. We use structural incoherence to maximize the discriminative
ability of the features, which, to the best of our knowledge, is being used
for the first time in hyperspectral image processing literature. We show
the deterioration in the performance of classification algorithms with the
progressive addition of noise while demonstrating the robustness of our
algorithm. We evaluate the performance of our algorithm on three well
known datasets, namely, Botswana, Salinas and Indian Pines, obtaining
state-of-the-art results that validate the efficacy of our algorithm.

Keywords: Hyperspectral image classification · Structural
incoherence · Non-negative matrix factorization · Nuclear-norm
minimization

1 Introduction

Hyperspectral image (HSI) classification has been an area of active research since
over 20 years where the task is to assign each pixel in a HSI to its respective class.
HSI classification is a challenging task due to the high data dimensionality, avail-
ability of very few labelled samples and the presence of noise. The presence of
noise damages both the spatial and spectral information available in the data,
thereby degrading the performance of classification algorithms drastically. This
motivates us to devise a novel technique which can achieve impressive classifica-
tion accuracies even in the presence of significant amount of noise. Algorithms
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used in the earlier days of research in HSI classification considered only the spec-
tral signatures which did not provide satisfactory classification results. However,
recent works [4,8,9] acknowledge the contribution of the spatial information con-
tained in HSI in addition to the spectral information. The importance of spatial
information stems from the simple hypothesis that nearby pixels in a HSI belong
to the same class with high probability. In [12], the authors address the problem
of robust face recognition in the presence of data corrupted due to occlusion
and disguise. They incorporate a constraint of structural incoherence in order
to make the bases learnt for different classes independent. This leads to the
achievement of a higher discriminating ability resulting in an impressive classifi-
cation performance. Inspired by their approach, in this work, we aim to exploit
both the spectral and spatial information and classify a severely degraded HSI
by learning discriminative features. Instead of learning these features from the
corrupted data, we learn them from the underlying clean data which leads to
state-of-the-art classification results.

2 Prior Work

Several methods which perform a pixelwise classification of HSIs have been pro-
posed [10,14,23]. Sparse representation based classifiers have been used for HSI
classification in [5,6]. A combination of low rank and sparsity for HSI classifi-
cation can be found in [8,19,21]. Collaborative representation based classifiers
have been used in [9,11]. In [1], extended morphological profiles were used for
HSI classification. The authors in [22] used conditional random fields for HSI
classification. The random forest framework was investigated for HSI classifica-
tion in [7]. Owing to the excellent performance in classification of images and
videos, deep learning based methods have been extensively investigated for HSI
classification. Stacked auto encoders (SAEs) [16], convolutional neural networks
(CNNs) [13], deep belief networks (DBNs) [4] and deep recurrent neural networks
(RNNs) [15] have been used for HSI classification. Recently, generative adversar-
ial networks (GANs) have been introduced for the purpose of HSI classification
[24]. However, these models are data hungry and are prone to overfitting due
to the scarcity of available labelled samples. Hence, most of the recent research
with deep models deals with finding new techniques to mitigate this problem.

3 Proposed Methodology

In this work, we present a novel framework wherein we combine non-negative
matrix factorization (NMF), nuclear norm minimization (NNM) and structural
incoherence to learn discriminative features from a degraded HSI. Given a HSI
of size m × n × b, the training samples are the b-dimensional spectral vectors.
Let Y ∈ Rb×N denote a matrix formed by stacking together all the N available
training samples. Hence, for a HSI with C classes, Y = [Y1,Y2, . . . ,YC ] where
Yi = [yi

1,y
i
2, . . . ,y

i
ni

] ∈ Rb×ni (i = 1, 2, . . . , C) denotes the training samples
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belonging to class i and ni is the number of available training samples from class
i so that N = Cni. We model the data as:

Y = L + S + N (1)

where L = [L1,L2, . . . ,LC ] ∈ Rb×N is a low rank matrix, S = [S1,S2, . . . ,SC ] ∈
Rb×N is the matrix of sparse noise and N = [N1,N2, . . . ,NC ] ∈ Rb×N denotes
additive Gaussian noise. We aim to combine non-negative matrix factorization
and nuclear norm minimization to simultaneously denoise the available data and
learn a basis matrix for classification. We wish to solve the following optimization
problem:

min
L,S,U≥0,V≥0

α‖L‖∗ + β‖S‖1 + γ
∑

j �=i

‖LT
j Li‖2

F + δ‖L − UV‖2
F

s.t.‖Y − L − S‖2
F ≤ ε (2)

where ‖ · ‖F and ‖ · ‖∗, respectively, denote the Frobenius norm and the nuclear
norm of a matrix, α, β, γ, δ are positive parameters and ε is a small constant
whose value is fixed to 0.001. It is noteworthy that the basis matrix U is being
learnt from the underlying clean data L and not directly from the degraded
training data Y. The third term in Eq. (2) corresponds to the structural inco-
herence [17] which measures the similarity between the derived low-rank matrices
of different classes. Hence, minimizing this term separately for every class tends
to make these derived matrices incoherent and enhances their discriminating
ability. Hence, for the ith class, we wish to solve:

min
Li,Si,U≥0,V≥0

α‖Li‖∗ + β‖Si‖1 + γ
∑

j �=i

‖LT
j Li‖2

F + δ‖Li − (UV)i‖2
F

s.t. ‖Yi − Li − Si‖2
F ≤ ε (3)

We use the method of augmented Lagrangian multipliers (ALM) [18] to solve
the above problem. To this end, we first introduce an auxiliary variable Zi as
follows:

min
Li,Si,U≥0,V≥0,Zi

α‖Li‖∗ + β‖Si‖1 + γ
∑

j �=i

‖LT
j Zi‖2

F + δ‖Zi − (UV)i‖2
F

s.t. ‖Yi − Li − Si‖2
F ≤ ε, Zi = Li (4)

The augmented Lagrangian is as follows:

L(Li,Si,U ≥ 0,V ≥ 0,Zi ≥ 0,M1,M2;μ) = α‖Li‖∗ + β‖Si‖1

+γ
∑

j �=i

‖LT
j Zi‖2

F + δ‖Zi − (UV)i‖2
F + 〈M1,Yi − Li − Si〉

+〈M2,Zi − Li〉 +
μ

2
[‖Yi − Li − Si +

M1

μ
‖2
F + ‖Zi − Li +

M2

μ
‖2
F ] (5)

where M1, M2 are Lagrange multipliers, μ is a positive parameter and 〈·, ·〉
denotes the inner product. We now provide the updation rules for each of the
variables.
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– Computing Li with other variables fixed:
With some algebraic manipulations, the Li-subproblem can be obtained from
Eq. (5) as follows:

min
Li

α

2μ
‖Li‖∗ +

1
2
‖Li − (Yi − Si + Zi +

M1

μ
+

M2

μ
)‖2

F (6)

Eq. (6) can be solved using singular value thresholding [3].
– Computing Si fixing others:

The Si-subproblem can be obtained from Eq. (5) as follows:

min
Si

β

μ
‖Si‖1 +

1
2
‖Si − (Yi − Li +

M1

μ
)‖2

F (7)

Eq. (7) can be solved using the soft shrinkage operation.
– Computation of Zi:

In order to achieve factorization of Zi, the non-negativity constraint on Zi

must be satisfied. To this end, we first introduce an indicator function as
follows:

l+(Zi) =

{
0, Zim,n

≥ 0 ∀m,n

∞, otherwise
(8)

where, Zim,n
denotes the (m,n)th element of Zi. The Zi sub-problem is then

obtained from Eq. (5) as follows:

min
Zi

γ
∑

j �=i

‖LT
j Zi‖2

F + δ‖Zi − (UV)i‖2
F +

μ

2
‖Zi − Li +

M2

μ
‖2
F + l+(Zi) (9)

To solve this, we use the alternating direction method of multipliers (ADMM)
[2]. To do so, we first introduce an auxiliary variable in order to make the
objective function separable:

min
Zi

γ
∑

j �=i

‖LT
j Zi‖2

F + δ‖Zi − (UV)i‖2
F +

μ

2
‖Zi − Li +

M2

μ
‖ + l+(Ci)

s.t. Ci = Zi (10)

The above equation is solved iteratively by updating one of the variables and
keeping the other fixed until convergence. The update equations are:

Zi = [(δ +
μ

2
+

ρ

2
)I+γ

∑

j �=i

LjLT
j ]−1[δ(UV)i +

μLi

2
− M2 − T + ρCi] (11)

Ci ← max(Zi +
T
ρ

, 0) (12)

T ← T + ρ(Zi − Ci) (13)
ρ ← min(κρ, ρmax) (14)

where, I denotes the identity matrix of appropriate size, T is the Lagrange
multiplier and ρ > 0, κ >0, ρmax are parameters.
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– Computation of U and V:

min
U≥0,V≥0

‖Zi − (UV)i‖2
F (15)

The above optimization problem can be solved directly using any of the exist-
ing NMF solvers.

– The final step is to update the multipliers and μ:

M1 ← M1 + μ(Yi − Li − Si) (16)
M2 ← M2 + μ(Zi − Li) (17)
μ ← min(ψμ, μmax) (18)

Once we obtain the basis matrix U learnt from the underlying clean data L, we
project all the degraded training and testing data onto U to obtain discriminative
features which are subsequently used for classification. For any spectral vector
y, we obtain its feature vector as follows:

f = U†y (19)

where U† denotes the pseudoinverse of U. We propose to use a very simple classi-
fier to classify these obtained features with high accuracy. For a test feature ftest
and the training features fi, i = 1, 2, . . . , N , let the spatial positions of the test
and training features (corresponding to the test and training spectral vectors,
respectively) be denoted by ptest = [x, y]T and pi = [xi, yi]T , respectively. Let
d1 = dist(ptest,pi) and d2 = dist(ftest, fi), where dist(a,b) denotes the squared
Euclidean distance between the vectors a and b. Then we propose to define

di
Δ= α1d1 + α2d2 (20)

as the dissimilarity between the test feature ftest and the training feature fi.
The test sample is then classified to the class of the training sample with which
this dissimilarity metric is minimum. d1 simply takes into account the spatial
correlation acknowledging the fact that pixels close to each other belong to the
same class with a high probability while d2 corresponds to the Euclidean distance
between the test and training features. Note that setting α1 to zero leads to the
nearest neighbour classifier.

4 Experimental Results

In order to assess the performance of our algorithm, we use three HSI datasets.
We synthetically corrupt these datasets by adding Gaussian noise of 0.05 stan-
dard deviation. Note that the spectral vectors are normalized to [0–1]. We also
add impulse noise and stripes to bands 61 to 70 in all the three datasets. We
randomly choose 10 per cent of labelled samples from each class for training and
use the rest for testing. We compare our algorithm with SVM [14], SRC [20] and
CRNN [11]. The classification performance is measured by the overall accuracy
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Algorithm 1. Proposed algorithm for obtaining discriminative features
Input: Training dataset: {Yi}, i=1,2, . . . , C; parameters α, β, γ, δ in Eq.(3) and num-

ber of basis vectors r
Output: Learnt basis matrix U
1: Initialise κ > 0, ρ > 0, μmax = 105, ρmax = 105, ε = 0.001,U=random matrix with

positive elements of appropriate size.
2: for i = 1 to C do
3: Initialise μ > 0, ψ > 0,M1 = 0,M2 = 0,Zi = 0,Si > 0,V=random matrix

with positive elements of appropriate size.
4: while ‖Yi − Li − Si‖2

F /‖Yi‖2
F < ε do

5: Update Li by Eq. (6)
6: Update Si by Eq. (7)
7: Update Zi by Eq. (11)
8: Update Ci by Eq. (12)
9: Update Ti by Eq. (13)

10: Update ρi by Eq. (14)
11: Update U and V by Eq. (15)
12: Update multipliers and penalty parameter μ using Eqs. (16,17 and 18)
13: end while
14: end for

(OA) which is defined as the ratio between the number of correctly predicted
pixels to the total number of test pixels. The robustness of our algorithm to
noise is analysed by gradually increasing the amount of noise added and mon-
itoring its effect on the class accuracies as compared to the other algorithms.
The parameters α, β, γ, δ, α1 and α2 are tuned to obtain the best results.

4.1 Datasets

The datasets used are Indian Pines, Botswana and Salinas. The Indian Pines
dataset has a size of 145 × 145 × 200 and has 16 classes. The Botswana dataset
has a size of 1476 × 256 × 145 and has 14 classes. The third dataset is the Salinas
dataset which has a size of 512 × 217 × 204 and 16 classes. The Botswana dataset
has only 326 labelled training samples and hence is particularly more challenging
among these datasets due to the scarcity of training samples.

4.2 Classification Performance

The performance of the classifiers on the three synthetically corrupted datasets
is demonstrated in Tables 1, 2 and 3. We find that our algorithm achieves accu-
racies of 97.39%, 99.85% and 98.28% on the Botswana, Salinas and Indian Pines
datasets respectively, outperforming the other methods. In the Salinas dataset,
CRNN achieves the next best accuracy of 90.42% while SVM achieves the next
best accuracies of 30.15% and 52.03% in the Botswana and the Indian Pines
datasets, respectively. Note that our algorithm outperforms other state-of-the-
art methods in these two datasets by a very large margin. Figure 1 depicts
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Table 1. Classification accuracy (%) for the Botswana dataset

Class SVM SRC CRNN Proposed approach

Water 88.89 34.57 46.50 100

Hippo grass 3.30 4.40 5.49 100

Floodplain grasses 1 23.01 10.62 12.39 86.28

Floodplain grasses 2 10.36 2.60 7.25 100

Reeds 1 22.31 15.70 21.49 100

Riparian 26.86 12.40 6.20 98.76

Firescar 2 30.90 17.17 17.17 81.55

Island interior 37.70 12.02 24.04 99.45

Acacia woodlands 16.96 7.77 6.36 100

Acacia shrublands 19.73 9.42 8.07 100

Acacia grasslands 35.40 27.73 35.40 100

Short mopane 22.70 8.59 11.66 100

Mixed mopane 17.01 9.96 5.40 100

Exposed soils 74.12 24.70 72.94 100

OA (%) 30.15 14.54 18.41 97.39

Table 2. Classification accuracy (%) for the Salinas dataset

Class SVM SRC CRNN Proposed approach

Brocoli green weeds 1 97.34 98.34 99.56 100

Brocoli green weeds 2 97.67 95.68 99.85 100

Fallow 75.42 0 99.10 100

Fallow rough plow 98.72 98.88 98.96 98.17

Fallow smooth 96.47 99.34 97.80 99.05

Stubble 99.04 99.80 99.75 99.78

Celery 99.25 99.35 99.60 99.97

Grapes untrained 95.63 81.47 79.54 100

Soil vinyard develop 98.76 98.73 99.25 100

Corn senesced green weeds 75.38 79.02 95.73 99.97

Lettuce romaine 4wk 0 0 98.86 99.79

Lettuce romaine 5wk 95.50 93.54 99.60 99.71

Lettuce romaine 6wk 97.81 97.94 98.06 99.76

Lettuce romaine 7wk 90.13 90.34 93.87 99.27

Vinyard untrained 9.92 46.72 66.43 100

Vinyard vertical trellis 79.15 75.52 98.95 100

OA (%) 80.82 80.02 90.42 99.85
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Table 3. Classification accuracy (%) for the Indian Pines dataset

Class SVM SRC CRNN Proposed approach

Alfalfa 0 0 4.88 100

Corn-notill 34.44 36.96 33.85 96.19

Corn-mintill 1.07 2.28 4.82 97.86

Corn 0.94 0.94 0.47 96.71

Grass-pasture 10.80 4.14 9.19 98.16

Grass-trees 88.28 86.15 75.19 99.70

Grass-pasture-mowed 0 0 0 96.00

Hay-windrowed 96.51 97.67 73.25 100

Oats 0 0 0 100

Soybean-notill 7.66 12.11 11.31 95.66

Soybean-mintill 89.09 85.56 75.37 98.73

Soybean-clean 5wk 0.19 4.31 5.06 98.50

Wheat 33.70 27.17 28.26 99.46

Woods 97.89 99.21 94.20 100

Buildings-Grass-Trees-Drives 6.92 1.73 2.59 99.71

Stone-Steel-Towers 80.95 85.71 69.05 100

OA (%) 52.03 51.77 46.68 98.28

)b()a(

)d()c(

Fig. 1. Effect of progressive addition of noise on individual class accuracies on the
Botswana dataset: (a) SVM, (b) SRC, (c) CRNN and (d) proposed approach
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the sensitivity of the classifiers to noise. We progressively increase the standard
deviation of Gaussian noise using increments of 0.005 upto 0.1 and examine the
effect on class specific accuracies obtained by the algorithms. From Fig. 1, we
infer that our algorithm is robust to noise in the data since the class specific
accuracies do not drop and remain fairly constant while the performance of all
the other methods deteriorates sharply with the increase in noise levels.

5 Conclusion

A novel algorithm for the classification of degraded hyperspectral data is pro-
posed. A combination of nuclear norm minimization and non-negative matrix
factorization is used to exploit the low rank nature of the data. A basis matrix
is learnt from the underlying clean data which is used to extract features from
the input degraded data. The discriminative ability of the underlying clean data
is exploited using structural incoherence, which to the best of our knowledge, is
being introduced for the first time in the hyperspectral image processing liter-
ature. Both the spatial and spectral information are exploited for classification
which lead to state-of-the-art results.
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