q

Check for
updates

Artificially Intelligent Game Framework
Based on Facial Expression Recognition

Itisha Patidar, Karan Sanjay Modh, and Chiranjoy Chattopadhyay ™)

Indian Institute of Technology Jodhpur, Jodhpur, India
{patidar.1,modh.1,chiranjoy}@iitj.ac.in

Abstract. During gameplay, a player experiences emotional turmoil. In
most of the cases, these emotions directly reflect the outcome of the game.
Adapting game features based on players’ emotions necessitates a way
to detect the current emotional state. Researchers in the area of “video
game user research” has studied biometric data as a way to address the
diverse characteristics of players, their individual preferences, gameplay
expertise, and experiences. Identification of the player’s current state is
fundamental for designing a game, which interacts with the player adap-
tively. In this paper, we present an artificially intelligent game framework
with smart features based on automatic facial expression recognition and
adaptive game features based on the gamer’s emotion. The gamer’s emo-
tions are recognized at run-time during gameplay using Deep Convolu-
tional Neural Networks (CNN), and the game is adapted accordingly to
the emotional condition. Once identified, these features directly mod-
ify critical parameters of the underlying game engine to make the game
more exciting and challenging.

Keywords: Facial expression recognition - Deep learning - CNN -
Game engine - User experience - Game interface

1 Introduction

Articial Intelligence (AI) has seen tremendous progress in recent years. It is a
prosperous research field containing a cumulative number of vital research areas,
as well as an essential technology for a growing number of application areas. Al
in games was started with board games, and then slowly graduated into video
games, where researchers are making a significant contribution in terms of devel-
oping new algorithms for the game engine, rendering, human-computer interac-
tion, etc. As a result, video games, in their present form, have become intelligent.
Analyzing game statistics and learning the critical performance parameters have
been the area of interest to many Al researchers. In the literature there has been
efforts to combine biometry based feedback for making the game engaging. For
facial expression recognition works like [8,10,14,15,17] have demonstrated sig-
nificant contribution. Also there were efforts to create a dataset [6] solely based
on the expressions of the player while playing the game. Apart from emotional

© Springer Nature Singapore Pte Ltd. 2020
R. V. Babu et al. (Eds.): NCVPRIPG 2019, CCIS 1249, pp. 312-321, 2020.
https://doi.org/10.1007/978-981-15-8697-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8697-2_29&domain=pdf
http://orcid.org/0000-0002-3431-0483
https://doi.org/10.1007/978-981-15-8697-2_29

Al Game Framework Based on FER 313

states, efforts were made to capture the gamer’s psychological and physiological
states in the area of user experience research based on biometry and also game-
user research through biometry [9,11]. In [1], a facial expression based game
personalizing technique was proposed. Bio-feedback in games is another area
where very recently researchers have started looking into and made significant
contributions [4,7,13,16].

In this paper, we provide an artificially intelligent game framework that
adapts to the users emotional status by analyzing the facial expression during
game play. We hypothesize that a user will be happy on winning points bonus in
the game. On the other hand, the user will be in a sad mood if the performance
in the game is not well. Under this assumption, to make the game more engag-
ing and to keep the gamer motivated, by introducing two key features. They
are: (1) if the user is happy (i.e., the facial expression reflects happiness), then
the game automatically adapts to itself and makes it more challenging, (2) for
sad facial expression, we introduce reward for the gamer and thereby makes it
engaging. One thing to be noted here is that we do not change the level of the
game, which is by default is more challenging. We change the difficulty of the
game in the same level by updating the critical parameters and features of game
by interacting directly with the game engine.

The paper is organized in the following way: Section 2 presents the proposed
framework in details. In Sect. 3, we present the details of the experimental stud-
ies. Finally Sect. 4 concludes the paper.

2 Proposed Framework

Figure 1 depicts the flow diagram of the proposed framework. There are three
critical components in the framework, namely (i) Player’s Emotion Recognition,
(ii) Game Engine, (iii) Adaptation Rules. In the following subsections, we present
the details of the proposed artificially intelligent game framework.

2.1 Player’s Emotion Recognition

We leveraged the Mememoji [3] model to extract the facial emotions of the user
in real time, and adapted it as per the requirements. Figure 2 depicts the overall
facial expression recognition framework. OpenCV was used for face detection in
the image. Detection of objects in an image using Haar feature-based cascade
classifiers has proven to be an effective method. In this work, we have used the
Viola-Jones Face Detection technique [12] to detect and crop the face of the
gamer from the input video stream. Next, to ensure that all the face images
are of the same dimension, the cropped regions are converted into 48 x 48 sized
grayscale images. The resultant matrix is linearized into an array of dimension
1 x 48 x 48 and fed into the input layer. The input vector goes through the
Convolution2D layer. The filters in the convolutional layer is a small matrix of
size 3 x 3, which are convolved with the original image and yields a feature map.

314 I. Patidar et al.

Emotion code i
written in file evel

second.
Detecting

leng
Tensorflow
File J

Emotion.txt

Controlling
k using Game
Logistic Function Engine

Fig. 1. Schematic representation of the proposed game framework.

Game Window

The next processing stage is Pooling (in our case, Max Pooling is used) to
reduce the dimension and results in computational efficiency. In this work, a (2, 2)
pooling windows is used that scans through the feature map and keeps the max-
imum pixel value. The next processing stage is the dense layer or fully connected
layers. It takes a large number of input features and transforms features through
layers connected with trainable weights. These weights are trained by forward-
ing propagation of training data then backward propagation of its errors. The
final segment in the network is the output layer, where the Softmax activation
function is used. This output presents itself as a probability for each emotion
class. To finalize the configuration of the network, we have conducted several
experiments, and empirically determined the number of each type processing
layers. In the end, the final neural network architecture that yielded the best
performance has 9 convolution layers, and after three consecutive convolution
layer, there is one max-pooling layer.

3 Sequential 3 Sequential 3 Sequential 2 Sequential
Conv Layers Conv Layers Conv Layers Dense Layer
—+} Neutral
7 T —s] Surprise
' > Sad
& = — = =) R
/ oo e
-— — —_— - ear
[8 8 [- Angry
Input Image 3 £ 2 e
] 8 g
s = =
. Softmax
32 feet maps per 64 feet maps per 128 feet maps Output
layer layer per layer

Fig. 2. Architecture of the convolutional neural network.

Al Game Framework Based on FER 315

2.2 Game Engine

We consider the classical video game “SUPER MARIO BROS” and have made
further enhancements to its game engine, and thereby making it adaptive to the
individual player concerning experienced challenge applying PCG (Procedural
Content Generation) [5]. The goal of our approach is to generate online game
spaces such that the spaces optimize player to challenge for the individual player,
by modeling the parameters like speed attributes, number of enemies, changing
the abilities of the player, etc.

The working structure of the game is a huge Matrix, in which a map is
loaded first based on the level which the user is playing. The map consists of
blocks/bricks placed at individual squares of matrices, and also all enemies are
loaded at the beginning and are called based on their position as a square of
the matrix. A check on the state of the player is kept at every square of the
matrix through which it passes, which responds whether the player is alive or
dead. So we analyzed this structure and implemented the dynamic change of
the game on each square of the matrix (where it checks for player state) and
applied an algorithm to alter the attributes with the help of ‘mathematical
modeling’ (discussed in Sect. 2.3) whenever the physiological states (emotions) of
the players’ changes. A key contribution of this work is that game personalization
techniques can leverage novel computer vision-based techniques to infer player
experiences automatically based on facial expression analysis unobtrusively.

2.3 Mathematical Modelling

Mathematical functions are used for personalizing the various parameters (listed
in Table 1) of game depending on classifications of the user’s facial expression —
to the end of tailoring the affective game experience to the individual user. To
dynamically change the game attributes we require a function which can regulate
personalization such that the game remains playable and players’ could remain
engaged. To regulate the challenge level a hardness parameter (x) is used which
at the start of game is set to zero. Player’s emotions are then tracked using
facial expression recognition model through out the entire duration of the game
session, which are further used for sampling the hardness parameter. This is
then applied on a mathematical function to give personalized game features
depending on emotions.

Algorithm 1 is currently used for personalizing game features. The FER
model gives percentage of distinct emotions, namely (0) angry, (1) fear, (2)
happy, (3) sad, (4) surprise, and (5) neutral in an array, depending on the
progress of the player through the Mario game. The index of expression with
maximum percentage is taken as the expression code 3. These expression code
are then used for sampling hardness parameter x, which further optimizes game.
The Algorithm 1 is called for every frame. For every 10" frame we take the deci-
sion and update the game, as shown in line no. 6 to 12. The sampling parameter
shown in line no. 9 is taken as 2.5 for logistic function and 0 for linear function

316 I. Patidar et al.

Algorithm 1. Optimising game using Linear Function

1: procedure PERSONALIZE(E) > E: Emotions array
2: z+—0

3: a «— maz(E) > Maximum probability of an emotion
4: B — index(a, E) > (: Expression code
5: E.append(B) > &: Expression array
6: if £.Length = 10 then

7 B «— mode(E)

8 if 3=0vB=1Vv3=3 then

9: T—1xT—" > 7: Sampling parameter
10: if =2V (3 =4 then
11: T— x4
12: map < OPTIMIZEGAME(z)

Table 1. Various game parameters and their update rule.

List of Parameter

Parameter On positive valence | On negative valence
Speed on enemies Increased Decreased
Number of enemies Increased Decreased
Frequency of power Ups | Decreased Increased

Linear Function. In this approach, linear functions were used to map classi-
fications of the human player’s facial expressions to appropriate in-game chal-
lenge levels. It was employed for optimising the challenge levels in the game such
that the human interactions yield increased hardness level for positive valence
(i.e., happiness, surprise), while decreasing hardness level for negative valence
(i.e., fear, sad, anger) and no change for neutrality. Algorithm 2 optimizes the
game based on the hardness parameter calculated from users affective states.
This approach failed when emotional activity giving positive valence increases
rapidly. The minions in game attains such a high speed that their trajectories do
not even lie within the game frame. Also the number of minions increases very
rapidly which flood the game frame making diversions which are uncontrollable.

Algorithm 2. Optimising game using Linear Function

1: procedure OPTIMIZEGAME(z) > x: Hardness parameter
2: if x > 0 then

3: y—1lbxzx > «y: Challenge Level
4: if £ < 0 then

5: v+~ 08 xx

6: UPDATEGAME(7) > Update game parameters

Al Game Framework Based on FER 317

Determining speed of Game based on values of X using Logistic Function.

—— increasing
81 —— decreasing
6 4
v
£
©
o
-
Sa
Q 1 Starting (Normal) speed 9
2 ——————————— ofthegame _—
n 1_9-0 08(x+30) 1_2—000(,\'—30)
2 \
1 \
ol 11—
v T T T T T T T
-80 —-60 —-40 -20 0 20 40 60 80

Sampling X

Fig. 3. Logistic functions for game personalization.

Logistic Function. The excessively high challenge levels imposes an unpleasant
experience on game players. In order to avoid player abandonment resulting from
an inappropriately high challenge level, a logistic function was formulated.
This helped to remove the flaws of linear function by getting saturated after
certain values of hardness parameter. Additionally, it also provided a cushion,
in the form of graceful increase/decrease. We not only take into consideration
player assessments made during actual play of the game, but also the playable
conditions of the game as we observed during observational period many game
players express high emotional activity, which could lead to extreme increase of
speed or flood the game with enemies. To avoid such scenarios logistic function
is useful by streamlining and controlling the flow from point of entry to the end
of game. The logistic functions formulated for the algorithm as:

1

~ 1+ e 0.08(z + 30) (1)

f(x)

The above function (Eq. 1) decreases the challenge levels in the face of user
anger, while the following (Eq. 2) increases the challenge levels in the face of

Algorithm 3. Optimising game using Logistic Function

1: procedure OPTIMIZEGAME(x) > x: Hardness parameter
2: if £ <0 then

3 v m > v: Challenge Level
4: if x > 0 then

5 Y Tee0sE)

6

UPDATEGAME() > Update game parameters

318 I. Patidar et al.

Table 2. Comparative analysis of logistic and linear functions.

Using logistic function | Using linear function

Increasing | Decreasing | Increasing | Decreasing
2.12098 0.90025 1.5 0.8
2.27666 0.880797 2.25 0.64
2.44998 0.858149 3.375 0.512
2.64183 0.832018 5.0625 0.4096
2.85283 0.802184 7.59375 |0.32768
3.08328 0.768525 | 11.3906 0.262144
3.33303 0.731059 | 17.0859 0.209715
3.60145 0.689974 | 25.6289 0.167772
3.88739 0.645656 | 38.4434 0.134218
4.18909 0.598688 | 57.665 0.107374

user neutrality or happiness.

9
~ 14+e0.06(x — 35)

9(x) (2)
Thereby, the online personalizing method operates as expected. Algorithm 3
optimizes game based on the hardness parameter calculated from users affective
states. Graphs for these functions are shown in the Fig. 3. Table 2 shows how
challenge level changes using both the functions, hence one can observe the need
to discard the idea of linear function. The updateGame function call at line
number 6 in Algorithm 2 and 3 updates the critical parameters of the game.

3 Experiments

Experiments were conducted on a computer having Ubuntu 18.04 with Intel i5
processor, and 8 GB memory. The entire programming was done on OpenCV,
Keras and TensorFlow for face expression recognition, while SDL2 and CMake
packages were used for the Mario game engine [2].

3.1 Methodology

We analyzed our system on the age group of 15-20 where participants interacted
with the game under controlled experimental conditions like proper lighting, face
exposed to the web cam for the entire duration, game starting at neutral hardness
level. Our hypothesis is that the game would change its hardness level in corre-
spondence to the emotional state of the user. We observed that the maximum

Al Game Framework Based on FER 319

TIME _ SPEED
586 0.258a03

Emotion Speed of Enemies

(i) Sad Emotion (i) Sad Emotion continues (iii) Emotion becomes happy (iii) Happy Emotion continues

Fig. 4. Schematic representation of variation of speed based on user’s emotion. (i) As
the user is Sad, the speed is less than normal i.e. 1. (ii) User continues to remain sad and
hence the speed even decreases more. (iii) User becomes happy and the speed increases
above the normal level i.e. 1. (iv) User remains happy and speed keeps increasing.

facial expressions were changed with 15-18 age group while with participants of
higher ages the maximum observed emotion was sad and game decreased grad-
ually. We observe the general trend where the algorithm decreases the hardness
levels in the face of user anger, sad or fear and increases the hardness levels in the
user’s emotion of surprise or happiness, hence validating our approach. Thereby,
the mathematical model along with FER algorithm operates as expected. Also
the framework maintains the levels in neutral face.

3.2 Qualitative Results

The mostly observed pattern showed that hardness is initially decreased because
of “sad” levels. However, later in the game, high “neutral” and “happy” levels
cause a increase in the hardness level. When lastly the “happy” emotion dis-
appears, the hardness level becomes stable as well. Furthermore, we observe
that the mathematical model appears stable in the face of classification noise,
i.e. when the human player suddenly expresses a “mix” of emotions; denoting,
in practise, that the player is talking or moving too much. As expected, the
associated hardness level remains stable in the face of this noise from the facial
expression classifier. This phenomenon is also in unison with our hypothesis.

Figure 4 shows the series of frames depicting the speed of enemies and emo-
tion of the player. The facial expression is shown as inset to the frame. It can
be observed from Fig. 4 (i) and (ii) that when the emotion continues to be sad
for sometime, the speed parameter (that controls the speed of the enemies) is
reduced to make the game easy, and thereby allowing the gamer to avoid the
enemies and collect the bonus points. On the other hand, in Fig. 4 (iii) and
(iv) depicts the situation when the gamer is happy. Here, the enemy speed is
increased to make the game more challenging.

320 I. Patidar et al.

Expression
w«o - Neutral
apuz - Surprise
“j sad
g Happy

w Fear

wr ANQry

w

x Bl
woxeressicn

Fig. 5. Expression being wrongly recognized.

3.3 Failure Cases

As per the current model, the failure cases includes the following cases: (i) expres-
sion being recognized wrongly and (ii) expression not being recognized at all.
For (i), expression recognized is not the correct expression. For example, the
actual expression is ‘happy’, however, it being recognized as ‘neutral’. In such a
scenario, our model would work according to the expression recognized, which
is not expected (ideally). The solution to such scenario is design of a better by
improving the efficiency of FER module. For he later scenario, there will be no
effect on the game since no expression is detected. Case (ii) occurs when the
player is (a) not in-front of the camera, (b) at a distance of more that 60 cm
from the camera, or (¢) in dark room/low lighting area. In terms of game, our
Linear model failed since it increased or decreased the game speed to such an
extent such that it is not playable, hence owing to this failure we came up with
Logistic Model to control the hardness of the game. Moreover, if the game is
exposed to multiple faces at the same time with different expressions, then the
model recognizes multiple expressions at the same time and hence the result is
not favorable. This issue can be resolved using single-face FER detection model.
Figure 5 shows the failure case when the expression ‘happy’ is wrongly recognised
as ‘Neutral’.

4 Conclusion and Future Work

In this paper, we presented a framework for changing the properties of a game
when played based on classifications of the user’s facial expression. A significant
contribution of this paper is that the proposed technique unobtrusive in nature,
and does not required the game player to be conscious about it. In this paper, we
augmented the Mario game engine and manipulate its features through Facial
Emotions recognition. For future work, we will investigate how to make the
framework more robust by learning the game engine features, and trying to
generalize the method of game personalization.

Al Game Framework Based on FER 321

References

10.

11.

12.

13.

14.

15.

16.

17.

Blom, P.M., et al.: Towards personalised gaming via facial expression recognition.
In: AAAI pp. 30-36 (2014)

Jakowski, L.: umario. https://github.com/jakowskidev/uMario_Jakowski

Jostine, H.: Mememoji. https://github.com/JostineHo/mememoji

Leahy, A., Clayman, C., Mason, 1., Lloyd, G., Epstein, O.: Computerised biofeed-
back games: a new method for teaching stress management and its use in irritable
bowel syndrome. J. R. Coll. Physicians Lond. 32(6), 552-556 (1998)

Lelis, L.H.S., Reis, W.M.P., Gal, Y.: Procedural generation of game maps with
human-in-the-loop algorithms. IEEE T-G 10(3), 271-280 (2018)

Li, W., Abtahi, F., Tsangouri, C., Zhu, Z.: Towards an “In-the-Wild” emotion
dataset using a game-based framework. arXiv e-prints (2016)

Lobel, A., Gotsis, M., Reynolds, E., Annetta, M., Engels, R.C., Granic, I.: Design-
ing and utilizing biofeedback games for emotion regulation: the case of nevermind.
In: CHI EA, pp. 1945-1951 (2016)

Lopes, A.T., de Aguiar, E., Souza, A.F.D., Oliveira-Santos, T.: Facial expression
recognition with convolutional neural networks: coping with few data and the train-
ing sample order. PR 61, 610-628 (2017)

Mirza-Babaei, P., Nacke, L., Fitzpatrick, G., White, G., McAllister, G., Collins,
N.: Biometric storyboards: visualising game user research data, May 2012
Mollahosseini, A., Chan, D., Mahoor, M.H.: Going deeper in facial expression
recognition using deep neural networks. In: WACV, pp. 1-10 (2016)

babaei Pejman, M., Sebastian, L., Emma, F.: Understanding the contribution of
biometrics to games user research. In: DiGRA International Conference: Think
Design Play, January 2011

Viola, P., Jones, M.J.: Robust real-time face detection. IJCV 57(2), 137-154 (2004)
Weerdmeester, J., van Rooij, M., Harris, O., Smit, N., Engels, R.C., Granic, I.:
Exploring the role of self-efficacy in biofeedback video games. In: CHI PLAY, pp.
453-461 (2017)

Bai, Y., Guo, L., Jin, L., Huang, Q.: A novel feature extraction method using
pyramid histogram of orientation gradients for smile recognition. In: ICIP (2009)
Yao, A., Shao, J., Ma, N., Chen, Y.: Capturing au-aware facial features and their
latent relations for emotion recognition in the wild. In: ICMI (2015)

Zafar, M.A., Ahmed, B., Al-Rihawi, R., Gutierrez-Osuna, R.: Gaming away stress:
using biofeedback games to learn paced breathing. IEEE T-AC 11, 519-531 (2018)
Zhang, J., Huang, K., Yu, Y., Tan, T.: Boosted local structured hog-lbp for object
localization. In: CVPR, pp. 1393-1400 (2011)

https://github.com/jakowskidev/uMario_Jakowski
https://github.com/JostineHo/mememoji

	Artificially Intelligent Game Framework Based on Facial Expression Recognition
	1 Introduction
	2 Proposed Framework
	2.1 Player's Emotion Recognition
	2.2 Game Engine
	2.3 Mathematical Modelling

	3 Experiments
	3.1 Methodology
	3.2 Qualitative Results
	3.3 Failure Cases

	4 Conclusion and Future Work
	References

