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Abstract. Human visual system (HVS) is naturally attracted to the
salient regions that appear distinctly in the foreground of a scene. How-
ever, for a machine, automatically detecting the region of saliency is
a challenging problem. Recently, a generative model namely Saliency
GAN (SalGAN) discriminates if a pixel is salient or not by generating
the saliency map given the input image. The generator is guided by a
content loss and adversarial loss. However, the generated saliency maps
tend to be smooth lacking finer details. We propose an improvised gen-
erator called iSalGAN (improvised saliency GAN) that integrates both
low-level and high-level features to produce finer saliency maps. Our
iSalGAN is guided by a combination of multiple content losses and, the
adversarial loss. Our model is trained on MSRA10K dataset and tested
on ECSSD and DUT-OMRON datasets. Qualitative and quantitative
evaluation of our model shows the superior performance of our model
over state-of-the-art methods. Codes will be made publicly available.
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1 Introduction

The HVS receives about 10® to 10° bits of information every second. In order to
process such huge data in real time, HVS uses its ability to selectively focus on
different parts of the scene. Given an image, the nervous system selects part of the
scene for further detailed processing, while discarding the rest. It also prioritizes
the selected part such that the most relevant parts are processed first. This selection
and ordering process is known as selective attention or visual saliency [4].

The visual attention model aims to predict the salient regions of the image.
The salient region detection can save computational resources as only the rel-
evant information is processed. It can also be used as a preprocessing step for
many other computer vision tasks such as object detection, object recognition
etc.

Deep learning (DL) models, particularly convolutional neural networks
(CNN) have achieved tremendous success in many of the computer vision tasks
such as image classification [5], image segmentation [12] etc. Hence, deployment
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of DL techniques for saliency prediction is a natural extension. The fully convo-
lutional networks (FCN) being used to predict saliency maps achieves significant
improvement over traditional approaches. However, these networks fail to pro-
duce sharp saliency maps. The saliency maps produced by these networks miss
the fine details and, the boundaries are blurred.

In this work we improvise an adversarial training based architecture called
SalGAN [14] to eliminate the blurriness at boundary pixels and produce a sharp
saliency map for the given input image. We integrate both low-level and high-
level features at the generator to produce low-level, high-level and combined
saliency maps. By low-level we mean lower layer features and by high-level we
mean higher layer features. The integration of low-level and high-level features
has been inspired by [2]. We supervise the saliency maps using a loss function
which is a combination of content loss at each level and, the adversarial loss.
The discriminator decides the real vs fake between the ground truth saliency
map and the combined saliency map produced by the generator. Our method is
called as iSalGAN.

2 Related Work

Traditionally, saliency prediction is based on manually engineered features like
texture, contrast etc. These methods lacked success as the manually engi-
neered features could not capture the global semantics of the given input image.
Presently, with a relatively significant volume of data available, it is a routine
work for CNNs to capture global semantics and predict salient regions with
higher accuracy than the traditional methods.

An early work in this direction is by Long et al. [12]. Subsequently, Liu et
al. [11] designed a neural network consisting of two parts to predict the saliency
map. The first subnet, a deep hierarchical saliency network (DHSNet), acts as an
encoder network and predicts coarser global features. The coarser global features
are then refined using the second subnet, a hierarchical recurrent convolutional
neural network (HRCNN), to obtain finer local features. Kiimmerer et al. [6]
proposed the first transfer learning model for saliency prediction. Their model
DeepGaze is a modification of AlexNet architecture [5]. DeepGaze omitted all of
the fully connected layers and passed the features of the convolutional layers to
a linear model as input to learn the weights. Huang et al. [3] introduced a deep
neural network (DNN) model to reduce the semantic gap present between the
predicted saliency map and the human’s behavior. They redesigned an existing
DNN for object recognition and used it for saliency prediction. Pan et al. [15]
designed a shallow and a deep convolutional model, trained end-to-end, to detect
the salient region in an image. The shallow network is trained from scratch and
the deep network is trained using transfer learning.

Different loss functions have been used by different methods mentioned above.
The definition of ‘best’” among them is debatable. To break the continuity of this
exploration, instead of tailor making a loss function for the method, Pan et al.
[14] proposed a adversarial training based saliency prediction called SalGAN.
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Given an input image, the generator generates a saliency map with an aim to fool
the discriminator that it is the real saliency map of the given image. Over a period of
training guided by binary cross entropy (BCE) loss and adversarial loss, the gen-
erator produces accurate saliency maps. However, these saliency maps lack fine
quality and are blurred. In this work we improvise SalGAN (iSalGAN) to elimi-
nate the blurriness at boundary pixels and produce a sharp saliency map for the
given input image. Our contributions are as follows:

— In iSalGAN, we integrate both low-level and high-level features at the genera-
tor to produce low-level, high-level and combined saliency maps. In contrast,
SalGAN only works with a single layer output.

— In iSalGAN, we supervise these maps using a combination of content loss at
each level and, the adversarial loss. In contrast, SalGAN uses only one content
loss.

— Unlike VGG-16 used by SalGAN [14] for generator, we use ResNeXt-101. We
gain a significant reduction in number of learnable parameters. The reason
for this switch is further explained later.

— We compare iSalGAN with SalGAN and other state-of-the-art methods.

3 Proposed Method

Conventionally, in the CNN setting, only the final layers predict the saliency
maps, independent of other layers. When an image passes through a neural
network, the feature maps are constantly refined by the layers. The final layers
use these enriched feature maps to make predictions about the salient objects
in the image. Though CNN predict significantly better saliency maps compared
to traditional approaches, making predictions independent of other layers does
not take multi-scale semantics into consideration. SalGAN too uses a CNN in
the generator that does not consider multi-scale semantics.

The proposed improvisation, iSalGAN, leverages on the salient features
learned across multiple layers of the network.

3.1 iSalGAN Architecture

iSalGAN consists of a generator and a discriminator. Given an image to the gen-
erator, it extracts low-level and high-level features by passing the image through a
feature extractor network. It then integrates all the low-level and high-level fea-
tures respectively. Low-level features attend to fine details while high-level fea-
tures capture the global semantics. The integrated low-level and high-level features
are used to predict intermediate saliency maps respectively. The integrated fea-
ture maps are further fused to predict a combined high-resolution saliency map as
output. The intermediate saliency maps are used to compute the content loss and
the combined saliency map becomes the input to the discriminator for adversar-
ial training. The discriminator attempts to differentiate between the synthesized
high-resolution saliency map and the real saliency map which is the ground truth.
Figure 1 illustrates the overall architecture of iSalGAN.
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Fig. 1. The overall architecture of iSalGAN (Color figure online)

3.2 Generator

The generator in our iSalGAN network uses ResNeXt-101 [21] as the feature
extractor. Given an image to the generator, the ResNeXt model yields a set of
feature maps. These feature maps contain low-level as well as high-level seman-
tic information of varying scales. The low-level features and the high-level fea-
tures are extracted by the shallow layers (grouped in light blue in Fig. 1) and
the deep layers (grouped in light yellow in Fig. 1) respectively. These features
are up-sampled and concatenated to produce low-level integrated feature map,
L (denoted in dark blue in Fig. 1) and high-level integrated feature map, H
(denoted in dark yellow in Fig. 1) respectively. The low-level integrated feature,
L, and the high-level integrated feature, H, are passed through a shallow con-
volutional network (denoted as conv_int) to produce low-level saliency map, Sy,
(denoted in light grey in Fig. 1) and high-level saliency map, Sy (denoted in
dark grey in Fig. 1) respectively. The low-level integrated feature, L, and the
high-level integrated feature, H, are further combined to produce a richer feature
map, Fo (denoted in orange). The combined feature map, F¢, is then passed
through another shallow convolutional network (denoted as conv_final) to pro-
duce a combined saliency map, S¢ (denoted in red in Fig. 1). The generator
therefore produces three saliency maps for each input image.

It is to be noted that SalGAN uses VGG-16 [18] as the feature extractor
network in the generator. VGG-16 has 138 million learnable parameters. In order
to reduce computation overload and memory footprint, SalGAN trades with
accuracy by considering only last two groups of convolutional parameters for
learning. For other parameters, weights are transfered from VGG-16 pre-trained
for ImageNet challenge [16]. Recently, it has been shown that ResNeXt [21]
significantly brings down the validation error on ImageNet. A ResNeXt block
has varied number of residual paths, each with same topology with significantly
less width. This helps in embedding the input into different subspaces thereby
able to generalize well across variations. We do not want to trade with accuracy
and so we train our iSalGAN model end-to-end. We use ResNeXt-101 that has
roughly around 44 million parameters, less than VGG-16 by a factor of 3.

Figures 2 and 3 describe the detailed architecture of the shallow convolutional
networks used to generate intermediate and final saliency maps respectively.
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Layer In-channels Out-channels Kernel Activation
Convl 256 128 3x3 PReLU
BatchNorm1 128 - - -
Conv2 128 128 3x3 PReLU
BatchNorm?2 128 - - -
Conv3 128 1 1x1 sigmoid

Fig. 2. Architecture of conv_int which generates intermediate saliency maps

Layer In-channels Out-channels Kernel Activation
Convl 2 128 3x3 PReLU
BatchNorm1 128 - - -
Conv2 128 128 3x3 PReLU
BatchNorm2 128 - - -
Conv3 128 1 1x1 sigmoid

Fig. 3. Architecture of conv_final which generates final saliency map

3.3 Discriminator

The discriminator network used is same as given in SalGAN [14]. It consists
of six convolutional layers with a kernel size of 3 x 3. A ReLU layer follows
each of the convolutional layer, and after every set of two convolutional layers, a
maxpool layer follows which reduces the feature size by half. Finally, three fully
connected layers follow the convolutional layers. Tanh is used as an activation
function for the first two fully connected layers whereas the final fully connected
layer uses sigmoid.

4 Training

Our iSalGAN network uses a combination of content loss and adversarial loss.
The content loss in our model is computed by combining the losses of the inter-
mediate saliency maps and the final saliency map with respect to the ground
truth, respectively. The adversarial loss determines the discriminator’s ability to
distinguish the combined saliency map, S¢, as real or fake.

4.1 Content Loss

The content loss is defined as:

Ypc = BCEs, + BCEs,, + BCEs,,
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Here, S* and S;*, i = {L,H,CY represent the probability of the k*" pixel
being salient in the ground truth and predicted saliency maps respectively and
N is the number of pixels in the image. In summary, the content loss is computed
by comparing the similarity between the predicted saliency maps with respect
to the ground truth saliency map for every pixel.

4.2 Adversarial Loss

The loss function for the discriminator architecture is defined as:
Lpis = L(9(17S)7 1) =+ L(@(I,S),O)

where L denotes BCE loss, the number 1 represents that target belongs to ground
truth and 0 represents that it is predicted. 2(I,S) represent the probability
of fooling the discriminator (i.e. given a predicted saliency map as input, the
discriminator classifies it as real). Z(I, S) represent the probability that given a
ground truth saliency map, the discriminator predicts it as real. The loss function
used in adversarial training is defined as:

L =ax Lpop+ L2(1,5),1)

The loss function .Z aids in improving the convergence rate and stability of the
adversarial training.
The training of iSalGAN happens in two phases:

1. Pretrain the generator for 15 epochs using only content losses.
2. Subsequently add discriminator and start the adversarial training.

During the adversarial training, the input to the iSalGAN is an RGB image of
shape 256 x 192 x 3. Input to the discriminator is an RGBS image of shape 256 x
192 x 4. Generator and the discriminator are trained in alternative iterations.
Weight decay is set to 1 x 10™*. Learning rate is set to 3 x 10~%. SGD is used as
optimizer. Batch size is set to 8. A larger batch size would give better accuracy
but due to limitation of resources we worked with batch size of 8. « is set to
5 x 1073. The entire network is trained for 120 epochs.
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5 Results

In this section, we qualitatively and quantitatively report the results of our
iSalGAN model for saliency prediction. The model is trained on MSRA10K
dataset [1] and is tested on ECSSD [22] and DUT-OMRON [23] datasets. Parts
a, b and c of Fig. 4 depict a sample of results of iSalGAN on MSRA10K, ECSSD
and DUT-OMRON datasets. In the above mentioned figures, the first column
consists of the query images, the second column consists of the ground truth
saliency maps for the corresponding images and the third column shows the
predicted saliency maps. Clearly, the results are impressive. Part d of Fig. 4
compares iSalGAN with SalGAN qualitatively. We can clearly emphasize on the
sharpness of iSalGAN results over the blurry results produced by SalGAN. Even
the minute variations have been reasonably picked up by iSalGAN while SalGAN
completely averages them out.

Table 1. Comparison of iSalGAN with the state-of-the-art models for saliency
prediction.

ECSSD DUT-OMRON

F-measure | MAE | F-measure | MAE
BSCA [17] 0.758 0.183 | 0.616 0.191
MC [24] 0.822 0.106 |0.703 0.088
LEGS [19] 0.827 0.118 | 0.669 0.133
MDF (8] 0.831 0.108 | 0.694 0.092
ELD [7] 0.867 0.080 |0.716 0.091
RFCN [20] 0.898 0.097 |0.747 0.095
DS [10] 0.882 0.123 | 0.745 0.120
DCL [9] 0.898 0.071 |0.757 0.080
DHSNet [11] 0.907 0.059 | — -
NLDF [13] 0.905 0.063 |0.753 0.080
iSalGAN (ours)  0.912 0.053 | 0.759 0.076

We compared our iSalGAN model with 10 of the state-of-the-art models in
literature, using the F-measure and mean absolute error (MAE) metrics. Table 1
shows that iSalGAN outperforms its competitors on both the ECSSD [22] and
DUT-OMRON 23] datasets. Further, Table 2 illustrate that iSalGAN outper-
forms the SalGAN model. With respect to F-measure a significant jump of 8%
is observed while the MAE has reduced by a factor of 10. To compare against
SalGAN, we trained SalGAN on MSRA10K dataset for 120 epochs. The iSal-
GAN model is implemented using PyTorch framework. Both the qualitative and
quantitative results clearly emphasize the importance of integration of both lower
layer and higher layer features and also supervision at both levels.
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Fig. 4. Qualitative results of iSalGAN on MSRA10K, ECSSD, DUT-OMRON datasets
and SalGAN vs. iSalGAN
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Table 2. Quantitative comparison of iSalGAN with the SalGAN model.

Method MSRA10K
F-measure  MAE

SalGAN [14] 0.869 0.103

iSalGAN (ours) | 0.945 0.027

6 Conclusion

The saliency maps generated using the SalGAN architecture have blurred bound-
aries and using them to segment the salient objects may either add a non-salient
part to the segmented object or may ignore some part of the salient object.
Such segmentation may affect the accuracy in case of applications like medical
image analysis. In order to eliminate the blurriness of the boundary and retain
the advantages provided by the SalGAN architecture, we designed an impro-
vised SalGAN called iSalGAN to predict saliency map with clear boundaries.
Our iSalGAN model considers both low-level features and high-level feature as
equally important. The iSalGAN architecture performed better than 10 of the
state-of-the-art models when compared using MAE and F-measure metrics. A
future direction would be to extend iSalGAN to predict instance level saliency
maps.
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