l")

Check for
updates

Single Storage Semi-Global Matching
for Real Time Depth Processing

Prathmesh Sawant!®™) Yashwant Temburu'(®) Mandar Datar! (=)
Imran Ahmed?®), Vinayak Shriniwas>®™, and Sachin Patkar! (9

! Department of Electrical Engineering, Indian Institute of Technology Bombay,
Mumbai, India
prathmesh.vsawant@gmail.com, temburuyk@gmail.com,
mandardatar@ee.iitb.ac.in, patkar@bhairav.ee.iitb.ac.in
2 Defence Research and Development Organization, New Delhi, India
imran.livt@gmail.com, nvshriniwas@cair.drdo.in

Abstract. Depth-map is the key computation in computer vision and
robotics. One of the most popular approach is via computation of
disparity-map of images obtained from Stereo Camera. Semi Global
Matching (SGM) method is a popular choice for good accuracy with
reasonable computation time. To use such compute-intensive algorithms
for real-time applications such as for autonomous aerial vehicles, blind
Aid, etc. acceleration using GPU, FPGA is necessary. In this paper, we
show the design and implementation of a stereo-vision system, which is
based on FPGA-implementation of More Global Matching (MGM) [7].
MGM is a variant of SGM. We use 4 paths but store a single cumu-
lative cost value for a corresponding pixel. Our stereo-vision prototype
uses Zedboard containing an ARM-based Zyng-SoC [10], ZED-stereo-
camera/ELP stereo-camera/Intel RealSense D435i, and VGA for visual-
ization. The power consumption attributed to the custom FPGA-based
acceleration of disparity map computation required for depth-map is just
0.72 watt. The update rate of the disparity map is realistic 10.5 fps.

Keywords: Semi Global Matching (SGM) - More Global Matching
(MGM) - Field programmable gate array (FGPA) - System on chip
(SOC) + Zedboard + Census transform + High Level Synthesis (HLS)

1 Introduction

Although 2D and 3D LIDARs (Light Detection and Ranging Sensors) provided
accuracy, they did not succeed with the economics of power and bill of materials
for portable goods. Stereo cameras cost less, but need a lot of computational
processing, and this aspect is getting good attention of research community,
spurring the development of FPGA and GPU based acceleration of stereo-vision
related computation. The low power consumption of fpga-based solutions are
attractive and crucial for high performance embedded computing too.

This paper describes our design and implementation of a real-time stereo
depth estimation system with Zedboard [10] (housing ARM-SoC based FPGA)

© Springer Nature Singapore Pte Ltd. 2020
R. V. Babu et al. (Eds.): NCVPRIPG 2019, CCIS 1249, pp. 14-31, 2020.
https://doi.org/10.1007/978-981-15-8697-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8697-2_2&domain=pdf
https://doi.org/10.1007/978-981-15-8697-2_2

Single Storage Semi-Global Matching 15

at its center. This system uses Zed stereo camera [16], Intel RealSense D435i
[15] or ELP stereo-camera for capturing images. Real-time Raster-Respecting
Semi-Global Matching [6] (R3SGM) along with Census Transform are used for
disparity estimation. The system takes in real-time data from the cameras and
generates a depth image from it. Rectification of the images, as well as stereo
matching, is implemented in the FPGA whereas capturing data from USB cam-
eras and controlling the FPGA peripherals is done via application programs
which run on the hard ARM processor on Zedboard. Development of the FPGA
IP’s is done using High-Level Synthesis (HLS) tools. A VGA monitor is inter-
faced to Zedboard to display the computed depth image in real-time.

Our approach is inspired by R3SGM [6] a hardware implementation of SGM.
Table 3 (at the later portion of the paper) shows the comparison of hardware
utilization between our approach and [6] which shows ours uses much lesser Hard-
ware Resources and thus having less power consumption. It may be emphasized
that we have focused on very low power consumption as well as small form factor
that is necessary for drones vision, blind aid etc.

2 Literature Review

There has been a lot of research on the topic of disparity map generation dating
back to 1980s. [8] reviews most of the works including both software and hard-
ware implementations. A binocular Stereo Camera estimates disparity or the dif-
ference in the position of the pixel of a corresponding location in the camera view
by finding similarities in the left and right image. There have been various costs
governing the extent of the similarity. Some of them are Sum of Absolute Differ-
ences(SAD), Sum of Squared Differences (SSD), Normalized Cross-Correlation
and the recent Rank Transform and Census Transforms. They are window-based
local approaches where the cost value of a particular window in the left image
is compared to the right image window by spanning it along a horizontal axis
for multiple disparity ranges. The window coordinate for which the metric cost
is the least is selected which gives us the disparity for that corresponding cen-
ter pixel. From the disparity, the depth value is computed by Eq.1 where the
baseline is the distance between the optical centers of two cameras.

Depth = Baseline x (Focal Length) /disparity (1)

Local window-based approaches suffer when the matching is not reliable which
mostly happens when there are very few features in the surrounding. This
results in the rapid variations of the disparities. This problem is solved by global
approaches which use a smoothing cost to penalize wide variations in the dis-
parity and trying to propagate the cost across various pixels. The following are
some of the global approaches.

2.1 Semi Global Matching (SGM)

SGM is a stereo disparity estimation method based on global cost function min-
imization. Various versions of this method (SGM, SGBM, SGBM forest) are

16 P. Sawant et al.

still among the top-performing stereo algorithm on Middlebury datasets. This
method minimizes the global cost function between the base image and match
image and a smoothness constraint that penalizes sudden changes in neighboring
disparities. Mutual information between images, which is defined as the negative
of joint entropy of the two images, is used in the paper [3] as a distance metric.
Other distance metrics can also be used with a similar effect as has been demon-
strated with census distance metric in our implementation. Since we already
had a Census Implementation, we used it for our SGM implementation. The
Hamming Distance returned by Census stereo matching is used as the match-
ing cost function for SGM. The parameters for Census are window size 7 X 7,
disparity search range 92. The image resolution is 640 x 480. Sum of Absolute
Differences (SAD) was also considered as a matching cost function. But it was
observed that SAD implementation consumes more FPGA resources than the
Census implementation with same parameters. This may be due to the fact that
SAD computation is an arithmetic operation whereas Census computation is a
logical operation.

Simple census stereo matching has a cost computation step in which for a
particular pixel we generate an array of costs (Hamming distances). The length
of this array is equal to the disparity search range. The next step is cost mini-
mization in which the minimum of this array (minimum cost) is computed and
the index of the minimum cost is assigned as disparity. In SGM, an additional
step of cost aggregation is performed between cost computation and cost mini-
mization. The aggregated cost for a particular pixel p for a disparity index d is
given by Eq. 2.

L.(p,d) = C(p.d) + min(L.(p — r,d),

L(p—rd—1)+P,
L.(p—r,d+1)+ Py, (2)

min;(L.(p —r,i) + Ps))

—ming (L (p — 7, k))

For each pixel at direction ‘r’, the aggregated cost is computed by adding the
current cost and minimum of the previous pixel cost by taking care of penalties
as shown in Eq. 2. First-term C(p, d) is the pixel matching cost for disparity d. In
our case, it is the Hamming distance returned by Census window matching. It is
apparent that the algorithm is recursive in the sense that to find the aggregated
cost of a pixel L!.(p,), one requires the aggregated cost of its neighbors L (p —
r,). P; and P, are empirically determined constants. For detailed discussion
refer to [3].

2.2 More Global Matching (MGM)

As SGM tries to minimize the cost along a line it suffers from streaking effect.
When there is texture less surface or plane surface the matching function of

Single Storage Semi-Global Matching 17

census vector may return different values in two adjacent rows but due to SGM,
the wrong disparity may get propagated along one of the paths and can result
in streaking lines.

MGM [7] solves this problem by taking the average of the path cost along 2
or more paths incorporating information from multiple paths into a single cost.
It uses this result for the next pixel in the recursion of Eq.2. The resultant
aggregated cost at a pixel is then given by the Eq. 3

L.(p,d)=C(p.d)+1/n Z (min(Ly(p — z,d),
ze{rn}

L.(p—z,d—1)+ P,

L.(p—x,d+1)+ P,

min;(Lr(p — x,i) + P2))

—ming(L,.(p — x,k)))

where n has the value depending on the number of paths that we want to inte-
grate into the information of single cost. For example, in Fig. la two paths are
grouped into 1 so n has value 2 and there are a total of 4 groups. Thus we need
to store 4 cost vectors in this case and while updating 1 cost value in the center
pixel have to read cost vector of the same group from 2 pixels. Lets say r = 1 for
blue boxes group in Fig. 1a, while updating the L, for this group of the centre
pixel in Eq. 3 we have z as left and top pixels. From here on SGM refers to MGM
variant of it.

(a) MGM in General (b) Our Implementation

Fig. 1. Grouping of paths in MGM

3 Hardware Architecture and Implementation

3.1 System Design

Figure 2 shows an overview of the implemented system. Left and right images
captured from the Zed camera [16] are stored into DDR RAM (off-chip RAM).
Maps required for the stereo rectification of the images are statically gener-
ated offline using OpenCV [17]. These maps are also stored into DDR RAM.

18 P. Sawant et al.

We need two Remap peripherals which perform stereo rectification for the left
and right images respectively. The Remap peripheral reads the raw image frame
and the corresponding map and generates a rectified image frame. The recti-
fied images are again stored into DDR. The Intel RealSense camera requires
USB3.0 or higher to stream left and right images. However, Zedboard does not
have USB3.0. Hence the camera cannot be directly interfaced to the board. So
images were continuously captured and streamed from a computer using ether-
net. The left and right image streams were received by a socket client running on
the ARM processor on Zedboard. The camera outputs rectified images, hence
remap peripheral is not required in this case. The images received from the
socket client are stored into DDR RAM. We have also implemented it for Zed
Camera [16]. For both camera modules in Binocular cameras, the stereo match-
ing peripheral (SGM block in the Fig.2) then reads the left and right rectified
frame and generates disparity image which is again stored into DDR. The VGA
peripheral is configured to read and display the disparity image onto a VGA
monitor. FPGA peripherals perform memory access using the AXI4 protocol.

! ZED-BOARD —> AXlibus
E Left Rmap

'
)

Reserved space in DDR E
] reme_[=
Raw Rectified

FPGA
SGM Depth Image VGA

Image Images
I B L A S

v ¥ '
Right Rmap Octomap E

{ Host PC

VGA

Octovis Monitor

Stereo Camera

AR

Fig. 2. Block diagram

The resolution of images is fixed to 640 x 480 and cameras are configured
accordingly. Each pixel is stored as an eight-bit number. The metric used to
profile the computation times of different peripherals and also the cameras is fps
(frames per second). From here on a frame means 640 x 480 pixels. We could
have skipped storing the rectified images and passed the output of the Remap
peripheral directly to the stereo matching peripheral. We chose not to do this
because our performance is not limited by memory read-write but by the FPGA
peripherals themselves. We use the AXI4 protocol to perform memory read-
write. The read-write rates are 3 orders of magnitude greater than the compute
times of FPGA peripherals.

The images are captured using application programs running on the ARM
processor on Zedboard. The programs make use of v412 library for image capture.
The ARM processor is also used to control the FPGA peripherals.

Single Storage Semi-Global Matching 19

3.2 Undistortion and Rectification

Stereo camera calibration and rectification (one time step) is done using the
OpenCV library. Calibration and rectification process produces distortion coef-
ficients and camera matrix. From these parameters, using the OpenCV library,
two maps are generated, one for each camera. Size of a map is the same as image
size. Rectified images are built by picking up pixel values from raw images as
dictated by the maps. The map entry (i,j) contains a coordinate pair (x, y); and
the (i, j) pixel in the rectified image gets the value of the pixel at (x, y) from the
raw image. x and y values need not be integers. In such a case, linear interpo-
lation is used to produce final pixel value. Figure 3 shows the remap operation
with 4 neighbour bilinear interpolation.

(Xo,¥0)i Ptopi (xg*1,Yotl) Rectxy)
A B —1

p_final

(Xo,Yo+1): pbottom (xg+1,yo+1)
c D

Original Image Rectified Image

Fig. 3. Remap operation

On-chip memory is limited in size, and it is required by the stereo-depth
hardware module. So, we store the maps generated during calibration and rec-
tification in system DDR. The map entries are in fixed-point format with five
fractional bits. Captured images are stored in DDR too. The hardware module
iterates over the maps, and builds up the result (left and right) images by picking
pixels from raw images. Note that, while the maps can be read in a streaming
manner, the random-access is required for reading the raw images. For fractional
map values, bilinear interpolation (fixed point) is performed. Resulting images
are stored back in DDR. As this hardware module has to only - "read maps and
raw images pixels from DDR, perform bilinear interpolation, and store the pixels
back”, it needs less than 5% resources of the Zynq chip.

3.3 SGM Block Architecture

In Census implementation we scan using row-major order through every pixel in
the image and perform stereo matching. Thus for the SGM implementation built
upon this, we consider only four neighbors for a pixel under processing as shown
in red in Fig. 4. This is done because we have the required data from neighbors
along these paths. The quality degradation by using 4 paths instead of 8 paths
is 2-4%[4].

20 P. Sawant et al.

Fig. 4. Four neighbour paths considered for SGM

Figure 5 shows the implemented SGM architecture. The aggregated cost for
all paths and disparity indices of one row above the pixel (full row not shown in
figure) and the left adjacent pixel of the current pixel are depicted as columns
of colour yellow, red, blue and green for paths top left, top, top right and left
respectively. We store the resultant accumulated cost which is computed using
Eq. 3. 4 Paths have been used by grouping them into single information as shown
in Fig. 1b. Thus in Eq.3 our n value in 4 and r has a single value for a pixel.
The Census metric cost is stored in an 8bit unsigned char so the total size of

al

d+1 =

d-1

mirlll —

Hamming Distance
from Census
Window Matching

{ D I]

|

Sum Cost —><<2 (Divide by 4)

Fig. 5. SGM cost computation. Steps involved in calculating the disparity for the
current pixel.

Single Storage Semi-Global Matching 21

Before Update
Current Pixel : Row 6 Col 20
row 6 rowé row5 row 5 row 5 row 5
col17 col 18 col 19 col 20 col21 col22
cost_row
row 6 row 6
col 19 col 20
cost_left
Updating
P —
cost_row
first update thisk/
cost_left \J
then update this
O
After Update

Current Pixel : Row 6 Col 21

rowé row6 row5 row 5 row5 row5
col18 col19 col20 col 21 col22 col23

COSE_FOW f-oeeeemnennaaaae]

row 6 row 6
col 20 col 21

cost_left

Fig. 6. SGM array updation.

memory occupied by the cost is given as Sizeof RowCostArray =
(ImageWidth) = (DisparityRange) * (Noof PathGroups) = 640 x 92 « 1 =
57.5KB.

Minimum cost across disparity search range is computed once and stored for
the above row and left adjacent pixel. These scalar quantities are shown as small
boxes of the same color. Since the minimum cost values are accessed multiple
times, storing the minimum values instead of recomputing them every time they
are required saves a lot of computations. The pixels in the row above the current
pixel can be either top-left, top or top-right neighbors of the current pixels.
Hence costs along the left path (green columns) are not stored for the row above
the pixel.

Figure 5 also shows the data required and the steps for computing the aggre-
gated cost for a certain pixel considering all the 4 paths. Smoothing term(2nd
part in the RHS of Eq. 3) along all paths are summed up to obtain a sum cost
which has to be divided by n(4). Since division is resource-intensive hardware
we use left a shift by 2 to divide by 4. Then the resulting value is added with
the current hamming distance (1st part in the RHS of Eq. 3). An upper bound

22 P. Sawant et al.

is applied to the sum cost. The index of the minimum of this modified sum cost
is the disparity for this pixel. The costs for all disparities are stored as they
will be required for future pixels of the next row. The minimum cost across the
disparity search range is also computed and stored for all paths.

Figure 6 shows the data structures used for storing the costs and the algo-
rithm for updating them as we iterate over pixels. The cost_row structure has
dimensions- image columns, path groups and disparity search range. It stores the
costs for one row above the current pixel for all paths and disparity indices. The
cost_left structure has dimensions- path groups and disparity search range. It
stores the cost for the left adjacent pixel of the current pixel for all paths and dis-
parity indices. As shown in Fig. 6 the current pixel under processing is at row 6
column 20. It requires data from its 4 neighbors: row 5 column 19, row 5 column
20, row 5 column 21 and row 6 column 19. To generate data for current pixel we use
the data of cost_left and 3 pixel vectors of cost_row. As we compute the disparity
for this pixel and also performing the housekeeping tasks of generating the required
data, we update the structures as shown in Fig. 6. The data from cost_le ft is moved
to the top-left neighbour of the current pixel in cost_row. The top left pixel cost
data is not required anymore and hence is not stored. After this update is done,
the currently generated data is moved into cost_le ft.

Pixels at the top, left and right edge of the image are considered to have
neighbors with a maximum value of aggregated cost. As SGM cost aggrega-
tion step is a minimization function, they are effectively ignored. The cost_row
and cost_left structures are initialized to a maximum value before the stereo
matching process. This initialization has to be done for every frame.

3.4 HLS Implementation

High-level Synthesis(HLS) platform such as Vivado HLS (from Xilinx) facilitates
a suitably annotated description of compute-architecture in high level language
like C or C++, which it converts to a low-level HDL based description of the same
computing architecture. The generated VHDL or Verilog code is then synthesized
to target fpgas. We have used Vivado HLS tools provided by Xilinx to convert
our C implementation to HDL and package it to an IP for further use. The
structure of HLS stereo matching code is as follows.

void stereo_matching function (){

for (int row=0; row<IMGHEIGHT; row++) {
for (int col=0; col<IMGWIDTH; col++) {
//Reading pixel from DDR through AXI4
protocol in row—major order
//Shifting the Census Match window in
the left and right blocks
for (int d=0; d<SEARCHRANGE; d++) {
//Match 1_window with r_window [d]
//Update the min cost index
//Add the necessary output to the cost

Single Storage Semi-Global Matching 23

row and cost left vectors
}
//write disparity image pixel to DDR
}
}
}

There are no operations between the row and col loop, hence they can be
effectively flattened into a single loop. The plan was to pipeline the merged
row-column loop. Thus resulting in increase of frame rate by disparity range
times if the pipeline throughput had been 1. However the resources in fpga
device on Zedboard are not enough to permit the pipelining the row column
loop. Hence, only the search range loop was pipelined. The arrays used in the
implementation have been partitioned effectively to reduce the latency. Based
on the availability of Hardware resources we have divided the whole image into
sections and disparity of each section is computed in parallel. It was observed
that a frame rate of 2.1 fps is obtained with the most used resource being Block
RAM (BRAM) 17%. The time required for processing one frame for such an
implementation can be given as

T x no. of rows X no. of columns x 4
(search range + pipeline depth))
The characteristic of this implementation is that the logic synthesized roughly
corresponds to the matching of two Census windows, the cost aggregation arith-
metic and on-chip memory to store data for the next iterations. As we sequen-
tially iterate over rows, columns and disparity search range we reuse the same
hardware. Thus, the FPGA resources required are independent of the number of
rows, columns and search range but computation time required is proportional to
these parameters as shown by Eq. 4. This gives us the idea to divide the images
into a number of sections along the rows and process the sections independently
by multiple such SGM blocks. As the most used resource is BRAM at 17%, we
can fit 5 such SGM blocks with each block having to process 5 sections of the
image i.e., 128 rows in parallel. Thus we increase resource usage 5 times and
reduced the time required for computation by the same resulting in 10.5 fps.
One flaw to this approach is that if we divide the input image into exactly
5 parts, there will be a strip of width window size at the center of the disparity
image where the pixels will be invalid. The solution to this is that the height of
each section is image_height/5 + window_size/2. This is shown in Fig. 7 for an
example of 2 sections.

3.5 Hardware Setup

Figure 8 shows the hardware setup. The Zed camera is connected to a USB 2.0
port of the Zedboard. The Zedboard is booted with petalinux through SD card.
In the case where Intel RealSense camera is used, we require ethernet to receive
the images. The only other connections to Zedboard are the connection to VGA
display and power.

24 P. Sawant et al.

T window size 2
Input Image — Disparity Image
T window size 2
Input Image Section 1 Disparity Image Section 1
Input Image Section 2 Disparity Image Section 2
Input Image Section 1 Input Image Section 1 " Disparity Image Section 1
Input Image Section 2 Input Image Section 2 E=_>| pisparty Image Section 2

Fig. 7. Dividing the input image into two sections to be processed by two blocks
simultaneously

4 Experimental Results and Evaluation

The obtained frame rate for the implemented system is 10.5 fps with Zedboard
running at 100 MHz. The Power consumption of the computation which is per-
formed in FPGA is 0.72W whereas the on-chip arm processor which is being
used to capture the images and start the FPGA peripherals along with the
ELP stereo-camera consumes 1.68 watt, thereby raising consumption to 2.4W.
A 10m$2, IW current sense resistor is in series with the 12V input power sup-
ply on the Zedboard. Header J21 straddles this resistor to measure the voltage
across this resistor for calculating Zedboard power [10]. The resource usage is
summarized in Table 1. It is observed that the BRAM utilization is the most.
This is due to storing large cost arrays.

Fig. 8. Hardware setup

Single Storage Semi-Global Matching 25

Table 1. Resource utilization for the entire design in Zedboard

BRAM | DSP | FF LUT |LUTRAM

Utilization 132 65 39159 | 37070 | 981
Available 140 220 | 106400 53200 | 17400
% Utilization | 94.3 29.5 | 36.8 69.6 |5.64

% r
LN
-

Iy Qm,‘= et

(c) SGM 4 paths software

‘«4 = tx’*— ﬁ ‘

(e) SGM 4 paths hardware

(f) SGM with arrays initialized to
Zeros

Fig. 9. SGM results on Middlebury images

The algorithmic accuracy is measured using Root mean square of difference
in the disparity values obtained by our implementation with the ground truth
on Middlebury test images given in Table2 column 2. It can also be measured
by percentages of erroneous disparities in Table2 column 3. A 5 pixel tolerance
is considered due to intensity variation caused by changing resolution of raw
image. It is notable that no post processing has been done on the SGM output.

26 P. Sawant et al.

Table 2. Accuracy metric of ours disparity image pixels as compared to ground truth
for Middlebury images

Image RMSE | % Erroneous disparities
Teddy 5.43 11
Dolls 6.79 17
Books 6.82 20
Moebius | 7.54 20
Laundry | 9.22 27
Reindeer | 9.17 27
Art 9.24 30

(a) Left image with IR blaster on (b) Left image with IR blaster cov-
ered

(c) Disparity image from camera (d) Disparity image from camera
with blaster on with IR blaster covered

£

(e) SGM disparity image with (f) SGM hardware disparity image
blaster on with IR blaster covered

Fig. 10. SGM results on Realsense image: effect of texture

Single Storage Semi-Global Matching 27

Fig. 11. Qualitative Comparison of our results with some of the Middlebury data set.
1st Row contains the Left Raw Images, 2nd Row contains the ground truth of the
corresponding Images and 3rd Row contains the Output of our Implementation.

Figure 9 shows the software and hardware implementation results on Teddy
image from Middlebury 2003 dataset [5]. Figure9c-d show the results of an
inhouse software implementation of SGM and Figure 9e shows the result of the
hardware implementation. It can be observed that SGM with 8 paths gives the
best results. SGM with 4 paths in software gives slightly better results than the
hardware implementation. The difference in results is due to the fact that the
way the algorithm is implemented in software and hardware is different. Figure 9f
shows the SGM disparity image with cost_row and cost_left initialized to zero.
Since the cost aggregation function is minimization function, the zeros from the
arrays propagate to further pixels. The trickle down effect causes the degrada-
tion of the disparity image. Similar results with frame rate around 8.3 fps were
also achieved by an inhouse GPU implementation of SGM on Jetson TK1 board
which is of MAXWELL architecture with 256 cores and power consumption
< 10 watts. This implementation is analyzed and optimized by using OpenMP
for multi-threading and AVX (Advanced Vector Extension) registers for vector-
ization. GPU shared memory is used to reduce the global memory access. CUDA
shuffle instructions are used to speed-up the algorithm and vector processing is
also applied.

Figure 12 and 13 shows the captured image and the corresponding disparity
image obtained using the SGM implementation. The Intel RealSense camera also
provides a disparity image. This is shown in Fig. 13b. The convention followed
here is opposite i.e., closer objects appear darker.

28 P. Sawant et al.

1

v I8 e

(a) Left image classroom (b) SGM disparity image classroom

Fig. 12. SGM results on ZED camera image

(c) SGM hardware disparity image

Fig. 13. SGM results on Realsense image: lab

The Intel RealSense camera has an infrared (IR) light projector which
projects structured light onto the scene. This pattern can be seen in Fig. 13a.
Figure 10 shows the effect of the infrared projector on disparity estimation.
Figure 10ace show the captured left image from the camera, disparity image
obtained from the camera and the computed disparity image when IR blaster
was on. Figure 10bdf show the same images when the IR blaster was covered.
Incase of 10e although the image contains salt noise, it can be easily filtered out.
The fan blades can be easily seen in the disparity image. In Fig. 10f there are
more number of white pixels which imply that the object is very near to the
camera which is a false result. As can be seen, the structured light projector
helps in stereo matching by adding texture to non-textured surfaces.

Figure 14 shows the scene and the corresponding disparity image obtained
on the VGA monitor. The camera can be seen on the left side of the image.

Single Storage Semi-Global Matching 29

Fig. 14. Scene and disparity image on VGA monitor

Table 3. Comparison of FPGA Hardware Resources(Approx) and power consumption
between our approach and [6]

BRAMI18K | DSP | FF LUT |Frame Rate | Power (Approx)

Ours | 132 65 | 39159 |37070 | 10.5 0.72W
[6] 163 - 153000 | 109300 | 72 3W

Figure 11 shows the qualitative comparison or our results with Middlebury
data set. We can see that the objects placed near are not accurate this is because
we have used the disparity range of 92 pixels and so it is not able to find a match
in the corresponding left and right images. Thus for a better accuracy, disparity
range can be increased with the trade-off being update rate as the pipeline
latency will increase.

Finally we inform the reader about our comparison with R3SGM [6] work.
Table 3 shows the comparison of hardware utilization between our approach and
[6] which shows ours uses much lesser Hardware Resources and thus having less
power consumption. Furthermore, if we were to use fpga used in [6], we would
have far more liberty with resources that can be leveraged to further pipeline the
design and obtain another order of speedup. However we have focused on very
low power consumption as well as small form factor that is necessary for drones
vision, blind aid etc. We can extrapolate the frame rate likely to be achieved
by our design on ZC706 board as below. We can replicate the hardware four
times (assuming other resources are under limit) to utilize all of the BRAM, and
get 40 fps performance. However, it would increase the power consumed by zynq
chip, as well as by camera and DDR subsystems for this higher frame capture
and processing rate.

30 P. Sawant et al.

5 Conclusion

In this paper we presented the hardware implementation of the MGM [7] which
is a variant of SGM [3] on Zedboard [10] an FPGA-ARM based SOC inspired
by R3SGM [6]. In order to reduce the memory consumption, we have grouped 4
paths- left, top left, top, and top right, whose pixel data are available while pro-
cessing as a result of row-major order streaming process. The efficient utilization
of hardware resources resulted in a low power consumption of 0.72'W for data
processing on FPGA that computes the Rectification and disparity Map gen-
eration and with 1.68 W for data acquisition from Cameras along with starting
the peripherals using the on board ARM processor achieving an update rate of
10.5 Hz with a good accuracy as was shown in Table2 and Fig. 11. This system
is highly suitable to be used in micro UAVs, blind Aids or any portable types of
equipment with a small form factor and high power constraints.

References

1. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual cor-
respondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151-158.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0028345

2. Kanade, T.: Development of a video-rate stereo machine. In: Proceedings of Inter-
national Robotics and Systems Conference (IROS’1995), Pittsburgh, Pennsylvania,
August 5-9, pp. 95-100 (1995)

3. Hirschmuller, H.: Stereo processing by semi global matching and mutual informa-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328-341 (2008)

4. Roszkowski, M., Pastuszak, G.: FPGA design of the computation unit for the semi-
global stereo matching algorithm. https://doi.org/10.1109/DDECS.2014.6868796

5. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured
light. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2003), Madison, WI, vol. 1, pp. 195-202 June 2003

6. Rahnama, O., Cavallari, T., Golodetz, S., Walker, S., Torr, P.H.S.: R3SGM:
real-time raster-respecting semi-global matching for power-constrained systems.
In: International Conference on Field-Programmable Technology (FPT), Vietnam
(2018)

7. Facciolo, G., de Franchis, C., Meinhardt, E.: MGM: a significantly more global
matching for stereovision. In: BMVC (2015)

8. Hamzah, R.A., Ibrahim, H.: Literature survey on stereo vision disparity map algo-
rithms, vol. 2016, Article ID 8742920, p. 23 (2016)

9. Daolei, W., Lim, K.B.: Obtaining depth maps from segment-based stereo matching
using graph cuts. J. Vis. Commun. Image Representation 22, 325-331 (2011)

10. Zedboard datasheet. http://zedboard.org/sites/default/files/documentations/
ZedBoard HW _UG_v2_2.pdf, Accessed 25 Aug 2019

11. Zynq 7000 datasheet. https://www.xilinx.com/support/documentation/data_
sheets/ds190-Zyng-7000-Overview.pdf, Accessed 25 Aug 2019

12. Vivado HLS wuser guide. https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2014_1 /ug902-vivado-high-level-synthesis.pdf, Accessed 25 Aug
2019

https://doi.org/10.1007/BFb0028345
https://doi.org/10.1109/DDECS.2014.6868796
http://zedboard.org/sites/default/files/documentations/ZedBoard _HW_UG_v2_2.pdf
http://zedboard.org/sites/default/files/documentations/ZedBoard _HW_UG_v2_2.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq -7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq -7000-Overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014 _1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014 _1/ug902-vivado-high-level-synthesis.pdf

13.

14.

15.

16.
17.

Single Storage Semi-Global Matching 31

Vivado Synthesis user guide. https://www.xilinx.com/support/documentation/
sw_manuals/xilinx2017_3 /ug901-vivado-synthesis.pdf, Accessed 25 Aug 2019
XSCT reference guide. https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2016_2/ug1208-xsct-reference-guide.pdf, Accessed 25 Aug 2019
Intel Realsense D435i Depth Camera. https://www.intelrealsense.com/depth-
camera-d435i/, Accessed 25 Aug 2019

Zed Camera. https://www.stereolabs.com, Accessed 25 Aug 2019

OpenCV. https://www.opencv.org/, Accessed 25 Aug 2019

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017 _3/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017 _3/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016 _2/ug1208-xsct-reference-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016 _2/ug1208-xsct-reference-guide.pdf
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/
https://www.stereolabs.com
https://www.opencv.org/

	Single Storage Semi-Global Matching for Real Time Depth Processing
	1 Introduction
	2 Literature Review
	2.1 Semi Global Matching (SGM)
	2.2 More Global Matching (MGM)

	3 Hardware Architecture and Implementation
	3.1 System Design
	3.2 Undistortion and Rectification
	3.3 SGM Block Architecture
	3.4 HLS Implementation
	3.5 Hardware Setup

	4 Experimental Results and Evaluation
	5 Conclusion
	References

