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Abstract. With the rise of Artificial Intelligence, research in Computer Vision
and Deep Learning has made substantial advancement on understanding visual
content. This has led industries across multiple sectors to upgrade and automate
processes which require some visual understanding of the physical world. Damage
assessment in vehicles is an important step for insurance claims and auto finance
industry. The damage assessment involves granular part detection, damage local-
ization and classification into different damage types such as dent, scratch, crush,
tear, etc. Further, physical dimension estimation of the damages is required for
computing cost to the customer. Currently, this process involves manual inter-
ventions, where an agent assesses the damages physically. This process leads to
long turnaround time for the insurance majors and auto finance organizations. In
this paper, we present a near real-time end-to-end solution which yields accu-
rate damage detection and propose approaches for providing dimensions of the
damages for accurate repair cost estimates for the vehicle. The solution further
incorporates an ensemble of computer vision algorithms to calculate dimensions,
generating bounding boxes, and consolidating the damage predictions to pro-
vide an overall damage estimate from multiple images captured by vehicle owner.
Insurance majors and auto finance organizations can substantially reduce their turn
around time for claims and charging penalties for damage incurred, respectively
by integrating the developed solution in their existing process.
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1 Introduction

The current Auto Finance industry performs external damage assessment of the leased
vehicle before taking it back from their customers. The assessment involves a granular
analysis of the damages incurred to the body of the vehicle. The customer is charged
based on the number and length of the damages present in each panel of the body. Cur-
rently, the assessment process is manual and time consuming. Many ongoing researches
focus on to improve the process using automated computer vision systems to detect
damages in the vehicle while providing accurate dimensions of the damage. An ideal
damage detection system should be able to localize the damages in the vehicle accu-
rately. However, designing a robust system is challenging as the images captured can
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have various lighting conditions, variable zoom, high reflective and shiny surfaces on
vehicle’s body, etc. The system should also provide an accurate estimation of the damage
dimensions. Detecting the dimensions of the damages can also have challenges like lack
of reference object, variable perspective at the corners of the vehicle, etc. In this paper,
we extend our damage detection solution with accurate and efficient damage dimension
estimation in vehicles to create an end to end pipeline. The concepts presented in this
paper are transferable to other visual damage diagnosis systems as well.

2 Related Work

There have been previous efforts at damage detection in buildings using high resolution
satellite images [1, 2]. For damage detection in cars, Jayawardena et al. [3] proposed
a 3D model projection of an undamaged vehicle on that of a damaged vehicle to iden-
tify damages. Only recently have researchers started using deep learning approaches for
solving damage detection. Patil et al. [4] have proposed a deep learning based approach
for classifying different types of damages in cars. However, our proposed solution is dif-
ferent from [4] since our final objective is to perform damage estimation. The developed
framework is a deep learning and computer vision based pipeline. For filtering out irrel-
evant images of the vehicle, Convolutional Neural Network (CNN) architectures such as
ResNet50 [5, 6], Inception_v3 [7], Xception [8] were experimented with. Object detec-
tion algorithms were explored to localize the damages and classify the damage types
into dents, scratches, tears, misalignments etc. For object detection, architectures such
as Faster-RCNN [9] and ‘You Look Only Once’ (YOLO) [10] were assessed. However,
to identify the accurate damage area, we finally use a semantic segmentation approach to
predict the accurate segmentation maps of the damages. Deeplab [11] with Xception-65
backbone gives us the best performance for predicting accurate segmentation maps. The
proposed solution in explained in details in the following section.

3 Proposed Solution

The proposed solution consists of three key modules, namely damage detection, damage
dimension estimator and damage duplicity removal. The solution leverages multiple
images of the damaged vehicle taken by the user from different viewing angles as input.
In our previous work [12, 13], we described our damage detection pipeline which is a pre-
requisite for estimating dimension. The same has been captured below in Sect. 3.1. The
damage detection module is treated as an object segmentation problem since we need to
find the precise locations of the damages down to the pixel level. The localized damages
are then fed into the dimension estimating module which predicts the dimensions of the
detected damages in each image. Further, we pass the results obtained to a duplicity
removal module which removes redundancy if the same damage is present in multiple
images. Figure 1 illustrates the end-to-end pipeline on a high level.

3.1 Damage Detection

Our damage detection pipeline consists of three main sequential steps which are rel-
evance filtering, vehicle part segmentation and vehicle damage segmentation. All the
deep learning models were trained using a Nvidia Tesla M60 GPU with 8 GB RAM.
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Fig. 1. Block diagram of the damage estimation pipeline

Relevance Filtering. This preprocessing step aims to increase the efficiency of the
damage detection module by filtering out irrelevant images. Often the images captured
by the customers include images irrelevant to visual damage detection such as images
of vehicle documents, odometer readings, license plate etc. Customers may also capture
images of car interiors which is out of scope of our current work. The relevance filtering
model aims to filter out such images which are irrelevant to our damage analysis. A
ResNet50 model trained on around 5000 hand-labelled images has been used for this
image classification task. The model was trained for 50 epochs with a learning rate (Ir)
of 0.001. The accuracy achieved for this model was 91%.

Vehicle Part Segmentation. Parts segmentation plays an important role because Auto
Finance companies usually calculate the cost by counting number of damages in each
vehicle part. The vehicle part segmentation model was trained using DeepLabv3+ [11]
architecture with TensorFlow backbone and segments 24 vehicle parts. The dataset used
for this task is the open source PASCAL Parts dataset [ 17], along with some hand labelled
dataset. The training ran for around 8 h for 30000 iterations with a Ir of 0.0001. The
mean Intersection over Union (mIOU) was 0.65 (Fig. 2).

background
backside
door
frontside
headlight
fightside
roofside
wheel

window

Fig. 2. Output of vehicle parts detection model

Vehicle Damage Segmentation. The vehicle damage segmentation model segments
six different types of damages in the vehicle which are dents, scratches, misalignments,
missing parts, crush/crumple and tear. This damage segmentation model helps to localize
and classify the damages across the vehicle body. It should be noted that count of damage
segments is intrinsic in this model, but scratches are a special case where detecting
each line of the scratch is not practically possible by our deep learning model since
the dataset was not labeled to incorporate such fine scratch lines. Thus, we use a Line
Detection Algorithm, explained in the next section, which is used to overcome this
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problem specific to scratch damage types. Around 15000 images, annotated and verified
by domain experts, were trained on a DeepLabv3+ [11] with Xception-65 architecture
on Tensorflow backbone. The training used a batch size of 8 and a step Ir with an initial Ir
of 0.001 and Ir decay of 0.1 after every 10000 steps. The training ran for 30000 iterations
over a span of 8 h. The mIOU was calculated per damage class as well as on the overall
dataset. The overall mIOU achieved was 0.52. The final consolidation of outputs is done
by performing intersection of the damage segmentation maps to the part segmentation
maps. This module is helpful to provide damage count and dimension per damage per
part of the vehicle.

Line Detection Algorithm. As discussed, above, the Vehicle Damage Segmentation
Model detects the segmentation map of the detected damages. The output of this model
can be used directly for damages such as dents, crush, crumple, tear, misalignments etc.,
where the customer charge out is calculated based on the damage area. However, for
scratches, the focus is on scratch length rather than the total area. Hence, refinement is
needed to further localize the scratch lines since the actual scratches are usually a small
fraction of the larger detected scratch blob. Figure 3 shows the output of scratch lines
refined from a scratch blob. A line detection algorithm is run on the retrieved scratch
blobs. The line segment detector looks through the scratch blob and localizes the exact
regions where the scratches are present so that the customer can be charged accurately
based on scratch lengths. The OpenCV implementation of the probabilistic Hough Line
algorithm [14, 15] with a minimum line length of 15 and maximum line gap of 5 is found
to give the best performance on this dataset. Line detection algorithms detect straight
lines only. Thus, for curved scratches, we take the summation of smaller line segments
along the curved scratch lines.
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Fig. 3. (a) Output of damage detection (left) (b) Scratch lines from detected scratch blob (right)

3.2 Damage Dimension Estimation

Our dimension detection module contains multiple use case specific approaches to get
the dimensions of the damages based on the view of the car visible. The main challenge
to estimate the physical dimensions of any object from an image is to find a reference
object with known dimensions in the image. Reference objects can then be used to find
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the scale which is defined as the pixel to inch ratio of the object. The scale can be then
used to find the physical dimensions of the damage. The above steps, however, are under
the assumption that both the object and the damage are in the same plane and the plane
is orthogonal to the camera used to capture the image. This assumption can fail when
the damages are present in the corner of the car, which is a point of intersection of two
planes, and we address these issues below. We propose two algorithms to estimate the
dimensions of the damages based on the reference object we chose, namely wheel and
part as a reference object.

Wheel as a Reference Object. Wheels have a very distinct pattern irrespective of vehi-
cle type. This allows the part detection model to detect it with high accuracy. Hence it is
chosen to be a reference object in most of our scenarios. The physical dimensions of the
wheel can be retrieved based on the car model information. However, challenges such as
multiple wheel visibility at different locations, partial wheel visibility, tilted wheel, still
exist. Below we enlist the various possibilities of wheel visibility and how we handle it
to get the scale.

Detecting Wheel Pose and Visibility. To detect wheels, we use the output of the part
segmentation model described in Sect. 3.1. The segment maps containing the wheel
part is filtered for further use. We use shape descriptors to detect whether the wheel is
partially or fully visible. We select HuMoments [16] as shape descriptors to identify the
wheel pose and visibility. HuMoments are a set of seven numbers calculated using central
moments of an image that are invariant to image transformations. The first six moments
are invariant to translation, scale, and rotation, and reflection, while the seventh moment’s
sign changes for image reflection. We use OpenCV built-in HuMoments function to get
the values of HuMoments for all the training samples in which any of the wheels of the
car is visible. All seven moments together describe the shape of the portion of the wheel
visible. An SVM model is trained on the HuMoment values of the wheel segmentation
maps to classify them in the following categories: frontal pose-full visibility, frontal
pose-partial visibility, tilted pose-full visibility, tilted pose-partial visibility.

Estimating Scale. Depending on the pose and the visibility of the wheel, we decide our
strategy for estimating scale. In the first case, i.e. frontal pose-full visibility, the wheel
segmentation map can be directly used to calculate the wheel dimensions in pixels. In
the second case, i.e. frontal pose-partial visibility, we reconstruct the wheel using Hough
Circles [13] and get the corresponding radius of the wheel in pixels. Since the actual
dimension of the wheel is known to us, the pixel to inch ratio is calculated as the scale
factor. The third case i.e. tilted pose-full visibility, occurs when the vehicle image is
taken from non-frontal angles. In such a case, we apply perspective correction on the
wheel segmentation map to transform it to a frontal pose and then get its accurate pixel
dimensions. The last case i.e. tilted pose-partial visibility, is the most challenging of
these cases. Here, we first use perspective correction on the wheel segmentation map
and then reconstruct it using Hough Circles to get the scale factor.

Although, our algorithm performs well in the first three cases, the last case is subject
to distortion due to perspective correction on the image. If the initial image is not captured
in high resolution, it may be difficult to get enough features to correctly reconstruct the
wheel from the perspective image owing to noise and distortion. Moreover, the Hough
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Circle [13] reconstruction gives erroneous results for wheels which are less than 50%
visible in the image. Work is in progress to address all wheel poses and visibilities and
make the algorithm robust to distortion due to perspective correction.

Multiple Wheels Visibility. For a 4-wheeler passenger vehicle, we can safely assume
that from any view angle of the vehicle at most two wheels are visible. However, both
the wheels can have different scales if the plane of the wheels is not orthogonal to the
point of view. So, if the damage is present in the plane as that of the wheels, the scale
of the damage would be in between the scale of the two wheels. To overcome this, we
incorporate perspective correction explained above, along with a simple approach based
on weighted average. The scale factor of the damage is a weighted average of the scale
of the two wheels detected, where the weight is inversely proportional to the distance of
the damage to that wheel.

Part as a Reference Object. A fallback algorithm is used for images and planes where
wheels are not visible or are not a reliable source for scale. Generally, such images
involve zoomed-in images or images of front and rear end of the vehicle. In such cases,
we cannot rely on wheel to retrieve a good scale estimate. For cases where front and rear
end of the car is visible, we leverage the fact that we have the car width and the vehicle
height information. Here, the scale is calculated from the physical dimensions of the
car and its corresponding pixel width detected from part detection. The results of the
different stages of the damage detection and estimation modules have been presented in
Fig. 4.

(b) (d) (H (h)

Fig. 4. Different stages of damage estimation pipeline. (a), (b) Two images of the same vehicle
which focus on scratch and dents in different parts of the car body. (c), (d) Damage segmenta-
tion outputs where red indicates scratch and green indicates dent. (e), (f) Obtaining scale factor
by reconstruction of partially visible wheel and multi wheel visibility. (g), (h) Damage lengths
computed for the detected damages using the scale factor. (Color figure online)
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3.3 Damage Duplicity Removal

As mentioned in earlier sections, we assume that customer captures multiple pictures of
the vehicle and the damages. Since the image of a car is captured from multiple angles,
there is a high probability that the same damage may be present in multiple images.
Since our deep learning models are not trained to identify whether it is the same damage
or a different one, we must incorporate post processing for damage duplicity removal. To
address this issue, we use the approach of image stitching, going pairwise and finding
damages which are the same across multiple images, as shown in Fig. 5. Once this
is done, we stitch the relevant images together and map the damage information on
the stitched image so that each unique damage is counted just once. This ensures that
customers are not charged multiple times for the same damage.

Fig. 5. Damage duplicity removal using pairwise image registration

4 Experimentation and Results

4.1 Evaluation of Damage Detection Module

For evaluation of vehicle parts segmentation and the vehicle damage segmentation
model, we use approximately 15000 images. Each vehicle damage detection case con-
tains around 16 images of the same vehicle. The images are generally taken from 8
different angles with approximately 45 degrees shift and with variable zoom. This rich
dataset was used to validate our pipeline components and qualitatively assess the damage
segmentation and parts detection model. Brief information about the various training
datasets and evaluation metrics of the components of Damage Detection pipeline are
provided below in Table 1.

4.2 Evaluation of Damage Estimation Module

Since there are no publicly available datasets which record damage lengths in vehicle
damages, the evaluation of the damage estimation module was done through in-house
data collection. Once collected, the damages were identified and the measured manually.
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Table 1. Image dataset used for components in damage detection pipeline model training

Model name Dataset size Class names Performance

Relevance filter ~5K Hand labeled Relevant, Irrelevant | Validation Accuracy
dataset -91%

Parts segmentation PASCAL Parts (Only | 24 part names from | Validation mIOU -
Cars) + ~1K hand PASCAL Parts for | 0.65
labeled image Cars

segmentation data [17]

Damage segmentation | ~15K Hand labeled Scratch, Missing Overall Validation
image segmentation Dent, Crush, Tear, mlIOU - 0.52
dataset Misalignment

Scratch lengths were documented for around 50 samples. The same 50 samples were
then given as an input to our damage estimation pipeline. The pipeline failed to perform
on 4% of the cases due to challenges such as complex angles and zoom variations in
the captured images. The reflection and dirt present on vehicle parts also lead to 21% of
false positives.

5 Conclusion and Future Work

In this paper, we have shown that the current manual process of damage analysis in
the Auto Finance industry, can be automated with our pipeline. We have also shown
the importance of dimension measurement of the damages in calculating the charges to
the customer. To address this, we have briefly presented our damage detection pipeline,
and more importantly described our scaling strategy, i.e. using segmented wheels to
get physical dimensions of the damages. We also demonstrated solutions to overcome
challenges like partial wheel visibility with perspective tilts and multiple wheels visibility
issues. Overall, the proposed approach provides insight to build a fast and accurate
scaling system for damage analysis which can be of use with any of the damage analysis
pipeline. Our solution is scalable across multiple domains and easily configurable for
various business cases.

Possible ways of improvement of mIOU of our segmentation models include train-
ing our models with diverse and tightly annotated datasets. Experimentation with dif-
ferent semantic segmentation architectures with further hyperparameter tuning will also
improve our semantic segmentation output. Ongoing work also targets to make the dam-
age duplicity reduction module more accurate. Future work includes application of the
developed techniques on live video streams so that damage estimates can be generated
in real time.
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