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Abstract In this chapter, the quantum mechanical basis for computational studies
of near-infrared spectra (NIR) is discussed. Since this topic is rarely covered in detail
in the literature, the necessary prerequisites are provided as well, which include (i)
the coordinate frame for the description of molecular vibrations, (ii) methods for the
determination of the vibrational potential, (iii) the principles of the harmonic approx-
imation, and (iv) its role as the foundation formethods taking anharmonic effects into
account. The details of various anharmonic approaches in quantum vibrational spec-
troscopy are discussed, including methods based on the vibrational self-consistent
field (VSCF) approach, vibrational perturbation theory (VPT) as well as one- and
multidimensional grid-based methods. The merits and pitfalls of these approaches
are critically assessed from the perspective of applications in NIR spectroscopy.
Selected examples from recent literature are included to demonstrate how these
methods can be applied to solve practical problems in spectroscopy. The aim of this
chapter is to provide a comprehensive presentation of the topic aimed at a spectro-
scopic audience, while remaining accessible and focused on the key details. Although
primarily intended for readers interested in NIR spectroscopy, the essential infor-
mation provided in this chapter represents a fundamental perspective on quantum
vibrational absorption spectroscopy and is useful for a more general readership as
well.
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5.1 Introduction

The aim of this chapter is to present the essential information required to obtain
a fundamental understanding of quantum vibrational absorption spectroscopy, in
particular near-infrared (NIR) spectroscopy. The discussion highlights the critical
aspects to provide an in-depth and accessible overview aimed at a spectroscopic
audience. The necessary basics include the commonly used coordinate frame for
the description of molecular vibrations, an overview of the role of the vibrational
potential and methods for its determination, as well as the critical factor in all
applications of quantum chemistry being the computational complexity of a given
approach. Considerable attention is focused toward the harmonic approximation,
the fundamental framework underlying most applications of theoretical vibrational
spectroscopy. The harmonic approximation is in general not sufficiently accurate for
the needs of NIR spectroscopy. However, it is an essential foundation for advanced
anharmonic treatments. The majority of these methods are either built on the basis
of a harmonic Hamiltonian (VPT2), adopt a harmonic Hessian as the reference state
(VSCF) or use the harmonic analysis (i.e., harmonic normal modes) in the process
of probing the true vibrational potential (grid-based methods). The details of various
anharmonic approaches are discussed, and their specific merits and shortcomings
examined from the point of view of applications in NIR spectroscopy. This outline
is based on several examples selected from recent literature.

5.2 Normal Modes of Vibration

Commonly, literature introducing the principles of vibrational spectroscopy mainly
employs the example of a simple diatomic molecule. However, this kind of two-
body system is limited to a singlemode of vibration resulting from a one-dimensional
potential and is not suitable for a complete presentation of themain concepts in vibra-
tional analysis [1–4]. The total number of degrees of freedom (DOF) in a chemical
system is 3N, where N is the number of atoms. Translational and rotational motion
can only be defined in an external coordinate system; thus, the translational and rota-
tional DOF are invariant in the molecule’s frame of reference. This sets them apart
from the internal DOF (vibrational DOF; vibrational modes). The number of vibra-
tional DOF equals to 3N − N inv · N inv is generally partitioned into three translational
and three rotational DOF (along the x, y, z directions); however, no change in the
potential energy is associated to the rotation over the main rotational axis of linear
molecules (including diatomic ones). Additionally, N inv of periodic systems only
considers uniform translational DOF (x, y, z) of the entire lattice. This effectively
leaves 3N − 6 modes for nonlinear molecules, 3N − 5 modes for linear molecules,
and 3N − 3 modes for periodic systems. Note that these different DOFs need to be
separated, e.g., no translation of the molecule’s center of mass may occur along the
vibrational mode. The concept of normal modes in computational chemistry has its
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origin in the formalism of the harmonic approximation and will be outlined in detail
in Sect. 5.4 of this chapter.

In polyatomic systems, symmetric and antisymmetric modes occur due to
symmetry factors [1, 2]. In addition, deformation modes appear as well; they involve
change of valence and dihedral angles between the atoms in the system. As a rule,
force constants associated with stretching modes are typically higher, and thus, the
wave numbers of these vibrations are higher compared to associated deformation
modes. For instance, CO2 is a linear molecule and thus has 3N − 5 = 4 modes of
vibration (Fig. 5.1). Among them are the two stretching modes, being symmetric and
antisymmetric. The CO2 symmetric stretch (v1) is IR inactive because there is no
change in the dipole moment of the molecule along the associated vibrational coordi-
nate. In contrast, the antisymmetric stretching vibration (v3) generates a significant
net change of the dipole moment giving rise to a strong IR band observed at ca.
2345 cm−1 in gas phase. The two deformation modes of CO2 involve the bending
of the OCO angle in the molecule. These two modes differ only from the point
of view of an external coordinate system; the vibrations occur along perpendicular
planes. However, from the molecule’s point of view, they are indistinguishable, and
their energies (and thus wavenumbers) are degenerate giving rise only to a single IR
absorption band v2 located at 667 cm−1 in gas phase. Therefore, despite possessing
four vibrational degrees of freedom, only two fundamental bands ofCO2 are observed
in the respective IR spectrum. However, IR spectra of gaseous molecules are further
complicated because of rotational–vibrational coupling.Water serves as an archetyp-
ical nonlinear molecule; it has 3N − 6= 3 vibrational degrees of freedom, with only
a single deformation mode v2 (Fig. 5.1).

Since the center of mass of the vibrating molecule may not change its position
in space, the atomic displacements associated to these normal modes often involve
displacements of all atoms in themolecule. These are not necessarily large amplitude
motions, however. Water serves a good example, as large amplitude motions of the
light-weighted hydrogen atoms are accompanied by a low-amplitude motion of the
heavy oxygen atom; this is reflected in an exaggeratedway in Fig. 5.1. These complex

Fig. 5.1 Equilibrium geometries and normal modes of a carbon dioxide (top) and a water (bottom)
molecule, respectively
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atom displacements defined in normal coordinate system are difficult to interpret in
larger systems; normal coordinates are also specific to a given molecular symmetry
and not transferrable to other ones. Nevertheless, similarities exist between vibra-
tions of molecules constituting similar functional groups and having comparable
structures. A more useful description of vibrational motion is achieved by defining
an alternative coordinate system based on the structural parameters of the systems
such as bond lengths, valence, and dihedral angles. The commonly accepted stan-
dard is the internal coordinate system proposed by Pulay et al. [5]; often referred to
as natural coordinate system. The deformation vibrations of functional groups most
commonly found in organic molecules (methyl, −CH3; and methylene sp3; >CH2)
defined in natural coordinates are presented as an example in Table 5.1 and Fig. 5.2.
The definitions of the other vibrations can be found in Ref. [5]. The transformation of

Table 5.1 Recommended internal coordinate system at the example of methyl and methylene (sp3)
groups. The complete definition for other types of functional groups can be found in Ref. [5]

Bond stretchings Individual coordinates rather than combinations; possible
exceptions: methyl and methylene groups where symmetrized
combinations of the CH stretchings may be used

Methyl deformation Sym. def. = α1 + α2 + α3 − β1 − β2 − β3

Asym. def. = 2α1 − α2 − α3

Asym. def.′ = α2 − α3

Rocking = 2β1 − β2 − β3

Rocking′ = β2 − β3

Methylene (sp3) deformation CH2 scissoring = 5α + γ

CXY scissoring = α + 5γ

CH2 rocking = β1 − β2 + β3 − β4

CH2 wagging = β1 + β2 − β3 − β4

CH2 twisting = β1 − β2 − β3 + β4

Sym.—symmetric; asym.—antisymmetric; def.—deformation
Adopted with permission from Pulay et al. [5]. Copyright (1979) American Chemical Society

Fig. 5.2 Definition of internal coordinates in: a a methyl (−CH3) group; b a methylene sp3 (>CH2)
group
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Fig. 5.3 Methyl stretching vibrations; a symmetric mode; b, c two kinds of antisymmetric modes

molecule-specific normal coordinates into natural coordinates enables a straightfor-
ward comparison between the vibrational properties of differentmolecules, providing
considerable benefits when analyzing IR spectra.

The concept of Pulay’s natural coordinate system suggest not to group stretching
vibrations, but rather treat them as individual bonds. The allowed exceptions include
methyl andmethylene group, forwhich symmetrized combinations ofC–Hstretching
vibrations may be used. The number of stretching vibrations specific to these func-
tional groups is ruled by the number of involved DOF. Considering an archetypical
system with a methyl group, X–CH3 (N = 5), the number of vibrations is 3N − 6
= 9. This is partitioned into five deformation vibrations (symmetric, two kinds of
antisymmetric, and two kinds of rocking vibrations; Table 5.1) and four stretching
vibrations. One stretching mode involves the X–C(H3) bond, leaving three possible
stretching vibrations of the CH3 moiety itself; one symmetric and two kinds of anti-
symmetric stretching modes (Fig. 5.3). A methylene group features just two degrees
of freedom due to stretching vibrations, being symmetric and antisymmetric.

5.3 The Underlying Phenomena

5.3.1 The Potential Energy of a Molecular Oscillator

From the point of view of quantum vibrational spectroscopy, the primary problem
focuses on the determination of the potential energy function along the spatial coor-
dinate describing the molecular oscillator, or in other words, the motion of the nuclei
(Fig. 5.4) [6]. The potential is the key property that dictates the quantum states (i.e.,
the vibrational wavefunctions) of a molecular oscillator. Following the fundamental
approximation of quantum chemistry, the Born–Oppenheimer approximation, the
motion of nuclei can be treated separate from the motion of the electrons in the
majority of cases. Consequently, in vibrational problems, the electronic structure is
reduced to the source of an external potential energy. Therefore, prior to any step
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Fig. 5.4 Interatomic potential (solid black) and the associated harmonic approximation (dashed
black) of theHClmolecule in the gas phase atCCSD(T)/aug-cc-pVQZ level and the respective vibra-
tional wavefunctions (red) obtained via the Numerov approach. The associated energy differences
between the individual states correspond to thewavenumbersmeasured via vibrational spectroscopy

made into quantum vibrational spectroscopy, the electronic structure of the system
under consideration needs to be determined [6]. This can be accomplished with a
large array of different approaches, aimed at providing various approximations to
balance the accuracy of results and the computational demand.

5.3.2 Quantum Chemical Methods for the Determination
of the Electronic Structure of Molecular Systems

An approach for the determination of the electronic structure of a quantum system
(Fig. 5.5) may follow two principal ways of categorization; conceptual and prac-
tical. From the conceptual point of view, these methods differ by how the energy of
the system is described. The major approaches will be presented in Sects. 5.3.2.1,
5.3.2.2, 5.3.2.3, 5.3.2.4, 5.3.2.5, and 5.3.2.6. More exhaustive information can be
found in topic-oriented textbooks [6]. The practical categorization mostly concerns
their computational complexity, with the cost versus accuracy factor of the available
methods being a key consideration,which translates into their respective applicability
to certain problems.
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Fig. 5.5 Overview of computational chemistry methods commonly used for the determination of
electronic structure in molecular systems and crystals

5.3.2.1 Hartree–Fock Theory

Any quantum-based treatment assumes that a wavefunction is the primary entity
describing the state and therefore all observables such as the energy of a quantum
many-body system. Hartree–Fock (HF) theory provides the fundamental and most
straightforward approach in this category. Thismethod is based on solving an approx-
imate time-dependent Schrödinger equation (HF equation), which describes the state
of a quantum mechanical system and the associated energy. All methods that are in
practical use are based on the Born–Oppenheimer approximation, which limits the
role of the nuclei to the source of an external potential. The interaction between
the electrons involves the exchange and the correlation potential. Within the HF
formalism, only the former is treated appropriately. The exchange energy results
from the indistinguishability of electrons and is reflected in the HF procedure by
antisymmetric properties of the wavefunction. This step is accomplished by deriving
a single Slater determinant, an antisymmetrized product of one-electron wavefunc-
tions (i.e., orbitals), to approximate the wavefunction of anN-body quantum system.
In other words, the HF formalism assumes that the problem of interactions between
the many electrons in the molecule is separable into a set of electron–electron prob-
lems, coupled through an averaged effective potential that describes the interaction
with all other electrons in the system.

A solution to the HF equation is found by invoking the variational principle, in
which a set of N-coupled equations for the N spin orbitals is derived, yielding the
Hartree–Fock wavefunction and energy of the system. The HF framework belongs
to the family of self-consistent field (SCF) methods, as self-consistency is a criterion
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that needs to be fulfilled within the iterative procedure of solving the Hartree equa-
tions. Themost far-reaching approximation assumed in theHF approach is neglecting
the Coulomb correlation, which is often described as the mean-field charge distri-
bution approximation of the electron correlation, since the HF method effectively
averages the electron–electron interactions. This causes an inherent inability of the
method to properly describe London dispersion. In order to step beyond a mean-field
approximation of independent particles, so-called post-HFmethods have been devel-
oped. The HF theory has a critical historical importance, being the first developed
quantum theory with practical implementation. Nowadays, pure HF calculations are
rarely used. However, the method is still widely adopted for calculations of the
initial wavefunction of a quantum system, thus representing the preliminary step for
calculations at higher levels of theory. On the other hand, a hierarchy of increas-
ingly accurate methods based on the HF results exist, in which more than one Slater
determinant is employed.

5.3.2.2 Post-HF Approaches

Different populations of atomic orbitals by electrons or electron configurations in
a quantum system are possible. When any given electron changes its configuration,
which can be described as an excitation into another orbital, the distribution of the
other electrons in the molecule adjusts to minimize the total energy of the system.
Thus, the motion of electrons is not independent but correlated, which lowers the
total energy of the system. However, in the HF approach, any given electron only
interacts with the average potential of all the other electrons in the system. To amend
this shortcoming, post-HF methods aiming at a more accurate treatment of electron
correlation effects were introduced. This may be accomplished in different ways, but
unequivocally increases the computational complexity of the method by orders of
magnitude.

In the simplest case, the electron correlation energy can be treated as a pertur-
bation of the electronic state described in the HF formalism. As long as electron
correlation has a relatively small contribution to the total energy, it can be expressed
via a perturbing Hamiltonian corresponding to a correction added to the HFHamilto-
nian. Since the unperturbed HF state is known, the perturbative correction is solvable
using approximate methods, e.g., via an asymptotic series. The practical formula-
tion of this approach is based on Møller–Plesset theory (MP) of a given order k.
Zeroth-order wavefunction corresponds to an unperturbed HF state, and the first-
order perturbation correction (MP1) to the HF energy can be shown to be equal
to zero, which implies that only second- (MP2) and higher-order MP expressions
are practically meaningful. Among those, MP2 bears the highest practical useful-
ness and finds broad applications. In most cases, higher-order perturbations (such
as MP3, MP4, and MP5) do not improve the accuracy by an acceptable margin and
display a huge computational demand. The MP2 method has become particularly
widely applied since it is the most efficient approach to take electron correlation
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effects into account. However, there are limitations in the applicability of MP theory,
which led to the development of more advanced approaches.

Unlike the HF formalism, configuration interaction (CI) theory utilizes multiple
Slater determinants to construct configuration state functions (CSF), which are then
linearly combined to describe the wavefunction of the quantum system. The first
term in the expansion of the CI wavefunction is equivalent to the HF ground-state
wavefunction, while the higher terms capture the effects of the correlated motion
of the electrons. In the CI formalism, the wavefunction is a combination of the
HF reference states plus all possible excited states. This is reflected by mixing the
ground CSFs and the excited CSFs. If all possibilities of orbital occupations are
included (full-CI, FCI), an exact solution to the electron correlation problem can
be achieved. Unfortunately, the number of excited configurations is enormously
large, and in practice, the number of CI terms representing the electronic excita-
tions needs to be truncated. The abbreviations for truncated CI variants reflect the
excitation levels treated; ‘S’ for single excitations, ‘D’ for double, ‘T’ for triple,
‘Q’ for quadruple. This leads to CI single and double excitations (CISD), CI single,
double, and triple excitations (CISDT), etc. From the point of viewof quantum theory,
CI is the most complete approach to describe the electronic structure of molecular
systems. However, this corresponds only to FCI, that is, the case in which all orbital
occupations possible for the quantum system are treated. The FCI method is useful
for validation and benchmarking purposes of lower-level quantum methods, where
its extensive computational cost remains manageable. In practical terms, unless FCI
conditions are achieved, the application of truncated variants is often linked to consid-
erable inaccuracies. Truncated CI methods capture a rapidly decreasing amount of
the ‘exact’ correlation energy with an increase of the system size, which limits their
usefulness in treating larger molecules and heavy atoms. Multiconfigurational self-
consistent field (MCSCF) is an analogous approach that additionally applies a similar
CI-like concept also to derive the one-electron functions that are subsequently used
to construct CSFs.

Coupled-cluster theory (CC) expands the molecular orbitals obtained at HF level
using an exponential cluster operator (acting as the excitation operator) and constructs
a multi-electron wavefunction that includes electron correlation. The CC formalism
may be considered as an alternative to CI, which produces an equivalent combina-
tion of one-electron functions to yield the multi-electron wavefunction. However,
unlike linear combination assumed in the latter, the exponential expansion used in
the former grants its size-extensivity resulting in an improved limiting behavior of
the CC correlation energy upon truncation to a given excitation level (e.g., CCSD).
Similar practical limitations as those found in CI apply here as well. The number
of treated electronic excitations needs to be limited in order to make the method
applicable in terms of the associated computational demand. This leads to variants,
abbreviated analogous to CI variants, e.g., CCSD, CCSDT, etc. Unfortunately, in
practical use, the CCSD level yields moderately correct results considering its cost,
while the more accurate CCSDT proves to be too expensive for most applications.
For this reason, CCSD(T) was introduced as a variant approximating the triple exci-
tations via perturbation theory. Note, however, that when truncated at the same level,
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CC approaches still capture a higher fraction of the correlation energy than their CI
counterparts do, albeit at a higher computational cost. The CCSD(T) variant is highly
valued for its high accuracy achieved at a relatively acceptable computational cost,
and is often considered as the “golden standard of quantum chemistry.”

5.3.2.3 Density-Functional Theory

Inclusion of electron correlation in wavefunction-based methods leads to a steep
increase in their computational complexity. This gave an impulse for the develop-
ment of a fundamentally different concept known as density-functional theory (DFT)
[7, 8]. It is based on the Hohenburg–Kohn theorems postulating that the state of a
many-electron system can be described based on a unique functional (i.e., a function
acting on another function), which in this case is the spatially dependent electron
density function. The benefit of this formalism is a reduction of the dimension-
ality of the problem from that of a multidimensional (3N) N-electron wavefunction
to a three-dimensional electron density function. The practical implementation of
DFT became possible due to the formulation of the Kohn–Sham equations, which
enabled the reduction of an intractable problem of interacting electrons in a static
external potential to a tractable problem of non-interacting electrons in a local effec-
tive potential, i.e., the Kohn–Sham potential. The latter is constituted by the external
potential plus electron exchange and correlation effects expressed via the associated
exchange–correlation functionalExc. Unfortunately, the exactExc is unknown except
for the limiting case of a free electron gas, which became known as the local-density
approximation (LDA; ELDA

xc ). While this formalism is applicable in case of metals
and simple ionic solids, the LDA approximation fails to deliver satisfactory results
for more complex systems. The meaningful development of DFT within the regime
of chemistry started with the introduction of the generalized-gradient approximation
(GGA) level, which was followed by more advanced approximations, such as meta-
GGA functionals. A significant progress in the underlying theory was marked with
the introduction of hybrid Kohn–Sham theory and the resulting hybrid formulation
for Exc. A hybrid Exc is constructed as a linear combination of GGA and/or LDA
(explicit) functionals and a HF ‘exact’ exchange functional (implicit functional).
This inclusion of an ab initio electron exchange term in hybrid functionals greatly
improved the accuracy and applicability of DFT. Popular hybrid functionals include
the B3LYP, PBE0, HSE, and M06 functionals. Further advancement was achieved
with the development of double-hybrid functionals. These approaches represent a
natural progression from hybrid functionals, as in addition to the exchange term,
ab initio correlation is included as well. The correlation is calculated similar to post-
HF methods, e.g., MP2 correlation is employed in B2PLYP, mPW2PLYP, PBE0DH,
or PBEQIDH double-hybrids. In addition to a much improved treatment of elec-
tron correlation, double-hybrid functionals also enable a better implementation of
HF exchange; however, they are significantly more expensive than single-hybrid
functionals.
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The DFT concept is a rigorous re-interpretation of the quantum many-body
problem. It offers a significant improvement in the affordability of calculations.
Unfortunately, its practical implementation needs to include approximated electron
exchange and correlation. The formulation of DFT limits the ability to improve its
quality systematically. Instead, different functionals have been parametrized (i.e.,
calibrated) toward better accuracy when applied to certain systems. Inherent limita-
tions ofDFT, e.g., poor descriptionof long-range (dispersive or non-covalent) interac-
tions were recently mitigated by introduction of empirical corrections of dispersion,
e.g., the series of Grimme’s dispersion models (GD). Despite some shortcomings,
DFT offers highly favorable cost versus accuracy level that made it particularly
widely used in spectroscopic studies.

5.3.2.4 Semi-empirical Concept

Semi-empirical quantum chemistry methods are derived by insertion of pre-
determined parameters into quantum mechanical calculation schemes. The most
straightforward semi-empirical treatment replaces the relatively most time-
consuming calculation procedures in the HF ansatz, i.e., two-electron integrals
are omitted and their values are provided as empirical parameters to produce
the expected results. These parameters are most often obtained from higher-level
quantum mechanical calculations performed for small-scale models, and then used
universally. Semi-empirical methods are significantly more affordable than their
corresponding quantum mechanical frameworks, and thus suitable for the treatment
of large molecules. Conceptually, in some cases semi-empirical schemes are rela-
tively more complete, as empirical parameters may better describe some phenomena
(e.g., electron correlation effects) than the ab initio approach with necessary approx-
imations. Accordingly, as long as the considered system fits the conditions of
the parametrization, semi-empirical calculations may yield more accurate results
than when treated with a pure HF formalism. However, semi-empirical calcula-
tions are prone to produce erroneous results if they are applied outside of their
area of parametrization. Therefore, they need to be used with care. Semi-empirical
schemes based on a wavefunction ansatz include the Austin Model 1 (AM1), the
parametric model family of methods (e.g., PM3, PM5) that implement the neglect of
differential diatomic overlap (NDDO) principle (all two-electron integrals involving
two-center charge distributions are neglected) as well as a number of additional
approximations and corrections, depending on the particular method. A similar
concept may also be applied to density-based methods. For example, density-
functional-based tight-binding (DFTB) inserts pre-calculated parameters into the
DFT calculation scheme, in which a minimal basis and only nearest-neighbor inter-
actions are employed. The resulting deficiency in the description of long-range inter-
actions is corrected with empirical dispersion (analogous to those developed for
DFT functionals). The resulting approach yields reasonably accurate results at a
fraction of the cost of DFT calculations. Although primarily popular decades ago,
when the technology barrier prevented wider use of higher-level quantum methods,
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semi-empirical methods remain continuously evolving with newer variants devel-
oped, e.g., PM6, PM7, or new concepts introduced such as self-consistent change
density-functional tight binding (SCC DFTB).

5.3.2.5 Molecular Mechanics

An alternative to QM-based approaches is the description of interatomic potentials
in an entirely empirical way. These methods are typically referred to as molec-
ular mechanics (MM) or force fields (FF) [9–11]. In this approach, the potential
energy is calculated as a function of the nuclear coordinates using empirical (i.e.,
pre-parametrized) interaction potentials. Accordingly, MM uses classical mechanics
to describe the forces actingbetween the atoms in amolecule. In themost fundamental
approach, the interatomic potential energy is described as a sum of non-covalent pair-
wise interactions resulting from electrostatic (Coulomb) and van-der-Waals (e.g.,
Lennard-Jones) contributions, while covalent contributions such as bond and valence
angle interactions are often represented via harmonic potentials centered on preopti-
mized equilibria. These pair-wise additive approaches comprise the simplest possible
description of the systems and are typically applied in the regime of (bio)organic
chemistry (e.g., peptide/protein systems, nucleic acids, organic polymer materials)
as well as for the treatment of simple solid-state systems such as oxide materials.
In order to improve the accuracy of these approaches over the pair-wise additive
character, a variety of improved MM methods have been developed. One of the
simplest approaches to improve the pair-wise additive character is the inclusion of
explicit coupling terms for bonded interactions with the Urey–Bradly angular term
and the Axilrod–Teller three-body potential being typical examples. More advanced
frameworks comprise the inclusion of polarization effects, which can for example
be achieved using charge-on-spring/shell models, explicit polarization approaches
as well as charge equilibration schemes. While these approaches are essentially
linked to the Coulombic character of the interaction, many-body potentials such
as the Finnis–Sinclair and embedded-atom models (EAMs) attempt to improve the
description of the non-Coulombic contributions with typical applications being in
the area of metals, alloys, and semiconductors. A comparably challenging yet highly
intriguing development enjoying increased success in recent years is the formulation
of dissociative/reactive force field approaches, capable of adequately describing the
formation and cleavage of chemical bonds along the calculation.

The approximate nature of the interatomic forces described this way implies that
force fields need to be heavily parametrized to yield an accurate description of the
potential energy surface of a molecular system. The practical concept of MM is
based on the assumption that a force field parametrized on the basis of a small-scale
model, for which more accurate QMmethods may be used, is reasonably well trans-
ferrable to larger systems. The parametrization may be also based on experimental
data, if available. This fundamentally different approach has a significant conse-
quence in the terms of accuracy versus complexity factor. Consequently,MM is appli-
cable to extensively complex molecular systems counting up to millions of atoms.
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Therefore, MM is the only method of computational chemistry presently capable
of treating multiscale chemical systems. Examples include large biological systems,
solvated systems involving a large solvent volume, as well as composite materials.
The unmatched affordability of MM makes it useful for molecular dynamics simu-
lations. It is possible, e.g. to obtain vibrational spectra of the molecular models
treated by molecular dynamics by calculating the dipole moment autocorrelation
function. From the point of view of NIR spectroscopy, however, the MM poten-
tials are too approximate to yield useful results. Briefly mentioned here should be
hybrid quantum mechanics/molecular mechanics (QM/MM) approaches, in which
only the chemically most relevant part of the molecular system is treated quantum
mechanically while MM potentials are considered as sufficiently accurate to model
all remaining interactions. These QM/MM schemes enable a more accurate treat-
ment of the potential in key molecular fragments important from the point of view
of a particular study.

5.3.2.6 The Fundamental Dilemma in Computational Chemistry; Cost
Versus Accuracy Factor

With few exceptions, in computational chemistry, a higher accuracy can only be
achieved with a significant increase in the demand for resources, understood mostly
as calculation time or/and memory requirements. The nominal complexity of a
method is limited to the number of electrons/atoms in the systems and scales
distinctly different among the methods presented here. From the point of view of
practical applications in spectroscopy, this should be a fundamental consideration
as the application of higher levels of theory to the molecular system of interest may
become prohibitively expensive. In the most straightforward case, the computational
complexity of MM simulations is proportional to the square of the number of treated
atomic centersN,O(N2), whereas advanced implementations are capable of reducing
the scaling to O(N log N). The simplest ab initio HF method formally scales as
O(N4).However, those schemes arewidely regarded as not being sufficiently accurate
for spectroscopic applications. The significant improvement in accuracy of post-HF
approaches comes at a steep increase in their complexity, e.g., starting from O(N5)
for MP2, O(N7) for CCSD(T), and O(N8) scaling for CCSDT. The CI formalism
elevates this trend further, with CISD O(N6), CISDTQ O(N10), while FCI is known
to scale factorial with respect to the system size. In addition, post-HFmethods require
a larger number of functions describing the distribution of each electron (i.e., basis
sets of one-electron functions) to provide accurate results. This gives an answer to the
question that may arise at some point, about the root cause for numerous approxima-
tions that have been introduced to quantum theory in practical implementations. Such
consideration explains the impact that DFT has in the field of practical applications,
as it scales as O(N3), proportionally to the spatial dimensionality of the electron
density function. Calculations performed with popular hybrid functionals such as
B3LYP nominally scale as O(N4) but their practical effectiveness is enhanced by
a decisively more rapid basis set convergence typical for DFT in comparison with
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wavefunction-based approaches. In combination with further computational tech-
niques such as efficient pre-screening approaches, the use of sparse matrix algebra
routines, as well as convergence accelerators aimed at keeping the number of iter-
ations small, DFT offers a remarkably favorable level of efficiency, an advantage
which is well-reflected by the popularity of its use in spectroscopic studies.

5.4 Harmonic Frequency Evaluation

5.4.1 Molecular Geometry Optimization Toward the Energy
Minimum

Geometry optimization, or energyminimization, is the procedure of determination of
the atomic (nuclear) coordinates of a molecule, which result in the lowest total poten-
tial energy of the system. A molecule’s potential energy V (Q) is a many-parameter
function of its atomic coordinates, represented as the vectorQ= {q1, q2,…, q3N−N inv}.
In principle, geometry optimization is a purely mathematical optimization problem
of finding Q that minimizes V (Q). In other words, it is a search for atomic coordi-
nates of the molecule that minimize its potential energy. For a stationary point on
the potential energy surface (PES), the energy gradient (the derivative of the energy
with respect to all atomic coordinates, ∂V/∂qi) is zero. A generic implementation
of the geometry optimization procedure is an iterative process of adjusting Q by
following the gradient toward zero. Note, the definition of the atomic coordinates is
not implicitly imposed. These may be, e.g., Cartesian coordinates, or internal coordi-
nates describing bond lengths, bond angles, and dihedral angles. The quantum theory
model that provides V (Q) is also not imposed from the point of view of the optimiza-
tion problem. As it will be demonstrated in the next section, geometry optimization
performed in order to bring the system to its local minimum on the potential energy
surface is a mandatory step prior to the execution of a harmonic frequency analysis.

5.4.2 Harmonic Approximation

Quantum chemical approaches to vibrational motion are in many points analogous to
the problem of electronic structure. Accordingly, the theory of the vibrational struc-
ture is based on the time-independent vibrational (nuclear) Schrödinger equation [2].
The Born–Oppenheimer approximation still applies, but in this case, the electronic
structure is reduced to the role of the source of an external potential upon which the
motion of nuclei depends. The vibrational Hamiltonian of a polyatomic oscillator
can be expressed as (Eq. 5.1)
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kijkqiqjqk +
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kijklqiqjqkql + · · ·

(5.1)

where mi is the reduced mass of the i-th normal mode and ω0i the corresponding
harmonic frequency given as

ω0i =
√

ki
mi

(5.2)

with ki being the harmonic force constant. The third and higher terms in the expansion
describe anharmonic contributions to the vibrational Hamiltonian via the associated
cubic and quartic force constants, kijk and kijkl, respectively. Commonly, anharmonic
contributions diminish consecutively toward higher terms, with the third (cubic) and
fourth (quartic) terms capturing the majority of the total anharmonicity.

As it will be demonstrated further, taking into account anharmonic contribu-
tions staggeringly increases the complexity of the vibrational problem. However,
a universal rule in physics states that the harmonic motion is a generic feature for
sufficiently low-amplitude vibrations. This applies reasonably well for a number of
molecular vibrations as reflected by relatively low contributions from the anharmonic
terms in Eq. 5.1. Based on this premise, an approach called harmonic approximation
is constructed. Within this approximation, no coupling between modes is permitted,
which implies that all kijk , kijkl, and higher-order constants are set to zero. In other
words, the normal vibrations of harmonic oscillator are entirely independent. There-
fore, in Eq. 5.1, all terms beyond the second one are ignored, in many cases with an
acceptable loss of accuracy. Next, the potential in the vicinity of the equilibrium is
approximated as a Taylor series (Eq. 5.3)

V (Q) = V0(Q) + �QT · g(Q) + 1

2
�QTH�Q + · · · (5.3)

with the higher terms in the expansion being neglected. At a stationary point on
the PES, i.e. minima and transition states, the gradient g(Q), and hence the second
term in Eq. 5.3, is equal to zero as well. This results in a quadratic function as the
approximation of the potential, corresponding to a harmonic potential. In practical
applications, the mass-weighted second-derivative matrix of the potential, or mass-
weighted Hessian H is introduced, which elements are given as:

Hmw
i,j = 1√

mimj

∂2V (Q)

∂qi∂qj
(5.4)
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Diagonalization of the mass-weighted Hessian yields a matrix with 3N − N inv

columns consisting of orthonormal eigenvectors that describe the vibrational motion
of the system within the harmonic approximation, the so-called mass-weighted
normal modes. The 3N − N inv diagonal elements of the eigenvalue matrix h are
proportional to the square frequency of the associated normal mode.

h = UTHU (5.5)

The example of how the harmonic approximation simplifies the true behavior
of a vibrating molecule is demonstrated for the case of a water molecule, H1OH2
(Fig. 5.6), considering a two-dimensional example limited to the two OH stretching
vibrations. The corresponding two-dimensional potential energy surface V (rOH1,
rOH2) is described by the interatomic distances rOH1 and rOH2 (the corresponding
coordinates are depicted in Fig. 5.6a as black lines). In this example, the true potential
was determined with high accuracy using the CCSD(T)/aug-cc-pVTZ level of theory
employing a tight grid spacing.

As outlined above, the problem of the harmonic oscillator is only solvable at a
stationary point of the molecule’s PES. In the present example, this means that prior
to the evaluation of the Hessian, rOH1 and rOH2 need to be optimized to identify the

Fig. 5.6 Harmonic analysis at the example of the stretching vibrations of water v1 (symmetric:
qsym) and v3 (antisymmetric, qsym); a the true nature of normal modes on the potential energy
surface (red line: qsym; blue line: qasym); b the nature of the harmonic approximation applied to
these modes; c harmonic and anharmonic Morse-like potential curve of qsym; the spacing between
subsequent energy levels is increasing; d harmonic and quartic anharmonic potential curve of qasym;
in contrast to qsym, the spacing between the levels demonstrates a increase upon higher excitation
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minimum on the V (rOH1, rOH2) surface. To obtain harmonic modes, V (rOH1, rOH2)
needs to be approximated via the potential of a 2D harmonic oscillator V harm. The
key approximation in this case is that the harmonic potential is additive.

V harm = V (rOH1) + V (rOH2) (5.6)

Equation 5.6 requires that the potential does not depend simultaneously on rOH1
and rOH2,, i.e., there is no coupling potential. This implies that the vibrational wave-
function is a product of 1D wavefunctions, and the respective energy eigenvalues are
additive (same as the potential case shown above), as described by Eqs. 5.7 and 5.8.

|�(rOH1, rOH2)〉 = |�(rOH1)〉 · |�(rOH1)〉 (5.7)

E
(
rOH1,rOH2,

) = E(rOH1) + E(rOH2) (5.8)

In this case, theHessianwould be diagonal. Tomatch the latter criterion, a reorien-
tation of the coordinate frame is required, which corresponds mathematically to the
diagonalization of the mass-weighted Hessian described in Eq. 5.5. The frequency
of the harmonic vibration are obtained from the square root of the diagonal entries in
h, while the columns in the matrix U (i.e., the eigenvectors) provide the new coordi-
nates highlighted in red and blue in Fig. 5.6. The data in the matrixU lead to Eqs. 5.9
and 5.10 describing how to recombine rOH1 and rOH2 to obtain the harmonic normal
modes, q1 and q3.

q1 = qsym = 1√
2
rOH1 + 1√

2
rOH2 (5.9)

q3 = qasym = 1√
2
rOH1 − 1√

2
rOH2 (5.10)

This means for q1 that if rOH1 increases, so does rOH2. In contrast, for q3, if
rOH1 is elongated, rOH2 is shortened (and vice versa). Therefore, q1 and q3 refer
to symmetric and antisymmetric stretching normal modes, respectively. The repre-
sentation of the potential in the harmonic approximation now corresponds to the
paraboloid depicted in yellow in Fig. 5.6b. Every position on this paraboloid (any
point on the harmonic potential surface) is given as the addition of the points lying
on the main axes of the re-oriented coordinate frame, i.e., the red and blue line shown
at the surface of the paraboloid. This surface dictates the stretching vibrations of the
water molecule; symmetric (v1) and antisymmetric (v3). Note that the additive char-
acter of the harmonic potential directly implies its paraboloid shape in a geometrical
sense.

In the following the principles of the harmonic approximation, a fundamental
simplification that has found extensive use in spectroscopy, are summarized. A
complex shape of the true vibrational potential is replaced by the corresponding



100 K. B. Beć et al.

harmonic potential; as described in Eq. 5.3, this step is determined by the diagonal-
ization of the Hessian evaluated at the respective energy minimum. In the process,
a paraboloid approximating the shape of the true potential is derived. This process
may be interpreted as the rotation of the coordinate system until Eq. 5.3 is fulfilled.

A positive-definite Hessian (all-positive eigenvalues) corresponds to a positive
curvature of the potential along all directions from the reference point. On the other
hand, in case a negative curvature is present along a specific direction, an imaginary
frequency is obtained in the solution of the harmonic approximation, which is for
instance employed to evaluate the properties of a transition state or/and reaction
coordinates. Hence, the analysis of the Hessian at the stationary point (at which
g(Q) is equal to zero, i.e., no slope of the potential) enables the identification of the
localminima (positive curvatures), localmaxima (negative curvatures), and transition
states (mixed occurrence of positive and negative curvature).

Since the harmonic potential depends on the Hessian, the efficiency of its determi-
nation by means of electronic structure theory is critical. The methods for which an
analytical solution to the Hessian is available (e.g., HF, DFT, MP2, CIS) are far more
efficient as the basis for a harmonic analysis than those forwhich theHessian can only
be calculated numerically (e.g., CC). Regardless, the harmonic approximation leads
to a dramatic simplification of the vibrational problem in terms of complexity. The
diagonalization of the Hessian yields the full vibrational solution: harmonic frequen-
cies and the associated normal modes. For small to intermediate-sized molecules,
this is a computationally inexpensive step (although it may become a bottleneck in
studies of large systems using FF approaches), whichmade the harmonic approxima-
tion particularly important for early advances in vibrational spectroscopy. However,
it is an extensive approximation of the real molecular oscillator. Firstly, the shape of
the potential is fixed as a quadratic function. This is well-reflected in Fig. 5.6, as seen
in three-dimensional space (Fig. 5.6a, b) as well as in one-dimensional projections
respective to each of the modes (Fig. 5.6c, d). In this example, the true potential
along the symmetric stretching mode of H2O is asymmetric with respect to the equi-
librium position (i.e., anharmonic) and resembles a Morse-like curve (Fig. 5.6c).
This type of anharmonic potential is well-known, as it is often discussed in case
of diatomic molecular oscillators (Fig. 5.4). Unlike the harmonic solution, the true
vibrational levels are not equidistant. Morse-like anharmonicity (high contribution
from the cubic terms in Eq. 5.1) leads to a subsequent reduction of the energy gaps
between consecutive levels. However, the potential of the antisymmetric stretching
mode ofH2O, although symmetric in shape, also deviates from the harmonic potential
(Fig. 5.6d). This is due to significant contribution in the quartic terms in Eq. 5.1. The
quartic anharmonicity leads to widened distances between consecutive vibrational
levels.

Nevertheless, with some exceptions, e.g., of X–H stretchingmodes, inmany cases
the deviation between the harmonic approximation and the true molecular oscillator
is relatively moderate. Consequently, in case of fundamental transitions, harmonic
frequencies corresponding to those vibrations remain overestimated but not dramat-
ically. This effect can be mitigated by an empirical correction, applied a posteriori
in the form of a scaling of harmonic frequencies. Hence, the calculation of harmonic
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normal modes provides an effective route to enable approximate computational IR
andRaman spectroscopy. However, in themajority of cases, this approach is too error
prone to provide a reasonable prediction of overtones. In addition, the fundamental
point of the harmonic approximation, the additive nature of the harmonic potential,
does not take the coupling between individual modes into account, as reflected by
the assumed zero cross-derivatives, or anharmonic force constants in Eq. 5.1. This
fact leads to a critical limitation of the harmonic approximation, being its inability
to describe combination transitions, rendering it inapplicable to NIR spectroscopy.

5.5 Beyond the Harmonic Approximation

5.5.1 Anharmonic Approaches Formulated on the Basis
of the Harmonic Approximation

For the reasons explained above, the harmonic approximation is unsuitable for the
calculation of NIR transitions. The inclusion of anharmonic effects to vibrational
structure theorymaybe treated in an analogousway as electron correlation is included
into the theory of the electronic structure. Accordingly, vibrational self-consistent
field (VSCF) is the most straightforward anharmonic approach and an analogy to
HF theory. The VSCF method is based on the concept that for each vibrational state
k of the oscillator, the wavefunction � is separable into a product of single-mode
(harmonic) wavefunctions φk

i (Eq. 5.11), or a Hartree product.

�k(q1, . . . , qn) =
n∏

i

φk
i (qi) (5.11)

Through this, the multidimensional vibrational Schrodinger equation for the
molecular oscillator in mass-weighted coordinates q1,…, qn (Eq. 5.11) is given as:

[
−1

2

n∑

i=1

∂2

∂q2i
+ V (q1, . . . , qn)

]
�n(q1, . . . , qn) = En�n(q1, . . . , qn) (5.12)

which leads to a set of one-dimensional (single-mode) equations (Eq. 5.13)

[
−1

2

∂2

∂q2i
+ V̄ (n)

i (qi)

]
�

(n)
i (qi) = ε

(n)
i �

(n)
i (qi) (5.13)

To fulfill the condition of separability, an effective potential V̄ (n)
i has to be intro-

duced, through which the modes are coupled in form of a mean-field. It implies
that there is no explicit mode–mode correlation, which is the major simplification in
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the VSCF concept. In other words, the potential for each normal mode is averaged
over all other normal modes. Interestingly, the accuracy of the basic VSCF method
increases relatively with the system size, as the average treatment of mode couplings
applies better to extensively multidimensional (i.e., multimodal) systems.

To reduce the complexity of the problem further, a truncated pair-wise represen-
tation of the potential may be applied (Eq. 5.14)

V (q1, . . . , qn) =
n∑

i=1

V diag
i (qi) +

∑

i

∑

j>1

W coup
ij

(
qi, qj

)
(5.14)

This way, the potential is approximated by a sum of single-mode potentials and
interactions W coup

ij between pairs of normal modes. Pair-wise potentials neglect
contributions from any higher-order couplings (triplets, quartets, etc.).

Since the treatment of mode coupling in the basic VSCF scheme is approximated,
no explicit correlations between modes is considered. As long as the coupling is
relatively small, its impact may be evaluated more accurately through the addition of
a correction by means of second-order perturbation theory. This leads to the VSCF-
PT2 approach sometimes also called correlation-corrected VSCF, CC-VSCF. In this
variant, the correction to the energy Ecorr

k results from a potential V pert
k defined as

a small perturbation to the effective potential. Accordingly, the VSCF-PT2 ansatz
leads to a perturbed VSCF Hamiltonian (Eq. 5.15)

H = H SCF,(n) + �V (q1, . . . , qn) (5.15)

and the associated correlation-corrected energy (Eq. 5.16)

EVSCF−PT2
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i=1 �
(n)
i (qi)|�V | ∏n

i=1 �
(m)
i (qi)

∣∣∣
2

E(0)
n − E(0)

m

(5.16)

denotes for n-th state coupling with all other m-states of the oscillator.
Energy corrections obtained through higher-order levels of perturbation theory

return no meaningful improvements. The VSCF-PT2 method yields more accurate
vibrational energies, however, at a sizeable increase in its computational complexity.
Moreover, it is prone to behave erroneously in the case of nearly degenerated states
(i.e., with similar energies; E(0)

n − E(0)
m ≈ 0); thus, it is not applicable to strongly

coupled modes.
A more advanced concept of including explicit mode correlations into the VSCF

wavefunction has been formulated in the formof vibrational configuration interaction
(VCI) theory. Per analogiam to the HF scheme, the VSCF solution yields a number
of unoccupied virtual ‘excited’ modals. In a CI-like approach, the VSCF modals can
be linearly combined to yield a correlated vibrational wavefunction. In an alternative
approach, instead of a linear one, an exponential expansion using a cluster operator
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is proposed, leading to the vibrational coupled-cluster (VCC) scheme. VCI/VCC
wavefunctions provide very good approximations to the exact vibrational wavefunc-
tion, and at the level of theory are not limited to any particular systems (such as
those with weakly coupled modes). These approaches are capable of yielding very
accurate results; however, they are extremely costly in their application to multi-
modal systems, and thus not suitable for spectroscopic studies of even moderate
sized chemical systems.

On the other hand, vibrational perturbation theory (VPTn) adopts the Møller–
Plesset formalism of n-th order (e.g., second-order perturbation leading to VPT2)
to re-introduce the anharmonic terms in Eq. 5.1 as a perturbation to the (harmonic)
vibrational Hamiltonian. The VPT ansatz separates the anharmonic contributions in
the vibrational Hamiltonian H (Eq. 5.17) into a set of individual terms (Eqs. 5.18–
5.20).

H = H (0) + H (1) + H (2) (5.17)
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withH (0) being the harmonic Hamiltonian. The first-order HamiltonianH (1) includes
the cubic anharmonic terms, while the second-order Hamiltonian H (2) the quartic
terms.

Unlike in the VSCF-PT2 scheme, in which a perturbative correction is added to
the VSCF Hamiltonian, the VPT2 ansatz operates on a harmonic Hamiltonian and
a perturbative treatment is inserted at the lower level of the vibrational structure
theory. Compared with the VSCF approach, VPT2 calculations typically require a
lower number of potential evaluations to achieve a comparable accuracy. Hence, in
practical implementations, the VPT2 approachmay bemore efficient. However, in its
original formulation, this method is highly unreliable in treating nearly degenerated
modes. The number of degeneracies rapidly increases for larger molecules, which
makes VPT2 unsuitable for the description of such systems. With aim of providing a
universal methodology, the ‘deperturbed’ VPT2 (DVPT2) ansatz was formulated, in
which the terms describing nearly degenerated states are removed entirely from the
calculation. Thus, the DVPT2 energies have a more approximate character, but are
not likely to be affected by large errors. Further development of this concept led to
its generalized variant GVPT2, in which the removed terms are re-evaluated using
a variational approach. In principle, the GVPT2 method is applicable to any system
regardless of its size, while maintaining a favorable cost versus accuracy ratio.
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5.5.2 Grid-Based Approaches

Implementations of VSCF or VPT2 theory are constructed for an efficient treatment
of moderately anharmonic modes. The relatively low number of energy evaluations,
and the approximate probing of the vibrational potential yield high efficiency of
these approaches. However, the amount of anharmonicity they effectively capture
is limited. In order to predict the vibrational energy eigenstates with high accuracy,
solving the time-independent Schrödinger as given in Eq. 5.21 for a one-dimensional
problem yields a nearly exact solution of the vibrational problem for an accurately
evaluated potential.

∂2�(q)

∂q2
=

{
2m

�2
· (
V (q) − E

)}
�(q) = f (q) · �(q) (5.21)

Here, � denotes the vibrational wavefunction along the respective normal coor-
dinate q, whilem and � are the reduced mass of the vibrational mode and the reduced
Planck constant, respectively. Typically, the potential V (q) is provided on an equi-
spaced grid with step length �q, and E denotes the associated energy eigenvalue.
The solution to Eq. 5.21 can be obtained by means of grid-based approaches such as
discrete variable representation (DVR) and Numerov’s method. The latter is based
on a Taylor series of �(q) expanded around the point q of the normal coordinate
with �(n) representing the n-th derivative of the wavefunction with respect to �q:

�(q + �q) = � + 1

1! ‖�q‖�(1) + 1

2! ‖�q‖2�(2) + 1

3! ‖�q‖3�(3) + 1

4! ‖�q‖4�(4) + · · ·
(5.22)

Summation of the Taylor expansion in forward and backward direction (i.e.,±�q)
leads to the cancellation of all odd, and the doubling of all even entries. Next, higher-
order derivatives (i.e.,�(n) withn=4, 6, 8,…) are expressedvia their associatedfinite
differences employing the appropriate number of grid points V (±m · �q) to achieve
the desired accuracy. In the simplest case, the time-independent Schrödinger equation
can be expressed via a three-point expression employing the two neighboring grid
points ±1 · �q of any given point on the equispaced grid (labeled as �−1,�0, �+1

for convenience)

− �
2

2m
· �−1 − 2�0 + �+1

‖�q‖2 + V−1�−1 + 10V0�0 + V+1�+1

12

≈ E · �−1 + 10�0 + �+1

12
(5.23)

Initial implementations of Numerov’s approach employ an iterative process based
on an initial guess in the energy eigenvalue E and are sometimes referred to as
shooting methods. However, modern approaches assure Dirichlet boundary condi-
tions (i.e., the wavefunction outside the considered interval is zero) which enables the
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implementation of Numerov’s approach in the form of a matrix eigenvalue problem.
Accordingly, using the matricesA and B as well as the diagonal matrixV, containing
V (q) as elements, the solution can be written as

(
− �

2

2m
A + BV

)
� ≈ BE� (5.24)

Rearrangement of Eq. 5.24 leads to the matrix representation of the time-
independent Schrödinger equation H� = E�, with

H = − �
2

2m
B−1A + V (5.25)

Eigen decomposition ofH simultaneously yields all energy eigenvalues along the
diagonal of the energy matrix E, and the associated eigenvectors are collected in �.
As the key advantage, these grid-based approaches do not require any assumption
or pre-defined building blocks (e.g., basis sets) to formulate the wavefunction �.
These approaches are not limited to questions in vibrational spectroscopy and similar
methods have also been employed in the description of quantum tunnelling and the
electronic structure of atoms and small molecular systems.

The method can be extended to arbitrary orders in the numerical derivatives by
truncating the Taylor series of higher degree (e.g.,A and Bmatrices with seven diag-
onal entries would require a Taylor series of eight degree). To predict IR intensities,
the transition moment integralμmn, consisting of the respective wavefunctions of the
two involved states �m and �n, as well as the transition moment operator μ̂(q), has
to be calculated.

μmn = ∞∫
−∞

�mμ̂�ndτ (5.26)

In case of infrared spectroscopy, μ̂(q) equals the dipole momentμ as a function of
themolecule’s normal coordinates q,making infraredmeasurements especially sensi-
tive on polar function. The transition dipole moment is then employed to calculate
the associated oscillator strength f mn

fmn = 4πme

3e2�
‖μmn‖2νmn (5.27)

where me denotes the electron mass, e the elementary charge, and vmn the transition
energy between the two statesm and n. Typically, the oscillator strength is normalized
to that of the fundamental mode.

Within the 1D formalism, grid-based methods are capable of inherently taking
arbitrary anharmonicities into account. However, the main benefit lies in the general-
ization of the grid-based methods to higher dimensions, which enables the inclusion
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of intermode coupling contributions in addition to the adequate treatment of anhar-
monic effects. Especially when combined with sparse matrix algebra routines and
advanced interpolation techniques to reduce the associated computational effort, grid-
based methods are capable of delivering a highly accurate description of complex
quantum mechanical systems.

5.6 Applications of Anharmonic Approaches in NIR
Spectroscopy

Applications of VSCF theory in investigations of mid-infrared (MIR) spectra are
reasonably popular in literature [12], yet relatively few examples aimed at the NIR
region can be found. Although even the basicVSCF approach is capable of predicting
up to third-order overtones and combination bands, it seems that an improved descrip-
tion of mode correlations (e.g., by means of PT2-VSCF, or VCI) is often necessary
to yield a qualitatively correct prediction of NIR modes [13]. These approaches
frequently prove to be prohibitively expensive for treating larger molecules, although
examples exist of successful applications of the PT2-VSCF approach to molecules
counting ca. 15 atoms (e.g., malic acid), when certain approximations are assumed
(e.g., the application of a quartic force field, QFF) [13]. The anharmonic frame-
works featuring a robust treatment of mode correlations (i.e., VSCF-VCI, VCC) are
far more expensive. The applicability of these methods may improve in the future,
however.

The primary advantage of the DVPT2-GVPT2 approach is efficiency and appli-
cability to molecules that are in the center of attention of applied NIR spec-
troscopy. Additionally, the GVPT2 framework fully mitigates the typical short-
coming of perturbation theory being prone to produce meaningless description of
tightly coupled modes that becomes increasingly probable upon an increase of the
system size. Therefore, this framework finds a remarkably widening application area
in solving spectroscopic problems. A good example is a recent investigation of the
NIR spectroscopic properties of melamine [14]. This compound is of key interest to
analytical NIR spectroscopy in the context of food quality control. However, as in
many other cases, the NIR spectrum of melamine remained shallowly understood
before. Spectra calculations bymeans of the DVPT2 andGVPT2methods performed
at B3LYP-GD3BJ/SNST level were able to accurately reconstruct all essential NIR
absorption bands of melamine (Fig. 5.7). This yielded detailed and unambiguous
band assignments for the compound, enhancing the ability to interpret the essen-
tial features of the multivariate models used for analyzing melamine content. It is
noteworthy that at the same time, an interesting comparison was made. The present
implementation of GVPT2 includes the ability to predict three quanta transitions
(i.e., second overtones, ternary combination bands). The appearance of such bands
in the experimentalNIR spectrumofmelamine could be directly assessed.As demon-
strated in Fig. 5.7, this improves the interpretability of minor bands. However, the
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Fig. 5.7 Experimental diffuse reflectance NIR spectrum of polycrystalline melamine compared
to the calculated spectra (DVPT2 and GVPT2 at B3LYP-GD3BJ/SNST level) in the regions
a 7150–5750 cm−1, and b 5400–4000 cm−1. Reproduced from Ref. [14] under Creative Commons
Attribution 4.0 International (CC BY 4.0)

spectrum of melamine in 7500–4000 cm−1 region is for the most part decided by
two quanta transitions (i.e., first overtones and binary combinations).

Grid-based methods offer a nearly exact solution of the vibrational problem well
exemplified in the case of the simplest molecular oscillator, a diatomicmolecule such
asHCl in gas phase. Figure 5.4 shows the associated interaction energyobtained using
the accurate yet comparably expensive CCSD(T) method (i.e., coupled cluster with
single, double, and perturbative triples) in conjunctionwith a large one-electron basis
(augmented correlation consistent polarization valence quadruple zeta basis set, aug-
cc-pVQZ). This bonding potential has been scanned in tight intervals of 0.005 Å in
the region near the equilibrium distance req = 1.278 Å. The Morse-like character of
the bond showing a steep increase in the potential at low distances is clearly visible,
which is lost when the harmonic approximation is applied to the region near req
(dashed line in Fig. 5.4). Solving the vibrational Schrödinger equation (in this case
using Numerov’s approach) yields the vibrational wavefunctions and the associated
energy eigenvalues. The respective differences between the eigenvalue of a particular
excited state and the ground state correspond to the frequencymeasured in vibrational
spectroscopy (see Table 5.2). It can be seen from the experimental values that the
spacing between the energy levels is decreasing, which is adequately described when
taking anharmonicity into account. The harmonic approximation on the other hand
is known to perform poorly for the fundamental excitation in many cases and is
effectively useless when aiming at the associated overtone vibrations. In case of a
diatomicmolecule, the inclusion of rotational coupling is comparably simple and can
be realized by taking the changes in the moment of inertia of the molecule upon bond
stretching into account. As can be seen from Table 5.2, this contribution referred to
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Table 5.2 Vibrational wave numbers of the fundamental and four lowest overtones of HCl(g) in
cm−1 obtained at CCSD(T)/aug-cc-pVQZ level via the harmonic approximation and the Numerov
treatment (grid spacing 0.005 A) with and without the rotational Watson potential, respectively. It
can be seen that an explicit inclusion of anharmonic effects to the vibrational excitations is vital to
obtain reliable estimates for higher excitations. Rotational coupling on the other hand only plays a
minor role in this example

Transition Harmonic Numerov Numerov–Watson Experimentala

0 → 1 2990.2 2885.4 2885.5 2885.9

0 → 2 5980.3 5667.6 5667.7 5668.0

0 → 3 8970.5 8347.1 8347.3 8347.0

0 → 4 11960.6 10924.1 10924.4 10923.1

0 → 5 14950.8 13398.9 13399.2 13396.5

aRef. [4], p. 193

as Watson potential has only a minor influence on the vibrational wave numbers in
the case of HCl(g).

Grid-based approaches yield highly accurate solutions of the vibrational problem,
but presently their applicability to larger molecules is limited because of their exces-
sive cost. However, for studies of such systems, they remain effective in selective
treatments of a particular mode of interest (one-dimensional grid). For example, in
several cases, these methods have been used for an accurate prediction of the OH
stretching overtone band [15, 16]. This strong band is highly sensitive to the chemical
environment and is an important spectral feature frequently investigated byNIR spec-
troscopy (refer to the Chapter NIR spectroscopy in physical chemistry). Therefore,
accurate calculations of the frequency and intensity is essential, e.g., for obtaining
detailed insights into solvent effects [15]. On the other hand, grid-based methods
may be used to improve theoretical NIR spectra obtained with different methods.
Although in principle, the VPT2 approach is applicable to Morse-like potentials, in
some cases, it provides unreliable results. For instance, the 2v(OH) peak delivers
a relatively easily accessible information on the conformational state of hydroxyl
bearing molecules. In the case of cyclohexanol, it consists of two components due to
the two major conformers. The wavenumber difference �v between these compo-
nents was found to be 27 cm−1 in the experimental spectrum. A recent study reported
a strongly underestimated VPT2 frequency for the major conformer, resulting in the
splitting of the predicted peak (�vVPT2 = 260 cm−1). However, the application of a
grid-based approach yielded a much more reliable value of 30 cm−1 [16].

Further, grid-based methods are applicable universally, including low-lying
torsional modes that are typically challenging for generalized methods (e.g., VSCF,
VPT2). The highest potential for future advances is associated with multidimen-
sional grid-based approaches covering full vibrational configuration of the system.
Presently, state-of-the-art enables treatment of triatomic linear molecules (e.g., CO2,
BeH2, HCN), which requires a four-dimensional grid [17]. In such case, the entirety
of mode coupling is explicitly included and the predicted frequencies deviate by less
than1%fromexperimental data [17]. Feasible implementation of higher-dimensional
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grid-based approaches should enable nearly exact prediction of NIR spectra of more
complex molecules, which will form an essential progress in our understanding of
NIR spectroscopy.

5.7 Summary and Future Prospects

Practical applications of themethods of quantumchemistry inNIR spectroscopy have
mostly been limited by their computational cost. In the recent decade, a remark-
able rise in practical applications of theoretical calculations in NIR spectroscopy
was observed. This resulted from the development of quantum-based approaches
and their implementation, as well as from the progress in technology resulting in a
continuous increase in computational capacities. This allows for the anticipation of
further advances in the forthcoming years, and a twofold development can presently
be witnessed in this field. Firstly, studies of NIR spectra of increasingly complex
systems are becoming feasible. This opens new opportunities, as the complexity of
NIR spectra tends to scale steeply with the system size, and their interpretability
by conventional spectroscopic methods is limited. Secondly, highly accurate grid-
based methods are capable of yielding nearly exact results. At the moment, compu-
tational complexity of grid-based methods limits their applicability to few-atom
systems. Nevertheless, they form an essential aid at the moment, as the established
‘universal’ anharmonic frameworks (e.g., VSCF, VPT2) have primarily been formu-
lated with efficiency in mind. This could only be achieved through various approx-
imations affecting their robustness and accuracy. Grid-based methods demonstrate
their usefulness in directly correcting VPT2 results for a few selected modes of
interest; this even applies for seemingly manageable modes such as OH stretching
vibrations. As the primary factors limiting the applicability of computational chem-
istry in NIR spectroscopy are consistently challenged, a general conclusion may be
drawn that in the next decade a markedly rapid expansion of NIR studies utilizing
methods of quantum chemistry will be observed.
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16. K.B. Beć, J. Grabska, M.A. Czarnecki, Spectra-structure correlations in NIR region: spectro-
scopic and anharmonic DFT study of n-hexanol, cyclohexanol and phenol. Spectrochim. Acta
A 197, 176–184 (2018)

17. U. Kuenzer, T.S. Hofer, A four-dimensional Numerov approach and its application to the
vibrational eigenstates of linear triatomic molecules—the interplay between anharmonicity
and inter-mode coupling. Chem. Phys. 520, 88–99 (2019)


	5 Introduction to Quantum Vibrational Spectroscopy
	5.1 Introduction
	5.2 Normal Modes of Vibration
	5.3 The Underlying Phenomena
	5.3.1 The Potential Energy of a Molecular Oscillator
	5.3.2 Quantum Chemical Methods for the Determination of the Electronic Structure of Molecular Systems

	5.4 Harmonic Frequency Evaluation
	5.4.1 Molecular Geometry Optimization Toward the Energy Minimum
	5.4.2 Harmonic Approximation

	5.5 Beyond the Harmonic Approximation
	5.5.1 Anharmonic Approaches Formulated on the Basis of the Harmonic Approximation
	5.5.2 Grid-Based Approaches

	5.6 Applications of Anharmonic Approaches in NIR Spectroscopy
	5.7 Summary and Future Prospects
	References




