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Preface

Despite being a well-established and very mature technique, near-infrared
(NIR) spectroscopy continues to demonstrate remarkable progress. New princi-
ples for instrumentation have provided cutting-edge developments within NIR
imaging, handheld instruments and laser-based techniques. As with the field of data
analysis in general, NIR spectral analysis and data treatments also continue to
demonstrate prominent advancements that only accelerate in its scope and
accomplishments. We now have instruments available that are capable of gener-
ating very high volumes of high-quality spectral data, in breath-taking speeds,
perhaps even distributed over several online measurement points, and terms such as
artificial intelligence, big data and deep learning are more and more commonly seen
as the tools used to decipher the hidden information in the spectral data. All these
advances open the pathways for the introduction of quantum chemistry to NIR
spectroscopy—a decoding and understanding for modelling chemical systems
based on quantum theory. It is now possible to imagine applications that use a
combination of NIR spectroscopy with information and communication technol-
ogy, applications that uses low-power and remote-sensing laser NIR spectroscopy,
or devices incorporated in handheld instruments—maybe even embedded in our
mobile phones—all of which is contributing to some artificial intelligent-assisted
model to improve, for instance, food quality and safety for the individual consumer.
The possibilities of NIRS technology seem to be endless!

Several textbooks and handbooks on NIR spectroscopy are currently available;
they are all important books, but some of them are not up to date. We thus thought
there was an increasing demand for a new state-of-the-art textbook on NIR spec-
troscopy. The present book, we hope, will fill the gap and find a wide audience of
newcomers as well as experts to the exciting and versatile NIR spectroscopy
technology. The book is intended as a go-to-book for background theory, appli-
cations and tutorial work. It consists of four major parts: Introduction and
Principles, Spectral Analysis and Data Treatments, Instrumentation, and
Applications. We attempted to prepare a well-balanced book with emphasis on
underlying principles, spectral analysis and data treatments and at the same time
cover almost all areas to which NIR spectroscopy is currently applied.
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The contributors, from many countries, are all front-runners in modern vibra-
tional spectroscopy, data analysis, instrumentation and/or applications. Another
purpose of this book is making a strong bridge between molecular spectroscopists
and researchers and engineers in various fields such as agriculture and food engi-
neering, pharmaceutical engineering, polymer engineering, process engineering and
biomedical sciences. We intend the book to become a valuable source for molecular
spectroscopists who are interested in new applications of NIR spectroscopy and for
researchers and engineers in a variety of fields who would like to study basic
principles of molecular spectroscopy and NIR spectroscopy in particular.

Finally, it is our strong hope that this book will be useful for graduate science
and engineering students where it can serve as inspiration as textbook for courses
and seminars of graduate schools.

Last but not least, we would like to thank Dr. Shinichi Koizumi, Mr. Tony
Pressler Sekar and Ms. Taeko Sato of Springer Nature, for their continuous efforts
in publishing this exciting book.

Sanda, Japan Yukihiro Ozaki
Innsbruck, Austria Christian Huck
Nagoya, Japan Satoru Tsuchikawa
Copenhagen, Denmark
July 2020

Søren Balling Engelsen
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Chapter 1
Introduction

Yukihiro Ozaki and Christian Huck

Abstract This chapter describes the introduction to NIR spectroscopy. The
discovery of infrared region is mentioned first, and then, the definition of NIR region
and characteristics of NIR spectroscopy are explained. Finally, the brief history of
NIR spectroscopy is outlined.

Keywords Near-infrared · NIR · Vibrational spectroscopy · Electronic
spectroscopy

1.1 Discovery of Infrared (IR) Region

The discovery of an invisible component beyond the red end of the solar spec-
trum (modern meaning-infrared (IR) region in a broad sense) is ascribed to William
Herschel, a German-born British astronomer, who is famous for Herschel telescope.
In 1800 one day, he investigated the effect of sunlight divided from violet to red by
a prism on temperature increase. He used just sunlight, a prism, and thermometers.
Figure 1.1 shows his portrait and the experimental set up he employed. He happened
to find that the significant temperature increase occurred even outside of red. He
thought there was a different kind of invisible radiation from visible light beyond
the red end of sunlight and named this radiation “heat ray.” This was really a great
discovery in science, but even he could not imagine that this is light. He was 62 years
old when he discovered “heat ray.” Sixty-two years old in 1800 probably corresponds
to today’s 80 years old or so. Thus, his discovery demonstrated that even very senior
scientist could have intensive serendipity.
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Fig. 1.1 The portrait of William Herschel and his experimental set up in 1800

Interestingly enough, just one year after the discovery of “heat ray,” Johann Ritter,
a German scientist found another invisible component beyond the violet end of the
solar spectrum based on an experiment of blackening of silver chloride. In this way,
a new era of light was opened at the turning point from the eighteenth century to the
nineteenth century. After the discovery of “heat ray,” many scientists investigated it.
In 1835, it was confirmed that “heat ray” is invisible light which has longer wave-
length than visible light. He named this light “infrared (IR).” Maxwell elucidated
theoretically in 1864 that ultraviolet, visible, and IR light are all electromagnetic
wave. In 1888, Hz proved it experimentally.

1.2 Introduction to NIR Spectroscopy

IR region is so wide energetically, ranging from 150 to 0.12 kJ mol−1 (12,500–
10 cm−1). If one compares the energy of the highest wavenumber end of NIR
region with that of the lowest wavenumber end of far-IR (FIR) region, one can
find that the difference in the energy between the two ends is more than 1000
times. Therefore, nowadays, the IR region is divided into three regions, NIR region
(12,500–4000 cm−1; 800–2500 nm), the IR region (mid-IR; 4000–400 cm−1; 2500–
25,000 nm), and the far-IR region (FIR; 400–10 cm−1; 25 μm-1 mm) [1–7]. NIR
spectroscopy is spectroscopy in the region of 12,500–4000 cm−1,where bands arising
from electronic transitions as well as those due to overtones and combinations
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of normal vibrational modes are expected to appear [1–7]. Therefore, NIR spec-
troscopy is electronic spectroscopy as well as vibrational spectroscopy. Ultraviolet
(UV)-visible (Vis) spectroscopy is electronic spectroscopy while infrared (IR) spec-
troscopy is vibrational spectroscopy, so that NIR spectroscopy is something special.
It lies in between electronic spectroscopy region and vibrational spectroscopy region.

Figure 1.2 shows chemical structure of immobilized metal affinity chromatog-
raphy (IMAC) material and NIR spectra in the region of 10,000–4000 cm−1 of
32 kinds of IMAC materials [8]. Broad features in the 10,000–7500 cm−1 region
are due to the d-d transition of Ni coordination compound and bands in the 7500–
4000 cm−1 region arise from overtones and combinations. The spectra in Fig. 1.2
are very interesting examples, demonstrating that in the NIR region, one can observe
both bands assigned to electronic transition and those originating from vibrational
transitions. Most of the electronic transitions appearing in the NIR region are the
d-d transitions, charge-transfer (CT) transitions, and π-π* transitions of large, or
long, conjugated systems [1, 3, 7]. NIR spectroscopy involves absorption, emission,
scattering, reflection, and diffuse-reflection of light [1–7].

NIR spectroscopy together with Raman, IR, and Terahertz/FIR spectroscopy
forms “four sisters of vibrational spectroscopy.”SinceNIRspectroscopy is concerned

Fig. 1.2 Chemical structure of immobilized metal affinity chromatography (IMAC) material and
NIR spectra in the region of 10,000–4000 cm−1 of 32 kinds of IMAC materials. Reproduced from
Ref. [8] with permission
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only with overtones and combination modes as a vibrational spectroscopy, it is very
much unique compared with Raman, IR, and Terahertz/FIR spectroscopy.

TheNIR region canbedivided into three regions;Region I (800–1200nm;12,500–
8500 cm−1), Region II (1200–1800 nm; 8500–5500 cm−1), and Region III (1800–
2500 nm; 5500–4000 cm−1) [1–7]. The boarders of the three regions are not rigorous.
In Region I, bands arising from electronic transitions and those due to higher-order
overtones and various types combination modes are expected to appear. Region I
shows high transparency because all the bands appearing in this region are very
weak, allowing biomedical applications and applications to agricultural products.
Region I is the region where CCD cameras work very well, and this region is called
“window of biological materials” because of high transparency to body. It has also
a few more nick names: “the short-wave NIR (SWNIR) region,” ”near NIR (NNIR)
region,” or “the Herschel region.”

Region II is a region for the first and second overtones of the XH (X = C, O, N)
stretching vibrations and various types of combination modes. Region III contains
mainly bands attributed to the combination modes except for the second overtone of
the C = O stretching vibrational mode. It shows poorer “permeability.”

NIR spectroscopy, particularly vibrational NIR spectroscopy, is spectroscopy
of anharmonicity [1–7]. The overtones and combination modes are the so-called
forbidden transitions for a harmonic potential, yielding very weak bands. Both the
frequencies and intensities of NIR bands are controlled by anharmonicity. There-
fore, investigations on overtones and combination modes, anharmonicity, vibrational
potential, and dipole moment function regarding NIR spectroscopy are important.
However, these studies have been far behind applications of NIR spectroscopy prob-
ably because until 1990s, it was difficult to obtain accurate NIR spectra and to make
reliable band assignments. It is only recent that quantum chemistry has been intro-
duced to studies of frequencies and intensities of overtones and combination bands
(Chap. 5).

The fact that bands in the NIR region are weak or very weak is what makes this
region unique and markedly different from the other regions [1–7]. The reason why
the NIR region is valuable in various applications is because only the NIR region
serves as a highly transmitting window to radiation thanks to anharmonicity.

1.3 Brief History of NIR Spectroscopy

It is uncertain when NIR spectroscopy began, but there is the report that Abney and
Festingmeasured the spectra of some simple organic compounds in the 700–1200 nm
region as well as in the Vis and IR regions. In the beginning of the twentieth century,
main concerns of molecular spectroscopy were UV–Vis and IR spectroscopy. It was
1920s and 30s that systematic measurements of NIR spectra were carried out. A
chance came from the development of a spectrometer by Brackett. In 1930s, spec-
troscopists already recognized that NIR spectra arise from overtones and combina-
tion modes [9, 10]. In 1950s, NIR spectroscopy received considerable interest for
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hydrogen bonding studies and studies on anharmonicity [11, 12]. The development
of an innovative spectrometer, Carey 14 Applied Physics in 1954, pushed NIR spec-
troscopy research as well as UV–Vis studies [1]. However, the development of basic
studies of NIR spectroscopy was still rather slow because even development of new
spectrometers was insufficient for NIR spectroscopy to observe weak NIR bands
accurately, and also systematic analysis of NIR bands was very difficult. Moreover,
NIR spectroscopy could not find application fields not only in basic science but also
in practical applications [1–7]. Until 1960s, NIR spectroscopy was a “sleeping giant”
in terms of both basic science and applications.

It was not a spectroscopist but an engineer in an agricultural field whowoke up the
sleeping giant. He was Karl Norris (Fig. 1.3a) of the US Department of Agriculture
(USDA). Norris learnt electrical engineering as well as agricultural engineering at
universities, and thus, he had good background for developing spectrometers and
systems with computers. Norris was involved in a research of drying grain by use
of infrared technology. He happened to find that the grain had absorbances in the
NIR region. He focused on the fact that NIR spectroscopy is suitable for nondestruc-
tive analysis, and he and his colleagues tried to use NIR spectroscopy for quality
assessments of agricultural products. Norris proposed to use statistical methods to
build calibration models from NIR data [13, 14]. First, he employed simple linear
regression and then multiple regression. His idea realized the advantages of NIR
spectroscopy in practical applications. Thus, Norris is called “Father of NIR spec-
troscopy.” Norris, Phil Williams, Fred McClure, and other engineers applied NIR
spectroscopy to many applications in agriculture and then foods. Beltsville (Mary-
land,USA)was a place for assemblage for the bold and ambitious. Their great success
partly came from the strong request of quality assessment from consumers which
already started in North America from 1960s and partly from the development of
spectrometers and computers.

However, many conventional spectroscopists did not accept adamantly the eccen-
tric idea of utilizing statisticalmethods such asmultiple regression analysis to develop
calibration models of NIR data. After rather long dispute, some traditional spectro-
scopists started to recognize the usefulness of the statistical methods to analyze NIR
spectra. Particularly, Tomas Herschfeld played a very important role in making a
bridge between the spectroscopists and agricultural engineers.

Of note is that in 1960s, there was significant progress also in the applications
of NIR spectroscopy to basic studies [15–17]. For examples, in 1963, Bujis and
Choppin [17] measured NIR spectra of pure water and investigated water structure in
relation to hydrogen bonds. Late 1960s and early 70s, a few research groups including
Camille Sandorfy (Fig. 1.3b) group [16] found very interesting fact concerning with
the relative intensities of free and association bands of the OH and NH stretching
bands compared for the fundamentals and overtones. The relative intensity of the free
band is much greater for the overtones than fundamentals. One can say Sandorfy is
a pioneer in basic studies of NIR spectroscopy. He is famous particularly in the
research on relation between anharmonicity and hydrogen bondings.

It is also very important to know that there is another great scientist who advanced
the practical application of NIR spectroscopy. He was Frans, F. Jobsis (Fig. 1.3c),
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Fig. 1.3 Portrait photos of a
Karl H. Norris, b Camille
Sandorfy, and c Frans F.
Jöbsis

(a)

(b)

(c)
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who carried out the in vivomonitoring of the redox behavior of cytochrome c oxidase
(or cytochrome aa3) (Chap. 20) [18]. Since his pioneering study medical application
of NIR spectroscopy has shown distinctive growth as described later [19].

It is not clear when chemometrics was born, but it is clear that the use of statistical
methods by Norris was one of the initiations of the development of chemometrics
[1, 2, 4, 6]. Among various molecular spectroscopy, NIR spectroscopy was the first
in using chemometrics. For the last half century or so, chemometrics developed NIR
spectroscopy and NIR spectroscopy developed chemometrics. Nowadays, chemo-
metrics is used in almost all kinds of spectroscopy including IR, Raman, far-infrared
(FIR)/Terahertz, UV–Vis, fluorescence, and NMR spectroscopy.

In 1980s, NIR spectroscopy was usedmainly for agriculture and food engineering
fields, but applications to polymers and on-line analysis started in those days. After
entering 1990s, application of NIR spectroscopy made remarkable progress thanks
to the development of spectrometers, detectors, computers, and chemometrics. It has
expanded to chemical, polymer and petroleum industries, pharmaceutical industry,
biomedical sciences, environmental analysis, and even analysis of cultural resources.
In the last ten years or so, development of NIR imaging and portable and handheld
instruments has been a matter of big attention. Besides progresses in NIR imaging,
and portable and hand-held spectrometers, those in on-line monitoring, process anal-
ysis technology (PAT), sensing for security and safety, and medical diagnosis have
been particularly noted [1–6]. NIR world is stretching strongly over a huge area of
science and technology.

Medical application of NIR spectroscopy is nowadays called functional NIR
(fNIR) spectroscopy [20]. It uses mainly electronic NIR spectroscopy in Region 1,
the region of “window of biological materials.” fNIR is applied not only to medical
applications but also to brain research.

Basic studies of NIR spectroscopy such as overtones, combination modes, anhar-
monicity, and vibrational potential, and application of NIR spectroscopy to basic
science like studies of hydrogen bondings, intermolecular interactions, and solu-
tion chemistry experienced “renaissance” in the 1990s due to rapid progress in NIR
spectrometers particularly FT-NIR spectrometers and spectral analysis methods like
two-dimensional correlation analysis.(Chap. 13) [1, 2, 3, 5, 7] Quantum chemical
calculations have realized simulations of NIR spectra not only of simple compounds
but also of rather complicated molecules such as long chain fatty acids, caffeine,
nucleic acid bases, and rosemaric acid (Chap. 5). They also enable one to make band
assignments of NIR spectra [20]. It is noted that quantum chemical calculations are
useful for both basic studies and applications of NIR spectroscopy.

NIR spectroscopy is expanding markedly to a variety of fields such as astronomy,
security and safety sensing, forensic science, building site, paleocultural property
science and brain science.
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Chapter 2
Principles and Characteristics of NIR
Spectroscopy

Yukihiro Ozaki and Yusuke Morisawa

Abstract This chapter describes the principles and characteristics of NIR spec-
troscopy. It is divided into two subchapters, 2–1. Characteristics and advantages of
NIR spectroscopy: In this subchapter some emphasis is put on the versatility of NIR
spectroscopy. Some examples of NIR spectra are explained 2–2. Principles of NIR
spectroscopy based on quantum mechanics: To understand principles of NIR spec-
troscopy, principles of IR spectroscopy are described using quantummechanics first,
and then detailed explanation about molecular vibrations-fundamentals, overtones
and combinations is given. Anharmonicity is mentioned briefly.

Keywords Molecular vibrations · Vibrational spectroscopy · Overtones ·
Combinations · Anharmonicity

NIR spectroscopy has very unique characteristics and advantages in comparisonwith
other spectroscopy like ultraviolet-visible (UV-Vis), IR, and Raman spectroscopy.
Those characteristics and advantages of NIR spectroscopy all come from anhar-
monicity of vibrational modes. Hence, it is important to learn the characteristics and
advantages of NIR spectroscopy in relation with anharmonicity, whose description
needs fundamental knowledge of quantum mechanics.
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2.1 Characteristics and Advantages of NIR Spectroscopy

2.1.1 Characteristics of NIR Spectroscopy

NIR spectroscopy is concerned with both electronic transitions and vibrational tran-
sitions [1–7]. However, as the electronic spectroscopy, it is not easy or almost mean-
ingless to discriminate the NIR region from the visible region. The two regions are
seamless in the electronic spectra. In contrast, it is quite straightforward to distingish
the vibrational spectroscopy in the NIR region from that in the IR region because
NIR spectroscopy deals only with bands arising from overtones and combination
modes, while IR spectroscopy involves mainly bands due to fundamentals, although
those originating from overtones and combinations also appear relatively weakly in
the IR region.

One of the most characteristic features of NIR spectroscopy come from the fact
that bands in the NIR region are weak or very weak. Both bands due to electronic
transitions and those originating from vibrational transitions are weak. The overtones
and combination modes arise from so-called forbidden transitions [1–7]. The reason
why the NIR region is valuable from the point of applications is since only the NIR
region offers as a highly transmitting window to radiation.

2.1.2 Characteristics of NIR Bands

Characteristics of bands appearing in the NIR region can be summarized as follows.
Here, we consider NIR vibrational bands, overtones and combinations.

(1) Bands observed in the NIR region are all due to overtones and combinations;
Not only simple combination bands such as v1 + v2 but also second order and
third order combination bands such as v1 + 2v2 appear. The NIR region contains
many overlapping bands; NIR bands show strong multicolinearlity. Therefore,
assignment of the NIR bands is generally not easy.

(2) The NIR bands become weaker and weaker as the wavelength becomes shorter
since bands due to higher order overtones and the second and third order combi-
nations appear in the shorter wavelength region. Table 2.1 tabulates the wave-
length, wavenumber, and relative intensity of bands due to the fundamental,
first, second, and third overtones of CH stretching mode of chloroform. It is
noted that the overtone bands become weak abruptly with the increase in the
order and that the third overtone bands is located in the Vis region.

(3) Most of the bands in the NIR region originate from functional groups containing
a hydrogen atom (e.g., OH, CH, NH). This is partly due to the fact that an
anharmonic constant of an XH bond is large, and partly due to the fact that an
XH stretching vibration has its fundamental in a high frequency region (3800-
2800 cm−1). Hence, NIR spectroscopy is often called “an XH spectroscopic
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Table 2.1 The wavelength,
wavenumber, and relative
intensity of bands due to the
fundamental, first, second,
and third overtones of CH
stretching mode of
chloroform

Band position/nm Band
position/cm−1

Intensity/ cm2

mol−1

υ 3290 3040 25000

2υ 1693 5907 1620

3υ 1154 8666 48

4υ 882 11338 1.7

5υ 724 13831 0.15

method.”BesidesXHvibrational bands, those arising from the second overtones
of C = O stretching modes appear in the NIR region. Recently, bands due to
the first and second overtones of C ≡ N stretching modes of acetonitrile are
also observed [8]. The C = O and C ≡ N stretching bands are two of the most
intense bands in the IR region because of their large transition dipole moments,
and thus, even second overtones can be observed in the NIR region.

(4) The first overtones of XH stretching bands give a lower frequency shift upon
the formation of a hydrogen bond or an inter- or intra-molecular interaction as
in the cases of the corresponding fundamental bands in IR spectra. The shift of
the first overtones is almost double of that for the corresponding IR bands.

(5) In the NIR region OH and NH stretching bands of monomeric and polymeric
species aremuch better separated comparedwith the IR region. It is also possible
to distinguish bands ascribed to terminal free OH or NH groups of the polymeric
species from those due to their free OH or NH groups in the NIR region.

(6) Because of the larger anharmonicity, the first overtone bands of OH and NH
stretchingmodes ofmonomeric species aremuchmore enhanced comparedwith
the corresponding bands of polymeric species. On the other hand, fundamental
bands originating from the OH and NH stretching modes of polymeric species
are much more enhanced than those of the monomeric species due to a larger
charge separation of X–H (δ−X–Hδ+—:Y) in a hydrogen bonding. In Fig. 4.8
you can see good example for these phenomena. In the IR spectrum a broad
feature due to polymeric species is much stronger than a band originating from
monometic species while in the NIR spectrum a truly opposite result is observed
(Sect. 4.1.2). Therefore, one can monitor more easily the dissociation process
from polymeric species into monomeric ones in the NIR region rather than in
the IR region by the first overtone of the OH or NH stretching mode of the
monomeric species.

Note that almost all of the above characteristics come from the fact that NIR
spectroscopy is concerned with forbidden transitions within the harmonic-oscillator
approximation.
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2.1.3 Advantages of NIR Spectroscopy

Now, let us discuss the advantages ofNIR spectroscopy from the point of applications
[1–7]. First of all, NIR spectroscopy is a powerful non-destructive and in situ analysis
method. One can explore even inside of amaterial usingNIR spectroscopy. Second, it
permits non-contact analysis, and analysis using an optical fiber. Third, it is possible
to apply NIR spectroscopy to samples in various states, shapes, and thickness. As for
the advantages of NIR spectroscopy for fundamental studies we discuss in Chap. 13.

One can discuss the advantages of NIR spectroscopy in comparison with IR
spectroscopy.

(1) NIR spectroscopy allows in situ analysis with a sample as it originally is. While
one can employ attenuated total reflection (ATR) or photoacoustic spectroscopy
(PAS) for in situ analysis in IR spectroscopy, there is no other choice than NIR
spectroscopy if one wishes to collect an absorption spectrum on the whole of an
apple or a human head. It is also suitable for nondestructive of thick samples.

(2) In general, NIR spectroscopy is more suitable in the analysis of aqueous solu-
tions than IR spectroscopy since the intensity of water bands is much weaker in
the NIR spectrum than in the IR spectrum. ATR-IR spectroscopy permits one
to examine aqueous solutions, but NIR spectroscopy can probe those in more
various manners.

(3) A light-fiber probe can be set in a dangerous environment, and be remotely
manipulated. This is one of the reasons why NIR spectroscopy is suitable for
on-line analysis. IR Light-fibers are much less robust and more expensive.

(4) In NIR spectroscopy one can select a light path length very freely. In contrast,
IR spectroscopy usually requests a cell having a very short path length. NIR
spectroscopy allows one to use a 0.1-mm cell, a 1-cm cell, or even a 10-cm cell.

(5) Optical materials used in the NIR region are cheaper than those in the IR region.
One can use glass cells, for example.

2.1.4 Versatility of NIR Spectroscopy

NIR spectroscopy holds marked versatility in many aspects. First of all, it has huge
versatility in its applications [1–7]. NIR spectroscopy can be used in a laboratory,
a factory, a hospital, a field and a museum, at a building site, on a road and in the
atmosphere. It may be applied to solids, crystals, fibers, powders, liquids, solutions,
and gases. Almost all kinds of materials, from purified samples to bulk materials,
can be subjected to NIR measurements.

Another versatility in NIR spectroscopy is the versality in spectrometers and
instruments. (Chap. 9) In the IR region, most of the spectrometers employed are
FT spectrometers, while in the NIR region both FT spectrometers and dispersive
spectrometers are employed, and dispersive spectrometers with a CCD detector play
important roles in the short-wave NIR (SWNIR) region. NIR spectrometers with
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an acoustic optic tunable filter (AOTF) are also useful. Portable spectrometers and
hand-held spectrometers are prety popular in the NIR region. Many kinds of special-
purpose instruments are commercially available.

Spectral analysis gives yet another diversity of NIR spectroscopy. Compared
with other spectroscopy, chemometrics is quite often used for NIR spectral analysis.
Various kinds of chemometrics methods such as PCA (principal components anal-
ysis) and PLS (partial least squares) are employed extensively (Chap. 7). A variety
of spectral pretreatments are employed in NIR spectroscopy, since it treats various
kinds of bulkmaterials, which yield noise and baseline fluctuations (Sect. 4.1).Nowa-
days, even quantum chemical calculations are utilized in the spectral analysis in NIR
spectroscopy (Sect. 5.2).

2.1.5 Some Examples of NIR Spectra

To understand the characteristics of NIR spectroscopy it is important to study some
examples of NIR spectra.

(a) Water

Figure 2.1 depicts NIR spectra of water in the region of 12000–4000 cm−1 obtained
using three kinds of cells with different path lengths (1, 0.1, and 0.01 cm). Band
intensities vary markedly with the path lengths. In all the spectra an intense foot due
to the fundamentals of OH stretching modes can be observed near 4000 cm−1. Water
bands become weaker and weaker stepwisely as the wavelength goes to a shorter
wavelength. Two strong bands at 5235 and 6900 cm−1 are due to the combination
of H-O-H antisymmetric stretching mode (v3) and bending mode (v2) and that of
H-O-H symmetric (v1) and antisymmetric (v3) stretching modes, respectively (these
vibrational modes, see Fig. 2.9). These two bands are very useful for investigating

Fig. 2.1 NIR spectra of
water in the region of
12000–4000 cm−1 obtained
by three kinds of cells with
different path lengths (0.01,
0.1, and 1 cm)



16 Y. Ozaki and Y. Morisawa

water structure and water contents in various materials. Bands at 10613, 8807, and
8762 cm−1 are assigned to 2v1 + v3, v1 + v2 + v3, and 2v1 + v2, respectively.
The band at 10613 cm− [1] is valuable for estimating water contents in foods and
materials. As you can see here, several bands attributed to the second and third order
combination modes appear in the short wavelength region. More detailed analysis
of water spectra will be discussed in Sect. 4.1.2.

(b) Methanol

Figure 2.2 depicts an NIR spectrum in the 7700–3700 cm−1 region of low concen-
tration (0.005 M, in CCl4) methanol. In this concentration it is very unlikely that
methanol forms hydrogen bonds. Methanol is a very simple molecule, however, note
that it gives so many bands in this region. One can easily assign a band at 7130 cm−1

to the first overtone of the OH stretching mode of free methanol. Bands in the region
of 6100–5600 cm−1 are assigned to the first overtones of CH3 symmetric and asym-
metric stretching modes and their combinations. Those below 5200 cm−1 are due
to various combination modes. We need the aid of quantum chemical calculations
for convincing band assignments [9]. We will discuss about the quantum chemical
calculation result of methanol in Chap. 13.

(c) Inorganic functional material-an example of electronic spectrum

Let us show one example of NIR electronic spectra. Figure 2.3a, b depict NIR
diffuse-reflectance (DR) spectra in the region of 12000–4000 cm−1 and their second-
derivative spectra in the region of 10000–5000 cm−1 of powders of high reflec-
tive green-black (HRGB; Co0.5Mg0.5Fe0.5Al1.5O4) pigments, Co3O4, and α-Fe2O3,
respectively [10]. The HRGB pigment developed at Toda Kogyo Co. (Hiroshima,

Fig. 2.2 A NIR spectrum in the 7700–3700 cm−1 region of low concentration (0.005 M, CCl4)
methanol
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Fig. 2.3 a NIR DR spectra
of powders of HRGB,
Co3O4, and α-Fe2O3 in the
12000–4000 cm−1 region. b
Second derivatives of the
NIR DR spectra of powders
of HRGB, Co3O4 and
α-Fe2O3 in the
10000–5000 cm−1 region.
Reproduced from Ref. [10]
with the permission
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Japan) shows black color, but it absorbs little sunlight. It is noted in the second-
derivative spectra that HRGB depicts bands at 6354, 7069, 7590 and 8024 cm−1 and
that Co3O4, which has a similar spinel structure to HRGB, yields those at 6094, 6713,
7569, 7951, and 8320 cm−1. The above bands of Co3O4 are ascribed to d-d transi-
tions, 4A2 → 4T 1, of Co(II) at a tetrahedral cite. A NIR DR spectrum of α-Fe2O3

gives a long tail band in the region of 12000-10000 cm−1 due to a charge-transfer
(CT) transition that has maxima at 17000 and 14000 cm−1 [10]. HRGB shows char-
acteristic peaks of Co(II) in spinel structure, but it does not give a tail originating from
Fe(III). In this way one can explore the structure of inorganic functional materials
using NIR electronic spectra.

2.1.6 Comparison of an NIR Spectrum with an IR Spectrum

Whenever one studies the NIR spectrum of a sample, it is often important to compare
the NIR spectrumwith the corresponding IR spectrum to interpret the NIR spectrum.
Figure 2.4a, b show chemical structure of poly(3-hydroxybutyrate) (PHB) and time-
dependent variations in IR spectra and their second derivative spectra in the 3050–
2850 cm−1 region of a PHB film during the melt-crystallization process at 125 °C,
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Fig. 2.4 Chemical structure and lamellar structure of poly(3-hydroxybutyrate) (PHB). a Time-
dependent variations in IR spectra in the 3050–2850 cm−1 region of a PHB film during the melt-
crystallization process at 125 °C. b Second derivative spectra of the spectra shown in a for 0 and
180 min. Reproduced from Ref. [11] with the permission
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respectively [11]. In Fig. 2.4b the second derivative spectra for 0 and 180 min are
shown. PHB is a well-known biodegradable polymer. Sato et al. [12, 13] investigated
IR spectra of PHB and found that a crystalline C = O stretching band at 1723 cm−1

shows a large downward shift by about 20 cm−1 compared with an amorphous C =
O stretching band at〜1740 cm−1 and that a crystalline CH3 asymmetric stretching
band appears at an anomalously high frequency (3009 cm−1) [12, 13]. On the basis
of the IR and x-ray crystallography studies, they concluded that the CH3 and C = O
groups of PHB form a peculiar C–H…O = C hydrogen bonding.

Time-dependent variations in the NIR spectra in the 6050–5650 cm−1 region of
a PHB film during the melt-crystallization process at 125 °C are shown in Fig. 2.5a
[11]. The second derivatives of the spectra measured at 0 and 180 min are shown in
Fig. 2.5b. The second-derivative spectrum obtained at 0 min shows four amorphous
bands at around 5954, 5913, 5828, and 5768 cm−1. On the other hand, the spectrum
collected at 180 min gives at least seven bands at 5973, 5952, 5917, 5900, 5811,
5757, and 5681 cm−1 in the same region. Note that the NIR spectral changes in the
6050–5650 cm−1 region and the corresponding IR spectral variations in the 3050–
2840 cm−1 region show significant similarities. For example, the NIR band with the
highest wavenumber at 5973 cm−1 and the corresponding IR band at 3007 cm−1

show similar temporal variations. The former may be due to the first overtone of the
latter [11].

Fig. 2.5 a Time-dependent
variations in NIR spectra in
the 6050–5650 cm−1 region
of a PHB film during the
melt-crystallization process
at 125 °C. b Second
derivative spectra of the
spectra shown in a for 0 and
180 min. Reproduced from
Ref. [11] with the permission
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2.2 Principles of NIR Spectroscopy

Before we study the principle of NIR spectroscopy we have to learn the principle
of IR spectroscopy because IR spectroscopy deals with fundamentals while NIR
spectroscopy treats overtones and combinations which originate from fundamen-
tals [1, 2]. Therefore, learning the fundamentals is the base for understanding NIR
spectroscopy.

2.2.1 Principles of IR Spectroscopy

When a molecule is irradiated with IR light, it absorbs the light under some condi-
tions. The energyhνof the absorbed IR light is equal to an energydifference between a
certain energy level of vibration of the molecule (having an energy Em) and another
energy level of vibration of a molecule (having an energy En). In the form of an
equation,

hv = En − Em (2.1)

holds. This equation is known as Bohr frequency condition. In other words, absorp-
tion of IR light takes place based on a transition between energy levels of a molec-
ular vibration. Therefore, an IR absorption spectrum is a vibrational spectrum of a
molecule.

Note that satisfying Eq. (2.1) does not always mean the occurrence of IR absorp-
tion. There are transitions which are allowed by a selection rule (i.e., allowed tran-
sition) and those which are not allowed by the same rule (i.e., forbidden transition).
In general, transitions with a change in the vibrational quantum number by ± 1 are
allowed transitions and other transitions are forbidden transitions under harmonic
approximation. This is one of selection rules of IR absorption. Another IR selection
rule is a selection rule which is defined by the symmetry of a molecule [1, 2].

(μx )mn =
∫ ∞

−∞
ψnμxψmdQ (2.2)

μx = (μx )0 +
(

∂μx

∂Q

)
0

Q + 1

2

(
∂2μx

∂Q2

)
0

Q2 + · · · · · · (2.3)

(μx )mn = (μx )0

∫
ψnψmdQ +

(
∂μx

∂Q

)
0

∫
ψnQψmdQ (2.4)

The latter selection rule is a rule that IR light is absorbed when the electric dipole
moment of a molecule varies as a whole in accordance with a molecular vibration.

The above two selection rules can be introduced by quantum-mechanical consid-
erations. According to quantum mechanics, for a molecule to transit from a certain
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state m to another state n by absorbing or emitting IR light, it is necessary that the
following definite integral or at least one of (μy)mn and (μz)mn which are expressed by
a similar equation to (2.2) is not 0, where μx denotes an x-component of the electric
dipole moment; ψ denotes the eigenfunction of the molecule in its vibrational state;
and Q denotes a displacement along a normal coordinate (i.e., a normal vibration
expressed as a single coordinate). Now, let us consider only (μx)mn. A distribution of
electrons in the ground state changes as the coordinate expressing a vibration varies,
and thus, the electric dipole moment is a function of the normal coordinate Q. Hence,
μx can be expanded as follows.

Expressed by a displacement of atoms during the vibration, Q has a small value.
This allows to omit Q 2 and the subsequent terms in the equation above. Substituting
the terms up to Q of Eq. (2.3) in Eq. (2.2), is obtained. Due to the orthogonality of
the eigenfunction, the first term of this equation is 0 except when m = n holds. The
first term denotes the magnitude of the permanent dipole of the molecule. For the
second term to have a value other than 0, both (∂μx/∂ Q)0 �= 0 and

∫
ψn Q ψmd Q �=

0 must be satisfied. These two conditions lead to the two selection rules. The nature
of the eigenfunction allows the integral to have the value other than 0 only when
n = m ± 1 holds. Considering Q 2 and the subsequent terms of Eq. (2.3) as well, we
can prove that even when n = m ± 1 fails to hold, (μx)mn has a value, even though
small, other than 0. The first selection rule regarding IR absorption is thus proved.
The other selection rule, which is based upon the symmetry of a molecule, comes
from (∂μx/∂ Q)0 �= 0. The relationship (∂μx/∂ Q)0 �= 0 indicates that IR absorption
takes place only when a certain vibration changes the electric dipole moment. The
vibration is IR active when (∂μx/∂ Q)0 �= 0 holds, but is IR inactive when (∂μx/∂
Q)0 = 0 holds.

Most molecules are in the ground vibrational state at room temperature, and
thus, a transition from the state ν” = 0 to the state ν” = 1 (first excited state) is
possible. Absorption corresponding to this transition is called the fundamental.
Although most bands which are observed in an IR absorption spectrum arise from
the fundamental, in some cases, also in the IR spectrum one can observe bands which
correspond to transitions from the state ν” = 0 to the state ν” = 2, 3,… They are
called first, second, overtones. Bands due to combinations are also observed in the
IR spectra. However, since overtones and combinations are forbidden with harmonic
oscillator approximation, overtone and combination bands are very weak even in
real molecules. Because of anharmonicity, although the intensities are weak, the
forbidden bands appear.

2.2.2 Molecular Vibrations

One must learn molecular vibrations to understand all kinds of vibrational spec-
troscopy; IR, NIR, FIR/terahertz, and Raman spectroscopy. Vibrations of a poly-
atomicmolecule are, in general, complex, however, according toharmonic oscillator
approximation (i.e., an approximation on the assumption that the restoring force
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which restores a displacement of a nucleus from its equilibrium position complies
with the Hooke’s law; vibrations in harmonic oscillator approximation are called
harmonic vibrations), any vibrations of the molecule are expressed as composition
of simple vibrations called normal vibrations. Normal vibrations are vibrations of
nuclei within a molecule, and in the normal vibrations, translational motions and
rotational motions of the molecule as a whole are excluded. In each normal vibra-
tion, all atoms vibrate with the same frequency (normal frequency), and they pass
through their equilibrium positions simultaneously. Generally, a molecule with N
atoms has 3N–6 normal vibrations (3N–5 normal vibrations if the molecule is a
linear molecule). Since normal vibrations are determined by the molecular structure,
the atomic weight and the force constant, when these three are known, it is possible
to calculate the normal frequencies and the normal modes.

2.2.2.1 A Vibration of a Diatomic Molecule

Let us consider a vibration of a diatomic molecule as the simplest example of molec-
ular vibrations. A diatomic molecule has only one normal mode (3 × 2−5 = 1);
it is a stretching vibration where the molecule stretches and contracts (Fig. 2.6a).
One can delineate the stretching vibration using classic mechanics. Assuming that
the nuclei are masses, m1 and m2, and the chemical bond is the “spring” with spring
constant k following the Hooke’s law (Fig. 2.6b), the vibration of the molecule can
be explained in accordance with classic mechanics. The classic mechanical equation
of vibration of a diatomic molecule can be solved by a few methods, but here we
use a Lagrange’s equation of motion, which is equivalent to Newton’s equation of
motion.

We assume that the masses m1 and m2 deviate �x1 and �x2, respectively, from
their equilibrium positions. Then, the potential energy of the system shown in
Fig. 2.6b is:

V = 1

2
k(�χ2 − �χ1)

2 (2.5)

Meanwhile, the kinetic energy of the system is:

Fig. 2.6 a A stretching mode of a diatomic molecule. b A model for a diatomic molecule (two
masses combined by a spring)
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T = 1

2
m1χ̇

2
1 + 1

2
m2χ̇

2
2 , where

(
χ̇i = dχi

dt

)
. (2.6)

Now that V and T are known, motions of the system can be determined by solving
a Lagrange’s equation of motion:

d

dt

(
∂T

∂χ̇i

)
+ ∂V

∂χi
= 0 (2.7)

Note that Lagrange’s equation of motion is more convenient in discriminating
the translational motion and the vibrational motion. Before solving the Lagrange’s
equation of motion, let us introduce new coordinates Q and X

Q = �χ2 − �χ1 (2.8)

X = m1�χ1 + m2�χ2

m1 + m2
(2.9)

μ = m1m2

m1 + m2
(where μ is a reduced mass) (2.10)

Now, Q is a coordinate regarding a displacement of a distance between the two
masses, while X is a coordinate regarding a displacement of the center of gravity
of the system. Using Q and X, the potential energy V and the kinetic energy T are
written as:

T = 1

2
μQ̇2 + 1

2
(m1 + m2)Ẋ

2 (2.11)

V = 1

2
kQ2 (2.12)

We substitute V and T in the Lagrange’s equation of motion (2.7). First, applying
to the coordinate X (xi = X), we obtain

Ẍ = 0 (2.13)

This expresses a free translational motion which is not bounded by the potential
energy. On the other hand, from the Lagrange’s equation of motion regarding the
coordinate Q (xi = Q), we get

μ
d2Q

dt2
+ kQ = 0 (2.14)

From the differential equation like Eq. (2.14), we can find a solution as the follows:
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Q = Q◦ cos 2πνt (2.15)

Equation (2.15) implies that the system illustrated in Fig. 2.6b has a simple
harmonic motion with the frequency ν and the amplitudeQ0. Substituting Eq. (2.15)
in Eq. (2.14),

(−4π2μν2 + k
)
Q = 0 (2.16)

Finally, we get the frequency of the spring as:

ν = 1

2π

√
k

μ
(2.17)

The frequency of the spring corresponds to that of themolecular vibration, and the
spring constant parallels to the force constant of the chemical bond, and hence, it can
be seen from Eq. (2.17) that the frequency of the molecular vibration is proportional
to the square root of the force constant and inversely proportional to the square root
of the reduced mass of the atoms. It can be seen from Eq. (2.17) that the stronger a
chemical bond is and the smaller the masses of atoms are, the larger the stretching
frequency of a molecule is. H2, which has small masses of atoms and relatively
small force constant, gives the highest frequency among the all diatomic molecules
(4160 cm−1). The frequency of a vibrational more higher than 4000 cm−1 is only
this one by H2. This band is not IR active but Raman active, so that it cannot be
observed in an IR spectrum. As a result, all bands due to all fundamentals appear
below 4000 cm−1 in the IR spectra. This is the reason why 4000 cm−1 is the border
between IR and NIR regions.

2.2.2.2 Quantum Mechanical Treatment of a Vibration of a Diatomic
Molecule

Energy levels of vibrations of diatomic molecules can be described using quantum
mechanics. In quantum mechanics, the first step is to write down a Schrödinger’s
equation, ĤΨ = EΨ . The second step is to solve the equation to calculate an eigen
value and an eigen function. In terms of classic mechanics, the total energy H of a
vibration of a diatomic molecules is the sum of a kinetic energy 1/2μ Q̇ 2 (Eq. 2.11)
and a potential energy (1/2)k Q 2 (Eq. 2.12),

H = T + V = 1

2

(
μQ̇2 + kQ2

)
(2.18)

Replacing Q̇ with an operator -ih/2π・d/d Q,Ĥ is calculated as:



2 Principles and Characteristics of NIR Spectroscopy 25

H
∧

= − h2

8π2μ

d2

dQ2
+ 1

2
kQ2 (2.19)

Now, we got Hamiltonian. Substituting this in ĤΨ = EΨ and processing the
formula, a Schrödinger equation on harmonic oscillator of a diatomic molecule is
obtained.

d2ψ

dQ2
+ 8π2μ

h2

(
E − 1

2
kQ2

)
ψ = 0 (2.20)

It is not easy to solve this differential equation, but one can do it rigorously. As
how to solve this equation is described in detail in a number of textbooks, we will
explain only results. Formula 2.20 yields a solution only to the following eigen value
Eυ :

Ev =
(

v + 1

2

)
hν (2.21)

where ν is a quantum number of a vibration (ν= 0, 1, 2,…). It can be seen from
Eq. 2.21 that under the harmonic oscillator approximation, the energies take discreet
values and their spacings are equal. Figure 2.7 shows the energy levels of vibration
of a diatomic molecule. It is noted that the lowest vibrational energy is not 0 but E0 =
1/2 hν. E0 is called zero point energy. Energies have discrete values; E1 = 3/2 hν, E2

= 5/2 hν, E3 = 7/2 hν,…, and an energy difference between adjacent energy levels
is always hν.

An eigen function to each value of Eυ is expressed as:

Fig. 2.7 Potential energy curve for a harmonic oscillator and allowed energy levels. a wave
functions and b probability density functions of the harmonic oscillator



26 Y. Ozaki and Y. Morisawa

ψυ = NυHυ(
√

αQ) exp

(
−αQ2

2

)
(2.22)

where Nυ denotes a normalization constant, Hυ is a Hermite polynomial, and α =
2π

√
μk

h
Wave functions to υ = 0, 1, and 2 are as follows.

ψ0 = (α/π)1/4 exp
(−αQ2/2

)
ψ1 = (α/π)1/4(2α)1/2Q exp

(−αQ2/2
)

ψ2 = (α/π)1/4
(
1/

√
2
)(
2αQ2 − 1

)
exp

(−αQ2/2
)

(2.23)

These formulas clearly show that a wave function of harmonic oscillator is an
even function when a quantum number is an even number but is an odd function
when a quantum number is an odd number. Figure 2.7 shows a potential energy, (a)
wave functions, Ψ υ , (b) probability density function, Ψ 2

υ and energy eigen values,
Eυ , of the harmonic oscillator.

2.2.2.3 Vibrations of Polyatomic Molecules

As examples of vibrations of polyatomic molecules let us consider normal vibrations
of carbon oxide and water; these molecules are examples of linear and non-linear
triatomicmolecules, respectively. CO2 has 3× 3−5= 4 normal vibrations. Figure 2.8
exhibits its four normal modes in CO2, 1, 2, 3a and 3b. The normal vibrations 1
and 2 are vibrations where two CO bonds stretch and contract in phase (1) and
out of phase (2), respectively, called symmetric and anti-symmetric stretching
vibrations. Meanwhile, the vibrations 3a and 3b are both vibrations that the angle
of OCO changes and called bending vibrations. While the vibrations 3a and 3b are
independent of each other, energies required for the vibrations are principally equal

Fig. 2.8 Normal modes in
CO2. (+ and – denote
vibrations going upward and
downward, respectively, in
the direction perpendicular
to the paper plane). 1,
symmetric stretching
vibration. 2, antisymmetric
stretching vibration. 3a, 3b,
degenerate bending
vibrations
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Fig. 2.9 Normal modes of vibration of water. 1: symmetric stretching vibration (ν1). 2: bending
vibration (ν2). 3: antisymmetric stretching vibration (ν3)

to each other, only with planes of the vibrations differing 90 degrees from each other.
That is, the two vibrations, 3a and 3b, have exactly the same energy. Such vibrations
which have principally the same energy are called degenerate vibrations.

To know whether the normal vibrations 1, 2, 3a and 3b are IR active or not, we
have to examine a change in the electric dipole moment at an equilibrium position
(∂μx/∂ Q)0. In the normal vibration 1, the electric dipole moment is always 0. Hence,
the normal vibration 1 is IR inactive. Conversely, the electric dipole moment largely
changes in the normal vibration 2, and thus, it is IR active. In a similar manner, the
normal vibrations 3a and 3b accompany a change in the electric dipole moment,
and therefore, are IR active. By the way, with respect to a molecule such as a CO2

molecule which has the center of symmetry, a general rule holds true that an IR active
vibration is a Raman inactive and a Raman active vibration is IR inactive. This rule
is called the mutual exclusion rule.

Water, being a nonlinear triatomicmolecule, has three normal vibrations as shown
in Fig. 2.9. Normal vibrations, 1, 2, and 3 (v1, v2, and v3) are named symmetric
stretching, bending, and antisymmetric stretching modes. The normal vibrations
1 and 3 have different frequencies from each other, because of different H1…H2

interactions between the two vibrations. The three modes are all IR active but their
first overtones are inactive. One can understand if overtones and combinations are
active or inactive based on group theory. Bands due to their first overtones are very
weak in NIR spectra, being almost impossible to be identified. Bands due to water
observed in the NIR region are all due to combinations such as v1 + v3 and v2 + v3
(Fig. 2.1).

Both in the cases of CO2 and H2O molecules, the frequencies of stretching vibra-
tions are larger than that of a bending vibration. This indicates that the stretching
vibrations require larger energies than the bending vibration.

2.2.2.4 Group Frequencies

In general, group frequencies are useful to consider vibrations of a polyatomic
molecule. Group frequencies are vibrations of functional groups such as C = O
stretching vibration of a carbonyl group, stretching vibration of an OH group, and
symmetric and antisymmetric vibrations of a CH2 group. The concept of group
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frequencies hold truthwhen certain normal vibrations are determined substantially by
movements of two or more atoms (atomic group). Group frequencies play prominent
roles in analysis of IR and Raman spectra. And even for NIR spectroscopy the idea
of group frequency is useful 1–7 For example, NIR spectra show bands due to the
overtones and combinations of CH2 and CH3 groups.

Next, let us consider vibrations of atomic groups. Figure 2.10 displays six vibra-
tional modes of an AX2 group (e.g., CH2, NH2). Of the six, two vibration modes
are stretching vibrations, one being symmetric stretching vibration and the other
antisymmetric stretching vibration. The remaining four are bending vibrations, i.e.,
scissoring, rocking, wagging, and twisting vibrations. Among the four bending
vibrations, scissoring and rocking vibrations are bending vibrations in the plane of
CH2 (in-plane vibrations), while wagging and twisting vibrations are vibrations
which displace vertically to the plane of CH2 (out-of-plane vibrations).

The idea of group frequencies is beneficial ever for a very complex molecule such
as a protein and a polymer. Let us consider normal vibrations of an amide group as an
example. Normal vibrations of an amide group have been calculated in detail, taking
N-methylacetamide (Fig. 2.11) as a model of the amide group. Considering a methyl
group as one atom,N-methylacetamide is a six-atommolecule, and hence, has twelve
normal vibrations (3 × 6-6 = 12). Of the twelve, the normal vibrations shown in
Fig. 2.11 are amides I, II and III modes which are key vibrations for studying the
structure of proteins and nylons. As clearly seen in Fig. 2.11, the amide I has a strong

Fig. 2.10 Vibrations of AX2 group. 1: symmetric stretching vibration. 2: antisymmetric stretching
vibration. 3: scissoring vibration. 4: rocking vibration. 5: wagging vibration. 6: twisting vibration
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Amide I Amide II Amide III

Fig. 2.11 Three normal vibrations of N-methylacetamide which is a model of an amide group

characteristic of C = O stretching vibration. Meanwhile, the amides II and III are
coupling modes of C-N stretching vibrations and N-H in-plane bending vibrations.
Of the three, the amides I and II appear strongly in IR spectra, and in Raman spectra
the amide I and III appear intense. The amide I, II and III bands of proteins are found
generally in the regions of 1690-1620 cm−1, 1590-1510 cm−1 and 1320–1210 cm−1,
respectively. These modes are known to sensitively reflect secondary structures of
polyaminoacids, peptides, and proteins. In NIR spectra bands due to the overtones
and combinations of amide modes such as the combination of NH stretching mode
and Amide II appear.

2.2.2.5 Quantum Mechanical Treatment of Vibrations of Polyatomic
Molecules

Now, let us study vibrations of polyatomic molecules using quantum mechanics. A
kinetic energy T and a positional energy V are expressed as:

Therefore, a total energy H is:

T = 1

2

n∑
i=1

Q̇2
i (2.24)

V = 1

2

n∑
i=1

λi Q
2
i (2.25)

Therefore, a total energy H is:

H = T + V = 1

2

n∑
i=1

Q̇2
i + 1

2

n∑
i=1

λi Q
2
i (2.26)

Replacing Q̇ with −ih/2π・d/d Q again and calculating Ĥ , we can obtain a
Schrodinger equation of vibrations of polyatomic molecules.

− h2

8π2

n∑
i=1

∂2ψ

∂Q2
i

+ 1

2

n∑
i=1

λi Q
2
i ψ = Eψ (2.27)
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As normal vibrations are independent of each other, the above formula can be
separated into nwave equations, respectively, corresponding to the respective normal
vibrations, an eigen value Eυ is expressed as the sum of eigen values Ei of the
respective normal vibrations, and an eigen functionψ υ is given as a product of eigen
functions ψ i representing the respective normal vibrations. Since Formula 2.27 has
the same style as Formula 2.20, the eigen value Ei is also the same as Formula 2.21.

Ei =
(

vi + 1

2

)
hνi (2.28)

Therefore, a total of vibrational energies whose frequencies are ν1, ν2,…, νn is:

Eυ = E1 + E2 + · · · · · · En =
(

υ1 + 1

2

)
hν1

+
(

υ2 + 1

2

)
hν2 + · · · · · · +

(
υn + 1

2

)
hνn (2.29)

The lowest ground state of water can be represented as (0,0,0), and (1, 0, 0),
(0, 1, 0), and (0, 0, 1) denote fundamental states where ν1, ν2, and ν3, respectively,
have a quantum number of 1. Transitions between the lowest ground state and the
fundamental levels are called fundamentals. Next, (2, 0, 0), (0, 2, 0), and (0, 0, 2)
represent stateswhere ν1, ν2, and ν3 have a quantumnumber of 2, respectively, and are
called overtone levels. (3, 0, 0)… are also overtone levels.Overtones are transitions
between the lowest ground state and these overtone levels. Combination mode levels
are levels, such as (1, 0, 1) and (0, 1, 1), where two or more normal vibrations
are excited. Transitions between the lowest ground state and the combination mode
levels are called combination modes.

2.2.3 Anharmonicity

Until now, we have treatedmolecular vibrations as a harmonic oscillator. However, in
reality, the harmonic oscillator model is not a good model for molecular vibrations
except for the vicinity of the bottom of a potential energy curve. If the harmonic
oscillator model were correct, molecules should never dissociate no matter how
large the amplitude is (Fig. 2.7). Therefore, it is necessary to consider a potential
energy function V (Q) (Q denotes an inter-nuclear distance) which more accurately
expresses vibrations of molecules. In accordance with our instinct, V (Q) must be
such a function which rapidly increases when Q < <0 but gradually comes close to
a dissociation energy, De, where Q � �e (�e is an equilibrium distance) holds. As
a function which satisfies this condition, a Morse’s function expressed as below is
well-known:
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Fig. 2.12 Morse’s function

V (�) = De
[
1 − exp{−a(� − �e)}

]2
(2.30)

In Formula 2.30, � is an inter-nuclear distance and a is a constant. This function
was proposed by P. M. Morse in 1929. Figure 2.12 deliniates the Morse’s function.
Assuming that Q(= � −�e) is always small and expanding V (�) by a Taylor’s series
into a polynomial with respect to Q in the vicinity of �e,

V (�) = V (�e) +
(

∂V

∂�

)
�e

Q + 1

2

(
∂2V

∂�2

)
�e

Q2 + 1

6

(
∂3V

∂�3

)
�e

Q3

+ 1

24

(
∂4V

∂�4

)
�e

Q4 + · · · · · · (2.31)

As the first term on the right-hand side is a constant term, this term is regarded 0.
With respect to the second term as well, since V is extremely small to �e, the second
term is also regarded 0. Now, ignoring the fourth and the higher-order terms and
applying (∂2V /∂Q2)�e = k, the following formula holds:

V (�) = 1

2
kQ2 (2.32)

In other words, the Morse’s function is equivalent to a function which expresses
harmonic oscillator approximation in the region close to the equilibrium inter-nuclear
distance �e(Second derivative on Formula 2.30 provides k = 2a2De).
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A potential energy V is generally expressed as:

V = k2Q
2 + k3Q

3 + k4Q
4 + · · · · · · (2.33)

The high-order terms such as Q3 and Q4 are called anharmonic terms.
Calculating an eigen value E’

ν considering up to the Q3-term, we obtain,

E
′
ν =

(
v + 1

2

)
hνe −

(
v + 1

2

)2

hνeχe (2.34)

where νa = a/π
√
De/2π. The symbol χe is a constant called an anharmonic

constant. One can estimate the degree of anharmonicity from the value of this
constant. Table 2.2 summarizes the values of anharmonic constants for several
diatomic molecules. The constant χe becomes large for a molecule with a hydrogen
atomwhich has a light mass while it is much smaller for molecules which do not have
a hydrogen atom (Table 2.2). Since the anharmonic constant χe holds the following
relationship with respect to a, De, etc., one can calculate the shape of a Morse’s
function and a dissociation energy of the molecules, etc.

χe = hve

4De
= ha

4π
√
2μDe

(2.35)

From Formula 2.34, it is possible to calculate an energy difference,�Eυ , between
energy levels of vibrational quantum numbers υ and υ + 1.

�E(υ→υ+1) = hve − 2hvexe(υ + 1) (2.36)

Formula 2.36 indicates that the larger υ is, the smaller �Eυ is (Fig. 2.12) and the
larger xe is, the smaller �Eυ is. In this formula, a transition υ = 0→1 is:

Table 2.2 Values of
anharmonic constant for
several diatomic molecules

Molecule Anharmonic constant

H2 0.02685

D2 0.02055

HF 0.02176

HCl 0.01741

HBr 0.01706

HI 0.01720

N2 0.006122

O2 0.007639

Cl2 0.007081

I2 0.002857

NO 0.007337
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�E(0→1) = hve − 2hvexe = hve(1 − 2xe) (2.37)

Thus, �Eυ = hνe does not hold. For the IR, NIR, and Raman spectra, we always
use a frequency in a unit of cm−1 as ṽ = v/c. The value ṽobs = �Ẽ(0→v) (which is
an observed value in the unit of cm−1) is obtained as

ṽobs = �Ẽ(0→v) = ṽev − χeṽev(v + 1) = ṽev[1 − χe(v + 1)] (2.38)

We will now describe a method of calculating νe from ṽobs. HCl yields a strong
band at 2886 cm−1 due to a fundamental (υ = 0 to 1) and a weak band at 5668 cm−1

due to a first overtone (υ = 0 to 2). From these observed values one can calculate an
absorption wavenumber νe and an anharmonic constant χe.

With respect to υ = 0→1 and υ = 0→2,

�Ẽυ(0−1) = ṽe(1 − 2xe)

�Ẽυ(0−2) = 2ṽe(1 − 3xe) (2.39)

Therefore,

2886cm−1 = ṽe(1 − 2xe)

5668cm−1 = 2ṽe(1 − 3xe) (2.40)

Solving these simultaneous equations,weobtainχe =0.0174 and ṽe =2990 cm−1.
We must consider ṽe to discuss the strength of a chemical bond, because considering
ṽobs is not enough for this purpose.

2.2.4 Overtones and Combination Modes

It is anharmonicity that permits overtones and combination modes to be observed.
Let us consider selection rules of IR spectroscopy once more. This time, we will
consider anharmonicity on a dipole moment.

μx = (μx )0 +
(

∂μx

∂Q

)
0

Q + 1

2

(
∂2μx

∂Q2

)
0

Q2 + · · · · · · (2.41)

(μx )nm = (μx )0

∫
ψnψmdQ +

(
∂μx

∂Q

)
0

∫
ψnQψmdQ

+ 1

2

(
∂μ2

x

∂Q2

)
0

∫
ψnQ

2ψmdQ + · · · · · · (2.42)
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The third term of Formula 2.42 has a value other than 0 when (∂2μx/ ∂ Q 2) �=
0 and

∫
ψn Q 2ψmd Q �= 0 both hold. The latter integral has a value other than 0

when υ’ = υ and υ ± 2. Therefore, even a first overtone is not forbidden any more
if we include the term of Q 2. Similarly, second, third… overtones are not forbidden
any more as we take higher-order terms into consideration. However, the intensities
of these overtones are far weaker than those of fundamentals. The frequencies of
first, second, third… overtones are smaller than double, triple, quadruple of the
frequencies of fundamentals, respectively, as already described. This is because the
differences between the vibrational energy levels become narrower as the quantum
number υ increases, as clearly depicted in Fig. 2.12 and indicated by Formula 2.36.
Anharmonicity excludes combinationmodes aswell from those forbidden in a similar
manner. The intensities of combination bands are also weak.
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Chapter 3
Theoretical Models of Light Scattering
and Absorption

Kevin D. Dahm and Donald J. Dahm

Abstract When light interacts with a single particle, there are three possible
outcomes: absorption, scattering, or transmission. In spectroscopy, one measures the
remission from and/or transmission through a macroscopic sample. Such a sample
might contain countless locations at which there is a change in refractive index, each
of which gives rise to scattered light. This fact poses a challenge in building theo-
retical models applicable to spectroscopy: even if our theoretical understanding of
single interactions is very good, the number of individual interactions is typically too
big to make accounting for all of them realistic. This chapter presents an overview of
modeling strategies that can be of use in near infrared spectroscopy. Recognizing that
no one approach is uniformly applicable, care is taken to call attention to assump-
tions made in each modeling approach and limitations that are imposed by these
assumptions.

Keywords Absorption · Absorbance · Scattering · Remission · Transmission ·
Diffuse reflectance

This chapter explores the physical behavior of light. When light interacts with a
material, it can:

(1) Continue in the direction it was going, (2) be absorbed by the material, or (3) be
diverted in a different direction and continue traveling along a newpath. It is common,
and broadly accurate, to refer to these three possible outcomes as (1) “transmission,”
(2) “absorption,” and (3) “scattering.”

This chapter examines several theoretical approaches to understanding and
modeling these interactions. No one of these approaches can be considered definitive
or universally applicable for spectroscopy. Care is taken to state the assumptions that
underlie each approach, and the limitations that result from these assumptions.
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3.1 Early Explorations of Absorption, Scattering,
and Extinction

The eighteenth-century contributions of Pierre Bouguer were foundational in devel-
oping our current understanding of how light interacts with matter. Bouguer studied
the phenomenon of light becoming dimmer as it passed through the atmosphere.
He discovered a first-order logarithmic relationship between the remaining intensity
of the light and the thickness of atmosphere it had penetrated [1]. Using modern
terminology, one way to express this is:

I

I0
= exp(− ∈ t) (3.1)

In which I0 is the intensity of the light at its source, I is the intensity of light
that reaches the detector, and t is the thickness of atmosphere. The ε in Eq. 3.1 is a
parameter that has different values for different wavelengths, but what specifically
does it measure? Bouguer himself did not necessarily attribute the dimming of the
light to a particular physical phenomenon. We now use the term “extinction” for
the total observed attenuation of a beam, and thus ε quantifies the ability of the
atmosphere to “extinguish” a specific wavelength of light. Indeed, ε has been termed
the “extinction coefficient.” [2]. We now understand that both absorption and scatter
contribute to extinction in an experiment like Bouguer’s. If one is looking at a distant
object (e.g., the sun), any light that was either scattered from its original path or
absorbed by the air molecules does not reach one’s eyes.

Another foundational body of work was that of Beer in the nineteenth century,
which demonstrated that chemical compounds have an ability to absorb light at partic-
ular wavelengths, and that the extent of the “absorbance” of the light is proportional
to the concentration of the absorber. Mathematically, one can define absorbance as:

Absorbance = −log10
I

I0
(3.2)

I0 again represents the intensity of incident light, I represents the amount of light
that reached the detector, and consequently, I/I0 is the fraction of the incident light
that penetrated the sample andwas detected.When this fraction is 1, the “absorbance”
is by definition 0. As the fraction of detected light decreases, the “absorbance” as
defined in Eq. 3.2 increases, representing the inference that more light has been
absorbed. Note that the absorbance is not equal to the “fraction of light that was
absorbed”; absorbance can be greater than one and it approaches infinity as I/I0
approaches zero. The quantity defined in Eq. 3.2 is sometimes called the “decadic
absorbance” to emphasize that base 10 logarithms were used, since it is also possible
to use natural logarithms.

“Beer’s Law” can be expressed as [3]:



3 Theoretical Models of Light Scattering and Absorption 39

Absorbance = −log10
I

I0
= κct (3.3)

In which, t represents the thickness of the sample, c represents the concentration
of the absorber, and κ is often termed the “absorptivity” or “molar absorptivity” of
the material. The absorbance is a dimensionless quantity and the units of κ depend
upon the specific units used to express thickness and concentration. Units that are
often used are cm for thickness, mol/L for concentration, and L/mol·cm for molar
absorptivity.

Note that in Bouguer’s experiments, the absorbing “sample” was the atmosphere.
A gaseous medium like the atmosphere and a liquid solution are both examples of
systems that can plausibly be considered uniform in composition.Wenowunderstand
that the relationships in Eqs. 3.1 and 3.3 can be derived from continuous mathemat-
ical functions. These can only be expected to apply to samples that are uniformly
distributed, and therefore reasonably modeled as continuous. Note, too, that Bouguer
did not have the ability to vary the concentrations of the absorbers in his experiments.
We now understand that the ε in Eq. 3.1 embodies both the concentrations of the gases
in the atmosphere (c) and their ability to extinguish light (κ), consistent with Eq. 3.3.
However, the parameter κ merits further examination.

Consider an experimental arrangement like that shown in Fig. 3.1, in which a
“small area” detector is aligned with the incident beam. The most straightforward
case is that of a “clear solution”; one inwhich scattering can be considered negligible.
In such a solution, absorption is the only process that leads to attenuation. However,
absorption is a molecular-level phenomenon, and normally molecules do not exist in
isolation. Intermolecular interactions such as induced dipoles can impact the ability
of amolecule to absorb light. Thus, one cannot simply assume κ has a single, constant
value for a compound. For example, a compound in a liquid solution could have a
different κwhen it is dissolved in water vs. when it is in a non-polar solvent. Further,
one must distinguish between dilute solutions and highly concentrated ones. In a
dilute solution, one can reasonably assume that each solute molecule is surrounded
by and interacting with only solvent molecules. In a concentrated solution, solute
molecules interact significantly with each other. Experimentally, it has been observed

Fig. 3.1 Transmission
experiment with a small area
detector
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that real solutions can exhibit “departures” from Beer’s Law at high concentrations.
We understand these departures as symptoms of the fact that in using Beer’s Law κ

is generally assumed constant, when in reality, there is reason to expect that κ would
become dependent upon composition as c increases and solute–solute interactions
become more significant.

Now imagine we are still using the experimental arrangement in Fig. 3.1, but
the sample produces both scattering and absorption. Like the sunlight in Bouguer’s
experiments, any light that is either absorbed or scattered will fail to reach the
detector. Thus, both scattering and absorption contribute to the extinction modeled
by κ. Here again, the distinction between dilute vs. concentrated solutions could
complicate the use of Beer’s Law.

By contrast, if we use an experimental arrangement like the one as shown in
Fig. 3.2, the light that is scattered at least once but still exits the sample can be
detected. A hemispherical detector can be used to measure as “transmission” (I in
Eq. 3.3) all of the light that penetrates the sample, regardless of the specific path. The
presence of scatter also gives rise to the phenomenon of “remission,” which is light
that emerges from the sample’s front surface, and which can be quantified by another
hemispherical detector. (In practice, the experiment pictured in Fig. 3.2 is most
straightforwardly carried out using an integrating sphere.) The classical definition
of “absorbance” in Eq. 3.2 does not acknowledge the phenomenon of remission. In
most of the models we discuss in Sects. 3.6–3.10, we will instead consider A, R, and
T, which we define as the fractions of incident light that were absorbed by, remitted
from, and transmitted through the sample, respectively. Absorbance can then bemore
broadly defined as:

Absorbance = −log10(1 − A) (3.4)

Note that when R = 0, 1-A is equal to T, which is in turn equal to I/I0. Thus, this
definition is equivalent to Eq. 3.2 for the special case of a non-scattering sample.

In sum, Beer’s Law is an equation that has great practical appeal, because it
represents a simple linear relationship between a readily measured quantity (I/I0)
and the concentration c of the absorber, which is usually what we are trying to
deduce in spectroscopy. However, Beer’s Law can only be expected to be a good
model in specific circumstances (clear solution, dilute solution, etc.). Furthermore,
even when Beer’s Law proves to be a goodmodel, one must recognize the limitations
of the value of κ. A chemical compound does not have a single “absorptivity” that
is uniformly applicable. The value of κ depends upon factors (e.g., solvent, sample
thickness, and sample geometry) that are specific to the context of an experiment and
should only be considered valid in that specific context.
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3.2 The Application of Spectroscopy

Section 3.1 introduced Beer’s Law, which is likely to be the first model a person
learning about spectroscopy will encounter. It is a simple equation that dates from
the nineteenth century and still has practical value. Section 3.1 also introduced some
of the reasons why models that are more complex are needed. In spectroscopy, our
specific interest is in directing light at a sample, making measurements of the light
that penetrates the sample and/or the light that is reflected from the sample, and
then using those measurements to make deductions about the composition of the
sample. Challenges stem from the fact that the sample is macroscopic in scale. A
measurement of light that reaches a detector, such as I in Eqs. 3.1–3.3, is a single
number that actually represents the net effect of countless molecular-level absorption
and scattering interactions. In the context of a macroscopic sample, the phenomena
of absorption and scattering strongly influence each other. As an example, in the
experimental arrangement of Fig. 3.2, light that is scattered near the front of the
sample penetrates the sample along a longer path than light that continues on the
direct path of the incident beam. Thus, the scattered light has more opportunity to
be attenuated by absorption than does the light on the original path.

Even the words “scattering,” “absorption,” and “transmission” can be problematic
when applied to a macroscopic sample. Consider for example:

• Light that has been absorbed no longer exists and cannot be detected. When we
“measure” absorption, we are actually measuring the amount of light we are able
to detect, and assuming that the remainder of the original light was absorbed.

• The experimental arrangement in Fig. 3.1 is incapable of distinguishing between
absorption and scatter. What is sometimes loosely called “absorption” in such an
experiment is more properly termed “extinction.”

Fig. 3.2 Experiment in
which transmission and
remission are both measured
with hemispherical detectors
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• The experimental arrangement in Fig. 3.2 does not distinguish between the light
that truly was “transmitted” through the entire sample, and light that experi-
enced one or more scattering interactions but still penetrated the entire thickness
of the sample. The “transmission” that is measured is in reality the latter, or a
combination of both.

The remainder of this chapter is broadly divided into two categories. Sections 3.3
through 3.5 discuss light and its microscopic interactions, such as light interacting
with a single particle or a single surface. Sections 3.6 through 3.10 discuss strategies
for modeling the net amounts of light absorbed by, transmitted through, and remitted
from a macroscopic sample.

3.3 The Physics of Light

Light can be understood as electromagnetic radiation propagating through space as a
wave. A changing electric field gives rise to a changingmagnetic field, and vice versa,
and the speed of light is the velocity of the resulting waves. The waves have electrical
and magnetic vectors that oscillate, and the maximum extent of the oscillation is
called the amplitude. The electric and magnetic oscillations are perpendicular to
each other and also perpendicular to the direction of propagation, as illustrated in
Fig. 3.3. The intensity of a beam of light is proportional to the square of the amplitude
of the wave.

When light waves encounter each other, “interference” occurs and the resulting
wave can be modeled as the vector sum of the two original waves. They can interfere:

• Constructively, meaning that the crests overlap each other and the amplitude of
the resulting wave is equal to the sum of the amplitudes of the original waves.

• Destructively, meaning that the crest of one wave overlaps the trough of the other
wave, and the result is a subtraction of amplitudes.

Fig. 3.3 Electromagnetic wave, propagating in the “z” direction, in which the electric field oscil-
lates in the x-direction and the magnetic field oscillates in the y-direction. Adapted from Super-
Manu Image:Onde electromagnetique.png, available at https://commons.wikimedia.org/w/index.
php?curid=2107870

https://commons.wikimedia.org/w/index.php?curid=2107870
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When light enters a medium other than a vacuum, it slows down. The frequency
of the oscillation is maintained, but the wavelength changes. This is quantified by
the traveling wave equation:

v = f λ (3.5)

where v represents velocity, f represents frequency, and λ represents wavelength.
When light encounters a molecule, it can either be scattered or absorbed. The

origin of the scatter is the charged particles within each atom. These particles vibrate
in time with the electric vector of the incident light (electromagnetic radiation).
Because electrons are orders of magnitude lighter than the nuclei, the electrons
vibrate far more vigorously than do the nuclei and are the main source of scattered
light. In “elastic” scatter, the accelerating (vibrating) charges emit radiation that has
the same wavelength as the incident light, but it is emitted in all directions. There
are multiple charged particles, and therefore multiple sources of scattering, within a
single atom or molecule. The emissions from the various charged particles interfere
with each other and give rise to a scattering pattern that is dependent upon the relative
placement of the vibrating charges within the molecule. (There is also such thing as
“inelastic scatter,” in which the wavelength of the emitted radiation is not the same
as that of the incident radiation. In the field of vibrational spectroscopy, inelastic
scattering is primarily encountered in Raman spectroscopy [4]).

Turning to absorption, when light transfers energy to a material, it does so in
discrete quantities of energy called “photons.” A photon is sometimes envisioned
as a “particle” of light, but this is a departure from the wave model of light we are
describing here. We picture a beam of light as a wave that contains a certain amount
of radiant energy, which can be sub-divided into a certain number of photons. The
amount of energy in one photon is given by:

E = hf (3.6)

Where E is the energy, h is Plank’s constant, and f is the frequency. When SI units
are used throughout, E is expressed in Joules, f is expressed in hertz, and h = 6.63
× 10–34 J·s.

3.4 Reflection and Refraction of Light at a Surface

In this section, we consider the case of a beam of light encountering a surface. When
light is traveling through a medium, such as air or glass, it travels in a straight line.
The speed of light is not uniform; it varies based upon the refractive index of the
medium in which it is traveling. When light encounters a glass window, the surfaces
of the glass are locations at which the light makes the transition from one medium
to another (air to glass and glass to air) and the refractive index changes.
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Fig. 3.4 Light encountering
a surface where the index of
refraction changes

We define θ1 as the “angle of incidence”; the angle at which the light strikes the
surface. As illustrated in Fig. 3.4, a portion of the light is reflected from the surface
and a portion continues into the new medium. Figure 3.4 also shows that the angle
of reflection, for the reflected light, is identical to the angle of incidence. Light that
enters the new medium changes velocity due to the change in refractive index and is
diverted from its original path, according to Snell’s Law [5]:

η1

η2
= sin θ2

sin θ1
(3.7)

In which, η1 and η2 are the refractive indices of the two mediums, θ1 is the angle
of incidence, and θ2 is the “angle of refraction” at which the light continues into the
new medium. Note that in Fig. 3.4, θ1 is pictured as greater than θ2, which means
that η1 < η2. A lower refractive index is associated with a higher velocity of the light.

An instructive special case is that of “directed normal illumination,” in which
the incident light is perpendicular to the surface it is striking, and thus θ1 = 0.
Mathematically, this means that according to Snell’s Law, regardless of the specific
values of the refractive indices n1 and n2 (but assuming they are both finite numbers),
then θ2 must also be0. Physically, thismeans that the transmitted light continues along
its original path despite the change in refractive index, and the angle of reflection is
also 0; the reflected light is still perpendicular to the surface but reverses direction.
Here again, however, the distinction between themacroscopic andmicroscopic scales
is important. If the surface is not smooth, then the incident beammaybe perpendicular
to the surface in a macroscopic sense, but at the microscopic scale, it is actually
experiencing a range of angles of incidence, as illustrated in Fig. 3.5. The result is
a broadening of both the reflected beam and the transmitted beam. A surface that is
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Fig. 3.5 Light interacting with a rough surface

optically very rough and produces highly diffuse reflected light is called a “matte
surface.”

Note that in Figs. 3.4 and 3.5, the incident light is portrayed as individual
rays encountering a surface that extends indefinitely. Thus, an important premise
throughout this section was that the width of the beam is small compared to the size
of the object the beam encounters. Section 3.5 considers the opposite case, in which
a beam of light encounters an object whose diameter is small compared to the width
of the beam. Thus, the object is surrounded by, or “bathed” in, the incident beam.

3.5 Scatter from a Particle that is Bathed in a Beam

In this section, we consider a beam of light that encounters a particle that is signif-
icantly smaller than the width of the beam, such that the particle is immersed in
the beam. We will assume that the light is directed, meaning that all of the light is
traveling in the same direction prior to encountering the particle. Since the particle is
smaller than the beam, a portion of the light is unaffected by the particle. By contrast,
in the previous section, the surface was larger than the beam, and all of the light was
affected by the surface (either reflected or refracted).

In deciding how best to model the scatter (and absorption) from a particle, a
primary consideration is how large is the particle compared to the wavelength of the
incident light. Rayleigh scattering is applicablewhen the particle size is small (~1/10)
compared to the wavelength. Scattering (and absorption) happens at the atomic level,
but if a particle is very small compared to the wavelength of the incident light, one
need not distinguish between the locations of the individual atoms. According to the
Rayleigh formula, the intensity of scattered light is proportional to:

I ∼ I0

(
1 + cos2θ

R2

)(
1

λ

)4(
η2 − 1

η2 + 2

)2

(3.8)

In which:

• R represents the distance from the scattering center. The intensity of the scattered
light drops off as the inverse square of the distance.
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• θ is the scattering angle. While the intensity of the scattered light is a function of
angle, the consequence of the cos2 functionality is that the scattering pattern is
symmetrical, and essentially the same amount of light gets scattered “forward”
as “backward,” relative to the incident beam.

• λ is the wavelength, which is raised to the −4 power. This means that scatter is
essentially zero at very high wavelengths.

• η is the refractive index. It is possible to incorporate absorption into the calculation
by expressing the refractive index as a complex number, with the real component
representing scatter and the imaginary component representing absorption.

For larger particles, modeling the particle as a single scattering center becomes
unrealistic-one must distinguish between scatter from different locations on the
particle. Given enough time and computing power, for a specific particle size and
shape, it is theoretically possible to solve wave equations for scatter emanating from
every point on the particle, sum these, and quantify the intensity of light emanating
from the particle in any direction. In practice, the shape that has been studied the
most is the sphere. Building a theoretical model of a sphere is simplified by the fact
that a sphere presents the same dimensions (e.g., cross-sectional area, depth) to the
beam regardless of the orientation of the beam. Mie scattering theory can be applied
to spheres of any size, but is especially useful when the wavelength of the light and
the size of the particle are of comparable magnitude, or when the particle is larger
than the wavelength.

While Mie computations are complex, some outcomes will here be discussed
qualitatively. Mie predicts vanishingly small scatter for very small particles and/or
very large wavelengths, the latter result being consistent with the (1/λ4) functionality
of the Rayleigh equation. The intensity of scatter increases as particle size becomes
larger relative to wavelength and reaches a maximum when the circumference of
the sphere is equal to the wavelength, as shown in Fig. 3.6. Scattering intensity
oscillates as the ratio of circumference to wavelength increases further. Another
result predicted by the Mie equations is that scatter from spheres is not isotropic.
According to Mie scattering theory, the majority of the scattered light continues in a
generally “forward” direction, as illustrated in Fig. 3.7. In a limiting case, the largest
spheres will approximate the scattering pattern of a planar surface. A crucial point
is that Mie’s equations were derived specifically for spheres and cannot be applied
to other shapes. Bass et al. have noted frequent misuse of the Mie theory, stating “in
defiance of logic and history every particle under the sun has been dubbed a ‘Mie
scatterer,’ and Mie scattering has been promoted from a particular theory of limited
applicability to the unearned rank of general scattering process… Using Mie theory
for particles other than spheres is risky, especially for computing scattering toward
the backward direction.” [5].
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Fig. 3.6 Illustration of how scattering intensity changes with particle size according to Mie theory.
The y-axis shows the log of relative scattering intensity, while the x-axis shows inverse log of
particle circumference/wavelength. Adapted from a public domain image available at https://com
mons.wikimedia.org/wiki/File:Radar_cross_section_of_metal_sphere_from_Mie_theory.svg

Fig. 3.7 Summary of the scattering patterns expected from different size spheres. The largest
spheres will approximate the behavior of a planar surface

3.6 A Modeling Framework for Macroscopic Samples

The models described in Sects. 3.3 through 3.5 describe a variety of possible single
interactions between light and matter. When a spectroscopic sample is made up of
distinct particles, it is typically unrealistic to account for and sum the effects of
every interaction with every individual particle. This section presents a framework
for building models of particulate samples that has two aspects: the use of “plane
parallel layers” and the “two-flux” model.

Figure 3.8 illustrates the notion of plane parallel layers. Each layer is a semi-
infinite, rectangular slab. It has a finite thickness d in one direction, which in Fig. 3.8
is also the direction of travel of the incident beam. In the other directions normal to

https://commons.wikimedia.org/wiki/File:Radar_cross_section_of_metal_sphere_from_Mie_theory.svg
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Fig. 3.8 Sample composed
of plane parallel layers, in
which each layer absorbs
exactly half and transmits
exactly half of the light that
arrives at its front surface

this, it is assumed to be infinite. Thus, each layer has a “front surface” and a “back
surface” that extend indefinitely. The incident light arrives at the front surface of the
first layer. Some fraction of light will be absorbed by, and some fraction transmitted
through, the layer. Thus, some of the light emerges from the back of the first layer
and reaches the front surface of the second layer. Envisioning a sample as a series
of plane parallel layers in this manner is well established in the literature, with one
early example having been published by Stokes [6].

Once we have divided the sample into layers, we seek to quantify the passage of
light between the layers. To do this, we first introduce the “absorption coefficient,”
which will be defined as the fraction of light absorbed (A) by a thin layer of material,
divided by the thickness (d) of that thin layer:

μa = A

d
(3.9)

For the case of a non-scattering sample, light is attenuated by absorption in each
layer, as illustrated in Fig. 3.8. Note that in Fig. 3.8, each layer absorbs exactly half
of the light that reaches its front surface. Thus, the values of T as shown in Fig. 3.8
are discrete: 1, 0.5, 0.25, 0.125, etc. This phenomenon can be generalized as:

Tn = (1 − A)n = (1 − μad)n (3.10)

With T n representing the transmission through n identical layers, and A repre-
senting the fraction of light absorbed by each individual layer, which is then related
to the sample thickness d through Eq. 3.9.

A real sample has a specific finite thickness, which we will call t. We can imagine
subdividing a sample into any number of identical plane parallel layers. As n, the
number of layers, gets larger, the thickness d of each individual layer gets smaller (d
= t/n). By applying the limit as n approaches∞, we can derive a continuous equation
that models the exponential fall-off in intensity with sample thickness:
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T = I

I0
= exp(−μat) (3.11)

Equation 3.11 is compatible with the Bouguer (3.1) and Beer (3.3) equations that
opened this chapter, though the absorption coefficient μa is framed differently than
either the ε in Eq. 3.1 or the κ in Eq. 3.3. Beer’s Law, for example, commonly uses
base 10 logarithms (as in Eq. 3.3) rather than natural logarithms. Beer’s Law also
separates the concentration and the molar absorptivity into two separate parameters,
while the μa in Eq. 3.11 is a holistic coefficient that is effected by both of these
factors.

In the absence of scatter, light only moves in one direction. It is attenuated by
absorption, so the intensity of the light (T) is a function of position (d) as quantified
in Eq. 3.11, but only one “flux” is needed to describe the process: at any given point,
all of the light that has not been absorbed is moving forward along its original path.
By contrast, in a scattering sample, light can be moving in literally any direction
when it enters or exits a layer.

In a “two-flux” model of a scattering sample, we simply consider the light that
enters and exits a particular layer as moving “forward” or “backward.” If light strikes
the front surface of a layer and exits the back surface, then we say it has been
transmitted through the layer andmoves “forward” into thenext layer. Themodel does
not distinguish between the various angles and paths the light could have followed
through the layer. Similarly, if light strikes the front surface of a layer, reverses
direction, and is re-emitted from the front surface, it contributes to the “backward”
flux that enters the rear surface of the previous layer.

Thus, when one envisions a scatting sample as a series of plane parallel layers
and applies a “two-flux” approximation, the resulting modeling framework is as
summarized in Fig. 3.9. There are “forward” and “backward” fluxes arriving at each
layer, “R” represents the fraction of incident light that emerges “backward” from the
first layer and is therefore remitted from the sample as awhole, and “T” represents the
fraction of incident light that emerges “forward” from the last layer and is therefore
transmitted through the sample as a whole. The next few sections present some of
the mathematical outcomes that can be obtained using this modeling framework.

Fig. 3.9 Schematic of a
“two-flux” model applied to
a scattering sample
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3.7 The Schuster and Kubelka–Munk Equations

The use of a two-flux model for modeling absorption and scattering, as outlined in
the previous section, is well established in the literature. More than a century ago,
Schuster applied a two-flux approximation in his classic work “Radiation Through
a Foggy Atmosphere.” [7]. One of Schuster’s results described an “infinitely thick”
sample, which means a sample that is thick enough that no light penetrates it (T =
0). This is a case that has practical significance in the application of spectroscopy: A
sample that is toooptically thick for a transmission experiment can still be analyzedby
collecting remission data. For an infinitely thick sample, using Schuster’s approach,
Kortüm obtained [8]:

(1 − R∞)2

2R∞
= k

s
(3.12)

R∞ represents fraction of incident light that is remitted from the infinitely thick
sample, k represents an absorption coefficient, and s is a scattering coefficient, defined
analogously to the absorption coefficient: It is the fraction of light scattered by a
layer, divided by the thickness of the layer. (While the symbols k and s were used
by Kortüm, μa and μs are now more commonly used symbols for absorption and
scattering coefficients, as introduced in Eqs. 3.9–3.11).

In the derivations, Schuster and Kortüm also made use of the assumption of
“isotopic scatter,” which means that light is scattered equally in all directions. In
the context of a two-flux model, this simply means that half of the scattered light
moves “forward” and half “backward.” In a two-fluxmodel, the light that is scattered
“forward” into the next layer is indistinguishable from light that is directly transmitted
into the next layer.

Another well-known result derived using the two-flux approach is the Kubelka–
Munk equation [9]. The equation was originally devised in an investigation of
paint layers, a very different physical system than Schuster’s “foggy atmosphere.”
Nonetheless, they too used a two-flux model and divided their sample into infinites-
imally thin plane parallel layers, so they obtained a functionally identical equation,
reported by Kortüm [8] as:

(1 − R∞)2

2R∞
= K

S
(3.13)

WithK andS used to represent the absorption and scattering coefficients. Thus, the
Schuster and Kubelka–Munk treatments both lead to the conclusion that remission
from an infinitely thick sample depends upon the ratio of the absorption coefficient
to the scattering coefficient, but not upon their specific magnitudes. However, this
conclusion is subject to the limitations of the assumptions made in their derivations.
Schuster articulated the approximation inherent in the “two-flux” model as follows:



3 Theoretical Models of Light Scattering and Absorption 51

The equations… have been deduced under the assumption that the radiation throughout
the absorbing mass is uniformly distributed in such a way that it does not depend on the
angle between any direction considered and the normal drawn toward the same side. This
supposition is obviously incorrect, for it appears that, even if it were to hold at any surface,
e.g., the first surface of the layer dx, absorption in that layer would destroy the uniformity
owing to the greater absorption which the oblique rays suffer. To some extent, the effect of
scattering would act in the sense of partly restoring the equality of distribution…

Kubelka published a later paperwith amathematical treatment thatwas intended to
bemore general [10]. Rather than using a two-fluxmodel, he assumed that scatter was
isotropic and accounted for the various angles of travel within a layer. He concluded
that Eq. 3.13 was an “exact” mathematical solution only in two cases: When the
incident light striking the sample was perfectly diffuse, and when the incident light
was striking the front surface of the sample at an angle of exactly 60°.

Other authors have gone beyond the “two-flux” approach. Burger et al. used a
three-flux approximation in which the three fluxes were each modeled at 120° from
each other [11]. Giovanelli published exact solutions for the cases of directed and
diffuse illumination encountering a semi-infinite slab [12]. However, even thesemore
general treatments used continuous mathematics, which is itself a limitation when
applied to particulate samples.

In the Shuster and Kubelka–Munk approaches, as in the derivations of Beer’s Law
and Eq. 3.11 for non-scattering samples, the individual plane parallel layers were
assumed to be infinitesimal in thickness. Stated in physical rather than mathematical
terms, it is assumed that the fractions of light absorbed and scattered by a single inter-
action with a single layer are extremely small. In effect, the mathematics used treat
the sample as a homogeneous continuum, in which either absorption or scattering
can occur at any location. However, as outlined in Sect. 3.4, it is the discontinuities
(surfaces) within a sample that are responsible for the phenomenon of scatter, so
the assumption of a homogeneous continuum is a limitation in such a case. Kubelka
and Munk in their original paper were investigating a system in which the individual
particles that made up the sample were small, and therefore it was justifiable tomodel
them mathematically as infinitesimal. Shuster was investigating a system in which
the density of particles was extremely low, and it was therefore quite reasonable to
say that only a tiny fraction of light would be absorbed or scattered within any single
layer. However, what if no such justification exists? Sect. 3.8 addresses this question
by outlining an approach that uses discontinuous mathematics.

3.8 Quantifying Absorption, Transmission, and Remission
in Plane Parallel Layers

Section 3.6 introduced the concepts of the plane parallel layer and the two-fluxmodel.
Here, we outline a two-flux modeling approach that quantifies each of the individual
“forward” and “backward” fluxes traveling between individual layers. Throughout
this section, we will define A as the fraction of incident light absorbed by a layer, T as
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the fraction of light that is transmitted through a layer, and R as the fraction of light
remitted by a layer. In this approach, we do not assign particular physical phenomena
to these three outcomes. Thus, R represents all light that “reversed direction,”whether
due to reflection or scatter. Similarly, T represents all light that penetrates the layer,
whether it did so directly or along a more complex path that included one or more
scattering interactions.

Benford derived a set of algebraic equations that can be used to determine A, R,
and T for a sample that is composed of multiple layers, assuming that A, R, and T are
known for individual layers [13]. Consider, for example, a series composed of two
layers, called x and y. A fraction of light Ax is absorbed by the first layer, another
fraction Rx is remitted from the first layer and therefore remitted from the sample.
The fraction of light that is transmitted through the first layer, Tx, encounters the
second layer y, where again fractionswill be absorbed, remitted, and transmitted. The
fraction TxTy is transmitted through both layers and therefore transmitted through
the sample. The fraction TxRy is transmitted through the first layer and remitted by
the second, so it again encounters the first layer, now representing a “backward” flux.
The fraction TxRyTx is then transmitted through the first layer and therefore remitted
from the sample, while the fraction TxRyRx changes directions again and returns to
the front of the second layer. This repetitive remission between the two layers can
continue indefinitely. Benford used infinite series to derive the following [13]:

Tx+y = TxTy

1 − Rx Ry
(3.14)

Rx+y = Rx + T 2
x Ry

1 − Rx Ry
(3.15)

Ax+y = 1 − Tx+y − Rx+y (3.16)

With Tx+y, Rx+y, and Ax+y representing the transmission, remission, and absorp-
tion fractions for the two-layer sample as a whole. Notice that Benford’s treatment
assumes that the A, R, and T values for a layer are the same whether the light is
traveling “forward” or “backward” at the time it encounters the layer.

The Eqs. 3.14–3.16 do not require that layers x and y be identical to each other.
However, if a sample is composed of a uniformly distributed material, it can be
modeled as a series of layers that are all identical to each other. If x and y are
considered identical, the above equations can be used to show:

T2d = T 2
d

1 − R2
d

(3.17)

R2d = Rd(1 + T2d) (3.18)

A2d = 1 − T2d − R2d (3.19)
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With Td, Rd, and Ad representing transmission, remission, and absorption by a
sample of thickness d, and T2d, R2d, and A2d representing transmission, remission,
and absorption for a sample composed of the same material but with thickness 2d.
Inverting these equations allows one to calculate the transmission, remission, and
absorption for a sample of the same material with thickness d/2:

Rd/2 = Rd

1 + Td
(3.20)

Td/2 = [
Td

(
1 − R2

d/2

)]0.5
(3.21)

Ad/2 = 1 − Td/2 − Rd/2 (3.22)

Repetitive application of these formulas can be used to calculate A, R, and T for
a sample of any thickness from A, R, and T for a sample of the same material with
any other thickness. For example, for the special case of no remission (R = 0), the
denominators of the right hand sides of Eqs. 3.14 and 3.17 become 1. Repetitive
application of these equations can be used to derive Eq. 3.10 which was presented in
Sect. 3.6. Another special case is that of a non-absorbing material (A = 0). For this
case, repetitive application of the Benford equations can be used to derive:

Rn = nR

nR + T
(3.23)

Tn = t

nR + T
(3.24)

With n representing the number of identical non-absorbing layers in the sample,
R and T representing the remission and transmission by a single layer, and Rn and
Tn representing the remission from and transmission through the sample as a whole.

For the general case in which both absorption and remission occur, the following
expression was derived empirically using Benford’s equations [14]:

A(Rn, Tn) =
(
(1 − Rn)

2 − T 2
n

)
Rn

= A

R
(2 − A − 2R) (3.25)

The function ((1−Rn)
2−T 2

n )
Rn

has been termed the “absorption-remission function”
and A(Rn, Tn) is here introduced as a symbol for that function. A(Rn, Tn) is thus
distinct from A, which represents the absorption by a single layer. We recognize
the potential for confusion, especially since A or A10 is also frequently used in the
literature as a symbol for the “absorbance” (defined in Eq. 3.2) which is distinct from
either of these. The crucial point is that for a given material with specific A, R, and
T values, the absorption-remission function will have a constant value regardless of
the number of layers n. This will be illustrated through an example in Sect. 3.10.
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It is straightforward to validate the equations presented throughout this section
for samples that are literally divided into distinct identical layers. For example, they
proved to work well for samples consisting of different numbers of identical plastic
sheets [15]. However, how can the concept of a “plane parallel layer” bemeaningfully
applied to a particulate sample? The next section explores this question.

3.9 The Representative Layer

Previous sections have alluded to the mathematical approach of modeling a sample
as a series of identical plane parallel layers. A particulate sample, such as illustrated
in Fig. 3.10, clearly is not literally sub-divided into distinct identical “layers” that
the incident beam encounters sequentially. Dahm and Dahm proposed that for spec-
troscopic purposes, a particulate sample can be modeled as composed of a series of
layers, each one representative of the sample as a whole [16].

In envisioning a “representative” layer, it is instructive to consider the large and
small spherical particles included as shown in Fig. 3.10. Let us assume that the large
and small spheres that are of identical color have identical composition and differ
only in size. The diameter of the large spheres is twice the diameter of the small

Fig. 3.10 Particulate sample composed of particles with two different compositions, each in two
different sizes
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spheres, and therefore one large sphere contains the same volume (and mass) of
material as eight small spheres. However, the surface area of one large sphere is
only four times that of one small sphere. Based upon our discussions of microscopic
light interactions (Sects. 3.3–3.5), we regard scattering as predominantly a surface
phenomenon, while absorption can occur anywhere within a particle. Thus, the eight
smaller particles, taken together, have essentially the same ability to absorb light as
the one large particle, but the eight small particles present more surface area to the
beam and have more ability to scatter light. The effect has been seen experimentally:
Devaux et al., for example, have conducted NIR reflectance experiments on mixtures
of two types of particles (wheat and rapeseed) and found that in mixtures containing
two different particle sizes, the smaller particles were more prominently represented
in the spectra than were the larger particles [17]. Consequently, when considering
the different types of particles that make up a sample, we must distinguish between
“types” of particles based not only upon composition, but also upon volume and
surface area.

The proposed criteria for the “representative layer” are:

• The volume fraction for each particle type is the same in the layer as in the sample
as a whole

• The cross-sectional surface areas of different particle types in the layer are in the
same proportion as they are in the sample as a whole

• The void fraction in the layer is the same as the void fraction of the sample as a
whole

• The layer is only one particle thick. (This means the representative layer does not
have a uniform thickness, as different particles have different sizes.)

The first three criteria ensure that the layer is representative of the sample as a
whole, in terms of physical properties that are important in determining outcomes
for interactions with light. The last criteria is included so that we can assume a
single interaction. A representative fraction of the light will interact with each of
the particles (or voids) present in the layer, but a given ray of light will only interact
with a given layer once. This means that we can assume the kinds of “microscopic”
models and phenomena described in Sects. 3.3–3.5 would apply to the representative
layer.

Mathematical expressions of these criteria can be found in [16] and [18]. Examples
of applications of the representative layer theory to real samples can be found in [19]
and [20].

3.10 Obtaining Linear Absorbance Data for Scattering
Samples

At this point, it is instructive to think back to Beer’s Law. The practical appeal of
the equation is that it is a simple linear relationship between the concentration of
the absorber (which is usually what we are trying to determine) and the absorbance
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(which is readily measured experimentally). But this usage requires a known value of
κ, which in Sect. 3.1was termed the “molar absorptivity.” For non-scattering samples,
extinction of the beam is attributed entirely to absorption. It is often reasonable to
model κ as a constant that represents the inherent ability of the material in question to
absorb light (though limitations to such amodelwere also noted in Sect. 3.1). It would
be convenient if an analogous linear relationship existed for scattering samples.

As introduced in Sect. 3.6, the classical definition of an “absorption coefficient” is
the fraction of incident light absorbed by a layer of material, divided by the thickness
of that layer. This is a number that can be obtained experimentally for a macroscopic
sample of known thickness. However, previous sections have also illustrated that
scatter and absorption influence each other, and scatter is dependent upon factors
like particle size and shape that are not repeatable from sample to sample. As noted
by Burger et al. in a study of pharmaceutical powders, “many parameters, such as
particle size distribution, packing density, or homogeneity of the investigated powder
mixtures, strongly influence the reflectance spectra [11]. A variation in, for example,
the particle size distribution changes the scattering coefficient and leads to different
reflectance values even for chemically identical samples.” Consequently, one can
calculate an “absorption coefficient” from a remission/transmission experiment on a
scattering sample, and one might view it as somewhat analogous to the Beer’s Law
κ, but one cannot generally use it the same way, as one cannot typically assume it is
“constant.”

Is it possible to separate the effects of absorption and scatter in a scattering sample?
Consider a very thin layer such as that as shown in Fig. 3.11. In the example, 99.5%
of the incident light is transmitted through the layer, 0.3% is absorbed, and 0.2% is
remitted. Consider:

• In general, when light is reflected from the front surface of a layer, it has no
opportunity to be absorbed by that layer, and thus the observed absorption has
been influenced by the process of remission. But in this example, the remission and
absorption are both negligible, so essentially all of the light had the opportunity
to be either remitted or absorbed.

• In general, when light is diverted from its original path by scatter, it is now
penetrating the sample along a different (usually longer) length path, whichmeans
it has a different (usually larger) probability of subsequently being absorbed by
the sample. But this consideration does not apply in Fig. 3.11, since the layer is
very thin and the light only interacts with it a single time.

Fig. 3.11 Hypothetical thin layer in which 99.5% of the incident light is transmitted and 0.2% is
remitted, with the other 0.3% being absorbed
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Thus, in this example, the fraction of light absorbed (0.3%) is determined by the
ability of the layer to absorb light and has not been influenced by scatter. Conse-
quently, if one calculated an absorption coefficient from this layer, one could say
that the resulting coefficient was a true measurement of the absorbing power of the
material for light at that wavelength. This, then, is a more fundamental property of
the material than an absorption coefficient obtained from a macroscopic sample, and
therefore expected to bemore broadly applicable to other samples involving the same
material.

It is generally not realistic to fashion an extremely thin sample like the one pictured
in Fig. 3.11. However, Benford’s equations (Sect. 3.8) give us a way to calculate A,
R, and T for a sample of any thickness, given A, R, and T for a sample of any
other thickness. Thus, we can mathematically model the behavior of a hypothetical
extremely thin sample of a material, using the process as summarized in Table 3.1.
In this example, for a sample that has d = 1 cm thickness, 78% of the incident light
is absorbed, 21% is remitted, and 1% is transmitted. Thus, the calculated absorption
coefficient from the macroscopic sample is 0.78 cm−1 (the fraction absorbed, 0.78,
divided by the thickness, 1 cm).

Using repetitive applications of the Benford equations (specifically 3.20–3.22),
Table 3.1 shows the calculated A, R, and T for successively thinner layers of the same
material. Also shown is the absorption coefficient calculated from A and d for each
layer. Notice that as the layers get thinner, the absorption coefficient converges. The
converged value of ~ 2.98 cm−1 is very different than that obtained from the original
macroscopic sample and illustrates the significance of mathematically separating
the effects of absorption and scatter. Table 3.1 also shows the absorption-remission

Table 3.1 Application of Benford’s equations to a hypothetical sample 1 cm thick that remits 21%
of incident light and transmits 1%

Thickness (cm) A R T μa (cm−1) −log10(1 − A) A(Rn,Tn)

1 0.78 0.21 0.01 0.780 0.65758 2.971

½ 0.6943 0.2079 0.0978 1.389 0.51465 2.971

¼ 0.5035 0.1894 0.3071 2.014 0.30409 2.971

1/8 0.3068 0.1449 0.5483 2.454 0.15914 2.971

1/16 0.1692 0.0936 0.7372 2.707 0.08050 2.971

1/32 0.0888 0.0539 0.8574 2.840 0.04037 2.971

1/64 0.0454 0.0290 0.9256 2.908 0.02020 2.971

1/128 0.0230 0.0151 0.9619 2.943 0.01010 2.971

1/256 0.0116 0.0077 0.9808 2.960 0.00505 2.971

1/512 5.80E-03 3.88E-03 0.9903 2.968 0.00253 2.971

1/1024 2.90E-03 1.95E-03 0.9951 2.973 0.00126 2.971

1/2048 1.45E-03 9.76E-04 0.9976 2.975 0.00063 2.971

1/4096 7.27E-04 4.89E-04 0.9988 2.976 0.00032 2.971

1/8192 3.63E-04 2.44E-04 0.9994 2.977 0.00016 2.971
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function A(Rn,Tn, which was introduced in Eq. 3.25 of Sect. 3.8). The value of this
function is identical regardless of the assumed thickness of the sample.

Table 3.1 also shows the separation of the effects of absorption and scatter through
the “absorbance,” −log10(1 − A), as defined in Eq. 3.4. According to Beer’s Law,
absorbance should be linear with sample thickness. Thus, if the data in Table 3.1
were following Beer’s Law, the absorbance on each row would be one-half the
value of the row above it. This is clearly not the case at the top of the table, which
represents the actual sample. However, if one views the results for thicknesses of ~
1/32 cm and below, one sees that absorbance is indeed linear with thickness. Thus,
if we produce layers that are thin enough that the effects of absorption and scatter
have been successfully isolated and separated, Beer’s Law is a good model, even for
scattering samples. Applying the fact that Beer’s Law is linear with thickness, we can
use the absorbance that was determined for a thin layer (e.g., 1/128 cm or 1/256 cm)
to compute an expected absorbance for the actual sample thickness of 1 cm:

Absorbance = (128)(0.0101) = 1.29 (3.26)

Absorbance = (256)(0.00505) = 1.29 (3.27)

Notice the values obtained using these two thin layers are essentially identical to
each other but very different from themeasured absorbance from the original sample,
0.658. The value of 1.29 can be termed the “scatter-corrected absorbance.” It can be
interpreted as the absorbance that would be observed from a 1 cm thick sample of
a hypothetical material that had the same absorbing power as the real sample, but
with a complete absence of scatter. It was noted in Sect. 3.1 that the absorbance of
a material is not repeatable from one sample to another because absorbance is not
solely a measure of the absorbing power of the sample material; it is also influenced
by sample size, geometry, etc. The “scatter-corrected absorbance” has the potential
to address these limitations and provide a more genuine metric for the absorbing
power of a material.

Mathematically, one can continue halving the thickness of a layer indefinitely,
until the obtained value of the scatter-corrected absorbance and/or the absorption
coefficient becomes constant, to as many significant figures as desired. Recall that
one of the assumptions underlying Benford’s equations was that the sample was
uniformly distributed; the approach presented throughout this section relies upon
this assumption. Even if this assumption is reasonable for the sample, one must take
care to consider whether the hypothetical “thin layers” are physically meaningful.
Suppose the original sample as illustrated in Table 3.1, which was 1 cm thick, was
made up of particles that were approximately 1 mm in diameter. Table 3.1 includes
a row in which d = 1/1024 cm, or approximately 1 mm. (The calculated A and R
values for this particular row are similar to those as shown in Fig. 3.9). Thus, one
could plausibly consider a layer of thickness d = 1/1024 cm to be approximately
“one particle thick” and representative of the sample as a whole. Mathematically,
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the scatter-corrected absorbance and the absorption coefficient do not change signif-
icantly if the process of halving the thickness is continued beyond this point. This,
then, is an example in which the effects of absorption and scatter have been success-
fully separated, and the calculated absorption coefficient truly represents the ability
of the material to absorb light.

By contrast, suppose theA, R, andT data in Table 3.1were obtained from a sample
composed of particles that are 0.25 cm, or 250 mm, in diameter. The calculated
absorption coefficient for a layer of thickness 0.25 cm is significantly different from
the converged value of ~ 2.98 cm−1. Subdividing a particle creates new surfaces, and
scattering is a surface phenomenon. (The significance of surface area to volume ratio
in absorption and scattering was introduced in Sect. 3.9.) Consequently, one cannot
plausibly expect a layer with a thickness of 0.01 or 0.001 cm to be “representative”
of the original sample. In this scenario, one might regard all rows of Table 3.1 with
d < 0.25 cm as mathematical constructs that have no physical significance. Notice
that according to Table 3.1, R = 0.189 when d = 0.25 cm. A plausible interpretation
of this result is that even if the layer is only one particle thick, almost 19% of the
incident light is remitted by a single interaction, and this 19% has no opportunity to
be absorbed. In such a case, separating the effects of absorption and scatter is likely
not a realistic goal.
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Part II
Spectral Analysis and Data Treatments



Chapter 4
Spectral Analysis in the NIR
Spectroscopy

Yukihiro Ozaki, Shigeaki Morita, and Yusuke Morisawa

Abstract This chapter is concerned with the introduction to spectral analysis in the
NIR spectroscopy. It consists of two major parts, conventional spectral analysis and
spectra pretreatments. In the former, various conventional spectral analysis methods
such as group frequency analysis, derivative spectra, difference spectra, spectral
analysis based onperturbation, comparisonof aNIR spectrumwith the corresponding
IR spectrum, and isotope exchange experiments are explained. In the latter part
smoothing, derivative methods, multiplicative scatter correction (MSC), standard
normal variate (SNV), centering methods, and normalization are described.

Keywords Spectral analysis · Chemometrics · Group frequency · Derivative ·
Difference spectra · Spectral pretreatment · Baseline correction noise

4.1 Introduction to Spectral Analysis in the NIR Region

As described partly in Chaps. 1 and 2 there are various kinds and various types of
NIR spectra [1–7]. First of all, NIR spectra can be divided into electronic spectra
and vibrational spectra. However, in this chapter, we treat only vibrational spectra
of solids and liquids. Compared with IR spectroscopy diversity of the types of NIR
spectra is quite large because NIR spectroscopy is concerned with so many kinds
of materials from pure samples such as pure liquids, solutions, and crystals to bulk
materials including raw materials, industrial products, and natural products. To look
at the diversity of NIR spectra let us compare the spectrum of methanol (0.005 M,
in CCl4; see Fig. 2.3) with that of flour (Fig. 4.1). The former is rather simple
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Fig. 4.1 A NIR spectrum of
flour. Measured by A.
Ikehata
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although several bands are overlapped in the 4500–4000 cm−1 region. It has very
little baseline change. On the other hand, the spectrum of flour consists mainly of
the spectra of water, starch, and proteins. Bands are broad, and its baseline increases
with the increase in the wavelength. Like this NIR spectra show significant diversity
depending on samples and conditions. Therefore, spectral analysis methods are also
diverse in NIR spectroscopy [1–3]. In other words, one must select the best spec-
tral analysis method for a target. The spectral analysis methods must change with
samples, sample conditions, measurement methods, and the purpose of analysis. The
purpose of analysis is also wide spread varies from quantitative analysis, qualitative
analysis, and sample identification to studies of molecular structure and chemical
reaction. Therefore, when one selects a spectral analysis method, one must consider
the purpose of analysis. Formany purposes, chemometrics is very useful but for some
purposes it is almost meaningful. In this chapter, general introduction to the spec-
tral analysis methods and spectral pretreatments for NIR spectra are outlined. The
detailed explanations of representative spectral analysis methods such as chemomet-
rics (Chap. 7), two-dimensional correlation spectroscopy (2D-COS, Chap. 6), and
quantum chemical calculations (Chap. 5) will be given in each chapter and session.

As in the cases of IR and Raman spectroscopy, band assignments are always
the base for spectral analysis of NIR spectroscopy. However, the assignments are
generally not straightforward since a number of bands originating from overtones
and combinations overlap each other. In some cases, bands arising fromcombinations
including combinations of overtones appear; for such cases, it is very difficult tomake
accurate band assignment. In NIR spectroscopy detailed band assignments are often
not necessary, but even in such cases, one should know from which functional group
a band arises.

Spectral analysis methods in NIR spectroscopy can be divided into conventional
spectral analysismethod, chemometrics [3], quantumchemical calculation [5, 8], and
2D-COS [1]. The conventional spectral analysis methods are, more or less, common
among NIR, IR, Raman, and Terahertz/far-IR(FIR) spectroscopy. One must know
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that they yield also a base for chemometrics, quantum chemical calculation, and
2D-COS. Chemometrics has most often been employed to extract rich quantitative
and qualitative information from NIR spectra (Chap. 7). A major part of chemomet-
rics is multivariate data analysis such as principal component analysis/regression
(PCA/PCR) and partial least squares regression (PLSR), however, self-modeling
curve resolution (SMCR), which is used to predict pure component spectra and pure
component concentration profiles from a set of NIR spectra, is also becoming more
andmore significant (Chap. 7). Using quantum chemical calculations such as density
function theory (DFT) calculations, one can calculate the intensities and frequencies
of overtones and combination bands (Chap. 5). Quantum chemical calculation is still
not always popular in NIR spectroscopy but it has already been applied not only to
simple compounds but also to rather complicated molecules such as long-chain fatty
acids, nucleic acid bases, and rosemaric acid [8]. 2D-COS is not a general method
but it is often useful to unravel complicated NIR spectra (Chap. 6). In addition,
neural network, AI, and machine learning have been started to be used to analyze
NIR spectra. They are very promising methods for the spectral analysis in NIR spec-
troscopy (Chap. 7). However, one should know that in the early 1990 s neural network
has already been tried to be applied to NIR spectra [9].

4.2 Conventional Spectral Analysis Method

Various kinds of conventional spectral analysismethods are used inNIR spectroscopy
[1, 2, 6, 7]. They are summarized as follows:

(1) Spectral analysis based on group frequencies

This is a traditional method established in IR and Raman spectroscopy. Spectral
analysis based on group frequencies built for the fundamentals is modified for over-
tones and combinations. Each functional group such as OH and CH groups shows
characteristic bands in particular regions. One can find tables for group frequencies
in the NIR region in a few NIR textbooks [1, 6].

(2) Calculation of derivative spectra

Derivative methods have long been popular in various spectroscopies [1–3, 6]. They
are useful for resolution enhancement as well as baseline correction. Figure 4.2A, B
shows a good example demonstrating the usefulness of the second derivative [10]. In
Fig. 4.2A, NIR spectra in the 7500–5500 cm−1 region are shown for water-methanol
mixtures with a methanol concentration of 0–100 wt% at increments of 5 wt% at
25 °C. Figure 4.2B, a gives an enlargement of the 6000–5700 cm−1 region of the NIR
spectra as shown in Fig. 4.2a. In the 6000–5700 cm−1 region, many bands due to the
overtones and combination of the CH stretching modes of CH3 group of methanol
are expected to appear. Figure 4.2B, b displays the second derivative of the spectra in
Fig. 4.2B, a. Note that a broad feature in the 6000–5750 cm−1 region can be divided
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Fig. 4.2 A NIR spectra in
the 7500–5500 cm−1 region
of water-methanol mixtures
with a methanol
concentration of 0–100 wt%
at increments of 5 wt% at
25 °C. B a An enlargement
of the 6000–5700 cm−1

region of the NIR spectra
shown in A and B, b the
second derivative of the
spectra in a. Reproduced
from Ref. [10] with
permission

into many bands which show clear concentration-dependent variations. Derivative
methods will be explained in more detail in Chap. 4.3.2.

(3) Calculation of difference spectra

Calculation of difference spectra is also useful to unravel overlapping bands and to
find out a weak feature hidden by a strong band [1, 2, 5, 7]. The difference spec-
trum between a spectrum of sample a and that of sample b can be calculated by
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subtracting the spectrum of sample a from that of sample b. The calculation of
difference spectra is effective to analyze perturbation-dependent NIR spectra such
as temperature-dependent, concentration-dependent, and pH-dependent spectra. To
calculate accurate difference spectra one must obtain spectra with very high wave-
length accuracy. Let us show very simple but important example of the calculation
of difference spectra. Figure 4.3a displays NIR spectra of water collected over a
temperature range of 5–85 °C [11]. From this figure, it is clear that the intensity at
7050 cm−1 increases while that at 6844 cm−1 decreases but it is not clear whether
there is a band shift or not in the 7300–6200 cm−1 region. The calculation of the
difference spectra clearly answers this question. Figure 4.3b displays the difference
spectra of water obtained by subtracting the spectrum at 5 °C as a reference spectrum
from other spectra in Fig. 4.3a [11]. It can be seen from Fig. 4.3b that the broad water
feature consists of two bands at 7089 and 6718 cm−1 and that there is no significant
band shift.

Generally speaking, difference spectra method is a reliable method but even so
care must be taken. Using spectra of a model system, let us explain a problem of
difference spectra. Figure 4.4a shows spectral changes of a system consisting of two
components havingGaussian type bandswith different peakwavenumbers (7300 and

Fig. 4.3 a NIR spectra of
water measured in a
temperature range of
5–85 °C. b The difference
spectra of water obtained by
subtracting the spectrum at
5 °C as a reference spectrum
from other spectra in a.
Reproduced from Ref. [11]
with permission
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Fig. 4.4 a Spectral changes of a system consisting of two components having Gaussian type bands
with different peak wavenumbers (7300 and 7250 cm−1), different intensities (10→5 and 10→20),
and different band widths (59 and 118 cm−1). b Variations of each band. c The difference spectra
calculated using the first spectrum (pink color) as a reference. d An enlargement of c. e The second
derivative of the spectra shown in a. Prepared by Y. Morisawa

7250 cm−1), different intensities (10→5 and 10→20), and different band widths(59
and 118 cm−1). Figure 4.4b depicts variations of each band and Fig. 4.4c displays the
difference spectra calculated using the first spectrum (pink color) as a reference. Note
that peak positions (7309, 7239 cm−1; Fig. 4.4c) are shifted in the difference spectra
compared with positions in the original spectra. Figure 4.4d exhibits an enlargement
of Fig. 4.4c. A ghost peak appears near 7380 cm−1 because the widths of these two
bands are significantly different from each other. Therefore, a special care must be
taken for feeble peaks.
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(4) Spectra-structure correlations

The NIR spectrum of a compound can be compared with those of similar compounds
to make band assignments. For instance, NIRmeasurements of a series of alcohols or
that of fatty acids allow one to make assignments of bands due to OH, CH2, and CH3

groups. Figure 4.5 compares NIR spectra in the 7500–4000 cm−1 region of saturated
(stearic acid, arachidic acid, and palmitic acid) and unsaturated (oleic acid, linolenic
acid, and linoleic acid) long-chain fatty acids (0.05 M in CCl4) [12]. By compar-
ison, one can easily discriminate saturated and unsaturated long-chain fatty acids;
particularly see the 5800–5670 cm−1 region. A common band near 6908 cm−1 can
be assigned to the first overtone of OH stretching mode. The unsaturated fatty acids
yield characteristic bands near 4663 and 4590 cm−1. Grabska et al. have assigned
the 4663 cm−1 band to the combination of C=C stretching and CH stretching modes
by quantum chemical calculation [12].

(5) Spectral analysis based on perturbation

NIR measurements of perturbation-dependent spectral variations, such as
temperature-dependent, concentration-dependent, and pH-dependent spectra vari-
ations, often give valuable information about the band assignments [1, 2, 7]. As a
good example, temperature-dependent NIR spectra changes of octanoic acid in the
pure liquid over a temperature range of 15–90 °C are shown in Fig. 4.6 [13]. Octanoic
acid in the pure liquid forms a cyclic dimer with hydrogen bonds at room tempera-
ture but with the temperature increase the dimer dissociates gradually and a free OH

Fig. 4.5 NIR spectra in the 7500–4000 cm−1 region of saturated (stearic acid, arachidic acid, and
palmitic acid) and unsaturated (oleic acid, linolenic acid, and linoleic acid) long-chain fatty acids
(0.05 M in CCl4). Reproduced from Ref. [12] with permission
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Fig. 4.6 Temperature-
dependent NIR spectra
changes of liquid octanoic
acid collected in a
temperature range of
15–90 °C. Reproduced from
Ref. [13] with permission

group emerges. It is noted that the intensity of a band at 6920 cm−1 increases as a
function of temperature, while those of other bands in the 7300–7000 cm−1 region
are almost temperature independent. Thus, the band at 6920 cm−1 is assigned to the
first overtone of the OH stretching mode of the monomeric species of octanoic acid,
and the rest is due to combinations of CH vibrations [13].

The spectra of Figs. 4.2 and 4.3 are also good examples of perturbation-dependent
spectra changes.

(6) Comparison of an NIR spectrum with the corresponding IR spectrum

The significance of comparison of an NIR spectrum with the corresponding IR spec-
trum was pointed out in Chap. 2.1.6. Here, let us compare NIR spectra of poly(3-
hydroxybutyrate) (PHB) with the corresponding IR spectra again but this time in a
different region. Figure 4.7a shows time-dependent changes in the NIR spectra in
the 5200–5060 cm−1 region of a PHB film during the melt-crystallization process
at 125 °C [14]. The corresponding IR spectra in the region of 1780–1670 cm−1 are
depicted in Fig. 4.7b [14]. Of note is that a band at 5127 cm−1 in the NIR spectra
gradually increases during the crystallization process, while a broad feature centered
at 5160 cm−1 decreases with time, suggesting that the former band is assigned to the
crystalline band and the latter band to the amorphous one. In the corresponding IR
spectra bands at 1722 and 1743 cm−1 are ascribed to the crystalline and amorphous
C=O bands, respectively. Of note is that the NIR spectra and the IR spectra show
very clear correspondence. The comparison of the NIR spectra with the IR spectra
led Hu et al. [14] to ascribe the band at 5127 cm−1 to the second overtone of the C=O
stretching mode of the C–H…O=C hydrogen bonding in the crystalline state and the
broad feature near 5160 cm−1 to the corresponding band due to the amorphous state.

Figure 4.8a, b gives rise to another example of comparison between a NIR spec-
trum and an IR spectrum. They are the IR spectrum in the 3800–3000 cm−1 region
and the NIR spectrum in the 7600–6000 cm−1 region of diluted methanol in CCl4.
A peak at 3630 cm−1 and that at 7090 cm−1 are due to a fundamental and a first
overtone of a stretching mode of free OH group of methanol while broad features in
the regions of 3500–3200 and 6900–6100 cm−1 arise from a fundamental and a first
overtone of a stretching mode of hydrogen-bonded OH groups of methanol dimer,
trimer, and oligomers. Thus, there is the correspondence between the NIR spectrum
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Fig. 4.7 a Time-dependent
NIR spectra changes in the
5200–5060 cm−1 region of a
PHB film during the
melt-crystallization process
at 125 °C. b The
corresponding IR spectra
variations in the
1780–1670 cm−1 region.
Reproduced from Ref. [14]
with permission

and the IR spectrum, but the relative intensity of bands between the free OH bands
and the hydrogen-bonded OH bands is largely changed between them. Accordingly,
special care must be taken in comparison with the relative intensity between a NIR
spectrum and an IR spectrum.

(7) Spectral interpretation by polarization measurement

Polarization measurement, which is popular in IR and Raman spectroscopy, is not
often used inNIR spectroscopy, but it is useful for the determination of themolecular-
orientation of solid-oriented compounds such as uniaxially stretched polymers. For
more details, see Ref. [14].

(8) Isotope exchange experiments

The use of an isotope shift, which is associated with isotopic substitution, is a tradi-
tional method for band assignment in IR and Raman spectroscopy. It is also useful
for NIR spectra analysis, particularly, a deuteration shift. The isotope shift provides
convinced assignment of bands in a number of cases. Force constants can be assumed
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Fig. 4.8 a An IR spectrum
in the 3800–3000 cm−1

region and b a NIR spectrum
of the 7600–6000 cm−1

region of diluted methanol in
CCl4

not to vary due to isotopic substitution, and hence, isotope shifts involve only with
mass effects. Taking a diatomicmolecule as an example, one can calculate themagni-
tude of an isotope shift. Frequency of a stretching vibration of the diatomic molecule
is given by Eq. (4.1)

ν = 1

2π

√
k

μ
(4.1)

if ν ′ is the frequency for replacing an atom having a mass m1 with an isotope having
a mass m1’, the following relation holds:

ν

ν ′ =
√

μ′

μ
(4.2)

whereμ′ =m1
′ m2/ (m1

′ +m2). As Eq. (4.2) reveals, the larger the difference between
m1 and m1

′, the larger the isotope shift is. Since ν/ ν ′ = 1.36 if H is replaced with
D, a C–H stretching vibration of saturated hydrocarbon, which is located in the
vicinity of 2900 cm−1, shifts close to 2100 cm−1. Figure 4.9 shows calculated three
vibrational modes (Amide I’, II’, and III’) of deuterated N-methylacetamide and
the corresponding modes of the nondeuterium-substituted one (Amide I, II, and III
modes) are displayed in Fig. 2.11 [16]. Band shifts induced by the deuterium substi-
tution are rather large for the Amide II and III modes since NH bending vibrations
contribute to these two modes, but the Amide I mode, being principally a C=O
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Amide I’ Amide II’ Amide III’

Fig. 4.9 Amide I’, Amide II’, and Amide III’ modes of deuteratedN-methyacetamide. Reproduced
from Ref. [16] with permission

stretching vibration, yields a very small isotope shift [15]. It is noted with respect to
isotope shifts of polyatomic molecules that vibrational modes vary more or less with
isotopic substitution, which can be evidently understood from the comparison of
Fig. 4.9 and Fig. 2.11. In studies of IR, Raman, and NIR spectra, [15]N-substitution,
[13] C-substitution, and the like are often used in addition to deuterium substitution.
Although an isotope shift is small when such a heavy atom is replaced, a variation
in a vibrational mode associated with the isotopic substitution is also small.

4.3 Pretreatment Methods in NIR Spectroscopy

NIR spectra often encounter the problems of unwanted spectral variations and
baseline shifts [1–3]. They come from the following sources.

1. Various kinds of noises such as those from a detector, an amplifier, and an AD
converter.

2. Light scattering from cloudy liquids or solid samples.
3. Changes in temperature, density, and particle size of samples.
4. Poor reproducibility of NIR spectra caused by, for example, path length

variations.
5. The use of optical fiber cable may cause baseline shifts.

The above interferences may become obstacles for conventional spectral analysis
and 2D-COS. More importantly, they may easily violate the assumptions on which
chemometrics equations are based [3]. For instance, the simple linear relationship
stated by Beer’s law does not hold any more, and the additivity of individual spectral
responses is not guaranteed. Accordingly, data pretreatment is often necessary [1–3].
(Chap. 7) Whenever one attempts to improve SN ratio or to correct baseline fluctu-
ations, one should explore the cause of poor SN ratio and that of baseline changes.
Otherwise, one cannot find proper pretreatment methods. One interesting example
of studies of baseline changes was reported by Geladi et al. [17] They modeled the
reflectance spectra of milk by optical effects and chemical light absorption effects.
The former induces variations in the direction of the light, and the latter is concerned
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with light absorption. In some cases, the former brings about more prominent vari-
ations to spectra than the latter. The response of the spectral data to the physical
effects is significant baseline variations. On the basis of this study, Geladi et al.
[17] proposed multiplicative scattering collection (MSC) as a preprocessing tool to
correct the light scattering problems in the NIR spectra.

This section explains four kinds of data pretreatment methods, noise reduc-
tion methods, baseline correction methods, resolution enhancement methods, and
centering and normalization methods [1–3].

4.3.1 Noise Reduction Methods

In NIR spectroscopy, several kinds of noise are caused by a variety of interfering
physical and/or chemical process [1–3]. The most general noise is high-frequency
noise associated with the instrument’s detector and electronic circuits. There are
other forms of noise as well; for example, low-frequency noise and localized noise.
Low-frequency noise is induced, for instance, by instrument drift during the scan-
ning measurements. The reduction of the low-frequency noise may be more difficult
because it often resembles the real information in the data.

Most standard method to improve SN ratio in spectra is accumulation-average
processing that requires to increase the accumulation number and calculate an
average. This reduces the effects of high-frequency noise significantly, but tech-
nically it is not a “pretreatment” but a normal, integrated part of collecting spectra. If
the noise reduction by the accumulation average is still insufficient, one can employ
smoothing to remove high-frequency noise. The most commonly used smoothing
methods are moving-average method and Savitzky–Golay method [1, 2].

The moving-average method is the simplest type of smoothing [1–3]. In this
method, the reading Ai’ (A is, for instance, absorbance) at each variable i = 1, 2, ---k
is replaced by a weighted average of itself and its nearest neighbors. From i−n to
i+n:

Ai =
n∑

k=−n

wk Ai+k (4.3)

wk , defining the smoothing, is called the convolution weights.
The Savitzky–Golay method originated from the idea that in the vicinity of a

measurement point a spectrum can be fitted by low-degree polynomials [18]. Prac-
tically, wk is determined by fitting the spectrum with low-degree polynomials using
least squares regression. Savitzky and Golay calculated wk for the different orders
of polynomials and N (N = 2n+1) [18]. One can find these calculated convolution
weights in a numeral table. For example, when N is equal to 5, smoothed values can
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be obtained by substituting wk = −3/35, 12/35, 17/35, 12/35, −3/35 (k = −2, −1,
0, 1, 2) into Eq. (4.3). It is noted that if one tries to increase the effect of smoothing
by increasing the number of the point of wk , a band shape would be distorted. This
distortion may lead to the decrease in spectral resolution and band intensity.

There are other methods for the noise reduction such as wavelets, eigenvector
reconstruction, and artificial neural networks (ANN) [2, 3, 19, 20].

4.3.2 Baseline Correction Methods

As described above in NIR spectra baselines vary for various reasons [1–3]. An
observed NIR spectrum, A(λ), can be represented as follows;

A(λ) = αA0(λ) + β + e(λ) (4.4)

Here, A0 (λ), α, β, and e(λ) are a real spectrum, a multiplicative scatter factor
(amplification factor), an additive scatter factor (offset deviation), and noise, respec-
tively. There are several methods to eliminate or reduce the effects of α and β. We
explain three of them.

Derivative methods

Derivative methods are utilized in NIR spectra for both resolution enhancement
and baseline correction [1–3]. (Chap. 7) A derivative spectrum is an expression of
derivative values, dnA/dλn (n = 1, 2, …), of a spectrum A (λ) as a function of λ.
The second derivative, d2A/dλ2, is most often encountered. The superimposed peaks
in an original spectrum turn out as clearly separated downward peaks in a second-
derivative spectrum. Another important property of second-derivative method is the
removal of the additive and multiplicative baseline changes in an original spectrum.
Figure 4.10a displays NIR spectra of 16 kinds of linear low-density polyethylene
(LLDPE) and one kind of high-density polyethylene (HDPE), and Fig. 4.10b shows
the second derivative obtained with the Savitzky–Golay method of the spectra as
shown in Fig. 4.10a [21]. It can be seen from Fig. 4.10b that the second derivative is
powerful in removing additive and multiplicative baseline variations of the spectra,
and at the same time, it enables to detect a number of bands clearly. A drawback
in the derivative methods is that the SN ratio deteriorates every time a spectrum is
differentiated.

Let us explain derivative methods using equations. If the band shape is a Gaussian
shape as below;

A(x) = αexp

{
−

(
x − x0
w

)2
}

, (4.5)
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Fig. 4.10 a NIR spectra of
16 kinds of linear
low-density polyethylene
(LLDPE) and one kind of
high-density polyethylene
(HDPE). b The second
derivative was calculated
with the Savitzky–Golay
method of the spectra in a.
c NIR spectra shown in
a after the MSC treatment.
Reproduced from Ref. [21]
with permission



4 Spectral Analysis in the NIR Spectroscopy 77

Analytical solutions of the first and second derivatives of the band are

dA

dx
= −2

x − x0
w2

A = −2
α(x − x0)

w2
exp

{
−

(
x − x0
w

)2
}

(4.6)

d2A

dx2
= −2

A

w2

(
1 − 2

(x − x0)
2

w2

)
= −2

α

w2

(
1 − 2

(x − x0)
2

w2

)
exp

{
−

(
x − x0
w

)2
}

(4.7)

respectively, where α is a peak height of the band, and w is proportional to a full
width at the half maximum (FWHM) of the band (ω = FWHM/{Ln (4)}0.5). As
shown in Fig. 4.11, at the peak position (x = x0), the first derivative coefficient is 0,
and the second-derivative coefficient is −2α/ω2. The positions and intensities of the
maximum andminimum of the first derivative spectra are x0±ω

√
2 and∓√

2αωe0.5,
respectively. As can be seen in these formulas, the maximum and minimum of the
first- and second-derivative coefficients are proportional to an area of the band, if the
width of the band is not changed.

Fig. 4.11 Original
spectrum, its first and second
derivatives. Prepared by Y.
Morisawa
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Since, in general, spectrum data take discrete values, and the calculation of deriva-
tives with various orders is performed by algebraic differences between data taken at
closely spaced wavelengths. Transformation to first- and second-derivatives is then

dAi = Ai+k − Ai−k

d2Ai = d(Ai+k − Ai−k)

= Ai+2k − 2Ai + Ai−2k (4.8)

Multiplicative scatter correction (MSC)

MSC is an effective method for correcting vertical variations of the baseline (additive
baseline variation) and inclination of the baseline (multiplicative baseline variation)
[17]. The idea ofMSCoriginates from the fact that light scattering has thewavelength
dependence different from that of chemically based light absorbance. Thus, we can
use data from a number of wavelengths to distinguish between light absorption and
light scattering.

MSC corrects spectra according to a simple linear univariate fit to a standard spec-
trum. α and β are estimated by least squares regression using the standard spectrum.
As the standard spectrum, a spectrum of a particular sample or an average spectrum
is used. Figure 4.10c shows the NIR spectra as shown in Fig. 4.10a after the MSC
treatment [21]. The spectra demonstrate the potential ofMSC in correcting offset and
amplification in the NIR spectra. Generally, MSC improves essentially the linearity
in NIR spectra. While it is generally an very useful technique, care must be exercised
since the use of MSC may generate unwanted artifacts.

Standard normal variate (SNV)

Standard normal variate (SNV) is also a powerful method for correcting vertical
baseline drift of a set of spectra [22]. For each spectrum A(λ), SNV is calculated as
ASNV(λ) = (

A(λ) − Ȧ
)
/σ , where Ȧ and σ are mean and standard deviation of the

intensities in the spectrum, respectively. Therefore, mean and standard deviation of
the intensities for each spectrum after SNV are standardized as 0 and 1, respectively.

4.3.3 Resolution Enhancement Methods

Resolution enhancement methods are very important to unravel overlapping bands
and elucidating the existence of obscured bands [2, 3]. In NIR spectroscopy deriva-
tive methods, difference spectra, mean centering, and Fourier self-deconvolution
are employed as resolution enhancement methods. Note that PCA loadings plots are
often effective for resolution enhancement [21]. 2D correlation spectroscopy can also
make resolution enhancement, but since it is not a pretreatment method, it will be



4 Spectral Analysis in the NIR Spectroscopy 79

outlined in Chap. 6. Mean centering will be discussed in centering and normalization
section.

Derivative methods

We already explained the usefulness of derivative method in resolution enhancement
as shown in Fig. 4.10a, b. Here, a problem in the derivative methods which we often
encounter is pointed out. Figure 4.4e shows the second derivative of the spectra as
shown in Fig. 4.4a. It can be seen from Fig. 4.4e that the 7250 cm−1 peak is much
weaker than the 7300 cm−1 peak. In the second-derivative spectra, a broad band is
often underestimated, and thus, care must be taken for the second derivative of a
broad band.

4.3.4 Centering and Normalization Methods

Centering and normalization are often effective in chemometrics analysis ofNIR data
[1–3]. (Chap. 7) Mean centering is simply an adjustment to a data set to reposition
the centroid of the data to the origin of the coordinate system [2, 3]. Normalization
is an adjustment to a data set that equalizes the magnitude of each spectrum. [2, 3]

Centering methods

Mean centering is a method where from every element of the jth spectrum (row) the
column mean is subtracted:

X jcent = X j −
⎛
⎝1

n

n∑
j=1

X i j

⎞
⎠ (4.9)

Xj and Xij are an element of the jth spectrum and that of a data matrixX, respectively.
After this step, all means are zero and variances are spread around zero. Each mean
centering spectrum can be regarded as a difference spectrum between the individual
spectrum and an averaged spectrum. Mean centering is often powerful in resolution
enhancement. Figure 4.12a displays NIR spectra in the region of 6000–5500 cm−1 of
nylon 12 collected in a temperature range from 30 to 150 °C, and Fig. 4.12b exhibits
their mean-centered spectra [23]. The mean-centered spectra show that the intensity
of a band at 5770 cm−1 arising from the first overtone of CH2 stretching mode
varies markedly with temperature. Mean centering is used also as a pretreatment for
constructing 2D correlation spectra (Chap. 6).

Normalization

Two popular normalization procedures have been known in common practice [2,
3]. Most normalization methods employ vectors normalized to constant Euclidean
norm. That is,
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Fig. 4.12 a NIR spectra in
the 6000–5500 cm−1 region
of nylon 12 measured over a
temperature range from 30 to
150 °C. bMean-centered
spectra of the spectra in a.
Reproduced from Ref. [23]
with permission

x j, norm = x j/ ||x|| (4.10)

where ||x|| is the Euclidean norm of the spectral vector x. This normalization trans-
forms the spectral points on a unit hypersphere, and all data are approximately in
the same scaling. This normalization has a good property that the similarity between
two spectral vectors may be estimated by the scalar product of these two vectors.
However, the normalization induces the geometric configuration of the data points,
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either the clustering structure or the spreading directions, substantially different from
the original one, which may result in a misleading in the understanding of the data
in exploratory data analysis. In addition, the variation in spreading directions has a
significant effect on principal component analysis (PCA)-related analysis. Therefore,
one must be careful enough in using normalization in situations where exploratory
data analysis and PCA-related procedures, such as PCA, partial least squares (PLS),
and so on, are concerned.

Another normalization procedure is so-called mean normalization, where all
points of the jth spectrum are divided by its mean value

X jnorm = X j/

(
1

m

m∑
i=1

X i j

)
(4.11)

where m is a total number of spectral points. After mean normalization, all the
spectra have the samearea.Essentially,meannormalization is equivalent to normalize
the spectral vectors to constant 1-norm, that is, the sum of spectral values (always
positive) equals to a constant. This means that the geometry of mean normalization is
to transform the spectral points to be contained in a convex set, and the dimensionality
of the spectral space is thus decreased by 1. This transformation is very useful in
self-modeling curve resolution (SMCR).
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Chapter 5
Introduction to Quantum Vibrational
Spectroscopy

Krzysztof B. Beć, Justyna Grabska, and Thomas S. Hofer

Abstract In this chapter, the quantum mechanical basis for computational studies
of near-infrared spectra (NIR) is discussed. Since this topic is rarely covered in detail
in the literature, the necessary prerequisites are provided as well, which include (i)
the coordinate frame for the description of molecular vibrations, (ii) methods for the
determination of the vibrational potential, (iii) the principles of the harmonic approx-
imation, and (iv) its role as the foundation formethods taking anharmonic effects into
account. The details of various anharmonic approaches in quantum vibrational spec-
troscopy are discussed, including methods based on the vibrational self-consistent
field (VSCF) approach, vibrational perturbation theory (VPT) as well as one- and
multidimensional grid-based methods. The merits and pitfalls of these approaches
are critically assessed from the perspective of applications in NIR spectroscopy.
Selected examples from recent literature are included to demonstrate how these
methods can be applied to solve practical problems in spectroscopy. The aim of this
chapter is to provide a comprehensive presentation of the topic aimed at a spectro-
scopic audience, while remaining accessible and focused on the key details. Although
primarily intended for readers interested in NIR spectroscopy, the essential infor-
mation provided in this chapter represents a fundamental perspective on quantum
vibrational absorption spectroscopy and is useful for a more general readership as
well.

Keywords Quantum vibrational spectroscopy · Harmonic approximation ·
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5.1 Introduction

The aim of this chapter is to present the essential information required to obtain
a fundamental understanding of quantum vibrational absorption spectroscopy, in
particular near-infrared (NIR) spectroscopy. The discussion highlights the critical
aspects to provide an in-depth and accessible overview aimed at a spectroscopic
audience. The necessary basics include the commonly used coordinate frame for
the description of molecular vibrations, an overview of the role of the vibrational
potential and methods for its determination, as well as the critical factor in all
applications of quantum chemistry being the computational complexity of a given
approach. Considerable attention is focused toward the harmonic approximation,
the fundamental framework underlying most applications of theoretical vibrational
spectroscopy. The harmonic approximation is in general not sufficiently accurate for
the needs of NIR spectroscopy. However, it is an essential foundation for advanced
anharmonic treatments. The majority of these methods are either built on the basis
of a harmonic Hamiltonian (VPT2), adopt a harmonic Hessian as the reference state
(VSCF) or use the harmonic analysis (i.e., harmonic normal modes) in the process
of probing the true vibrational potential (grid-based methods). The details of various
anharmonic approaches are discussed, and their specific merits and shortcomings
examined from the point of view of applications in NIR spectroscopy. This outline
is based on several examples selected from recent literature.

5.2 Normal Modes of Vibration

Commonly, literature introducing the principles of vibrational spectroscopy mainly
employs the example of a simple diatomic molecule. However, this kind of two-
body system is limited to a singlemode of vibration resulting from a one-dimensional
potential and is not suitable for a complete presentation of themain concepts in vibra-
tional analysis [1–4]. The total number of degrees of freedom (DOF) in a chemical
system is 3N, where N is the number of atoms. Translational and rotational motion
can only be defined in an external coordinate system; thus, the translational and rota-
tional DOF are invariant in the molecule’s frame of reference. This sets them apart
from the internal DOF (vibrational DOF; vibrational modes). The number of vibra-
tional DOF equals to 3N − N inv · N inv is generally partitioned into three translational
and three rotational DOF (along the x, y, z directions); however, no change in the
potential energy is associated to the rotation over the main rotational axis of linear
molecules (including diatomic ones). Additionally, N inv of periodic systems only
considers uniform translational DOF (x, y, z) of the entire lattice. This effectively
leaves 3N − 6 modes for nonlinear molecules, 3N − 5 modes for linear molecules,
and 3N − 3 modes for periodic systems. Note that these different DOFs need to be
separated, e.g., no translation of the molecule’s center of mass may occur along the
vibrational mode. The concept of normal modes in computational chemistry has its
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origin in the formalism of the harmonic approximation and will be outlined in detail
in Sect. 5.4 of this chapter.

In polyatomic systems, symmetric and antisymmetric modes occur due to
symmetry factors [1, 2]. In addition, deformation modes appear as well; they involve
change of valence and dihedral angles between the atoms in the system. As a rule,
force constants associated with stretching modes are typically higher, and thus, the
wave numbers of these vibrations are higher compared to associated deformation
modes. For instance, CO2 is a linear molecule and thus has 3N − 5 = 4 modes of
vibration (Fig. 5.1). Among them are the two stretching modes, being symmetric and
antisymmetric. The CO2 symmetric stretch (v1) is IR inactive because there is no
change in the dipole moment of the molecule along the associated vibrational coordi-
nate. In contrast, the antisymmetric stretching vibration (v3) generates a significant
net change of the dipole moment giving rise to a strong IR band observed at ca.
2345 cm−1 in gas phase. The two deformation modes of CO2 involve the bending
of the OCO angle in the molecule. These two modes differ only from the point
of view of an external coordinate system; the vibrations occur along perpendicular
planes. However, from the molecule’s point of view, they are indistinguishable, and
their energies (and thus wavenumbers) are degenerate giving rise only to a single IR
absorption band v2 located at 667 cm−1 in gas phase. Therefore, despite possessing
four vibrational degrees of freedom, only two fundamental bands ofCO2 are observed
in the respective IR spectrum. However, IR spectra of gaseous molecules are further
complicated because of rotational–vibrational coupling.Water serves as an archetyp-
ical nonlinear molecule; it has 3N − 6= 3 vibrational degrees of freedom, with only
a single deformation mode v2 (Fig. 5.1).

Since the center of mass of the vibrating molecule may not change its position
in space, the atomic displacements associated to these normal modes often involve
displacements of all atoms in themolecule. These are not necessarily large amplitude
motions, however. Water serves a good example, as large amplitude motions of the
light-weighted hydrogen atoms are accompanied by a low-amplitude motion of the
heavy oxygen atom; this is reflected in an exaggeratedway in Fig. 5.1. These complex

Fig. 5.1 Equilibrium geometries and normal modes of a carbon dioxide (top) and a water (bottom)
molecule, respectively
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atom displacements defined in normal coordinate system are difficult to interpret in
larger systems; normal coordinates are also specific to a given molecular symmetry
and not transferrable to other ones. Nevertheless, similarities exist between vibra-
tions of molecules constituting similar functional groups and having comparable
structures. A more useful description of vibrational motion is achieved by defining
an alternative coordinate system based on the structural parameters of the systems
such as bond lengths, valence, and dihedral angles. The commonly accepted stan-
dard is the internal coordinate system proposed by Pulay et al. [5]; often referred to
as natural coordinate system. The deformation vibrations of functional groups most
commonly found in organic molecules (methyl, −CH3; and methylene sp3; >CH2)
defined in natural coordinates are presented as an example in Table 5.1 and Fig. 5.2.
The definitions of the other vibrations can be found in Ref. [5]. The transformation of

Table 5.1 Recommended internal coordinate system at the example of methyl and methylene (sp3)
groups. The complete definition for other types of functional groups can be found in Ref. [5]

Bond stretchings Individual coordinates rather than combinations; possible
exceptions: methyl and methylene groups where symmetrized
combinations of the CH stretchings may be used

Methyl deformation Sym. def. = α1 + α2 + α3 − β1 − β2 − β3

Asym. def. = 2α1 − α2 − α3

Asym. def.′ = α2 − α3

Rocking = 2β1 − β2 − β3

Rocking′ = β2 − β3

Methylene (sp3) deformation CH2 scissoring = 5α + γ

CXY scissoring = α + 5γ

CH2 rocking = β1 − β2 + β3 − β4

CH2 wagging = β1 + β2 − β3 − β4

CH2 twisting = β1 − β2 − β3 + β4

Sym.—symmetric; asym.—antisymmetric; def.—deformation
Adopted with permission from Pulay et al. [5]. Copyright (1979) American Chemical Society

Fig. 5.2 Definition of internal coordinates in: a a methyl (−CH3) group; b a methylene sp3 (>CH2)
group
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Fig. 5.3 Methyl stretching vibrations; a symmetric mode; b, c two kinds of antisymmetric modes

molecule-specific normal coordinates into natural coordinates enables a straightfor-
ward comparison between the vibrational properties of differentmolecules, providing
considerable benefits when analyzing IR spectra.

The concept of Pulay’s natural coordinate system suggest not to group stretching
vibrations, but rather treat them as individual bonds. The allowed exceptions include
methyl andmethylene group, forwhich symmetrized combinations ofC–Hstretching
vibrations may be used. The number of stretching vibrations specific to these func-
tional groups is ruled by the number of involved DOF. Considering an archetypical
system with a methyl group, X–CH3 (N = 5), the number of vibrations is 3N − 6
= 9. This is partitioned into five deformation vibrations (symmetric, two kinds of
antisymmetric, and two kinds of rocking vibrations; Table 5.1) and four stretching
vibrations. One stretching mode involves the X–C(H3) bond, leaving three possible
stretching vibrations of the CH3 moiety itself; one symmetric and two kinds of anti-
symmetric stretching modes (Fig. 5.3). A methylene group features just two degrees
of freedom due to stretching vibrations, being symmetric and antisymmetric.

5.3 The Underlying Phenomena

5.3.1 The Potential Energy of a Molecular Oscillator

From the point of view of quantum vibrational spectroscopy, the primary problem
focuses on the determination of the potential energy function along the spatial coor-
dinate describing the molecular oscillator, or in other words, the motion of the nuclei
(Fig. 5.4) [6]. The potential is the key property that dictates the quantum states (i.e.,
the vibrational wavefunctions) of a molecular oscillator. Following the fundamental
approximation of quantum chemistry, the Born–Oppenheimer approximation, the
motion of nuclei can be treated separate from the motion of the electrons in the
majority of cases. Consequently, in vibrational problems, the electronic structure is
reduced to the source of an external potential energy. Therefore, prior to any step
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Fig. 5.4 Interatomic potential (solid black) and the associated harmonic approximation (dashed
black) of theHClmolecule in the gas phase atCCSD(T)/aug-cc-pVQZ level and the respective vibra-
tional wavefunctions (red) obtained via the Numerov approach. The associated energy differences
between the individual states correspond to thewavenumbersmeasured via vibrational spectroscopy

made into quantum vibrational spectroscopy, the electronic structure of the system
under consideration needs to be determined [6]. This can be accomplished with a
large array of different approaches, aimed at providing various approximations to
balance the accuracy of results and the computational demand.

5.3.2 Quantum Chemical Methods for the Determination
of the Electronic Structure of Molecular Systems

An approach for the determination of the electronic structure of a quantum system
(Fig. 5.5) may follow two principal ways of categorization; conceptual and prac-
tical. From the conceptual point of view, these methods differ by how the energy of
the system is described. The major approaches will be presented in Sects. 5.3.2.1,
5.3.2.2, 5.3.2.3, 5.3.2.4, 5.3.2.5, and 5.3.2.6. More exhaustive information can be
found in topic-oriented textbooks [6]. The practical categorization mostly concerns
their computational complexity, with the cost versus accuracy factor of the available
methods being a key consideration,which translates into their respective applicability
to certain problems.
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Fig. 5.5 Overview of computational chemistry methods commonly used for the determination of
electronic structure in molecular systems and crystals

5.3.2.1 Hartree–Fock Theory

Any quantum-based treatment assumes that a wavefunction is the primary entity
describing the state and therefore all observables such as the energy of a quantum
many-body system. Hartree–Fock (HF) theory provides the fundamental and most
straightforward approach in this category. Thismethod is based on solving an approx-
imate time-dependent Schrödinger equation (HF equation), which describes the state
of a quantum mechanical system and the associated energy. All methods that are in
practical use are based on the Born–Oppenheimer approximation, which limits the
role of the nuclei to the source of an external potential. The interaction between
the electrons involves the exchange and the correlation potential. Within the HF
formalism, only the former is treated appropriately. The exchange energy results
from the indistinguishability of electrons and is reflected in the HF procedure by
antisymmetric properties of the wavefunction. This step is accomplished by deriving
a single Slater determinant, an antisymmetrized product of one-electron wavefunc-
tions (i.e., orbitals), to approximate the wavefunction of anN-body quantum system.
In other words, the HF formalism assumes that the problem of interactions between
the many electrons in the molecule is separable into a set of electron–electron prob-
lems, coupled through an averaged effective potential that describes the interaction
with all other electrons in the system.

A solution to the HF equation is found by invoking the variational principle, in
which a set of N-coupled equations for the N spin orbitals is derived, yielding the
Hartree–Fock wavefunction and energy of the system. The HF framework belongs
to the family of self-consistent field (SCF) methods, as self-consistency is a criterion
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that needs to be fulfilled within the iterative procedure of solving the Hartree equa-
tions. Themost far-reaching approximation assumed in theHF approach is neglecting
the Coulomb correlation, which is often described as the mean-field charge distri-
bution approximation of the electron correlation, since the HF method effectively
averages the electron–electron interactions. This causes an inherent inability of the
method to properly describe London dispersion. In order to step beyond a mean-field
approximation of independent particles, so-called post-HFmethods have been devel-
oped. The HF theory has a critical historical importance, being the first developed
quantum theory with practical implementation. Nowadays, pure HF calculations are
rarely used. However, the method is still widely adopted for calculations of the
initial wavefunction of a quantum system, thus representing the preliminary step for
calculations at higher levels of theory. On the other hand, a hierarchy of increas-
ingly accurate methods based on the HF results exist, in which more than one Slater
determinant is employed.

5.3.2.2 Post-HF Approaches

Different populations of atomic orbitals by electrons or electron configurations in
a quantum system are possible. When any given electron changes its configuration,
which can be described as an excitation into another orbital, the distribution of the
other electrons in the molecule adjusts to minimize the total energy of the system.
Thus, the motion of electrons is not independent but correlated, which lowers the
total energy of the system. However, in the HF approach, any given electron only
interacts with the average potential of all the other electrons in the system. To amend
this shortcoming, post-HF methods aiming at a more accurate treatment of electron
correlation effects were introduced. This may be accomplished in different ways, but
unequivocally increases the computational complexity of the method by orders of
magnitude.

In the simplest case, the electron correlation energy can be treated as a pertur-
bation of the electronic state described in the HF formalism. As long as electron
correlation has a relatively small contribution to the total energy, it can be expressed
via a perturbing Hamiltonian corresponding to a correction added to the HFHamilto-
nian. Since the unperturbed HF state is known, the perturbative correction is solvable
using approximate methods, e.g., via an asymptotic series. The practical formula-
tion of this approach is based on Møller–Plesset theory (MP) of a given order k.
Zeroth-order wavefunction corresponds to an unperturbed HF state, and the first-
order perturbation correction (MP1) to the HF energy can be shown to be equal
to zero, which implies that only second- (MP2) and higher-order MP expressions
are practically meaningful. Among those, MP2 bears the highest practical useful-
ness and finds broad applications. In most cases, higher-order perturbations (such
as MP3, MP4, and MP5) do not improve the accuracy by an acceptable margin and
display a huge computational demand. The MP2 method has become particularly
widely applied since it is the most efficient approach to take electron correlation
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effects into account. However, there are limitations in the applicability of MP theory,
which led to the development of more advanced approaches.

Unlike the HF formalism, configuration interaction (CI) theory utilizes multiple
Slater determinants to construct configuration state functions (CSF), which are then
linearly combined to describe the wavefunction of the quantum system. The first
term in the expansion of the CI wavefunction is equivalent to the HF ground-state
wavefunction, while the higher terms capture the effects of the correlated motion
of the electrons. In the CI formalism, the wavefunction is a combination of the
HF reference states plus all possible excited states. This is reflected by mixing the
ground CSFs and the excited CSFs. If all possibilities of orbital occupations are
included (full-CI, FCI), an exact solution to the electron correlation problem can
be achieved. Unfortunately, the number of excited configurations is enormously
large, and in practice, the number of CI terms representing the electronic excita-
tions needs to be truncated. The abbreviations for truncated CI variants reflect the
excitation levels treated; ‘S’ for single excitations, ‘D’ for double, ‘T’ for triple,
‘Q’ for quadruple. This leads to CI single and double excitations (CISD), CI single,
double, and triple excitations (CISDT), etc. From the point of viewof quantum theory,
CI is the most complete approach to describe the electronic structure of molecular
systems. However, this corresponds only to FCI, that is, the case in which all orbital
occupations possible for the quantum system are treated. The FCI method is useful
for validation and benchmarking purposes of lower-level quantum methods, where
its extensive computational cost remains manageable. In practical terms, unless FCI
conditions are achieved, the application of truncated variants is often linked to consid-
erable inaccuracies. Truncated CI methods capture a rapidly decreasing amount of
the ‘exact’ correlation energy with an increase of the system size, which limits their
usefulness in treating larger molecules and heavy atoms. Multiconfigurational self-
consistent field (MCSCF) is an analogous approach that additionally applies a similar
CI-like concept also to derive the one-electron functions that are subsequently used
to construct CSFs.

Coupled-cluster theory (CC) expands the molecular orbitals obtained at HF level
using an exponential cluster operator (acting as the excitation operator) and constructs
a multi-electron wavefunction that includes electron correlation. The CC formalism
may be considered as an alternative to CI, which produces an equivalent combina-
tion of one-electron functions to yield the multi-electron wavefunction. However,
unlike linear combination assumed in the latter, the exponential expansion used in
the former grants its size-extensivity resulting in an improved limiting behavior of
the CC correlation energy upon truncation to a given excitation level (e.g., CCSD).
Similar practical limitations as those found in CI apply here as well. The number
of treated electronic excitations needs to be limited in order to make the method
applicable in terms of the associated computational demand. This leads to variants,
abbreviated analogous to CI variants, e.g., CCSD, CCSDT, etc. Unfortunately, in
practical use, the CCSD level yields moderately correct results considering its cost,
while the more accurate CCSDT proves to be too expensive for most applications.
For this reason, CCSD(T) was introduced as a variant approximating the triple exci-
tations via perturbation theory. Note, however, that when truncated at the same level,
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CC approaches still capture a higher fraction of the correlation energy than their CI
counterparts do, albeit at a higher computational cost. The CCSD(T) variant is highly
valued for its high accuracy achieved at a relatively acceptable computational cost,
and is often considered as the “golden standard of quantum chemistry.”

5.3.2.3 Density-Functional Theory

Inclusion of electron correlation in wavefunction-based methods leads to a steep
increase in their computational complexity. This gave an impulse for the develop-
ment of a fundamentally different concept known as density-functional theory (DFT)
[7, 8]. It is based on the Hohenburg–Kohn theorems postulating that the state of a
many-electron system can be described based on a unique functional (i.e., a function
acting on another function), which in this case is the spatially dependent electron
density function. The benefit of this formalism is a reduction of the dimension-
ality of the problem from that of a multidimensional (3N) N-electron wavefunction
to a three-dimensional electron density function. The practical implementation of
DFT became possible due to the formulation of the Kohn–Sham equations, which
enabled the reduction of an intractable problem of interacting electrons in a static
external potential to a tractable problem of non-interacting electrons in a local effec-
tive potential, i.e., the Kohn–Sham potential. The latter is constituted by the external
potential plus electron exchange and correlation effects expressed via the associated
exchange–correlation functionalExc. Unfortunately, the exactExc is unknown except
for the limiting case of a free electron gas, which became known as the local-density
approximation (LDA; ELDA

xc ). While this formalism is applicable in case of metals
and simple ionic solids, the LDA approximation fails to deliver satisfactory results
for more complex systems. The meaningful development of DFT within the regime
of chemistry started with the introduction of the generalized-gradient approximation
(GGA) level, which was followed by more advanced approximations, such as meta-
GGA functionals. A significant progress in the underlying theory was marked with
the introduction of hybrid Kohn–Sham theory and the resulting hybrid formulation
for Exc. A hybrid Exc is constructed as a linear combination of GGA and/or LDA
(explicit) functionals and a HF ‘exact’ exchange functional (implicit functional).
This inclusion of an ab initio electron exchange term in hybrid functionals greatly
improved the accuracy and applicability of DFT. Popular hybrid functionals include
the B3LYP, PBE0, HSE, and M06 functionals. Further advancement was achieved
with the development of double-hybrid functionals. These approaches represent a
natural progression from hybrid functionals, as in addition to the exchange term,
ab initio correlation is included as well. The correlation is calculated similar to post-
HF methods, e.g., MP2 correlation is employed in B2PLYP, mPW2PLYP, PBE0DH,
or PBEQIDH double-hybrids. In addition to a much improved treatment of elec-
tron correlation, double-hybrid functionals also enable a better implementation of
HF exchange; however, they are significantly more expensive than single-hybrid
functionals.
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The DFT concept is a rigorous re-interpretation of the quantum many-body
problem. It offers a significant improvement in the affordability of calculations.
Unfortunately, its practical implementation needs to include approximated electron
exchange and correlation. The formulation of DFT limits the ability to improve its
quality systematically. Instead, different functionals have been parametrized (i.e.,
calibrated) toward better accuracy when applied to certain systems. Inherent limita-
tions ofDFT, e.g., poor descriptionof long-range (dispersive or non-covalent) interac-
tions were recently mitigated by introduction of empirical corrections of dispersion,
e.g., the series of Grimme’s dispersion models (GD). Despite some shortcomings,
DFT offers highly favorable cost versus accuracy level that made it particularly
widely used in spectroscopic studies.

5.3.2.4 Semi-empirical Concept

Semi-empirical quantum chemistry methods are derived by insertion of pre-
determined parameters into quantum mechanical calculation schemes. The most
straightforward semi-empirical treatment replaces the relatively most time-
consuming calculation procedures in the HF ansatz, i.e., two-electron integrals
are omitted and their values are provided as empirical parameters to produce
the expected results. These parameters are most often obtained from higher-level
quantum mechanical calculations performed for small-scale models, and then used
universally. Semi-empirical methods are significantly more affordable than their
corresponding quantum mechanical frameworks, and thus suitable for the treatment
of large molecules. Conceptually, in some cases semi-empirical schemes are rela-
tively more complete, as empirical parameters may better describe some phenomena
(e.g., electron correlation effects) than the ab initio approach with necessary approx-
imations. Accordingly, as long as the considered system fits the conditions of
the parametrization, semi-empirical calculations may yield more accurate results
than when treated with a pure HF formalism. However, semi-empirical calcula-
tions are prone to produce erroneous results if they are applied outside of their
area of parametrization. Therefore, they need to be used with care. Semi-empirical
schemes based on a wavefunction ansatz include the Austin Model 1 (AM1), the
parametric model family of methods (e.g., PM3, PM5) that implement the neglect of
differential diatomic overlap (NDDO) principle (all two-electron integrals involving
two-center charge distributions are neglected) as well as a number of additional
approximations and corrections, depending on the particular method. A similar
concept may also be applied to density-based methods. For example, density-
functional-based tight-binding (DFTB) inserts pre-calculated parameters into the
DFT calculation scheme, in which a minimal basis and only nearest-neighbor inter-
actions are employed. The resulting deficiency in the description of long-range inter-
actions is corrected with empirical dispersion (analogous to those developed for
DFT functionals). The resulting approach yields reasonably accurate results at a
fraction of the cost of DFT calculations. Although primarily popular decades ago,
when the technology barrier prevented wider use of higher-level quantum methods,
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semi-empirical methods remain continuously evolving with newer variants devel-
oped, e.g., PM6, PM7, or new concepts introduced such as self-consistent change
density-functional tight binding (SCC DFTB).

5.3.2.5 Molecular Mechanics

An alternative to QM-based approaches is the description of interatomic potentials
in an entirely empirical way. These methods are typically referred to as molec-
ular mechanics (MM) or force fields (FF) [9–11]. In this approach, the potential
energy is calculated as a function of the nuclear coordinates using empirical (i.e.,
pre-parametrized) interaction potentials. Accordingly, MM uses classical mechanics
to describe the forces actingbetween the atoms in amolecule. In themost fundamental
approach, the interatomic potential energy is described as a sum of non-covalent pair-
wise interactions resulting from electrostatic (Coulomb) and van-der-Waals (e.g.,
Lennard-Jones) contributions, while covalent contributions such as bond and valence
angle interactions are often represented via harmonic potentials centered on preopti-
mized equilibria. These pair-wise additive approaches comprise the simplest possible
description of the systems and are typically applied in the regime of (bio)organic
chemistry (e.g., peptide/protein systems, nucleic acids, organic polymer materials)
as well as for the treatment of simple solid-state systems such as oxide materials.
In order to improve the accuracy of these approaches over the pair-wise additive
character, a variety of improved MM methods have been developed. One of the
simplest approaches to improve the pair-wise additive character is the inclusion of
explicit coupling terms for bonded interactions with the Urey–Bradly angular term
and the Axilrod–Teller three-body potential being typical examples. More advanced
frameworks comprise the inclusion of polarization effects, which can for example
be achieved using charge-on-spring/shell models, explicit polarization approaches
as well as charge equilibration schemes. While these approaches are essentially
linked to the Coulombic character of the interaction, many-body potentials such
as the Finnis–Sinclair and embedded-atom models (EAMs) attempt to improve the
description of the non-Coulombic contributions with typical applications being in
the area of metals, alloys, and semiconductors. A comparably challenging yet highly
intriguing development enjoying increased success in recent years is the formulation
of dissociative/reactive force field approaches, capable of adequately describing the
formation and cleavage of chemical bonds along the calculation.

The approximate nature of the interatomic forces described this way implies that
force fields need to be heavily parametrized to yield an accurate description of the
potential energy surface of a molecular system. The practical concept of MM is
based on the assumption that a force field parametrized on the basis of a small-scale
model, for which more accurate QMmethods may be used, is reasonably well trans-
ferrable to larger systems. The parametrization may be also based on experimental
data, if available. This fundamentally different approach has a significant conse-
quence in the terms of accuracy versus complexity factor. Consequently,MM is appli-
cable to extensively complex molecular systems counting up to millions of atoms.
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Therefore, MM is the only method of computational chemistry presently capable
of treating multiscale chemical systems. Examples include large biological systems,
solvated systems involving a large solvent volume, as well as composite materials.
The unmatched affordability of MM makes it useful for molecular dynamics simu-
lations. It is possible, e.g. to obtain vibrational spectra of the molecular models
treated by molecular dynamics by calculating the dipole moment autocorrelation
function. From the point of view of NIR spectroscopy, however, the MM poten-
tials are too approximate to yield useful results. Briefly mentioned here should be
hybrid quantum mechanics/molecular mechanics (QM/MM) approaches, in which
only the chemically most relevant part of the molecular system is treated quantum
mechanically while MM potentials are considered as sufficiently accurate to model
all remaining interactions. These QM/MM schemes enable a more accurate treat-
ment of the potential in key molecular fragments important from the point of view
of a particular study.

5.3.2.6 The Fundamental Dilemma in Computational Chemistry; Cost
Versus Accuracy Factor

With few exceptions, in computational chemistry, a higher accuracy can only be
achieved with a significant increase in the demand for resources, understood mostly
as calculation time or/and memory requirements. The nominal complexity of a
method is limited to the number of electrons/atoms in the systems and scales
distinctly different among the methods presented here. From the point of view of
practical applications in spectroscopy, this should be a fundamental consideration
as the application of higher levels of theory to the molecular system of interest may
become prohibitively expensive. In the most straightforward case, the computational
complexity of MM simulations is proportional to the square of the number of treated
atomic centersN,O(N2), whereas advanced implementations are capable of reducing
the scaling to O(N log N). The simplest ab initio HF method formally scales as
O(N4).However, those schemes arewidely regarded as not being sufficiently accurate
for spectroscopic applications. The significant improvement in accuracy of post-HF
approaches comes at a steep increase in their complexity, e.g., starting from O(N5)
for MP2, O(N7) for CCSD(T), and O(N8) scaling for CCSDT. The CI formalism
elevates this trend further, with CISD O(N6), CISDTQ O(N10), while FCI is known
to scale factorial with respect to the system size. In addition, post-HFmethods require
a larger number of functions describing the distribution of each electron (i.e., basis
sets of one-electron functions) to provide accurate results. This gives an answer to the
question that may arise at some point, about the root cause for numerous approxima-
tions that have been introduced to quantum theory in practical implementations. Such
consideration explains the impact that DFT has in the field of practical applications,
as it scales as O(N3), proportionally to the spatial dimensionality of the electron
density function. Calculations performed with popular hybrid functionals such as
B3LYP nominally scale as O(N4) but their practical effectiveness is enhanced by
a decisively more rapid basis set convergence typical for DFT in comparison with
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wavefunction-based approaches. In combination with further computational tech-
niques such as efficient pre-screening approaches, the use of sparse matrix algebra
routines, as well as convergence accelerators aimed at keeping the number of iter-
ations small, DFT offers a remarkably favorable level of efficiency, an advantage
which is well-reflected by the popularity of its use in spectroscopic studies.

5.4 Harmonic Frequency Evaluation

5.4.1 Molecular Geometry Optimization Toward the Energy
Minimum

Geometry optimization, or energyminimization, is the procedure of determination of
the atomic (nuclear) coordinates of a molecule, which result in the lowest total poten-
tial energy of the system. A molecule’s potential energy V (Q) is a many-parameter
function of its atomic coordinates, represented as the vectorQ= {q1, q2,…, q3N−N inv}.
In principle, geometry optimization is a purely mathematical optimization problem
of finding Q that minimizes V (Q). In other words, it is a search for atomic coordi-
nates of the molecule that minimize its potential energy. For a stationary point on
the potential energy surface (PES), the energy gradient (the derivative of the energy
with respect to all atomic coordinates, ∂V/∂qi) is zero. A generic implementation
of the geometry optimization procedure is an iterative process of adjusting Q by
following the gradient toward zero. Note, the definition of the atomic coordinates is
not implicitly imposed. These may be, e.g., Cartesian coordinates, or internal coordi-
nates describing bond lengths, bond angles, and dihedral angles. The quantum theory
model that provides V (Q) is also not imposed from the point of view of the optimiza-
tion problem. As it will be demonstrated in the next section, geometry optimization
performed in order to bring the system to its local minimum on the potential energy
surface is a mandatory step prior to the execution of a harmonic frequency analysis.

5.4.2 Harmonic Approximation

Quantum chemical approaches to vibrational motion are in many points analogous to
the problem of electronic structure. Accordingly, the theory of the vibrational struc-
ture is based on the time-independent vibrational (nuclear) Schrödinger equation [2].
The Born–Oppenheimer approximation still applies, but in this case, the electronic
structure is reduced to the role of the source of an external potential upon which the
motion of nuclei depends. The vibrational Hamiltonian of a polyatomic oscillator
can be expressed as (Eq. 5.1)
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where mi is the reduced mass of the i-th normal mode and ω0i the corresponding
harmonic frequency given as

ω0i =
√

ki
mi

(5.2)

with ki being the harmonic force constant. The third and higher terms in the expansion
describe anharmonic contributions to the vibrational Hamiltonian via the associated
cubic and quartic force constants, kijk and kijkl, respectively. Commonly, anharmonic
contributions diminish consecutively toward higher terms, with the third (cubic) and
fourth (quartic) terms capturing the majority of the total anharmonicity.

As it will be demonstrated further, taking into account anharmonic contribu-
tions staggeringly increases the complexity of the vibrational problem. However,
a universal rule in physics states that the harmonic motion is a generic feature for
sufficiently low-amplitude vibrations. This applies reasonably well for a number of
molecular vibrations as reflected by relatively low contributions from the anharmonic
terms in Eq. 5.1. Based on this premise, an approach called harmonic approximation
is constructed. Within this approximation, no coupling between modes is permitted,
which implies that all kijk , kijkl, and higher-order constants are set to zero. In other
words, the normal vibrations of harmonic oscillator are entirely independent. There-
fore, in Eq. 5.1, all terms beyond the second one are ignored, in many cases with an
acceptable loss of accuracy. Next, the potential in the vicinity of the equilibrium is
approximated as a Taylor series (Eq. 5.3)

V (Q) = V0(Q) + �QT · g(Q) + 1

2
�QTH�Q + · · · (5.3)

with the higher terms in the expansion being neglected. At a stationary point on
the PES, i.e. minima and transition states, the gradient g(Q), and hence the second
term in Eq. 5.3, is equal to zero as well. This results in a quadratic function as the
approximation of the potential, corresponding to a harmonic potential. In practical
applications, the mass-weighted second-derivative matrix of the potential, or mass-
weighted Hessian H is introduced, which elements are given as:

Hmw
i,j = 1√

mimj

∂2V (Q)

∂qi∂qj
(5.4)
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Diagonalization of the mass-weighted Hessian yields a matrix with 3N − N inv

columns consisting of orthonormal eigenvectors that describe the vibrational motion
of the system within the harmonic approximation, the so-called mass-weighted
normal modes. The 3N − N inv diagonal elements of the eigenvalue matrix h are
proportional to the square frequency of the associated normal mode.

h = UTHU (5.5)

The example of how the harmonic approximation simplifies the true behavior
of a vibrating molecule is demonstrated for the case of a water molecule, H1OH2
(Fig. 5.6), considering a two-dimensional example limited to the two OH stretching
vibrations. The corresponding two-dimensional potential energy surface V (rOH1,
rOH2) is described by the interatomic distances rOH1 and rOH2 (the corresponding
coordinates are depicted in Fig. 5.6a as black lines). In this example, the true potential
was determined with high accuracy using the CCSD(T)/aug-cc-pVTZ level of theory
employing a tight grid spacing.

As outlined above, the problem of the harmonic oscillator is only solvable at a
stationary point of the molecule’s PES. In the present example, this means that prior
to the evaluation of the Hessian, rOH1 and rOH2 need to be optimized to identify the

Fig. 5.6 Harmonic analysis at the example of the stretching vibrations of water v1 (symmetric:
qsym) and v3 (antisymmetric, qsym); a the true nature of normal modes on the potential energy
surface (red line: qsym; blue line: qasym); b the nature of the harmonic approximation applied to
these modes; c harmonic and anharmonic Morse-like potential curve of qsym; the spacing between
subsequent energy levels is increasing; d harmonic and quartic anharmonic potential curve of qasym;
in contrast to qsym, the spacing between the levels demonstrates a increase upon higher excitation
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minimum on the V (rOH1, rOH2) surface. To obtain harmonic modes, V (rOH1, rOH2)
needs to be approximated via the potential of a 2D harmonic oscillator V harm. The
key approximation in this case is that the harmonic potential is additive.

V harm = V (rOH1) + V (rOH2) (5.6)

Equation 5.6 requires that the potential does not depend simultaneously on rOH1
and rOH2,, i.e., there is no coupling potential. This implies that the vibrational wave-
function is a product of 1D wavefunctions, and the respective energy eigenvalues are
additive (same as the potential case shown above), as described by Eqs. 5.7 and 5.8.

|�(rOH1, rOH2)〉 = |�(rOH1)〉 · |�(rOH1)〉 (5.7)

E
(
rOH1,rOH2,

) = E(rOH1) + E(rOH2) (5.8)

In this case, theHessianwould be diagonal. Tomatch the latter criterion, a reorien-
tation of the coordinate frame is required, which corresponds mathematically to the
diagonalization of the mass-weighted Hessian described in Eq. 5.5. The frequency
of the harmonic vibration are obtained from the square root of the diagonal entries in
h, while the columns in the matrix U (i.e., the eigenvectors) provide the new coordi-
nates highlighted in red and blue in Fig. 5.6. The data in the matrixU lead to Eqs. 5.9
and 5.10 describing how to recombine rOH1 and rOH2 to obtain the harmonic normal
modes, q1 and q3.

q1 = qsym = 1√
2
rOH1 + 1√

2
rOH2 (5.9)

q3 = qasym = 1√
2
rOH1 − 1√

2
rOH2 (5.10)

This means for q1 that if rOH1 increases, so does rOH2. In contrast, for q3, if
rOH1 is elongated, rOH2 is shortened (and vice versa). Therefore, q1 and q3 refer
to symmetric and antisymmetric stretching normal modes, respectively. The repre-
sentation of the potential in the harmonic approximation now corresponds to the
paraboloid depicted in yellow in Fig. 5.6b. Every position on this paraboloid (any
point on the harmonic potential surface) is given as the addition of the points lying
on the main axes of the re-oriented coordinate frame, i.e., the red and blue line shown
at the surface of the paraboloid. This surface dictates the stretching vibrations of the
water molecule; symmetric (v1) and antisymmetric (v3). Note that the additive char-
acter of the harmonic potential directly implies its paraboloid shape in a geometrical
sense.

In the following the principles of the harmonic approximation, a fundamental
simplification that has found extensive use in spectroscopy, are summarized. A
complex shape of the true vibrational potential is replaced by the corresponding
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harmonic potential; as described in Eq. 5.3, this step is determined by the diagonal-
ization of the Hessian evaluated at the respective energy minimum. In the process,
a paraboloid approximating the shape of the true potential is derived. This process
may be interpreted as the rotation of the coordinate system until Eq. 5.3 is fulfilled.

A positive-definite Hessian (all-positive eigenvalues) corresponds to a positive
curvature of the potential along all directions from the reference point. On the other
hand, in case a negative curvature is present along a specific direction, an imaginary
frequency is obtained in the solution of the harmonic approximation, which is for
instance employed to evaluate the properties of a transition state or/and reaction
coordinates. Hence, the analysis of the Hessian at the stationary point (at which
g(Q) is equal to zero, i.e., no slope of the potential) enables the identification of the
localminima (positive curvatures), localmaxima (negative curvatures), and transition
states (mixed occurrence of positive and negative curvature).

Since the harmonic potential depends on the Hessian, the efficiency of its determi-
nation by means of electronic structure theory is critical. The methods for which an
analytical solution to the Hessian is available (e.g., HF, DFT, MP2, CIS) are far more
efficient as the basis for a harmonic analysis than those forwhich theHessian can only
be calculated numerically (e.g., CC). Regardless, the harmonic approximation leads
to a dramatic simplification of the vibrational problem in terms of complexity. The
diagonalization of the Hessian yields the full vibrational solution: harmonic frequen-
cies and the associated normal modes. For small to intermediate-sized molecules,
this is a computationally inexpensive step (although it may become a bottleneck in
studies of large systems using FF approaches), whichmade the harmonic approxima-
tion particularly important for early advances in vibrational spectroscopy. However,
it is an extensive approximation of the real molecular oscillator. Firstly, the shape of
the potential is fixed as a quadratic function. This is well-reflected in Fig. 5.6, as seen
in three-dimensional space (Fig. 5.6a, b) as well as in one-dimensional projections
respective to each of the modes (Fig. 5.6c, d). In this example, the true potential
along the symmetric stretching mode of H2O is asymmetric with respect to the equi-
librium position (i.e., anharmonic) and resembles a Morse-like curve (Fig. 5.6c).
This type of anharmonic potential is well-known, as it is often discussed in case
of diatomic molecular oscillators (Fig. 5.4). Unlike the harmonic solution, the true
vibrational levels are not equidistant. Morse-like anharmonicity (high contribution
from the cubic terms in Eq. 5.1) leads to a subsequent reduction of the energy gaps
between consecutive levels. However, the potential of the antisymmetric stretching
mode ofH2O, although symmetric in shape, also deviates from the harmonic potential
(Fig. 5.6d). This is due to significant contribution in the quartic terms in Eq. 5.1. The
quartic anharmonicity leads to widened distances between consecutive vibrational
levels.

Nevertheless, with some exceptions, e.g., of X–H stretchingmodes, inmany cases
the deviation between the harmonic approximation and the true molecular oscillator
is relatively moderate. Consequently, in case of fundamental transitions, harmonic
frequencies corresponding to those vibrations remain overestimated but not dramat-
ically. This effect can be mitigated by an empirical correction, applied a posteriori
in the form of a scaling of harmonic frequencies. Hence, the calculation of harmonic
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normal modes provides an effective route to enable approximate computational IR
andRaman spectroscopy. However, in themajority of cases, this approach is too error
prone to provide a reasonable prediction of overtones. In addition, the fundamental
point of the harmonic approximation, the additive nature of the harmonic potential,
does not take the coupling between individual modes into account, as reflected by
the assumed zero cross-derivatives, or anharmonic force constants in Eq. 5.1. This
fact leads to a critical limitation of the harmonic approximation, being its inability
to describe combination transitions, rendering it inapplicable to NIR spectroscopy.

5.5 Beyond the Harmonic Approximation

5.5.1 Anharmonic Approaches Formulated on the Basis
of the Harmonic Approximation

For the reasons explained above, the harmonic approximation is unsuitable for the
calculation of NIR transitions. The inclusion of anharmonic effects to vibrational
structure theorymaybe treated in an analogousway as electron correlation is included
into the theory of the electronic structure. Accordingly, vibrational self-consistent
field (VSCF) is the most straightforward anharmonic approach and an analogy to
HF theory. The VSCF method is based on the concept that for each vibrational state
k of the oscillator, the wavefunction � is separable into a product of single-mode
(harmonic) wavefunctions φk

i (Eq. 5.11), or a Hartree product.

�k(q1, . . . , qn) =
n∏

i

φk
i (qi) (5.11)

Through this, the multidimensional vibrational Schrodinger equation for the
molecular oscillator in mass-weighted coordinates q1,…, qn (Eq. 5.11) is given as:

[
−1

2

n∑

i=1

∂2

∂q2i
+ V (q1, . . . , qn)

]
�n(q1, . . . , qn) = En�n(q1, . . . , qn) (5.12)

which leads to a set of one-dimensional (single-mode) equations (Eq. 5.13)

[
−1

2

∂2

∂q2i
+ V̄ (n)

i (qi)

]
�

(n)
i (qi) = ε

(n)
i �

(n)
i (qi) (5.13)

To fulfill the condition of separability, an effective potential V̄ (n)
i has to be intro-

duced, through which the modes are coupled in form of a mean-field. It implies
that there is no explicit mode–mode correlation, which is the major simplification in
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the VSCF concept. In other words, the potential for each normal mode is averaged
over all other normal modes. Interestingly, the accuracy of the basic VSCF method
increases relatively with the system size, as the average treatment of mode couplings
applies better to extensively multidimensional (i.e., multimodal) systems.

To reduce the complexity of the problem further, a truncated pair-wise represen-
tation of the potential may be applied (Eq. 5.14)

V (q1, . . . , qn) =
n∑

i=1

V diag
i (qi) +

∑

i

∑

j>1

W coup
ij

(
qi, qj

)
(5.14)

This way, the potential is approximated by a sum of single-mode potentials and
interactions W coup

ij between pairs of normal modes. Pair-wise potentials neglect
contributions from any higher-order couplings (triplets, quartets, etc.).

Since the treatment of mode coupling in the basic VSCF scheme is approximated,
no explicit correlations between modes is considered. As long as the coupling is
relatively small, its impact may be evaluated more accurately through the addition of
a correction by means of second-order perturbation theory. This leads to the VSCF-
PT2 approach sometimes also called correlation-corrected VSCF, CC-VSCF. In this
variant, the correction to the energy Ecorr

k results from a potential V pert
k defined as

a small perturbation to the effective potential. Accordingly, the VSCF-PT2 ansatz
leads to a perturbed VSCF Hamiltonian (Eq. 5.15)

H = H SCF,(n) + �V (q1, . . . , qn) (5.15)

and the associated correlation-corrected energy (Eq. 5.16)

EVSCF−PT2
n = EVSCF

n +
∑

m�=n

∣∣∣
∏n

i=1 �
(n)
i (qi)|�V | ∏n

i=1 �
(m)
i (qi)

∣∣∣
2

E(0)
n − E(0)

m

(5.16)

denotes for n-th state coupling with all other m-states of the oscillator.
Energy corrections obtained through higher-order levels of perturbation theory

return no meaningful improvements. The VSCF-PT2 method yields more accurate
vibrational energies, however, at a sizeable increase in its computational complexity.
Moreover, it is prone to behave erroneously in the case of nearly degenerated states
(i.e., with similar energies; E(0)

n − E(0)
m ≈ 0); thus, it is not applicable to strongly

coupled modes.
A more advanced concept of including explicit mode correlations into the VSCF

wavefunction has been formulated in the formof vibrational configuration interaction
(VCI) theory. Per analogiam to the HF scheme, the VSCF solution yields a number
of unoccupied virtual ‘excited’ modals. In a CI-like approach, the VSCF modals can
be linearly combined to yield a correlated vibrational wavefunction. In an alternative
approach, instead of a linear one, an exponential expansion using a cluster operator
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is proposed, leading to the vibrational coupled-cluster (VCC) scheme. VCI/VCC
wavefunctions provide very good approximations to the exact vibrational wavefunc-
tion, and at the level of theory are not limited to any particular systems (such as
those with weakly coupled modes). These approaches are capable of yielding very
accurate results; however, they are extremely costly in their application to multi-
modal systems, and thus not suitable for spectroscopic studies of even moderate
sized chemical systems.

On the other hand, vibrational perturbation theory (VPTn) adopts the Møller–
Plesset formalism of n-th order (e.g., second-order perturbation leading to VPT2)
to re-introduce the anharmonic terms in Eq. 5.1 as a perturbation to the (harmonic)
vibrational Hamiltonian. The VPT ansatz separates the anharmonic contributions in
the vibrational Hamiltonian H (Eq. 5.17) into a set of individual terms (Eqs. 5.18–
5.20).

H = H (0) + H (1) + H (2) (5.17)

H (0) = 1

2

∑
ωi

(
p2i + q2i

)
(5.18)

H (1) = 1

6

∑
φijkqiqjqk (5.19)

H (2) = 1

24

∑
φijklqiqjqkql +

∑

τ=x,y,z

Bτ
e ζ

τ
ij ζ

τ
kl

(
ωjωl

ωiωk

)
qipjqkpl (5.20)

withH (0) being the harmonic Hamiltonian. The first-order HamiltonianH (1) includes
the cubic anharmonic terms, while the second-order Hamiltonian H (2) the quartic
terms.

Unlike in the VSCF-PT2 scheme, in which a perturbative correction is added to
the VSCF Hamiltonian, the VPT2 ansatz operates on a harmonic Hamiltonian and
a perturbative treatment is inserted at the lower level of the vibrational structure
theory. Compared with the VSCF approach, VPT2 calculations typically require a
lower number of potential evaluations to achieve a comparable accuracy. Hence, in
practical implementations, the VPT2 approachmay bemore efficient. However, in its
original formulation, this method is highly unreliable in treating nearly degenerated
modes. The number of degeneracies rapidly increases for larger molecules, which
makes VPT2 unsuitable for the description of such systems. With aim of providing a
universal methodology, the ‘deperturbed’ VPT2 (DVPT2) ansatz was formulated, in
which the terms describing nearly degenerated states are removed entirely from the
calculation. Thus, the DVPT2 energies have a more approximate character, but are
not likely to be affected by large errors. Further development of this concept led to
its generalized variant GVPT2, in which the removed terms are re-evaluated using
a variational approach. In principle, the GVPT2 method is applicable to any system
regardless of its size, while maintaining a favorable cost versus accuracy ratio.
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5.5.2 Grid-Based Approaches

Implementations of VSCF or VPT2 theory are constructed for an efficient treatment
of moderately anharmonic modes. The relatively low number of energy evaluations,
and the approximate probing of the vibrational potential yield high efficiency of
these approaches. However, the amount of anharmonicity they effectively capture
is limited. In order to predict the vibrational energy eigenstates with high accuracy,
solving the time-independent Schrödinger as given in Eq. 5.21 for a one-dimensional
problem yields a nearly exact solution of the vibrational problem for an accurately
evaluated potential.

∂2�(q)

∂q2
=

{
2m

�2
· (
V (q) − E

)}
�(q) = f (q) · �(q) (5.21)

Here, � denotes the vibrational wavefunction along the respective normal coor-
dinate q, whilem and � are the reduced mass of the vibrational mode and the reduced
Planck constant, respectively. Typically, the potential V (q) is provided on an equi-
spaced grid with step length �q, and E denotes the associated energy eigenvalue.
The solution to Eq. 5.21 can be obtained by means of grid-based approaches such as
discrete variable representation (DVR) and Numerov’s method. The latter is based
on a Taylor series of �(q) expanded around the point q of the normal coordinate
with �(n) representing the n-th derivative of the wavefunction with respect to �q:

�(q + �q) = � + 1

1! ‖�q‖�(1) + 1

2! ‖�q‖2�(2) + 1

3! ‖�q‖3�(3) + 1

4! ‖�q‖4�(4) + · · ·
(5.22)

Summation of the Taylor expansion in forward and backward direction (i.e.,±�q)
leads to the cancellation of all odd, and the doubling of all even entries. Next, higher-
order derivatives (i.e.,�(n) withn=4, 6, 8,…) are expressedvia their associatedfinite
differences employing the appropriate number of grid points V (±m · �q) to achieve
the desired accuracy. In the simplest case, the time-independent Schrödinger equation
can be expressed via a three-point expression employing the two neighboring grid
points ±1 · �q of any given point on the equispaced grid (labeled as �−1,�0, �+1

for convenience)

− �
2

2m
· �−1 − 2�0 + �+1

‖�q‖2 + V−1�−1 + 10V0�0 + V+1�+1

12

≈ E · �−1 + 10�0 + �+1

12
(5.23)

Initial implementations of Numerov’s approach employ an iterative process based
on an initial guess in the energy eigenvalue E and are sometimes referred to as
shooting methods. However, modern approaches assure Dirichlet boundary condi-
tions (i.e., the wavefunction outside the considered interval is zero) which enables the
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implementation of Numerov’s approach in the form of a matrix eigenvalue problem.
Accordingly, using the matricesA and B as well as the diagonal matrixV, containing
V (q) as elements, the solution can be written as

(
− �

2

2m
A + BV

)
� ≈ BE� (5.24)

Rearrangement of Eq. 5.24 leads to the matrix representation of the time-
independent Schrödinger equation H� = E�, with

H = − �
2

2m
B−1A + V (5.25)

Eigen decomposition ofH simultaneously yields all energy eigenvalues along the
diagonal of the energy matrix E, and the associated eigenvectors are collected in �.
As the key advantage, these grid-based approaches do not require any assumption
or pre-defined building blocks (e.g., basis sets) to formulate the wavefunction �.
These approaches are not limited to questions in vibrational spectroscopy and similar
methods have also been employed in the description of quantum tunnelling and the
electronic structure of atoms and small molecular systems.

The method can be extended to arbitrary orders in the numerical derivatives by
truncating the Taylor series of higher degree (e.g.,A and Bmatrices with seven diag-
onal entries would require a Taylor series of eight degree). To predict IR intensities,
the transition moment integralμmn, consisting of the respective wavefunctions of the
two involved states �m and �n, as well as the transition moment operator μ̂(q), has
to be calculated.

μmn = ∞∫
−∞

�mμ̂�ndτ (5.26)

In case of infrared spectroscopy, μ̂(q) equals the dipole momentμ as a function of
themolecule’s normal coordinates q,making infraredmeasurements especially sensi-
tive on polar function. The transition dipole moment is then employed to calculate
the associated oscillator strength f mn

fmn = 4πme

3e2�
‖μmn‖2νmn (5.27)

where me denotes the electron mass, e the elementary charge, and vmn the transition
energy between the two statesm and n. Typically, the oscillator strength is normalized
to that of the fundamental mode.

Within the 1D formalism, grid-based methods are capable of inherently taking
arbitrary anharmonicities into account. However, the main benefit lies in the general-
ization of the grid-based methods to higher dimensions, which enables the inclusion
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of intermode coupling contributions in addition to the adequate treatment of anhar-
monic effects. Especially when combined with sparse matrix algebra routines and
advanced interpolation techniques to reduce the associated computational effort, grid-
based methods are capable of delivering a highly accurate description of complex
quantum mechanical systems.

5.6 Applications of Anharmonic Approaches in NIR
Spectroscopy

Applications of VSCF theory in investigations of mid-infrared (MIR) spectra are
reasonably popular in literature [12], yet relatively few examples aimed at the NIR
region can be found. Although even the basicVSCF approach is capable of predicting
up to third-order overtones and combination bands, it seems that an improved descrip-
tion of mode correlations (e.g., by means of PT2-VSCF, or VCI) is often necessary
to yield a qualitatively correct prediction of NIR modes [13]. These approaches
frequently prove to be prohibitively expensive for treating larger molecules, although
examples exist of successful applications of the PT2-VSCF approach to molecules
counting ca. 15 atoms (e.g., malic acid), when certain approximations are assumed
(e.g., the application of a quartic force field, QFF) [13]. The anharmonic frame-
works featuring a robust treatment of mode correlations (i.e., VSCF-VCI, VCC) are
far more expensive. The applicability of these methods may improve in the future,
however.

The primary advantage of the DVPT2-GVPT2 approach is efficiency and appli-
cability to molecules that are in the center of attention of applied NIR spec-
troscopy. Additionally, the GVPT2 framework fully mitigates the typical short-
coming of perturbation theory being prone to produce meaningless description of
tightly coupled modes that becomes increasingly probable upon an increase of the
system size. Therefore, this framework finds a remarkably widening application area
in solving spectroscopic problems. A good example is a recent investigation of the
NIR spectroscopic properties of melamine [14]. This compound is of key interest to
analytical NIR spectroscopy in the context of food quality control. However, as in
many other cases, the NIR spectrum of melamine remained shallowly understood
before. Spectra calculations bymeans of the DVPT2 andGVPT2methods performed
at B3LYP-GD3BJ/SNST level were able to accurately reconstruct all essential NIR
absorption bands of melamine (Fig. 5.7). This yielded detailed and unambiguous
band assignments for the compound, enhancing the ability to interpret the essen-
tial features of the multivariate models used for analyzing melamine content. It is
noteworthy that at the same time, an interesting comparison was made. The present
implementation of GVPT2 includes the ability to predict three quanta transitions
(i.e., second overtones, ternary combination bands). The appearance of such bands
in the experimentalNIR spectrumofmelamine could be directly assessed.As demon-
strated in Fig. 5.7, this improves the interpretability of minor bands. However, the
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Fig. 5.7 Experimental diffuse reflectance NIR spectrum of polycrystalline melamine compared
to the calculated spectra (DVPT2 and GVPT2 at B3LYP-GD3BJ/SNST level) in the regions
a 7150–5750 cm−1, and b 5400–4000 cm−1. Reproduced from Ref. [14] under Creative Commons
Attribution 4.0 International (CC BY 4.0)

spectrum of melamine in 7500–4000 cm−1 region is for the most part decided by
two quanta transitions (i.e., first overtones and binary combinations).

Grid-based methods offer a nearly exact solution of the vibrational problem well
exemplified in the case of the simplest molecular oscillator, a diatomicmolecule such
asHCl in gas phase. Figure 5.4 shows the associated interaction energyobtained using
the accurate yet comparably expensive CCSD(T) method (i.e., coupled cluster with
single, double, and perturbative triples) in conjunctionwith a large one-electron basis
(augmented correlation consistent polarization valence quadruple zeta basis set, aug-
cc-pVQZ). This bonding potential has been scanned in tight intervals of 0.005 Å in
the region near the equilibrium distance req = 1.278 Å. The Morse-like character of
the bond showing a steep increase in the potential at low distances is clearly visible,
which is lost when the harmonic approximation is applied to the region near req
(dashed line in Fig. 5.4). Solving the vibrational Schrödinger equation (in this case
using Numerov’s approach) yields the vibrational wavefunctions and the associated
energy eigenvalues. The respective differences between the eigenvalue of a particular
excited state and the ground state correspond to the frequencymeasured in vibrational
spectroscopy (see Table 5.2). It can be seen from the experimental values that the
spacing between the energy levels is decreasing, which is adequately described when
taking anharmonicity into account. The harmonic approximation on the other hand
is known to perform poorly for the fundamental excitation in many cases and is
effectively useless when aiming at the associated overtone vibrations. In case of a
diatomicmolecule, the inclusion of rotational coupling is comparably simple and can
be realized by taking the changes in the moment of inertia of the molecule upon bond
stretching into account. As can be seen from Table 5.2, this contribution referred to
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Table 5.2 Vibrational wave numbers of the fundamental and four lowest overtones of HCl(g) in
cm−1 obtained at CCSD(T)/aug-cc-pVQZ level via the harmonic approximation and the Numerov
treatment (grid spacing 0.005 A) with and without the rotational Watson potential, respectively. It
can be seen that an explicit inclusion of anharmonic effects to the vibrational excitations is vital to
obtain reliable estimates for higher excitations. Rotational coupling on the other hand only plays a
minor role in this example

Transition Harmonic Numerov Numerov–Watson Experimentala

0 → 1 2990.2 2885.4 2885.5 2885.9

0 → 2 5980.3 5667.6 5667.7 5668.0

0 → 3 8970.5 8347.1 8347.3 8347.0

0 → 4 11960.6 10924.1 10924.4 10923.1

0 → 5 14950.8 13398.9 13399.2 13396.5

aRef. [4], p. 193

as Watson potential has only a minor influence on the vibrational wave numbers in
the case of HCl(g).

Grid-based approaches yield highly accurate solutions of the vibrational problem,
but presently their applicability to larger molecules is limited because of their exces-
sive cost. However, for studies of such systems, they remain effective in selective
treatments of a particular mode of interest (one-dimensional grid). For example, in
several cases, these methods have been used for an accurate prediction of the OH
stretching overtone band [15, 16]. This strong band is highly sensitive to the chemical
environment and is an important spectral feature frequently investigated byNIR spec-
troscopy (refer to the Chapter NIR spectroscopy in physical chemistry). Therefore,
accurate calculations of the frequency and intensity is essential, e.g., for obtaining
detailed insights into solvent effects [15]. On the other hand, grid-based methods
may be used to improve theoretical NIR spectra obtained with different methods.
Although in principle, the VPT2 approach is applicable to Morse-like potentials, in
some cases, it provides unreliable results. For instance, the 2v(OH) peak delivers
a relatively easily accessible information on the conformational state of hydroxyl
bearing molecules. In the case of cyclohexanol, it consists of two components due to
the two major conformers. The wavenumber difference �v between these compo-
nents was found to be 27 cm−1 in the experimental spectrum. A recent study reported
a strongly underestimated VPT2 frequency for the major conformer, resulting in the
splitting of the predicted peak (�vVPT2 = 260 cm−1). However, the application of a
grid-based approach yielded a much more reliable value of 30 cm−1 [16].

Further, grid-based methods are applicable universally, including low-lying
torsional modes that are typically challenging for generalized methods (e.g., VSCF,
VPT2). The highest potential for future advances is associated with multidimen-
sional grid-based approaches covering full vibrational configuration of the system.
Presently, state-of-the-art enables treatment of triatomic linear molecules (e.g., CO2,
BeH2, HCN), which requires a four-dimensional grid [17]. In such case, the entirety
of mode coupling is explicitly included and the predicted frequencies deviate by less
than1%fromexperimental data [17]. Feasible implementation of higher-dimensional
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grid-based approaches should enable nearly exact prediction of NIR spectra of more
complex molecules, which will form an essential progress in our understanding of
NIR spectroscopy.

5.7 Summary and Future Prospects

Practical applications of themethods of quantumchemistry inNIR spectroscopy have
mostly been limited by their computational cost. In the recent decade, a remark-
able rise in practical applications of theoretical calculations in NIR spectroscopy
was observed. This resulted from the development of quantum-based approaches
and their implementation, as well as from the progress in technology resulting in a
continuous increase in computational capacities. This allows for the anticipation of
further advances in the forthcoming years, and a twofold development can presently
be witnessed in this field. Firstly, studies of NIR spectra of increasingly complex
systems are becoming feasible. This opens new opportunities, as the complexity of
NIR spectra tends to scale steeply with the system size, and their interpretability
by conventional spectroscopic methods is limited. Secondly, highly accurate grid-
based methods are capable of yielding nearly exact results. At the moment, compu-
tational complexity of grid-based methods limits their applicability to few-atom
systems. Nevertheless, they form an essential aid at the moment, as the established
‘universal’ anharmonic frameworks (e.g., VSCF, VPT2) have primarily been formu-
lated with efficiency in mind. This could only be achieved through various approx-
imations affecting their robustness and accuracy. Grid-based methods demonstrate
their usefulness in directly correcting VPT2 results for a few selected modes of
interest; this even applies for seemingly manageable modes such as OH stretching
vibrations. As the primary factors limiting the applicability of computational chem-
istry in NIR spectroscopy are consistently challenged, a general conclusion may be
drawn that in the next decade a markedly rapid expansion of NIR studies utilizing
methods of quantum chemistry will be observed.
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Chapter 6
Two-Dimensional Correlation
Spectroscopy

Mirosław A. Czarnecki and Shigeaki Morita

Abstract Two-dimensional (2D) correlation spectroscopy is a well-established
method for analysis of perturbation-induced spectral changes in various kinds of
data.Due to selective correlation of the peaks and resolution enhancement, it provides
useful information on the dynamics of spectral changes and enables more reliable
band assignments. The generalized 2D correlation approach permits to apply various
kinds of perturbations and makes possible for correlation between data obtained
from different experiments (hetero-correlation). At the beginning of this chapter are
shown the basic principles of 2D correlation spectroscopy together with the rules
for interpretation of the synchronous and asynchronous spectra. Next, we report
new developments in this method like sample–sample correlation spectroscopy and
perturbation–correlation moving-window 2D correlation spectroscopy. Finally, are
shown selected examples of successful applications of 2D correlation spectroscopy
for study of interactions and molecular structure.

Keywords 2D correlation spectroscopy · Sample–sample correlation
spectroscopy · Perturbation-correlation moving-window 2D correlation
spectroscopy · Applications of 2D correlation NIR spectroscopy

6.1 Introduction

Two-dimensional (2D) correlation spectroscopy was introduced to vibrational spec-
troscopy by Isao Noda in 1986 [1]. In its original form, this method was dedicated to
small-amplitude periodic perturbations, and hence, the area of its applications was
limited—mainly to polymer studies [2, 3]. A breakthrough has started in 1993 after
development of the generalized two-dimensional correlation spectroscopy (2DCOS)

M. A. Czarnecki (B)
Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
e-mail: miroslaw.czarnecki@chem.uni.wroc.pl

S. Morita
Faculty of Engineering, Osaka Electro-Communication University, Neyagawa, Japan
e-mail: smorita@isc.osakac.ac.jp

© Springer Nature Singapore Pte Ltd. 2021
Y. Ozaki et al. (eds.), Near-Infrared Spectroscopy,
https://doi.org/10.1007/978-981-15-8648-4_6

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8648-4_6&domain=pdf
mailto:miroslaw.czarnecki@chem.uni.wroc.pl
mailto:smorita@isc.osakac.ac.jp
https://doi.org/10.1007/978-981-15-8648-4_6


112 M. A. Czarnecki and S. Morita

[4]. This new approach allows to accept any kind of perturbations and permits the
hetero-correlations between the data obtained from different methods, such as MIR-
NIR, MIR-Raman, UV-MIR and so on. In this way, the generalized 2D correlation
analysis has begun a powerful and versatile tool for analysis of spectral data from
various experiments [5]. This approach appears to be particularly useful in near-
infrared (NIR) region sinceNIR spectra are very complex due to overlap of numerous
overtones and combination bands [6, 7]. In addition, 2DCOS spectroscopy solves
the problem of multicollinearity by independent correlation of variables.

The idea behind 2DCOS is very simple and is displayed in Fig. 6.1. The sample is
subjected to external perturbation, which generates the specific changes at a molec-
ular level. These changes can be monitored by any kind of electromagnetic radia-
tion, including NIR. As a result, the measurements provide a series of perturbation-
dependent spectra. From the single spectra y(ν, t), a perturbation-ordered data matrix
is assembled:

Fig. 6.1 General scheme of
2D correlation spectroscopy

Sample

Elec tromagnetic radiation

(IR, NIR, Raman, UV,...)

Perturbation

-mechanical

-electrical

-chemical

-optica l

-magnetic

-thermal

-...

Dynamic spectrum

y( ,t)

2D correlation analysis

2D correlation spectrum
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⎡
⎢⎢⎢⎢⎢⎣

y(ν1, t1) y(ν2, t1) · · · y(νm, t1)
y(ν1, t2) y(ν2, t2) · · · y(νm, t2)
y(ν1, t3) y(ν2, t3) · · · y(νm, t3)

· · · · · · · · · · · ·
y(ν1, tn) y(ν2, tn) · · · y(νm, tn)

⎤
⎥⎥⎥⎥⎥⎦

(6.1)

where ν means wavenumber (or the other units), t is the value of perturbation, n is
the number of spectra and m is the number of data points in the spectrum. Usually,
this matrix is row-oriented; in the other case, one has to transpose the data. Prior to
2D correlation analysis, the perturbation-ordered data matrix is converted into the
dynamic spectrum (ỹ) by subtraction of the reference spectrum (ŷ):

ỹ(ν, t) =
{
y(ν, t) − ŷ(ν) for tmin ≤ t ≤ tmax
0 otherwise

(6.2)

In principle, one can select an arbitrary reference spectrum, but usually, a
perturbation-average spectrum is used as a reference:

ŷ(ν) = 1

n
·

n∑
i=1

y(ν, ti ) (6.3)

The proper selection of reference spectrum appreciably simplifies synchronous
and asynchronous contour plots, since the peaks are developed only at the positions
where intensity changes occur. This means that if the applied perturbation does not
induce the spectral changes at given position, this peak does not appear in the corre-
lation spectrum. 2D correlation analysis yields synchronous (�) and asynchronous
(�) spectra, which are a product of two or three matrices:

�
(
νi , ν j

) = 1

n − 1
ỹ(νi , t)

T · ỹ(ν j , t
)

(6.4)

�
(
νi , ν j

) = 1

n − 1
ỹ(νi , t)

T · M · ỹ(ν j , t
)

(6.5)

where M is Hilbert–Noda transformation matrix [8]:

Mi, j =
{

0 if i = j
1

π ·( j−i) otherwise
(6.6)

The specific information obtained from 2DCOS primarily depends on the sample
properties, kind of external perturbation and the electromagnetic probe. The perturba-
tion should stimulate the sample and generate specific variations of physicochemical
properties at a molecular level. These variations may result from changes of time,
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sample composition, temperature, pressure, pH and so on. Each kind of perturba-
tion yields unique information about studied system. It is also important to apply an
appropriate probe to successfully monitor the perturbation-induced changes in the
studied system.

As mentioned before, the generalized 2DCOS permits for hetero-correlation of
two unlike types of data; however, both data sets have to be recorded under the
same perturbation values. If ỹ and ũ are the dynamic spectra from two different
experiments, then the synchronous and asynchronous hetero-correlation spectra are
expressed:

�
(
νi , μ j

) = 1

n − 1
ỹ(νi , t)

T · ũ(
μ j , t

)
(6.7)

�
(
νi , μ j

) = 1

n − 1
ỹ(νi , t)

T · M · ũ(
μ j , t

)
(6.8)

The properties of the synchronous and asynchronous spectra were explained by
using the simulated spectra (Fig. 6.2). A data series consist of 11 spectra and each
spectrum includes five peaks. The arrows point the direction of intensity changes.
Figure 6.3 shows the corresponding synchronous and asynchronous spectra. As can
be seen, the synchronous spectrum includes both the diagonal and cross-peaks.
The diagonal peaks are always positive and represent the overall extent of inten-
sity changes at individual wavenumbers. The cross-peaks are positive or negative
and yield information on similarities of spectral changes at two different wavenum-
bers (ν1, ν2). The synchronous cross-peaks are positive if the spectral changes at
ν1 and ν2 are in the same direction (both increasing or both decreasing) (Fig. 6.3a).
The negative sign means the opposite. Such positive synchronous cross-correlation
suggests that the changes at ν1 and ν2 originate from the same molecular fragment
or two different fragments strongly interacting. In contrast, the asynchronous spec-
trum includes only the cross-peaks and yields information on differences of spectral

Fig. 6.2 A series of 11
simulated spectra. Each
spectrum includes five peaks
approximated by a product of
Gauss and Lorentz function.
The initial intensities were 1
and the final were 1.2
(5000 cm−1), 0.8
(5500 cm−1), 1 (6000 cm−1),
1.1 (6500 cm−1) and 0.9
(7000 cm−1). The arrows
show direction of the
changes
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Fig. 6.3 Synchronous and
asynchronous spectra
obtained from the spectra
shown in Fig. 6.2

changes at ν1 and ν2 (Fig. 6.3b). The presence of the asynchronous peak at (ν1, ν2)
evidences that the spectral changes at ν1 and ν2 occur at different rate or are shifted
in-phase. This way, one can differentiate the spectral responses from various compo-
nents of the sample. This is an important feature of 2DCOS, which allows for the
resolution enhancement. Irrespective of the separation, the peaks are resolved in the
asynchronous spectrum as long as their spectral responses follow different pattern.
To easy interpretation of 2D asynchronous contour plots, one can multiply the asyn-
chronous intensity at (ν1, ν2) by the sign of the synchronous intensity at the same
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coordinate. Hence, the presence of the positive asynchronous peak at (ν1, ν2) means
that the spectral changes at ν1 occur earlier/faster than those at ν2. The negative sign
of the asynchronous peak means the opposite behavior. Selective correlation of the
peaks in 2DCOS spectra allows for establishing of the origin of the peaks and easy
the band assignment. Particularly useful are hetero-correlation spectra, which show
the selective correlation between known and unknown spectral features.

The rules for interpretation of 2DCOS spectra are straightforward [4, 5]; however,
correct interpretation of the real-world data is not always easy. Firstly, an application
of the external perturbation is often accompanied by side effects. To obtain a ‘net’
information on the effect of interest, at first, one has to remove these side effects. The
procedure, which removes these side effects depends on their specific nature, but in
many cases, the normalization of the spectra significantly improves the quality of 2D
contour plots [9]. Secondly, 2DCOS spectra, particularly the asynchronous ones, are
very sensitive to noise, baseline fluctuation and other distortions. Besides, interpreta-
tion of 2DCOS spectra is complicated by band position and/or width variations. All
these effects may generate artifacts in the synchronous and asynchronous spectra.
Therefore, the systematic studies were undertaken to recognize and eliminate (where
possible) these effects from 2D correlation spectra [10–13].

Sometimes, the spectral changes of interest are obscured by the noise, baseline
fluctuation or the other effects. The proper pretreatment of the experimental spectra
may significantly improve the quantity and quantity of the information obtained from
2DCOS [7, 9, 10]. An extensive baseline fluctuation generates long streaks observed
in the synchronous and asynchronous contour plots. In many cases, a simple offset
of the spectra at selected reference point can significantly reduce this effect [7].
Sometimes are necessary more advanced corrections by using polynomial functions.
In an extreme case, one can use the second derivative spectra, instead of the original
data, for the analysis [12]. The high level of noise will produce a lot of artifacts,
especially in the asynchronous spectrum. The most popular methods of smoothing
are based onSavitzky–Golay algorithm. Themore advancedmethods employ Fourier
or wavelet filtering, or principal component analysis (PCA). Also, normalization of
the spectra is often used as a pretreatment method. This way, one can eliminate the
effects of varying concentration, temperature, pressure or sample thickness on the
2DCOS spectra [9].

2D correlation spectroscopy offers a significant simplification of the complexNIR
spectra. However, the most important advantage of using 2DCOS in NIR region is
the ability of resolving of highly overlapped peaks. Besides, selective correlation
between MIR (or Raman) and NIR spectra allows for reliable band assignment in
NIR region and obtain information on the molecular structure and interactions [6, 7].
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6.2 New Developments in Two-Dimensional Correlation
Spectroscopy

6.2.1 Sample–Sample Correlation Spectroscopy

For the last two decades or so, several new ideas regarding 2DCOS have been
proposed such as sample–sample (SS), moving-window two-dimensional (MW2D)
and perturbation-correlation moving-window two-dimensional (PCMW2D). Here,
SS,MW2Dand PCMW2Dmethodswill be outlined. The first idea of sample–sample
correlation, i.e., opposite to conventional variable–variable correlation,was proposed
by Zimba [14], and this idea was subsequently refined by Šašić et al. [15, 16]. As
given in Eq. (4), the conventional synchronous 2D correlation spectrum �

(
νi , ν j

)
is

calculated as a covariance matrix of y(ν, t). The synchronous sample–sample corre-
lation (�SS) is given as a covariance matrix of transposed y(ν, t) matrix, and the
asynchronous sample–sample correlation (�SS) is calculated as:

�SS(tk, tl) = 1

m − 1
ỹ(ν, tk) · ỹ(ν, tl)

T (6.9)

ΨSS(tk, tl) = 1

m − 1
ỹ(ν, tk) · M · ỹ(ν, tl)

T (6.10)

Figure 6.4 shows temperature-dependent diffuse reflectanceNIR spectra ofmicro-
crystalline cellulose (MCC) and their second derivative spectra [17]. Figure 6.5 repre-
sents synchronous sample–sample 2D correlation spectrum constructed from the
second derivative spectra shown in Fig. 6.4b. In the case of conventional 2D correla-
tion spectra (not shown), correlation maps are spread between two spectral variable

Fig. 6.4 Temperature-
dependent diffuse reflectance
NIR spectra of
microcrystalline cellulose
(MCC) (a) and their second
derivative spectra (b)
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Fig. 6.5 Synchronous
sample–sample 2D
correlation map constructed
from the second derivative
spectra shown in Fig. 6.4

axes, e.g., wavenumber–wavenumber axes. In contrast, in the case of sample–sample
correlation, 2D correlation maps are spread between two sample variable axes, e.g.,
temperature–temperature axes, as shown in Fig. 6.5. Therefore, some informative
sample points are visually identified in the 2D correlation maps by this method.

6.2.2 Perturbation-Correlation Moving-Window
Two-Dimensional (PCMW2D) Correlation
Spectroscopy

Thomas and Richardson proposed the first idea of MW2D correlation spectroscopy
[18]. For a set of obtained spectra y(ν, t), jth window of submatrix consisting of 2w
+ 1 spectra yj(ν, tJ ) is considered, where j and J are the index of window and that
of a spectrum within the window, respectively. The MW2D correlation spectrum is
obtained by incrementally sliding thewindowposition along the perturbation variable
direction from j = 1 + w to n−w, where n is the number of spectra in y(ν, t), and
calculating

�A, j
(
ν, t j

) = 1

2w

j+w∑
J= j−w

ỹ2j (ν, tJ ) (6.11)

This is an auto-correlation spectrum or variance spectrum calculated using the 2w
+ 1 spectra in the window. Morita et al. [19] reported that the MW2D correlation
intensities are proportional to a squared perturbation derivative, i.e.,

�A(ν, t) ∼
[
∂y(ν, t)

∂t

]2

(6.12)
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Another type of moving-window technique, PCMW2D correlation spectroscopy,
was proposed by Morita et al. [20] In this case, both synchronous and asynchronous
correlation spectra were calculated as

	�, j = 1

2w

j+w∑
J= j−w

ỹ(ν, tJ ) · t̃J (6.13)

	�, j = 1

2w

j+w∑
J= j−w

ỹ(ν, tJ ) ·
j+w∑

K= j−w

MJK · t̃K (6.14)

where t̃ and M are dynamic perturbation and Hilbert–Noda transformation matrix,
respectively. As similar toMW2D correlation spectroscopy, following relations were
found by Morita et al.

	�(ν, t) ∼
[
∂y(ν, t)

∂t

]

ν

(6.15)

	�(ν, t) ∼ −
[
∂2y(ν, t)

∂t2

]

ν

(6.16)

i.e., synchronous and asynchronous PCMW2D correlation intensities are propor-
tional to a perturbation derivative and the opposite sign of a perturbation second
derivative [20]. In the case of linear perturbation, therefore, synchronous and asyn-
chronous PCMW2D correlation intensities are proportional to a gradient and a curva-
ture of the spectral intensity variations along the perturbation direction, respectively
[20].

Figure 6.6 shows synchronous PCMW2D correlation map constructed from the
temperature-dependentNIR spectra ofMCCshown inFig. 6.4a. Positive andnegative
correlation intensities in the map represent increase and decrease of the spectral
intensities along the temperature direction, respectively. A slice spectrum at 90 °C is
also plotted in the figure. A positive correlation peak located at 6961 cm−1 is reported
to be intermediate hydrogen bonds in MCC [17].

6.3 Applications of Two-Dimensional Correlation NIR
Spectroscopy

The simplicity in obtaining of 2D correlation spectra resulted in a fast development
of this approach. In a short time, a number of successful applications of 2DCOS to
various fields of chemistry were reported. In 1996, Noda et al. published the first
application of 2DCOS in NIR region (2DCOS-NIR) to study self-association of
oleyl alcohol in the liquid phase [21]. Due to the resolution enhancement, a number
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Fig. 6.6 Synchronous
PCMW2D correlation map
constructed from the
temperature-dependent NIR
spectra shown in Fig. 6.4.
Positive and negative
correlation intensities are
colored by red and blue,
respectively

of new peaks, not seen in the raw spectra, were resolved. The selective correlation of
the peaks allowed proposing the molecular mechanism of the temperature-induced
changes in hydrogenbonding for neat oleyl alcohol. Introduction of 2DCOSapproach
to NIR region inspired a number of interesting studies on various kinds of samples.
The first applications were devoted to studies of hydrogen bonding in pure liquids
like alcohols, water, NMA or fatty acids. A next important step was an application of
2DCOS-NIR to more complex systems including water solutions of proteins. These
studies were focused mainly on examination of the secondary structure of proteins
as a function of temperature, concentration or pH. An important area of employing
of 2DCOS-NIR is polymer studies, with particular attention paid on the exploration
of the structural response of the hydrogen bonds and hydrocarbon chains during
heating, as well as stress-induced molecular chain deformation. Numerous works
have been devoted to 2DCOS-NIR examination of the structure and interactions in
binary mixtures of aqueous solutions of organic solvents like alcohols, NMA diols,
aminoaclohols and diamines. Most of these studies have been recently reviewed
[5–7]; hence, we focus our attention on new works.

Kwaśniewicz and Czarnecki explored the spectra–structure correlations in MIR
and NIR regions [22, 23]. The authors applied 2DCOS and chemometric methods
for analysis of ATR-IR, Raman and NIR spectra of eight n-alkanes and seven 1-
chloroalkanes in the liquid phase [22]. In both cases, the chain length variation was
used as a perturbation. As can be seen (Fig. 6.7), the overtones of the CH stretching
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Fig. 6.7 Asynchronous 2D
correlation spectrum
constructed from NIR
spectra of n-alkanes. In red
and blue are drawn the
positive and negative peaks,
respectively. (Reprinted from
Ref. [22] with permission
from Elsevier)

bands (near 5800 and 5900 cm−1) show characteristic pairs of the peaks close to
the diagonal. Owing to resolution enhancement in the asynchronous spectrum, for
the first time, the contributions from the terminal and midchain methylene groups
were observed in the spectra of liquid n-alkanes and 1-chloroalkanes. The same
authors examined the effect of chain length on MIR and NIR spectra of aliphatic
1-alcohols from methanol to 1-decanol [23]. A negative correlation between the first
overtone of the hydrogen-bonded OH (near 6300 cm−1) and the second overtone of
the methylene group (near 8225 cm−1) (Fig. 6.8) reveals that the intensity changes
for these two groups are in the opposite direction. Hence, an application of 2DCOS
approach provides direct evidence that the degree of self-association of liquid 1-
alcohols decreases with the chain length increase. It is worth to mention that the

Fig. 6.8 Synchronous
2DCOS-NIR spectra of
1-alcohols from 1-butanol to
1-decanol. In red and blue
are drawn the positive and
negative peaks, respectively
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asynchronous contour plots made possible to identify the peaks from the terminal
CH2 next to OH and the peaks from the midchain CH2.

A lot of efforts were undertaken for examination of microheterogenity in binary
mixtures [24–27]. 2DCOS-NIR studies on propyl alcohols/water mixtures reveal
the separation at a molecular level and the presence of homoclusters of water and
alcohol existing in equilibrium with the mixed clusters (heteroclusters) [24]. The
presence of these clusters is responsible for macroscopic structure of the mixtures
and leads to anomalous physicochemical properties. In the water-poor region, the
molecules of alcohols are in the same environment as those in the pure liquid alco-
hols, while the molecules of water are dispersed in the organic phase. When the
water content increases, the molecules of water form clusters interacting with the
OH groups of the alcohols. These results clearly show that the degree of microhetero-
geneity in alcohol/water mixtures is closely related to the extent of self-association
of the alcohol.

Interestingly, similar conclusion was obtained from 2DCOS-NIR and chemo-
metric studies of binary mixtures of methanol with short-chain aliphatic alcohols
[25]. The degree of deviation from the idealmixture is correlatedwith the chain length
and the order of the alcohol. For most of the mixtures, the largest deviation from the
ideality appears at equimolar mixture. The heteroclusters were observed in the whole
range of mole fractions, while the homoclusters occur above a certain concentration
limit. It is interestingly to note that the homoclusters of both components are similar
as those observed in neat liquids.

In spite of similar structure and properties of methanol and its deuterated deriva-
tive, CH3OH/CD3OH mixture also deviates from the ideal mixture [26]. The extent
of this deviation is much smaller as compared with the mixtures of unlike alcohols
[25], and it results mainly from the difference between the CH3 and CD3 groups. It is
of note that the contribution to heterogeneity from the OH groups is relatively small.
The CH3OH/CD3OH mixture is composed of the homoclusters of both alcohols and
the mixed clusters. The homoclusters in the mixture are similar to those present in
neat alcohols. The highest population of the heteroclusters and the largest deviation
from the ideal mixture appears at equimolar mixture.

2DCOS-NIR and chemometric study on microheterogeneity in binary mixtures
of aliphatic and aromatic hydrocarbons has shown that even relatively weak inter-
actions like π-π or differences in molecular shapes may give rise to deviation from
the ideality [27]. The extent of these deviations is small for aromatic/aromatic
or aliphatic/aliphatic mixtures and increases for aromatic/aliphatic mixtures. The
shape of molecules has a significant effect on the extent of deviation from the ideal
mixture. If both components of the mixture have similar shapes (linear or cyclic), the
molecules with the same probability form the homo- and heteroclusters, otherwise,
increases the tendency for formation of the homoclusters. Since the homoclusters
of both components resemble those in neat liquids, one can conclude that deviation
from the ideal mixture is due to presence of the heteroclusters. Interesting infor-
mation provides 2D correlation moving-window spectrum. Figure 6.9 displays the
composition-dependent moving-window spectrum of n-hexane/benzene mixture. It
is of note that the spectral changes from the aromatic and aliphatic parts are clearly
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Fig. 6.9 A composition-average (a) and moving-window (b) spectrum for n-hexane/benzene
mixture. Intensities in the 6500–9000 cm−1 range were enlarged to appear in this scale (Reprinted
from Ref. [27] with permission from Elsevier)

separated. The maximum of spectral changes for n-hexane appears at mole fraction
of benzene smaller than 0.3, while the largest changes for benzene are observed
for mole fraction from 0.3 to 0.5. The differences observed in the mowing-window
spectra are nicely confirmed in the asynchronous spectra (Fig. 6.10). The spectrum
develop the peaks between the overtones from the aliphatic and aromatic components
of the mixture.

Shinzawa and Mizukado examined hydrogen/deuterium (H/D) exchange of gela-
tinized starch by using 2DCOS-NIR [28]. The time-dependent spectra reveal a series
of subtle changes, which were resolved in the asynchronous contour plots. As shown,
during the isotopic substitution, the exchange rate becomes different depending on
solvent accessibility of various parts of the molecule. This way, it is possible to
explore the local structure and dynamics of the sample. Zhou et al. have studied
interactions in C2H5OH/CH3CNbinarymixture by usingNIR andMIR spectroscopy
[29]. The data were converted to the excess absorption spectra and then analyzed by
2DCOS. The resolution enhancement in the excess and 2DCOS spectra permitted
to identify a series of species including dimers, trimers and multimers of ethanol as
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Fig. 6.10 Asynchronous 2D
correlation spectrum
constructed from NIR
spectra of n-hexane/benzene
mixture. In red and blue are
drawn the positive and
negative peaks, respectively

well as C2H5OH-CH3CN complex. As shown, the dissociation of ethanol multimers
is correlated with an increase in the concentration of acetonitrile. At mole fraction
of XCH3CN = 0.7, all multimers of ethanol are dissociated. Chang et al. applied
2DCOS-NIR to investigate combination bands of water perturbed by the presence
of four different inorganic acids including: HCl, H2SO4, H3PO4 and HNO3 [30].
Analysis of the concentration-dependent 2DCOS contour plots evidenced that each
of these acids has a different effect on NIR spectra of water.

Due to the resolution enhancement and selective correlation of various peaks,
2DCOS spectroscopy is a powerful tool for analysis of complex NIR spectra. The
proper data pretreatment can substantially reduce the noise or baseline fluctuations
and provide more reliable results. Sometimes, it is necessary to perform the normal-
ization of the experimental data before application of 2D correlation analysis. Since
publication of the principles of the generalized 2D correlation spectroscopy by Isao
Noda in 1993, numerous modifications of this method were reported. These new
developments extend the usefulness of the generalized 2DCOS and opens new possi-
bilities of the spectral analysis. Among them, themost popular is themoving-window
analysis, which provides the information on the dynamic changes in very simple and
straightforward form. Similarly like chemometrics, 2DCOS prefers large data sets,
especially for examination of complex processes. Nowadays, 2D correlation anal-
ysis is a routine tool for the spectral analysis, and its codes are included in the
spectroscopic software.
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Chapter 7
NIR Data Exploration and Regression
by Chemometrics—A Primer

Klavs Martin Sørensen, Frans van den Berg, and Søren Balling Engelsen

Abstract This chapter is a primer on the use of multivariate data analysis—or
chemometrics—to near-infrared spectra. The extraordinary synergy between near-
infrared spectroscopy and the data analysis methods called chemometrics has led
to a green analytical revolution in practically all areas of life sciences and related
industries for quality control and processmonitoring. The near-infrared spectroscopy
method is nondestructive, rapid and environmentally friendly. However, the most
unique advantage of near-infrared spectroscopy is that it can measure samples
remotely and unbiased, as is, i.e., solids and liquids without interfering with the
sample or sample preparation. The success of near-infrared spectroscopy would not
have been possible without the chemometric data processing. This chapter gives
an overview, including tricks of the trade, of the most common chemometric tech-
niques for analysis of near-infrared spectral ensembles illustrated by downloadable
data examples.
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7.1 Introduction

All models are wrong, but some are useful
—George Edward Pelham Box, British statistician

The revolutionary progression of near-infrared (NIR) spectroscopy has evolved
hand-in-hand with the development of the personal computer, which is essential
for the comprehensive data analysis of NIR spectra. If the PC had not been devel-
oped, NIR spectroscopy as a widespread analytical discipline would probably not
exist today. As evident from previous chapters, NIR spectra contain no baseline-
separated peaks that can be integrated and quantified, but rather deeply convoluted
and strongly overlapped spectral features. Retrieving information fromsuch signals is
a demanding numerical exercise. This can however bemanagedwell by the computer,
and together the NIR spectrometer and the PC have revolutionized quality control in
practically all areas of primary food and feed production in the form of ultra-rapid,
noninvasive, remote and chemical-free analysis (Fig. 7.1).

The remarkable potentials of NIR spectroscopy (NIRS) were discovered and
demonstrated by pioneers such as Karl Norris, Phil Williams and Harald Martens,
and multiple books, chapters and reviews have been written on the multivariate data

Remote sensing by
NIR spectroscopySample preparation

for chemical analysis

Invasive
Destructive
Slow
Use chemicals
Univariate Remote

Non-destructive
Rapid
Chemical-free
Multivariate

5.13

Fig. 7.1 Advantages of usingNIR spectroscopy for analysis.Multivariate analysis of spectroscopic
data provides a change from the traditional univariate, chemical measurement, where systems can
be observed nondestructively and provide a much broader and holistic description—a complete
fingerprint Adapted from Engelsen [1]
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analysis of NIR spectra [2–4]. While many of these are indeed excellent, many
newcomers are understandably overwhelmed by the amount of equations and abun-
dance of methodologies, guidelines and recommendations. To assist beginners in
multivariate analysis of NIR data, this chapter instead takes the form of a pragmatic
step-by-step tutorial for multivariate analysis of ensembles of NIR spectra obtained
on similar classes of samples.

In classical empirical research, a model requires that the number of variables
must be less than or equal to the number of observations. In spectroscopy, this would
correspond to the number of intensities measured at individual wavelengths and
number of samples. If these samples are measured by NIR spectroscopy, such as
in a conventional quality control analysis setup, at least 1000 spectral variables are
recorded. A typical dataset of 100 samples will thus have the dimensions 100 ×
1000, incompatiblewith traditional empiricalmodels, but effectively dealt with using
chemometrics, which can handle collinear data structures with many more variables
than samples.

The trick in chemometrics is the reduction of the complex dataset into a limited set
of latent (or principal) variables, which in turn can be used to model (unsupervised)
and visualize class belonging, identify outliers, suggest trends, etc. If response vari-
ablesmeasured by another referencemethod are available aswell, the latent structures
can be used for supervised regression modeling and prediction. In general, chemo-
metrics assumes additivity of underlying components (in spectroscopic terms called
Lambert–Beer law) and bilinear relations between the spectra (X) and response
variables (y). Within this framework of the “straight-line tyranny,” we generally
decompose the spectral datasets as follows:

X = A · BT + E (7.1)

where X (n x m) is a set of n sample spectra x of length m:

X =
⎡
⎢⎣

x1,1 · · · x1,m
...

. . .
...

xn,1 · · · xn,m

⎤
⎥⎦ (7.2)

and A (n x f ) and B (m x f ) contain f latent variables (see Fig. 7.2).
A, with typically f « n and m, then contains the contributions (or pseudo-

concentrations) of the hidden latent phenomenonmodeled byB.E contains the resid-
uals or unexplained information (in a least squares sense). Appearing some 40 years
ago on the scientific scene [5], chemometrics has established itself as an indisputable
effective and valuable multivariate data analysis toolset, extensively used in spec-
troscopic applications to extract information from data that would otherwise remain
hidden for classical univariate methods. It exploits the multivariate advantage, while
at the same time facilitating noise reduction and allowing for outlier removal.

Before going into deeper facets of chemometrics, we will briefly introduce the
datasets that will be used throughout this chapter to illustrate the different algorithms.
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Fig. 7.2 Factor analysis of an ensample ofNIR spectra. Themeasured spectraX,with nobservations
on m wavelengths (m variables), are factored into f latent variables, consisting of concentration
scores A and chemical profile loadings B. The number of latent variables, f, is chosen so that
the factored components A·BT only contain the “relevant information” or systematic part of the
data, and the remaining noise is summarized into the residual matrix E. Superscript T means the
transposed matrix

7.1.1 Dataset 1: Degree of Esterification in Pectins

Dataset 1 consists of NIR spectra recorded on powder samples, which stem from
different pectin extractions, including a pure polygalacturonan polymer (Fig. 7.3).
The samples are expected to be of slightly different purities and slightly different
particle sizes [6]. For demonstration purposes, the set is divided into two: A
containing only seven samples with very extreme degrees of esterification (%DE;
range 0–93%) and B including the remaining 25 samples with a much more narrow
span (60.1–68.8%DE).

Dispersive NIR data were collected using a NIRSystems Inc. (model 6500) spec-
trophotometer. The instrument uses a split detector systemwith a silicon (Si) element
between 400 and 1100 nm and a lead sulfide detector from 1100 to 2500 nm. The
angle of incident light was 180°, and reflectance was measured at 45°. The NIR/VIS
reflection spectra were recorded using a rotating sample cup with a quartz window,
and spectral data were converted to log

(
1
/

R
)
units. In this chapter, we use only the

NIR spectral range 1100–2500 nm (collecting every 2 nm interval), giving as dimen-
sions 7 samples × 700 wavelengths (set A) and 25 samples × 700 wavelengths (set
B). The dataset is available for download at http://food.ku.dk/foodomics.

7.1.2 Dataset 2: Glucose, Fructose and Sucrose Powder
Mixture Design

This is a spectral ensemble in which we have mixed sucrose and its two monomers
fructose and glucose in a three-component powder mixture design. Each compound

http://food.ku.dk/foodomics
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Fig. 7.3 NIR spectra of Dataset 1. The spectra—a representative subset—are colored according
to the degree of esterification. Most significant is the peak at 2244 nm originating from the ester
groups

is varied at 21 levels (5% w/w steps), and when mixed in a three-component mixture
design, this results in n = 231 powder blends, all measured by NIR spectroscopy
(Fig. 7.4). No attempts were made to homogenize the particle size of the three
powders. Data were recorded on a spectrometer identical to the one used in Dataset
1, resulting in amatrixX of dimensions 231 samples× 700wavelengths. The dataset
is available for download at http://food.ku.dk/foodomics.

7.1.3 Dataset 3: Authenticity of Gum Arabic

A total of 260 gum arabic samples were selected from a large industrial collection
provided by the Toms Group A/S (Ballerup, Denmark). The set is composed of the
two Acacia species: Acacia senegal (L.) (n = 19), which is considered to be the best
in quality, due to its low quantity of tannins, and comprises the majority of global
trade, and Acacia seyal (n = 7), which produces a lower grade of gum arabic. The
two grades differ in price by a factor of ten, and trained specialist can distinguish
the good from the bad form when evaluating the raw material called “tears.” For
practical purposes, they are traded in the form of freeze-dried powder and a rapid
authentication method is required. For each of the 26 selected gum arabic samples,

http://food.ku.dk/foodomics
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Fig. 7.4 NIR spectra of Dataset 2. The spectra are colored according to the glucose contents, one
of the three factors in the experimental design

10 subsamples were prepared by randomly taking approximately 15 g of the non-
uniform gum arabic tears and ground into a fine powder with a coffee grinder mill
[7].

NIR spectra of the n = 260 samples (Fig. 7.5)were recorded in randomorder using
a QFA Flex Fourier transform spectrometer (Q-Interline A/S, Roskilde, Denmark)
equipped with a reflectance kinetic powder sampler that rotates a vial with the gum
arabic powder over the instrument window. Spectra were recorded in the range from
1100 to 2500 nm using an InGa detector with a 16 cm−1 resolution and 512 scans
averaged. The spectra were converted to log

(
1
/

R
)
units using a PFTE filled vial

as a background reference, measured every hour of the experiment using the same
instrumental conditions. The result is a NIRS dataset of the dimensions 260 samples
× 700 wavelengths. The dataset is available for download at http://food.ku.dk/foo
domics.

7.1.4 Dataset 4: Single-Seed NIR Spectra

A subset of NIR spectra of single wheat kernels (n = 264) were taken from a larger
experiment spanning four different field trials in Denmark and Germany [8]. Single-
kernel NIR transmittance spectra (Fig. 7.6) were collected on an Infratec 1255 Food
and Feed Analyzer (Tecator AB, Höganäs, Sweden). Each kernel was placed in a

http://food.ku.dk/foodomics
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Fig. 7.5 NIR spectra of Dataset 3. The 260 spectra of gum arabic samples—190 spectra of Acacia
senegal (red lines) and 70 spectra of Acacia seyal (blue lines)
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Fig. 7.6 NIR spectra of Dataset 4. The single-seed spectra have been colored according to the seed
protein content
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single-seed sample cassette, and transmittance spectra were recorded in the range
850–1050 nm in 2 nm steps. A tungsten lamp (50 W) and a diffraction grating were
used to create monochromatic light. The light passed through the kernel, reaching
the silicon detector. The time required for scanning (single scans) 23 single kernels
in the cassette was about 90s. The dataset is available for download at http://food.
ku.dk/foodomics.

The dataset is assembled from 7 specimens of 5 kernel varieties. Each of these 35
seeds has been measured in two alternative orientations in the carrousel—with the
germ facing either up or down—each with four alternative positions (front, left, back
and right); the different measurements are made by four times stopping the carrousel
and manually changing the same 35 kernels. The dataset composition can thus be
written as (in total, 280 NIR samples):

varieties (5) × individuals (7) × positions (4) × orientations (2) (7.3)

Unfortunately, 6 kernel samples were measured using a faulty carousel well and
we thus have only 264 samples.After recording the spectra of the intactwheat kernels,
each one was crushed, and the single kernel protein content was determined directly
by a modified Kjeldahl method [9].

7.2 Spectral Inspection and Pre-processing

Before any spectral exploration, regression or classification, it is of
fundamental importance to visualize and understand the quantitative
aspects of the recorded spectra

NIR spectra consist of a complex superimposition of linear concentration effects
and several different nonlinear contributions such as intermolecular interactions, light
scattering by particles, surfaces and phase transitions. In theory, these are highly
complex phenomena, but in practice they can be removed by simple pre-processing
techniques.

A necessary and implicit pre-processing step for spectral data, automatically
applied in most spectrometer software, is the linearization of chemical concentration
in the measured spectra to absorbance through application of the Lambert–Beer law
on the amount of light transmitted through the sample:

Aλ = −log10(Tλ) = ελ · l · c (7.4)

whereAλ is the absorbance atwavelengthλ,Tλ is ratio of light transmitted through the
sample (a.k.a. transmittance) at wavelength λ, ελ is the wavelength-dependent molar
absorptivity for the chemical constituent of interest, l is the effective path length of

http://food.ku.dk/foodomics
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the light through the sample matrix and c is the concentration of the constituent of
interest. It is further assumed that the absorption from multiple analytes is additive,
which is a fundamental conjecture in applying chemometrics to spectral ensembles.
For a sample with several chemical species each defined by a concentration cs and a
molecular absorptivity ελs:

Aλ = A1 + A2 + · · · + An = l(ελ1c1 + ελ2c2 + · · · + ελscs) (7.5)

In order to apply the Lambert–Beer law in Eq. 7.4, it is necessary to include
a blank or empty sample in the experiment, providing a background signal which
is used as a reference to all other measurements [10]. Thus, Lambert–Beer can be
reformulated as:

A = − log10(T ) = − log10

(
I

I0

)
(7.6)

where I is the light observed as passed through the sample and I0 is the background
or blank sample.

However, most NIR applications are made in diffuse reflectance mode and
Lambert–Beer is only valid for pure transmittance systems with no optical arti-
facts. For reflectance measurements, the reflectance R is defined—in analogy to
Lambert–Beer law for transmittance—as:

R ∼= − log10

(
IR

IR0

)
(7.7)

where, as previously, IR is the incident light of the sample (the reflected light) and IR0

the light emitted by the spectrometer using the “perfect reflector” such as Spectralon.
When working with NIRS data, one of the most essential provisions for a

successful application of chemometrics is the pre-processing of the spectral data.
Data modification by pre-processing is introduced in order to augment the linear
relationship between the apparent absorbance or reflectance and the concentration
of the analytes. In other words, the purpose of pre-processing is to eliminate arti-
facts and nonlinearities from the spectral data before the actual modeling phase. A
great number of techniques have been proposed, addressing many distinct influences
from physical, chemical or mechanical sources [11]. The idea is that the spectra,
before modeling, should contain only additive chemical information that follow the
Lambert–Beer law.

In reflectance mode, the NIR electromagnetic radiation that is reflected by the
samples will be influenced by the true absorption plus some “apparent absorption,”
which is primarily due to scattering of light by small particles, bubbles, surface rough-
ness, droplets, crystalline defects,micro-organelles, cells, fibers, density fluctuations,
etc. For NIR, two scattering phenomena are relevant: Rayleigh scattering, which
is strongly wavelength-dependent (~λ−4) and occurs, when the particles are much
smaller in diameter than the wavelength of the electromagnetic radiation (<λ/10),



136 K. M. Sørensen et al.

and Lorentz–Mie scattering which is predominant when the particle sizes are larger
than the wavelength.

There exists a forest of pre-processing techniques for NIR spectra to alleviate
errors introduced by scattering. They can be roughly divided into two groups: scatter
correction methods and spectral derivatives. In this chapter, we will only briefly
introduce themultiplicative scatter correction (MSC)method [12, 13] and the second-
derivative spectra. For almost any practical application inwhich the need is to analyze
less than a few hundred NIR spectra, these two pre-processing methods are fit for
purpose. Selection of more advanced spectral pre-processing methods to optimize
the quantitative results is generally not advisable unless many more sample spectra
and expert domain knowledge are present.

Before considering pre-processing, it is always worthwhile to do a simple visual
inspection of the data. The aim should be to inspect the spectral variations and
to observe if there exist faulty measurements or if parts of the spectral region are
noisy/saturated and no sample information is to be expected. In both cases, such
spectral data (or spectral ranges) should be removed prior to the application of
pre-processing and chemometrics since they might deteriorate the result. When
applied correctly, NIR spectroscopy is a very robust measurement technique and
faulty measurements thus rarely occur. Typically, it will be the results of the
occasional poor sample presentation. Noisy variables, on the other hand, are a
frequent phenomenon in NIR spectroscopy, when the sample is absorbing too
strong, which often occurs in the long-wavelength NIR region, where the molar
extinction coefficients (molecular absorptivity) are high.

In addition, some spectrometers introduce artifacts in the spectra that might be
hard to spot without a visual inspection of the data. This includes cutting or trun-
cating absorbance values above a certain threshold (typically 3 absorbance units and
above) or detector overload resulting in strange reporting values. Such phenomena
are typically seen in samples containing high amounts of water, where the OH infor-
mation can be very distorted, unless great care is taken. These artifacts are poison for
most pre-processing techniques and must be addressed before any other handling of
the data.

The spectral region covered by NIR spectrometers is a pragmatic compromise
between opticalmaterials (e.g., quartz), light sources (e.g., halogen bulb) and detector

Fig. 7.7 The NIR scatter-absorption valley in the electromagnetic spectrum. Toward longer wave-
lengths, the absorption becomes prohibitive for transmission, and toward shorter wavelengths
particle and molecular scatter becomes prohibitive for efficient measurements of chemistry
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Fig. 7.8 Removal of bad
(noisy) region. Including bad
variables in any subsequent
analysis will not serve any
purpose and in worst cases
lead to deterioration of the
multivariate models.
(© Newlin & Engelsen)

principles (e.g., InGaAs). ThewholeNIR region is situated in a sweet spot in the elec-
tromagnetic spectrum, where both the molecular absorption and the scatter intensity
are relatively low ([1] Fig. 7.7). However, different applications may require infor-
mation from different subregions in the NIR spectral region and if for example the
long-wavelength region is too strongly absorbing (noisy with no or too few photons
reaching the detector) it should be removed prior to further analysis (Fig. 7.8).

Depending on the distribution of particle and microstructure sizes and density,
scatter is perhaps the strongest effect that needs to be removed from the NIR signal.
The scattering effect can be both frequency-dependent (proportional to λ−4 for
Rayleigh scattering) and dependent on particle size and/or shape (Mie–Lorentz scat-
tering). An example of scattering of data recorded on crystalline sugar powders is
shown in Fig. 7.9. As the granular size changes, the spectra show offsets for the
longer wavelengths, resulting in large deviations in the apparent absorption. Note
that the samples have exactly the same chemistry—only the crystal size is different.
If extreme variations, like the ones observed in Fig. 7.9, are observed in an NIR
spectral ensemble, the pre-processing is likely to fail. But if the scatter variations are
of a lesser magnitude, the pre-processing will often be able to eliminate the apparent
differences in absorption.

7.2.1 Multiplicative Scatter Correction (MSC)

The multiplicative scatter correction (MSC) method was introduced by Martens and
coworkers [12, 13], and together with the standard normal variate (SNV)method [14]
it is themostwidely appliedNIRpre-processing technique.MSC removes frequency-
linear imperfections, both additive and multiplicative, by fitting a first-order function
between the recorded spectra xorg and a reference spectrum xref of the form:

xorg = b0 + b1 · xref + e (7.8)



138 K. M. Sørensen et al.

400 1000 1500 2000 2500

Wavelength [nm]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lo
g(

1/
R)

Amorph
Fine
Coarse

Fig. 7.9 NIR spectra of sucrose. The same chemistry (sucrose) measured as large sucrose crys-
tals (coarse), downsized crystalline sucrose (fine) and amorphous sucrose (amorph). The graph
shows clearly that the different crystal sizes have a big influence on the spectral shape

where b0 provides the additive part and b1 the frequency-dependent multiplicative
part. In most applications, the reference spectrum xref is the mean spectra of all
samples in the data ensemble. A scatter-corrected spectrum xcorr is thus calculated
from xorg as:

xcorr = xorg − b0
b1

(7.9)

The interpretation of the scalar parameters is illustrated in Fig. 7.10. It is important
to note that the MSC is recommended to be calculated only from those regions in
the spectra, which do not contain the analyte-relevant variation (i.e., excluding the
“curly regions” in Fig. 7.10). Thus, use the regions that are only influenced by the
scatter to calculate the transform and then apply the transform to the entire spectrum.
Unfortunately, this important feature has been forgotten inmost, if not all, commercial
software where MSC is calculated and applied to the full spectrum.

The result of the MSC procedure is thus a set of scatter-corrected spectra plus
two new variables for each spectrum: b0 and b1. It is not a common practice to
include the two new variables in the subsequent data analysis, mainly because it is
not well supported by commercial software. However, there is a risk of “throwing
the baby out with the bathwater” as the two new variables may contain important
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information about the scatter and thus about the physics of the samples. Discarding
the coefficients thus eliminates information from the subsequent analysis.

The MSC method has been expanded into the extended multiplicative scatter
correction (EMSC) method [15, 16] by introducing a second-order polynomial fitted
to the reference spectrum, fitting of a baseline or, optionally, fitting of reference
spectra of known analyte to target specific wavelength regions of interest. The EMSC
method can in limited cases lead to slightly improved pre-processing, but will not
be discussed further here. Finally, it should be mentioned here that the MSC method
has the previously mentioned sibling SNV transformation, which has wide spread
use and will yield very similar results for most practical applications [11]. SNV is
performed by reducing the spectra with its ownmean value and normalizing it to unit
variation—similar to the autoscaling procedure for variables, but across the sample
direction rather than the variable direction. It has the advantage, like the derivative
pre-processing, that it can be applied to individual samples. This is in contrast to the
MSC that needs a dataset-common reference, typically the mean spectrum.
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7.2.2 Spectral (Second) Derivatives

The classical method to eliminate spectral offsets (additive effects) and slopes (multi-
plicative effects) is to calculate derivatives. The first-order derivative is calculated as
the difference between two subsequent spectral variables; the second-order deriva-
tive is then calculated by calculating the difference between two successive points
of the first-order derivative spectra:

x′
m = xm − xm−1

x′′
m = x′

m − x′
m−1 = xm − 2xm + xm−2 (7.10)

The second derivate of a spectrum will have two implications: (a) The additive
effect will be eliminated by the first derivative, and (b) the multiplicative effect will
be eliminated by second derivative. This is illustrated in Fig. 7.11 for a double peak
of two individual analytes.

The derivative approach to pre-processing has the advantage that it can be calcu-
lated independent for each sample—no other information is needed. The disadvan-
tage of second-derivative spectra is that the spectral appearance is changed and that
the peaks in the raw spectra are now turning downward. It is therefore a commonprac-
tice tomultiply the second derivativewith−1 for visual inspection.More problematic
is however the numerical calculation of the derivative on real-world, imperfect data
with a significant level of noise. This noise, perhaps even causing discontinuous
signal transitions, would cause considerable noise inflation in the smooth strongly
overlapped spectral features of NIR when derivatized.

One way to avoid noise inflation is to use Savitzky–Golay [17] derivatization.
In this method, a polynomial is fitted symmetrically around w neighboring points
of data for each data point in the spectra. This produces a smoothed version of the
spectra, which makes the subsequent derivation much less prone to noise artifacts.
The width of the moving smoothing window and the order of the polynomial fitted

A

A BA B

dA
/d

A BA B

d2 A
 /d

2

A BA B

2nd derivativeOriginal 1st derivative

Fig. 7.11 Effect of calculating spectral derivatives. For the first derivative, the blue and black
signals have become identical (the constant offset has been removed). The multiplicative effect in
the red signal is seen as a constant offset in the first derivative. As a second derivative, the three
signals become identical, and all spectral artifacts have been eliminated
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in this window must be decided prior to analysis. It can be shown that the highest
derivative that can be calculated is equal to the polynomial order incurred with the
smoothing.

7.2.3 Application of Pre-processing to NIR Spectra

There is no simple answer to the question “which pre-processing method (and what
configuration) suits a given data type.” It will all depend on the data, data collection
and purpose of the analysis. However, the primary target of pre-processing is clear:
a linearization of the spectra to match the Lambert–Beer law.

To demonstrate this, Dataset 1 is used. Beforehand, it is known that the primary
information about the degree of esterification (%DE) is located at 2244 nm. In
Fig. 7.12, the effect of pre-processing can be observed via colors and by correlating
the reflectance at 2244 nm to the known degree of esterification. In the raw spectra
(A), the colors and the sequence of spectra relating to the %DE appear random and
the correlation between the reflectance at 2244 nm and %DE is weak (R2 = 0.67, B).

In Fig. 7.12b, the spectra have been pre-processed by MSC, and immediately
we observe that the sequence of the spectra is now sorted according to %DE and
the correlation between the reflectance of 2244 nm and the %DE now is improved
considerably (R2 = 0.95). Similarly, in Fig. 7.12c in which the spectra have been
pre-processed by second derivatives, we observe that the correlation between the
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Fig. 7.12 Quantitative effect of pre-processing. Selected spectra fromDataset 1 are shown as a raw,
bMSC processed spectra and c spectral derivatives. The lower figures show the correlation between
the reflectance at 2244 nm and the degree of esterification
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reflectance at 2244 nm and the degree of esterification %DE is nearly perfect (R2 =
0.99) albeit in opposite direction (second-derivative points peak downward).

When the pre-processing has been decided and when regression is the target, it is
often useful (but not so often supported by software packages) to plot a covarygram.
This is simply a plot of the correlation of the response value (%DE in Dataset 1) for
each spectral variable.

Figure 7.13 shows such a covarygram made on the MSC transformed spectra. It
immediately visualized that one dominant spectral variable, namely 2244 nm, has a
correlation coefficient of 1.0 to the reference variable %DE. The figure also shows
that large parts of the NIR spectrum contain data that are uncorrelated to the %DE
and therefore can (in principle) be excluded in a multivariate regression model. This
will be further discussed in the variable selection subchapter.

As computers are getting faster and chemometric software packages more and
more complete, most if not all, relevant pre-processing methods will be present in
the software packages. It is sometimes even a possibility to test many alternative
pre-processing methods in an automated way and optimize the desired classification
or regression performance.
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Fig. 7.13 Correlation (R) between all NIR variables and the response function (covarygram). The
covarygram shows the correlations between each spectral variable (wavelength) and the response
function, the %DE of Dataset 1
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7.2.4 Outro

The pre-processing methods mentioned here, and sometimes a larger selection of
additional methods, are always included in chemometric software. However, great
care must be taken in the selection of pre-processing methods and especially when
they are used to optimize quantitative results. No matter how elaborate the portfolio
of methods, the NIR spectroscopists time is typically much better spent in getting
familiar with the spectral data and target variables (plotting spectra with intelligent
use of colors, generating ratio plots, covarygrams, etc.) than by spending time inves-
tigating more complex pre-processing procedures. It has been estimated that the
maximum regression improvement of any pre-processed model when compared to
the global model is approximately 25% in RMSE. This is hardly what makes the
difference in multivariate feasibility studies, and it is thus recommendable to select
pre-processing in order to achieve parsimonious, interpretable models [11].

7.3 Unscrambling Spectral Mixtures by Self-Modeling
Multivariate Curve Resolution (MCR)

Ideally, we want to resolve complex mixture spectra into contributions
of pure analyte spectra (S) weighted by their concentrations (C):

X = C · ST + E

If several analytes with varying concentrations are present in a mixture, the pure
spectra and the associated relative concentrations can be estimated under certain
conditions. The method used is called self-modeling curve resolution [18] or just
multivariate curve resolution (MCR) [19].

The MCR model attempts to approximate the variation in the data, X, with a
bilinear model of two factor matrices. MCR fits f components simultaneously into
a set of concentration profiles C (n × f ) and pure spectral profiles S (m × f ):

X = C · ST + E (7.11)

under the least squares constraint:

minC,S

∑
n,m

∥∥∥∥∥∥
Xn,m −

F∑
f =1

Cn,f STm,f

∥∥∥∥∥∥
(7.12)
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The matrix E contains the spectral variation that could not be explained by the
model (e.g., noise and unsystematic structure/interferences).

Equation 7.12 can be solved using alternating least squares (ALS) [20] in which
both concentration profiles (C) and pure spectral profiles (S) are optimized simulta-
neously in an iterative manner. The value of f must be determined before starting the
algorithm, but very often the correct choice is not known for real systems. Several
procedures have been suggested to solve this issue. Most of them are based on the
principle that there are as many components as linearly independent elements (e.g.,
chemical constituents) in the X matrix (practical rank of the matrix). A very useful
method is to get the eigenvectors and eigenvalues of the X matrix by performing a
singular value decomposition (SVD) on the cross product XT ·X. The chemical rank
can be expressed as the number of eigenvalues higher than eigenvalues associated
with the noise level. Also, the shape of the eigenvector (or length m corresponding
to the spectral length) can be useful to estimate the correct number of absorbing
components. When the number of components f has been decided, the ALS goes as
follows.

It is straightforward to estimate C if you already know S. It will be equivalent to
estimating the concentrations when you know the pure spectra:

C = X · S · (
ST · S)−1

(7.13)

The ALS solution needs to be initialized with a random or a sensible first estimate.
This can be found if there is prior knowledge on the system, e.g., pure spectra of
some of the components. Accordingly, MCR-ALS is often initiated by guessing the
pure spectra S and then calculates an estimate of the concentrationsC. This estimate
of C can now be used to improve the estimate of the pure spectra S:

ST = (
CT · C)−1 · CT · XT (7.14)

By alternating between Eqs. 7.13 and 7.14 until convergence, at least a local solu-
tion to the problem Eq. 7.11 can be obtained. The ALS optimization has converged,
when the model improvement between consecutive iterations is below a certain
threshold value (typically less than a tolerance of 10–12).

The strength of MCR-ALS is its capacity to resolve the pure underlying spectra
and obtain their relative concentrations. However, the challengewithMCR-ALS is its
dependence of the initial guess of S or C, its slow convergence and its indeterminacy
in the solution [21].Ambiguities in general render theMCRmodelsmore inconsistent
and dependent of initial guesses of the spectral profiles. In many cases, the solution
of ALS-MCR will reach a local minimum and not the global minimum. Imposing
constraints to the MCR solution can help in decreasing the risk of local minima and
“false” solutions. Common constraints employed in MCR are nonnegativity, uni-
modality (i.e. peak has only a single highest value), closure (e.g., all components
add up to 100%), equality (e.g., two components are equal in concentration) and
selectivity (e.g., some variables carry only information about one analyte) [21]. In
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most works concerning spectroscopy, a nonnegativity constraint in the spectral mode
(S) and in the concentration mode (C) is employed to guide the algorithm, i.e.,
using the knowledge that the NIR spectra only have positive absorbances and that
the concentrations can only be positive. Detailed description of other constraints,
limitations and other aspects of MCR is discussed in the literature [19].

Even in the absence of error, three indeterminacies exist for the MCR solution
[22]: (i) Permutation indeterminacy—there is no defined order of the components in
C and S and no sequential calculation of the components. This is aminor bookkeeping
problem, which should be solved when, for example, repeating the model in cross-
validation scenarios (see validation section 7.6). (ii) Intensity indeterminacy—two
identical spectra, but scaled differently, will provide the same model fit since the
concentrations will be adjusted accordingly. This provides two different solutions.
The problem is easily solved by normalizing the spectral profiles to have the norm
1 or by constraining the concentrations to add up to 1 (closure constraint). (iii)
Rotational indeterminacy—similarly to the intensity indeterminacy, a rotation of the
concentration profiles and consequently of the spectral profiles can in some cases
reproduce the original data with the same fit quality. The closure constraint will not
help solving this problem, but nonnegativity constraint on both concentrations and
spectra will reduce the solution space considerably, often sufficiently to finding the
correct solution.

Even with constraints, MCR does not always provide a unique solution, and the
result will sometimes depend on the initial guess of C or S; therefore, only specialized
chemometric software packages include the MCR. However, by repeating the MCR
model with many different, random initial guesses and subsequently analyzing the
solution space, it is possible to find a unique global solution.

The number of components in the MCRmodel can be validated by inspecting the
explained variation as a function of the number of MCR components (f ) in the same
way as the number of components in other chemometric algorithms is validated (see
validation section 7.6). However, due to the ambiguity in the solution space theMCR
results should always be validated by a priori knowledge about the chemical system
being investigated. Spectral pre-processing that is focused on “cleaning” the spectra
from scatter and artifacts will normally be an advantage, while other operations such
as centering and autoscaling will “destroy” the pure spectral information sought and
thus the MCR model.

7.3.1 Application of MCR to NIR Spectra

MCR is in general best suited for relative simple and well-behaving systems. It has
nevertheless been applied to numerous NIRS applications such as whey powder [23],
protein denaturation [24], edible oils [25], porcine fat tissue [26], process analytical
technology [27] and many more studies.

Figure 7.14 shows the result of a 3-component MCRmodel fitted to the Dataset 2.
Figure 7.14a shows the concentration matrix C from the MCR model plotted in the
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Fig. 7.14 Multivariate curve resolution applied to Dataset 2. The data have been MSC pre-
processed, and a 3-component solution calculated. a The concentrations C for the three sugars
closely following the design. The concentrations are colored according to the mixture content of
the three pure sugars (red: sucrose; blue: fructose and green: glucose). b The pure MCR spectral
profiles S for the three identified sugars

three dimensions. This plot almost perfectly reproduces the triangular experimental
design. Even better, the MCR pure spectra profiles S (Fig. 7.14b) are exactly similar
to pure sugar spectra. Since the pure spectra (S) can be regarded as estimates of the
real spectra, so are C the relative estimates of the concentrations.

This “textbook” application shows howMCR in ideal cases can resolve a mixture
spectrum into its pure single components and their relative concentrations which just
need to be scaled using a single known sample or standard in order to obtain the real
concentrations.

7.3.2 Outro

The main advantage offered byMCR is the spectral/chemically meaningful solution.
The concentration values are nonnegative (often by virtue of the applied constraints),
and the spectral profiles can be related back to the spectra of specific compounds.

In NIRS, many applications involve nonlinear and nonadditive effects (e.g.,
hydrogen bonding effects), but for some well-behaving systemsMCRmay provide a
unique, interpretable solution, plus the recovery of pure component spectra.However,
due to the labile nature of the MCR models, it is not implemented in most commer-
cial chemometric software, which typically relies on rapid convergence and robust
solutions requiring little user interaction. For NIRS, the most used software for
performing MCR models is the academic implementations such as the PLS Toolbox
(Eigenvector Research, Manson, WA, USA, http://www.eigenvector.com) and the
MCR-ALS toolbox [28] both implemented in MATLAB (MathWorks, Natick, MA,
USA, www.mathworks.com).

http://www.eigenvector.com
http://www.mathworks.com
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7.4 Spectral Exploration by Principal Component Analysis
(PCA)

In practice, we can resolve the NIR spectral ensembles into a low
number of orthogonal latent variables by Principal Component Anal-
ysis:

X = T · PT + E

Principal component analysis (PCA) is the workhorse of chemometrics. The
method is nowmore than 100 years old [29–31], is used in many research disciplines
for different purposes and is therefore unfortunately known under many different
names. Spectroscopic data are characterized by high colinearity, i.e., that two neigh-
boring wavelengths are positively correlated. PCA is tailored to handle this type of
data, and it is in the analysis of spectroscopic data that PCA really shows its worth.
However, before we go to the analysis of NIR spectroscopic data, we will briefly
outline the principle of PCA. There is a striking similarity between the PCA and the
MCR models, as they both attempt to approximate the variation in the data with a
bilinear model. The difference between the two models lies in how the system of
equations is solved. For PCA, an algorithm is used that successively finds orthog-
onal components in a multivariate dataset X. This principle is, in contrast to the
MCR algorithms, extremely efficient and robust, but the solution has the interpreta-
tive disadvantage that the extracted components are forced to be orthogonal while
spectra in a mixture are not.

7.4.1 The PCA Method

A key concept in chemometric analysis is the reduction of variance in data into
a lower-dimensional space of principal components or latent variables. In PCA,
the multivariate dataset is decomposed into orthogonal components, whose linear
combinations approximate the original dataset in a least squares sense.

If we have an experiment of n observations (samples) of m independent variables
(wavelengths), a line describing themaximumobserved variance in the variable space
can be defined as the least squares solution of minimizing each of the orthogonal
projected distances ln from the nth sample point onto to the principal line:

min

∥∥∥∥∥
∑

n

l2n

∥∥∥∥∥ (7.15)
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Fig. 7.15 Principle of principal component analysis. For an artificial dataset of nine samples with
only three wavelengths (a), the first principal component (b) is found that spans the most of the
sample variation andwhichminimizes the sample residuals (c) represented as the orthogonal projec-
tions to the line. The second principal component is orthogonal to the first principal component and
spans the most residual variance left by the first component (d)

is illustrated in Fig. 7.15, for a toy system with 8 samples and 3 variables. The
principal line shown in Fig. 7.15b corresponds to the direction in the data that spans
the most variance, and all sample points can now be defined or “fixed” by their
orthogonal distance to (or projection on) the principal line. This principal line is
called the principal component or loading and the orthogonal distances from the
sample points to the line for the scores. We see that this principal line does not
represent completely the systematic variance structure of the measured data as none
of the observations lies exactly on the line. A second component can be found,
orthogonal to the first principal component,which describes asmuch of the remaining
variance in the samples (Fig. 7.15d). This is the second principal component, and
each sample point will have a related score, which is again the orthogonal distance
from the sample to this principal component line. In a three-dimensional system,
it is only possible to extract three components, but for more realistic systems (e.g.,
a NIR data ensemble) the process of extracting subsequent principal components
can continue. If the samples are projected onto the principal component, and this
projection is subtracted from the original set of data, a new principal component can
be determined on the remaining variance (the deflated Xmatrix). In fact, this process
can be repeated until there is no more systematic variance left to explain.

If the data of n samples and m variables are represented as a matrix X, of size n
x m, the PCA is defined as:
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X = T · PT + E (7.16)

with the least squares solution:

min

∥∥∥∥∥∥
∑
n,m

⎛
⎝Xn,m −

F∑
f =1

Tn,f PT
m,f

⎞
⎠

2∥∥∥∥∥∥
(7.17)

where the sample scores T are the projection of variance onto the variable loadings
P using f components.

The values in T (the scores) are the projections of the samples on the principal
directions defined by P (the loadings). It is possible to view the PCA process as a
breakdown of information from the raw data matrix (X) in which PCA creates two
new, smaller data matrices: one containing information about the samples (scores,T)
and one containing information about the variables (loadings, P). The splitting of the
information is done in such a way that the two parts, T and P, explain as much varia-
tion in the original data matrix (X). The PCA algorithm finds the weights (loadings)
so that this happens. No other weights will be able to describe more of the systematic
variation in the given dataset. In fact, an additional matrix is created, namely the
model residual E equal in size to X, a remainder of the data that is not explained
by the two-component model. Residuals are a core concept of chemometric analysis
as real-life data always tend to be imperfect. The principal components represent
the systematic or explained variance in the data—the remainder, measurement error,
biological variance, etc., are kept out as the residual.

In Eq. 7.17, f indicates the number of principal components calculated in the
model. Not surprisingly, the described accumulated variance of the components will
be ever increasing as more and more components are determined for a system. The
maximum number of components to be found, before no more systematic variance
can be modeled, is governed by the chemical or practical rank of the data. The
mathematical rank of X determines the maximum number of principal components
that could be determined, and is equal to the maximum number of independent
linear combinations that can be made from the matrix (chemical rank f � min(n,m)
= mathematical rank). Data originating from real-world experiments will naturally
have imprecisions, originating from measurement errors, sampling methodology,
biological variations, etc. These imprecisions will be independent of the experiment
and can thus be seen as unsystematic variation or noise.

Avery important premise of conductingPCA is centering of the data. It is normally
not very interesting to model the absolute level of the data, but rather to model the
variance of the “data cloud” around the center of gravity. In the process called mean
centering, themean value of each variable column inX is subtracted from the variable
itself:

x̂m = xm − xm (7.18)
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where xm is the mth column of X. The correct form for PCA is then written:

X = X + T · PT + E (7.19)

Mean centering is often considered togetherwith its analog in correlation analysis,
namely autoscaling. In spectral data, each wavelength is expressed in absorbance (or
reflectance) units and, thus, is approximately equal in scale and variance, which in
turn can be weighed equal in the analysis. It is thus sensible to only apply mean
centering in spectroscopic analysis. However, if the variables were composed from
different measurement types, with different units, they will be weighed unequally in
the analysis. Autoscaling seeks to rectify this by scaling each variable to have unit
variance [11], where the mth column of X is mean centered and normalized by the
standard deviation of the mth column:

x̂m = xm − xm

std(xm)
(7.20)

Due to the orthogonality constraint imposed in the model, PCA has a simple
and unambiguous solution that can be calculated rapidly using, e.g., singular value
decomposition (SVD). PCA is thus present in all commercial chemometric soft-
ware packages due to its extraordinary robust data reduction and data summarizing
capabilities.

7.4.2 Explained Variance

It is very useful to be able to quantify how much of the information in the data that
a given component—or the residual—is describing. In this respect, each set of t’s
and p’s is called a component; thus, T is of size n by f and P is of size m by f . The
graphical representation of a PCA with f components is identical to Fig. 7.2. The
total variance of X is explained by the sum of the individual components (plus the
residual):

X = T · PT + E = t1 · pT1 + t2 · pT2 + · · · + tf · pTf + E (7.21)

where tf is the f th column vector of T and pf is the f th column vector of P.
The sum of squares of X (size n × m) is defined as the summation of the squared

of each value of X:

SSQ(X) =
∑

n

∑
m

X2
n,m (7.22)

Similarly, the sum of squares can be calculated for an individual component f :
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SSQ
(
tf · pf

) =
∑

n

∑
m

(
tf · pf

)2
n,m (7.23)

When combined, Eqs. 7.22 and 7.23 yield the percentage of explained variance
for a given component f as:

Variance(f) = SSQ
(
tf · pf

)
SSQ(X)

· 100% (7.24)

It is customary, when reporting PCA results, to state how much variance the
individual components explain. The explained variance by the PCs is often indicated
on the PCA score plot axes, where, e.g., “PC1 (50%)” means that PC1 explains fifty
percent of the total systematic variance in the dataset.

7.4.3 Application of PCA to NIR Spectra

The application of PCA to spectroscopic data is best illustrated by an example.
Figures 7.16 and 7.17 demonstrate PCA applied to the designed Dataset 2, which
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Fig. 7.16 Principal component analysis of NIR spectra selected from Dataset 2. The plot shows
how PCA decomposes Dataset 2, visualized for 3 selected samples #43, #107 and #224. The first
column shows the input spectra, and the second column shows the mean spectrum (black) which is
equal for all three samples. The third column shows the first loading (green) which is also equal for
all three samples, but the amount (score) of this loading is different for the three samples. The fourth
column shows the second loading (blue) with the corresponding scores, and the last column shows
the residuals, i.e., what is left when the first two principal components have been extracted to the
three sample spectra. The residuals are different for the three samples, but note the low magnitude
of these compared to the loadings
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Fig. 7.17 PCA scores and loadings’ plot of Dataset 2. Left: Scatter plot of scores for PC1 versus
PC2. The scores are mixture colored according to the mixture content of the three sugars (red:
sucrose; blue: fructose and green: glucose). Right: The loadings of PC1 (blue) and PC2 (red)

includes three chemical components (pure sugars) in a mixture design. In this anal-
ysis, the data was first corrected for light scattering using the MSC method. The first
step in PCA modeling is to mean center the spectroscopic data. This is done to focus
on the variations between the individual samples rather than the general signal level.

In this example, it is only necessary to inspect the first two principal components
based on the number of chemical variation sources in the samples. Three chemical
components in a mixture design (summing to 100% by definition) ideally give rise to
two independent sources of variation. Formore complex systems, the optimal number
of components in a PCA model can be determined mathematically as described in
the validation subchapter (7.6).

In Fig. 7.16, the principle in PCA is illustrated for three selected samples, but note
that the PCAmodel is calculated for all 231 samples. ColumnA to the left in Fig. 7.16
shows the raw spectra for three samples: #43 (blue), #107 (red) and #224 (purple)
coming directly from the spectrometer. Column two shows the average spectrum that
is subtracted from each sample spectrum corresponding to the mean centering of the
data. The average spectrum is the same for all samples and therefore shown in the
same color (black).

The first loading vector (green—third column) is the spectral structure that best
describes the variation in the centered data (Fig. 7.16). No other underlying structure
can explain more of the variation in data than this one. The first loading is common
to all the samples, and what makes the samples different is the amount (or “concen-
tration”) of this structure in their spectrum. This amount is called the score value of
the sample. Sample #43 has, e.g., the score value −0.79 for the first loading, and the
other 230 samples in the dataset have other scores. The loading vector multiplied by
−0.79 is the best possible description of sample #43 using one principal component,
when this loading vector is determined to also describe (in the least square sense) all
other samples.
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The second loading (cyan) is the structure that describes the second largest amount
of variation in the dataset where this second loading vector also has to have the
constrained of being orthogonal to the first loading. Again, the difference in the
samples is evident only from the score value, which is −0.01 for sample #43.

The part of the variation in the dataset that is not described by the first two principal
components is shown in the residuals in the right most column of Fig. 7.16. The
residuals are specific for each sample and may for example be used to detect aberrant
patterns in single measurements. Note the y-axis of the residuals: The numerical
values fluctuate within ±0.002. These values can be directly comparable to the
variation in the mean-centered spectral data (Fig. 7.16), which varies between 0.1
and 0.7.

By comparing the size of the residuals with the variation of the mean-centered
data, the explained variance can be calculated for each principal component. In this
case, the first component (PC1) explains 88.0% of the initial total variation, the
second component (PC2) explains 11.6% of the remaining variation, and overall the
two components thus explain 99.6% of the variation in the dataset.

Plotting all 231 score values for the first principal component against the corre-
sponding values for the second component yields a score scatter plot (Fig. 7.17) in
which each point represents a NIR spectrum with originally 700 variables. In the
given case, sample #43 can be seen in the coordinate system with the coordinates
(−0.79; 0.01), sample #107 at (0.17; 0.11), sample #224 at (0.52; -0.25) and so on
for the remaining samples.

As shown by the example, PCA is a good tool for exploratory data analysis of
highly colinear data as often seen in spectroscopy. As a result, one can observe the
behavior and characteristics of single samples and study, which wavelength ranges
are important for the similarity or difference between samples. PCA can be perceived
as a “reverse” Lambert–Beer model: The model estimates latent spectra (loadings)
and determines the (pseudo)concentrations of these in the samples (scores) from the
measured spectra. For spectroscopists, the disadvantage is the tricky interpretation
of the loadings, which are not pure analyte spectra representative of the underlying
chemistry. The main take-home message of this PCA application is that samples
which are close to each other in composition are also close in the score plot; i.e.,
biological replicates in your dataset, e.g., should be found close to each other. For
Dataset 2, we observe the experimental design and it is characteristic for PCA that the
score plot of this 3-component mixture is completely described by two components
(the chemical rank is 2 because of closure where the three concentrations add up to
100%).This is in contrast to theMCRmodel (Fig. 7.14)whichmodels one component
for each chemical component.

7.4.4 PCA for Outlier Detection

The ability of the PCA to reveal the behavior and characteristics of single samples as
part of the complete sample set makes it a powerful tool in the detection of outliers.
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Outliers can be defined as samples that have a different variable pattern compared
to other samples in the dataset. When many variables have been measured (spectral
data), it can often be difficult to find such patterns via direct inspection, i.e., plotting,
of measurement data. Using PCA, it is possible to find deviating spectra (outliers)
using relevant graphical images that lead directly back to measurement data. In PCA,
the pattern or relationship between all variables is analyzed and handled through the
calculated loadings (P). The basic assumption in PCA is that all samples can be
described with the same set of loadings. Samples for which this does not apply will
have a variable pattern that differs from all other samples in the dataset.

In PCA, there are two distance measures that differentiate how much a sample
differs from the rest of the dataset: the size of the residual and Hotelling’s T2. The
residual of a sample can be calculated directly from the residualEmatrix. For a given
sample, the square sum of all the elements of the corresponding row inE is calculated
(see, e.g., Fig. 7.16). A sample with higher residual variance will have a pattern or
variation in the original data that is not similar to the remaining samples. The second
most important distance measure is based on the score values (T). The distance to
the center of a sample in the score space can be calculated using Hotelling’s T2,
which considers the covariance in the data. Combining the two distance measures in
a scatter plot, i.e., the residual variance andHotelling’sT2 provide themost important
diagnostic plots in PCA.

It is of fundamental scientific importance to be able to efficiently identify outliers
as they may represent new discoveries with completely new functionalities or, as
a contrast, identification of samples that ruins the models. In chemometric modeling,
outliers are undesirable because they are included in the estimation of model param-
eters. Thus, the PCA model must be recalculated, when one or more samples are
characterized as outliers and discarded. It is thus an iterative process to characterize
and eliminate outliers. This is easily done in modern chemometric software where
the sample is marked in a residual variance versus Hotelling’s T2 plot, and then the
model is recalculated without the selected sample.

While the residual variance versus Hotelling’s T2 plot is very efficient in identi-
fying obvious outliers, it is important to underline that there is no general method
for outlier recognition and removal. This is because, among other things, Hotelling’s
T2 “outliers” may be desirable as extreme but valid specimens that span the model.

7.4.5 PCA for Data Quality Control

Due to its capability to model-free convey the samples inter-variability, PCA is a
very effective tool for quality control of an experimental dataset. Not only can PCA
be used to detect outliers as described above, but it also provides information on how
samples are related to each other in a quantitative series (such as in Fig. 7.17), in a
time series or in discrete groupings, which by PCA can all be scrutinized concerning
the smallest detail. Browsing through the PCA plots of a newly recorded dataset
can usually reveal more information about the data, than is otherwise possible from
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the inspection of the obtained data alone, and that in a very short time by using
interactive graphical displays with easily interpretable symbols and colors according
to the metadata of the dataset.

The term metadata is used for any information associated with the data that is
not a part of the PCA itself. Typically, such data are categorical and do only exist as
discrete levels, like the name of the person who measured a specific sample, or if the
measurement is first, second or third of a set of replicate measurements. Metadata
can also be numerical, but not relevant to include in the PCA itself—e.g., “seconds
elapsed since a reference measurement was made on the equipment,” “the content
of an analyte in the sample” or “the relative humidity in the laboratory on that day”.
The most important source of metadata is the experimental design parameters such
as harvest year, variety and field. Metadata are very important to gain insight into
a dataset and can be exploited in the PCA, in the validation of multivariate models,
in PLS-DA models and in ASCA models. Some chemometric programs allow for
coloring the samples according to a quantitative response parameter, which is going
to be target for regression analysis. As an example, see Fig. 7.17 where the score
plot is colored according to the sugar contents. This allows for a quick, graphical
investigation on howmuch of the total variance is related to the quantitative response
parameter, and how systematic it is distributed over the sample set.

Using PCAmakes it easy to evaluate the validity of a dataset simply by observing
the location of the replicates in a score scatter plot. An experiment can contain two
types of sample replicates: experimental replicates (i.e., “mixing” or “chemical”)
and measurement or analytical replicates. Concerning experimental replicates, the
samples are to be considered experimentally alike, but have different origins (for
instance, the same type of beer, but brewed on three different days). When each of
the experimental replicates is measured several times, they become measurement
or analytical replicates. This is illustrated in Fig. 7.18, where a score plot for two
components resulting from a PCA displays three experimental replicates which each
has been measured three times (in a random order).

Based on the location of the colored groups, an inspection reveals that the samples
originating from the red group are significantly different (distant), than the green
and blue groups, which are very similar (close). In addition, the green and blue
measurement collections appear more similar (closer), than the red group, which
spreads out more indicating a higher inter-group variance. The next step would be to
inspect the loadings of the two components to investigate why the difference in red
and green/blue is so significant, or to look back into the experimental logbook to see
if there is anything known about red group that can hint at this separation.

It should be noted here that PCA on real spectral data always is able to find
and illuminate such replicate variances and groupings, no matter how small. It is
thus important to compare the replicate (intra-group) variance to the sample (inter-
group) variance. When conducting this exercise, it is important to have always the
explained variance of the investigated PCs in mind as they carry the information of
the magnitude of the explained variance (i.e., importance) in the two directions.

PCA can be advantageous in analyzing performance of an analytical technique
or sample preparation over time. One such diagnostic feature is the pool sample,
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Fig. 7.18 Experimental and measurement replicates in a PCA score plot. In the PCA plot,
nine measurements are highlighted. The highlighted samples are three measurement or analytical
replicates (same color) of three process samples or experimental replicates (different colors)

where a fragment of all samples is pooled into a single pooled sample by adding
the same amount of each of the individual analytes to the pool. The pool sample
should be found approximately at the origin of all score plots for all components—
as it represents the “chemical average”—especially if the molecular species do not
interact. To check that a measurement campaign is progressing without any changes
in the analytical instrument, a pool sample measurement can be conducted at regular
intervals (e.g., every 25th sample). When during data analysis all the pool samples
are found to be at origin of the score space, the analytical system can be trusted.

Another diagnostic is the simple coloring of samples according to measurement
preparation or acquisition time. If, in any score plot, a trend can be seen following
such a coloring, one should be highly suspicious on how much the instrument itself
has influenced the obtained results. If measurements are acquired online, for instance
using anNIRprobe inserted into a processwhere data are acquired at set time intervals
to study the process, the plotting of scores vs. acquisition or process time represents
a unique tool to monitor the dynamics of a process.
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7.4.6 Outro

PCA is implemented in all chemometric software packages, and it cannot be empha-
sized enough that performing a PCA on a recorded spectral dataset is a prerequisite
to understand the variability in the data. This also includes the effect of different
spectral pre-processing methods. Usually, the more focused and systematic the score
plot is, the better and higher the amount of explained variance from the first PCs
(so-called parsimony), the better. It should be noted here that PCA score plots do not
change by validation, but the explained variance of the principal components does.

7.5 Calibration by Partial Least Squares (PLS) Regression

PLS is one of the strongest regression methods invented.
It works where Multiple Linear Regression fails!

The task ofmultivariate calibration is to find a predictivemodel that relates theNIR
instrumental response space to the analyte concentration space. Here, the purpose of
calibration is to model analyte concentrations, y, as linear combinations of absorp-
tion spectra X. Next, analyte concentrations in future samples can be predicted based
on the absorption spectra only. Where PCA represents an untargeted and unsuper-
vised data exploration, partial least squares (PLS) regression [32] is the targeted and
supervised method par excellence.

7.5.1 Regression with Principal Components

When data matrix X is decomposed with a PCA, it is represented in a model space,
represented by the principal components describing the systematic variance. If a
relationship can be found between this model space of the data and an independent
or reference variable, the independent variable can be explained in terms of the
observed dependent variance and hence a regression can be made. This process is
called calibration.

A classical regression extension of PCA is known as principal component regres-
sion (PCR) [33]. Having projected a data matrix X into a PCA model defined by
loadings P, resulting in scores T, a regression toward a dependent y can be made via
the regression vector b in the model space:

X = T · PT + E
y = T · bT + q

(7.25)
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Fig. 7.19 Principal component regression (PCR) generalized to a y variable. The score space from
a PCA is projected onto the y variables using a regression vector b. b does not use the full space of
X; the residuals E will be the noise, not used in calibration

The advantage of regression onto the component-based variance model space is
that T does not have to describe the full rank of X, and measurement noise in the
data can thus be removed from the calibration.

However, PCR has the shortcoming that it is a two-step method in which the
scores (T) are first calculated from a data table X (e.g., the NIR spectra), focusing
on explaining X variance only, and then a regression model is made toward the
dependent variable (y), e.g., a quality (see Fig. 7.19). This is equivalent to going into a
supermarket (X), buying items in different departments such as fruits and vegetables,
meats, desserts and wines, and only after the goods are paid for you knowwhat menu
(y) you want to make for dinner. Obviously, once you select the information in T (the
goods in the supermarket) without thinking about what it should be used for, then the
calibration model that relates T to ymay be unnecessarily complicated. There could,
for example, be large interferences (irrelevant peaks) to which the target signal in
comparison is much smaller. These interferences will contain most of the variation
expressed in the principal components calculated from the data. Hence, regression on
the model space will not produce an optimal calibration model since the regression
would describe the interferences rather than the sought analyte.

7.5.2 Partial Least Squares Regression

The problem is solved in partial least squares (PLS) regression, which as the name
indicates only partially performs regression onto the variance model space, i.e., only
on the part that is relevant to the regression [32, 34]. In PLS regression, y is explicitly
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included in each step of the algorithm to find the relevant T from X. This is equiv-
alent to going into the supermarket with the menu in hand and therefore having the
opportunity to buy exactly the items you need. Thus, it is not necessary to ensure
that all systematic information in X is represented in T, but it is enough to extract
the information relevant to (or correlating with) y. This principle, which makes the
model easier to interpret and understand, is illustrated in Fig. 7.20.

In PLS, an intermediate step is introduced for each component, where the direction
of the largest covariance between X and y is used as a weight vector w to “steer” the
regression into the direction of most systematic variance in the dependent variable
as a function of y [35]. The scores t calculated in a PLS are the projection of y
onto w, after which the loadings p are determined by regression of t on X. As
previously described for PCA, the components are calculated successively, and after
each component, the explained variance of bothX and y is subtracted from the initial
values, and the next component can be determined. Ultimately, the regression vector
b can be determined by the regression of y onto T [36].

In practice, NIR spectroscopy is used primarily as a rapid noninvasive prediction
method using PLS regression to a reference method. The text book example is the
development of aNIRpredictionmodel for the protein content inwheat samplesmade
by PhilWilliams in 1975 for the Canadian Grain Commission [2]. This technological
jump saved more than 50 tons of chemicals annually used for the Kjeldahl protein
determination [9]. The NIR prediction method is a two-step procedure. A calibration
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Fig. 7.20 Concept of PLS regression for calibration. This figure illustrates in analogy to the prin-
ciple of PCA (Fig. 7.15) how the first PCA (stipulated blue line) which describes the main variation
in the raw data matrix (X) is twisted toward describing most of the variance in the response vector
(y), shown by the orange line. The resulting “new” PLS component (solid blue line) is aligned with
the y variance
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step in which a PLS regression model is established using a set of samples measured
twice. One measurement by NIR spectroscopy to collect X and one measurement by
a referencemethod to collect y. And next a prediction step usesNIR spectroscopy and
the PLS calibration model to predict the value of the response variable for unknown
samples. The benefit of this approach is the ultra-rapid and sustainable measurement
of billions of samples worldwide, but as mentioned in the previous chapter, the
accuracy and reliability of the prediction method will depend on the validation of
the calibration model.

Two examples of PLS calibrations will be shown after discussion on model
validation and error reporting (Section 7.6).

7.5.3 Partial Least Squares Regression—Discriminant
Analysis (PLS-DA)

In NIRS analysis, it is common to have a priori knowledge about the spectral data,
typically from a controlled experimental design (calledmetadata in the PCA section).
Somemetadata are binary or only have discrete levels such asmale or female, organic
or conventional, active or placebo, authentic or not, variety 1 or 2, and breed 1 or
2. Such labels can be used actively in regression modeling by introducing a so-
called dummy variable that contains the a priori knowledge in the form of a response
variable y vector made of dummy values (typically 0 and 1) distinguishing between
the two different classes. The final assignment of a class to a prediction is done on
a threshold of the predicted dummy y. For instance, if the predicted value is above
0.5, it is assigned to class 1, and if below 0.5, to class 0.

Accordingly, the PLS-DA is a classification method where the dummy variable
is predicted in the best possible way using the information found in the spectral
data [37]. This is closely related to a normal PLS prediction model, where a contin-
uous parameter (e.g., protein level) is predicted from a NIR spectrum, but the main
difference is that PLS-DA solves a classification task. In PLS-DA, the classes are
described in the dummyparameter in the best possibleway, providing the best obtain-
able prediction from a linear combination of the wavelengths, which are weighted
via the regression coefficients in b according to their importance in the prediction
model of the class parameter.

Where a normal PLS model is optimized according to the prediction error (e.g.,
the root mean square error of prediction: RMSEP), the PLS-DA should be opti-
mized based on classification parameters (e.g., rate or percentage of correct and
misclassified samples). PLS-DA is prone to yield overfitted results, and therefore a
thorough validation step (see validation section 7.6) is needed.
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When you ask for discrimination, you will get it!
—Lars Nørgaard, Danish chemometrician

While PCA results often can be presented without considering validation, PLS
modelsmust always bevalidatedbefore presenting scores and loadings andprediction
errors (see section on validation). For PLS-DA models, the validation becomes even
more crucial since spurious correlations can often lead to excellent, but false, classi-
fications. Moreover PLS-DA score plots should be used with great care (read: not be
used) since it can be demonstrated that score plots from a PLS-DA model often can
show clear groupings even when random data is assigned to two classes. Similarly,
discriminative PLS-DA score plot can be found when sound real data are arbitrarily
divided into two classes [38]. Regardless of validation or not, the scores and loading
plots would be similar and these plots can thus not be used to access the classification
performance of a PLS-DA model.

7.5.4 Outro

In many practical applications, multiple response variables are available and for this
purpose there is a variant of PLS called PLS2, which can be used as alternative. It
could, for example, be that one would like to predict protein, fat and carbohydrate
content of a cereal product. With the help of PLS2, these three different models can
be made at once and thus used to directly understand how the three different quality
parameters interact. However, if performance is the single objective, then it is highly
likely that you will get better performance results by just applying PLS separately to
each of the three response variables.

For many PLS applications, the target is tominimize the prediction error. It should
be as low as possible, yet maintaining its predictive power. It is important to note that
PLS is correlation/covariance-based andwill not be able to distinguish between direct
correlations (causal) and indirect correlations. A sound and healthy PLS regression
modelmay verywell rely on indirect (biological) correlations in the sample set—also
called the cage of covariance [39].

PLS is implemented in all chemometric software and is probably the strongest
regression tool ever developed. Accordingly, good reasons (typically called nonlin-
earities) are needed for not choosing PLS in multivariate regression. Other alter-
natives are principal component regression, random forest, neural networks and
machine learning, which will be briefly discussed later in this chapter.
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7.6 Validation of Multivariate Models

The purpose of validation of multivariate NIRS models is to provide an
unbiased evaluation of the model performance.

When selecting the validation method, you should act as the advo-
cate of the devil!

A key concept in multivariate data analysis is model validation. Generally, valida-
tion is about themodels’ applicability (extrapolation) to new samples. Unfortunately,
it is not enough to use the model fit alone as a validation criterion, since addition of
components will nearly always lead to an improved fit in the least squares sense for a
finite dataset. This means that we cannot use the calibration diagnostics to see if the
model is good or bad. A key question is instead “how will it perform for other and
new data?”. In order to try to answer this, it is necessary to find a way to validate the
number of components used in the multivariate model. If too few are used, the model
is said to be underfitted, and if too many, the model is said to be overfitted. The way
to estimate the correct number of components in a calibration model is to use a test
set, which is a set of sample spectra and related response variables unknown to the
model. The model can be developed on the calibration set, and the goodness can be
evaluated by the test set. This is called test set validation. Sometimes, when the total
dataset is not large enough to be split into both a calibration and test set, there exists
another option, which is called cross-validation. In this section, we will summarize
the most common types of validation employed in multivariate data analysis.

7.6.1 Model Performance Metrics

Correlation is a key statistic used to gauge regression model performance. Pearson’s
correlation coefficient, or just R, of known y and the associated predicted ŷ is:

R = cov
(
y, ŷ

)

std(y) · std(ŷ) (7.26)

Sometimes expressed as coefficient of determination, R2 provides a measure for
the relationshipbetween the predicted outcome and the reference.R2 =1 corresponds
to a perfect relation, andR2 = 0 corresponds to no relationship at all. Often, it is stated
as a stand-alone indicator for regression accuracy. However, as shown in Fig. 7.21,
it is a dangerous assumption to equate a high correlation to a high model quality. In
most practical circumstances, a R = 0.8 will be considered high, but as it is seen in
Fig. 7.21, it hardly reflects a metric that resembles quality.

Clearly, the correlation does indicate the accuracy of the given prediction. A
prediction may be near perfectly related to the associated reference values (high R),
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Fig. 7.21 Four correlation scenarios between two variables (for one sample the value of variable 1
is plotted on the x-axis and value of variable 2 is plotted on the y-axis; it could be the PLS predicted
values by NIRS versus the response values measured by a reference method) all having the corre-
lation R = 0.816. a A linear model with some uncertainty, b a nonlinear model, c a perfect linear
model with one outlier and d a nonsense two-group model. Modified from Anscombe [40]

but still with high numerical deviations (high error). Chemometric applications tend
to state the root mean square error (RMSE) [41] as a measurement for prediction
error of n measured y’s and predicted ŷ’s:

RMSE =
√√√√1

n

n∑
i=1

(
yi − ŷi

)2
(7.27)

The structure of the RMSE calculation is like that of the standard deviation and
has the same rules for interpretation. That is, for given regression, one can expect
approximately 68%of the predicted values to liewithin±1RMSEand approximately
95% to lie within ±2 RMSE.

The optimal model is one that has a high correlation, and a low prediction error,
with as few components in the model as possible, and has been validated on a set
of independent samples. The act of validation is an absolute necessity for producing
reliable results, and it can be argued that any error statistic is worthless, unless it
has been validated against an independent set of data. Only then does the produced
quality estimate reflect what can be expected from the model “in the real world.”
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7.6.2 Model Validation

In order to develop reliable error measurements for a regression, the model must
undergo a validation, where it is tested how it predicts unknown or new data. In this
respect, new or unknown refers to data points which were not included in the dataset
used while calibrating the model. That does not exclude them from originating from
the same experiment. However, a very crucial rule needs to be enforced for any split
of data into a calibration and validation set: The validation data must be completely
independent from the calibration data. In practice, this means that the same physical
sample measured cannot be present in both datasets, nor as separate measurements
and neither as measurement replicates. A good way of thinking of this is that the data
conceptually could come from two different measurement campaigns.

As described below, one does not always have the luxury of an isolated dataset
used for validation purposes. In those cases, the method of cross-validation can be
applied to get validation statistics. But, however way the data are validated, it is
important to stress that the chosen validation scheme is determined by the structure
of the experiment so as to ensure independent validation data, and hence should be
a consideration made very early in any calibration workflow.

A term frequently used in multivariate analysis is the concept of overfitting. A
model is said to be overfitted, when it loses the ability to optimally predict new
or unknown samples. This is particularly relevant to regression models, where the
inclusion of too many components will cause the regression to overfit the data and
essentially making it useless for any practical purpose. When the model overfits
the data, the additional components will start to structure, not just the systematic
variation in the data, but also the sample specific noise.

7.6.3 Cross-Validation

In order to avoid overfitting, a model can be validated in one of two ways, namely by
applying it on a test set or by cross-validation. Cross-validation (CV) is the process
of sequentially removing one or more samples, makes a calibration on the remaining
samples and uses that to predict the values of the ones removed [42, 43]. The process
is illustrated in Fig. 7.22.

Cross-validation can be used to find an optimal number of components, when the
RMSE of cross-validated predicted values (named RMSECV) is calculated against
the associated reference (original y).WhenRMSECV is plotted against the number of
components included in themodel, it will typically reveal a localminimum that yields
the most accurate model. A characteristic RMSECV development, along with its
corresponding root mean square error of calibration (RMSEC), is shown in Fig. 7.23.
As may be expected, the error occurring from the unvalidated calibration (blue line)
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Fig. 7.22 Schematic overview of the cross-validation process. A dataset is split into blocks—here
three, which each is removed once from the dataset in turn. As each block is taken out, a model can
be developed on the two remaining blocks. The new sub-model can be used to predict the values of
the excluded block (CV prediction). After excluding all blocks in turn, a complete y vector of CV
predictions has been produced

keeps falling, as more and more components are included in the model. The cross-
validated model (red line) instead shows a characteristic low point after four compo-
nents. From there on, the prediction error starts to increase, showing that the model is
overfitting the data. As a rule of thumb, onemust select as few components in amodel
as possible in order to eliminate the possibility of overfitting. The developing model
in Fig. 7.23 show clearly that the 3-component model is optimal. Including further
components will cause the RMSECV to increase and, hence, overfit. However, other
PLS models sometimes display an insignificant improvement in RMSECV when
going from a 3-component system to a 4-component model. It can then be argued
that the proper conservative choice is to use the more parsimonious 3-component
model. Despite being offered as an option in several software packages, automatic
selection of the number of components should only be considered as a guidance. An
automatic system can never replace prior knowledge of the samples, themeasurement
system or reference values.
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Fig. 7.23 Model fit as a function of number of components. A typical development of the root mean
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the number of PLS components. The RMSECV line has a local minimum at component #3, which
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7.6.4 Cross-Validation Systems

The strength of cross-validation lies in testing the prediction on samples independent
from the calibration. It requires that the cross-validation segments are constructed in
proper correspondence with the experiment—especially if the experiment includes
replicate measurements. If 20 samples are measured with five replicates, a regression
on the 100 actual sample measurements should be cross-validated in a way so that all
five replicates of each sample are removed as a group (20 cross-validation segments),
and not by removing each 20th object as a group (5 cross-validation segments). Only
the former setup will give independent evaluation of each sample, which is not the
case in the latter case, where 4 versions of the same sample are still included per
CV segment, which then no longer can be called independent anymore. The former
case will test the model’s ability to predict unknown samples, where the latter will
validate the model against the measurement and tolerances, as this is the changing
factor between the cross-validation segments.

Several systems specifying the segmentation of the samples in cross-validation
setups are used in the literature and software. These include venetian blinds, where
the CV segments are grouped in sets 1-2-3-1-2-3-1-2-3-…, contiguous subsetswhere
the CV segments are grouped in sets 1-1-1-2-2-2-3-3-3-…, or combinations thereof,
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as 1-1-2-2-3-3, etc. This nomenclature refers to how the data are structured in the
matrices and must be accompanied by other information (number of splits, number
of segments, etc.). Metadata can often be used to split the data into sensible nested
segments (experimental design factors) such as e.g. animals, varieties, vintages
etc. Full cross-validation (or leave-one-out/LOOcross-validation) is often referenced
in the literature, but should be used with caution, especially in the case of data with
analytical replicates. Leaving out every single sample does rarely provide indepen-
dent sampling, and the full cross-validation should only be applied in cases with very
few samples [44].

7.6.5 Bootstrapping

An alternative to full cross-validation, or when no prior knowledge of the data struc-
ture is available, is to divide the dataset into a number of random blocks of each
typically 10–20% of the data, called random subsets. In case of replicates, all repli-
cates of the same sample must still be kept out at the same time. Repeating the
random sampling validation, a high number of times for a dataset, each time with
new randomization, gives a robust error estimate by averaging the CV predicted y
over the repeated CV runs.

7.6.6 Test Set Validation

When enough samples are available, or when the experiment design permits, a very
efficientwayof validating amodel is to do test set validation. Ideally, the experimental
data can be split into independent calibration and test parts, each representative of
the population of observations in the experiment. As described earlier, replicate
measurements of the same physical sample cannot be present in both sets at the same
time.

Test set validation is straightforward. A model is calculated for the data in the
calibration dataset, which is then applied to the test set. The error of the predicted
test set values and the associated reference values determined is referred to as root
mean square error of prediction (RMSEP).

7.6.7 Application of PLS to NIR Spectra

In a first example, the application of PLS to the mixture design in Dataset 2 is
demonstrated, using the NIR spectra as X and the glucose content as the response
variable, y. The results of this model are shown in Fig. 7.24.
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Fig. 7.24 Prediction of glucose content in Dataset 2. The X matrix has been MSC pre-processed
prior to analysis. a shows the cumulative explained variance for X and y, respectively, and b shows
the “actual vs. predicted” plot for two components. Frame c shows the resulting regression vector

In analogy to PCA, the number of PLS components is calculated using cross-
validation. In Fig. 7.24a, it is observed as expected that the first two components
explain nearly all X and y variances (glucose). Indeed, a total of 2 components is
optimal for the model and this results in a model performance of R2 = 0.99 and a
RMSEC of 2.26% glucose. For the 2 components, the PLS model describes 99.2%
of the y variance. Similarly, at two components, the explained X variance is 99.6%.
Inspecting the regression vector (Fig. 7.24c), two positive peaks are identified at
1460 and 2240 nm which accordingly has high importance for the PLS model.

In a second more realistic example, the application of PLS is demonstrated to the
prediction of single-seed protein content from NIR transmission measurements in
the region from 850 to 1050 nm (Dataset 4). The advantage of this dataset is that
it is large (n = 264) and has an experimental structure that makes it interesting in
studying the effect of different cross-validation schemes.

As is evident from a casual inspection of the raw data (Fig. 7.6), the spectra seem
to exhibit, what appears to be, if not just scatter, than a highly varying degree of trans-
mission intensity (path length). Therefore, the NIR transmission spectra need to be
pre-processed before any calibration to the underlying chemistry can be performed.

As a first step, a suitable cross-validation scheme should be decided upon. In
this experiment, the spectral data originate from 5 different varieties of grain and it
will thus be appropriate to use a “leave one variety out at a time” cross-validation
schemewith the purpose of selecting a suitable pre-processingmethod and an optimal
number of components. This scheme will sequentially exclude blocks with 20% of
the dataset (or 52 spectra).

As observed from Fig. 7.25, the choice of pre-processing has a large impact
on the performance of the model. The worst performance is observed for no pre-
processing (blue line). It seems that the derivativemethods are performing better than
multiplicative scatter correction (MSC) alone, and the best performer is a Savitzky–
Golay (SG) filter of second order with a width of 7 spectral variables (corresponding
to 14 nm). The best performingmodel, and that quite significantly, is a combination of
a second derivative and a subsequent MSC [45]. Combining pre-processing methods
can indeed produce more accurate models, as is seen here. The example here is a
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Fig. 7.25 Development of PLS models and comparison of pre-processing methods (Dataset 4).
Prediction of the protein content in single wheat seeds from NIR transmission spectra. Testing and
comparing different pre-processing methods. The graph shows cross-validated prediction errors
from different types of pre-processing method. SG indicates second-order Savitzky–Golay deriva-
tives with the indicated window length. The models are validated “leave one variety out at a
time”

testimony to the fact that a thorough inspection of different pre-processing methods
and reasonable combinations thereof for a given dataset should always be considered.

Having selected a suitable pre-processing method, and by inspecting the curve in
Fig. 7.25, it appears that 4 components may be a reasonable choice. The decrease
of prediction error is negligible including further components, and hence, the model
will yield a RMSECV of 0.74% protein, as shown in Fig. 7.26.

7.6.8 Application of PLS-DA to NIR Spectra

For demonstration, a PLS-DA classification model is developed on Dataset 3. In this
set, several gum arabic samples have been measured, and they are known to belong
to one of two classes—Acacia seyal or Acacia senegal. In order to define the class
of each of the samples, a dummy y vector is constructed that has the same number
of elements as samples in the X data. In this vector, all samples of Acacia seyal
are set to “1” and all samples of Acacia senegal are set to “0”. When performing
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a PLS prediction model on these data, a pseudo-probability will be produced for a
measurement to belong to the Acacia senegal variety.

When performing the cross-validation of the model, one physical sample will be
left out by removing all of its 10 analytical replicates at a time. An independent
sampling for the validation is thus achieved.

The resulting PLS-DAmodel is shown in Fig. 7.27. Inspecting the cross-validated
prediction error (red line) in Fig. 7.27a, a local minimum is found at 8 components.
This is a very high number for a system with only 26 physical samples, and by closer
inspection, it is decided that 3 components are a more suitable trade-off between
error and complexity because the gain from including component 4 and onward is
negligible (does not change the number of misclassifications). Given a 3-component
solution, the cross-validation predicted dummy y is shown in Fig. 7.27b. There is a
clear separation between the two classes of sampleswith only threemisclassifications
using a threshold of 0.5 (stipulated red line). A so-called confusion table that groups
the counts of classifications of samples in terms of classification modes can now be
developed (see Table 7.1).

The table can be summarized into the classification accuracy, determined to be
0.996, calculated as:
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ACCURACY = TP + TN

NT + NF
(7.28)

In fact, the classification accuracy can be calculated for each component added to
the model. Such a plot, shown in Fig. 7.27c, is a valuable tool to determine number
of components needed. And in this example, three components seem as a reasonable
choice: The increase in accuracy by including a fourth component is negligible.

7.6.9 Outro

Selection of a validation method for multivariate models is of crucial importance to
the performance of the final prediction model. The chemometric software may have
many different validation schemes implemented, and it might at first seem difficult
to choose the correct one. However, the choice may be simplified by following a set
of simple rules:

1. In general, you want to perturb your data as much as possible when applying
cross-validation [43]. Use the highest relevant nested level such as batch, variety,
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Fig. 7.27 PLS-DA prediction of the “Acacia seyal” class belonging of Dataset 3. a shows the
prediction error of the dummy y variable. b shows the predicted value of the two groups colored
according to class (Acacia seyal is red, and Acacia senegal is blue). The red line indicates the
classification threshold. c shows the prediction accuracy as a function of components

Table 7.1 Confusion table
for the Acacia seyal PLS-DA
prediction

n = 260 Actual Acacia
seyal
n = 70

Actual Acacia
senegal
n = 190

Predicted Acacia
seyal

True positives (TP)
67

False positives
(FP)
0

Predicted Acacia
senegal

False negatives
(FN)
3

True negatives
(TN)
190
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location or year as segments. The segments should be representative for what
you would like the model to be able to predict.

2. Do not use full cross-validation (leave out one sample at a time) unless you have
very few samples [44]!

3. Replicates must always end up in the same cross-validation segments!
4. If you have several experimental design factors, try to use the different factors

as segments in the cross-validation, i.e., batch, year, variety, location, etc.
5. If different models are approximately equally good, be conservative and select

the model that is most parsimonious (i.e., uses fewest latent factors).
6. If different cross-validation methods suggest different numbers of latent factors,

try to repeat a method, where samples are randomly split into (relatively few)
segments.

The application of other more advanced validation methods like double cross-
validation, permutation and Monte Carlo testing often adds complementary insight
of themodel performance (Westerhuis et al. 2008). However, in most cases following
the rules above will be adequate to validate the multivariate models.While validation
allows for the assignment explained of variance in the PCA models, it is primary
when it comes to regression/prediction models that validation becomes crucial for
assigning measures of accuracy to the models in terms of bias, variance, confidence
intervals, prediction errors, etc., and to the determination of number of components.

7.7 Variable Selection in Regression

Too much data—too little information!
—Harald Martens, Norwegian chemometrician

The spectral rangeofNIR instruments is typically determinedbyhardware compo-
nents such as optical materials, light sources and detectors. The spectral region for
a given instrument may thus not be optimal for your application. The multivariate
advantage has been amply demonstrated for PCA and PLS applications to NIRS
data, but how much multivariate is enough and how much is too much?

In principle, two or a few, covarying neighboring variables should suffice to
provide the multivariate advantage. Despite the high redundancy in NIR spectra,
the multivariate methods can often be improved by variable selection. The primary
reason for the improvements is the reduced number of interferences in the reduced
set of variables, but also because of the fact that the data structure in the NIR region
has different behaviors across the NIR region, in particular in the shortwave (SW)
NIR region, the first overtone region and the combination tone region. Feeding all
this variation to PCA or PLSmay deteriorate the performance. It can be an advantage
to get rid of the irrelevant spectral regions and spectral regions which contain mostly
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Fig. 7.28 PLS regression to the pectin %DE from the combined Dataset 1. The data have been
pre-processed using second-derivative Savitzky–Golay (window width of 9 variables). The model
has been cross-validated (leave-one-out, chosen here for simplicity). a A local RMSECVminimum
is found at 3 components with an error of 2.15%DE. b Predicted versus measured plot for a 3-
component model with an R2 of 0.98. c The resulting regression vector

noise (e.g., too high absorbance regions). However, when performing spectral region
reduction and/or variable selection the strategy must be carefully considered.

If you keep only the data you think are relevant, you will confirm what
you already “know” is important and this will reduce your chances of
innovation

—Frank Westad, Norwegian chemometrician

First, it must be decided for what reason variable selection is performed. Is it in
order to obtain parsimonious models with simple interpretation or is it exclusively
to increase model performance? In any case, combining a supervised model, such as
PLS-DA, with a variable selection method gives a high risk for overfitting and thus
creates the need for rigorous validation.

Many strategies exist for variable selection in NIRS regression methods. They
come in two flavors: one focusing on finding variables that are good at prediction
of the response variable, and one that is focused on uncertainty estimates on the
coefficients of the regression vector. In the following, a few pragmatic methods that
have found their way into NIRS will be described and compared with the results
provided in a straightforward PLS application (Dataset 1). The “baseline” model for
this dataset is shown in Fig. 7.28.

7.7.1 Regression Coefficients

The PLS regression coefficients (b) represent a measure of association between each
variable and the response. If an acceptable global PLS model is obtained, a normal
procedure is to inspect the model parameters, for example this regression coefficient.
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High absolute regression coefficients are considered important, and small regression
coefficients are considered less important and could potentially be eliminated. Elim-
inating variables that have a small absolute value for the regression coefficients
may thus lead to an improvement of the model [46]. This simple idea is the basis
for variable selection by so-called jackknifing [47, 48]. For each cross-validation
segment, a new regression vector is calculated, and it will thus be possible to esti-
mate the standard deviation of the PLS regression vector. When the distribution of
the regression coefficients includes zero, they can be discarded, and a new model
calculated. The procedure can be implemented iteratively by recalculating the model
and eliminating more variables. It differs from other variable selection methods by
not searching directly for variables that are good at predictions or y, but instead by
eliminating variables that possibly have a regression coefficient close to zero and thus
do not contribute (significantly) to the prediction. No matter what value such vari-
ables have for a new sample, they will be multiplied by zero and thus not contribute
in the prediction. To remove variables, this way makes the risk of overfitting smaller
compared to selection methods that are focused on finding variables that are good at
predicting the response variable.

It is a prerequisite for this variable selection method to work, that a decent model
has already been developed using all spectral variables. As shown in Fig. 7.28c, the
majority of the regression coefficients are close to zero despite the fact that the raw
spectral data varying significantly in these regions. This indicates that the PLSmodel
has down-weighted these variables.

Since spectroscopic data are normally smooth, so is the regression vector expected
to appear smooth. It is thus (normally) not possible that the measurements at, e.g.,
2450 nm are positively correlated to the response variable and the measurements at
2452 nm are negatively correlated.Modelswith noisy regression coefficients indicate
that the spectral region should be removed. By these very pragmatic and basic rules,
it is possible to reduce the spectral data to a region of interest, which improve the
predictive PLS model. This method further has the practical advantage that PLS
regression coefficients are readily available as standard output and plots from PLSR
software.

7.7.2 Variable Importance in Projection

A variant in using the regression coefficients for variable selection is the variable
importance in projection (VIP) estimate, originally proposed by Wold et al. [49].
The VIP score is an estimate of the importance of each variable for the projection of
y onto X. It is found by accumulating the importance of each variable from the PLS
loading weights for each component. The average VIP score for all variables is equal
to 1, and hence, typically a “larger-than-one” selection rule is applied for variable
selection [50]. The VIP score is normally used as an assistance in manual variable
selection and can be a valuable tool, when used together with prior knowledge about
the measurements. As a selectivity ratio, the VIP number can be used to exclude
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Fig. 7.29 VIP score variable selection of the PLSmodel to the pectin%DE in the combinedDataset
1. a The model VIP scores, where the red dotted line at y = 4 (selected in this instance as half the
height of the highest VIP score) indicates the inclusion threshold. b The model statistics: RMSECV
of 2.22%DE with a two-component model is the optimal choice. c The resulting actual versus
predicted plot with an R2 of 0.98

variables with insignificant regression coefficients in order to improve the predictive
power of the model. However, as they are based on regression against y, degrees of
freedom are lost in the process and the produced models should be validated using
a test set to secure that the model is not overfitted.

Figure 7.29 shows the application of VIP score variable selection to Dataset 1.
The performance when imposing the variable selection (VIP scores > 4 which result
in 6 variables retained), the model has a similar RMSECV of 2.22%DE to the global
PLSmodel (Fig. 7.28) but uses one component less. This is a typical result of variable
selection; i.e., a few variables are selected (good for interpretation), the regression
model is deteriorated a bit (not good for scrutiny of performance but perhaps good
for robustness), and model is using fewer components (good for interpretation and
avoidance of interferences).

Variable selectionbasedonVIP scores is becoming rather commonand is available
in most commercial software.

7.7.3 Forward Stepwise Selection

The primary target of most variable selection methods is to improve the regression,
and this concept is employed in themost direct and brute way in the forward stepwise
selection (FSS) procedure. In this method, all single independent variables are tested
in finding the one, which provides the best regression model toward the dependent
variable. All these single-variable models are test set validated, and the variable with
the lowest RMSEP (on the independent test set) is chosen. In a second iteration,
one new variable, that improves the PLS model the best, is included to complement
the first selected variable. The variable that, in combination with the first chosen
variable, gives the lowest RMSEP is selected. Subsequently, additional variables
are included one-by-one by their capability to improve the previous model. This
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procedure is continued as long as the RMSEP (on the independent test set) decreases
by the introduction of a new variable. The result of this procedure is a set of variables
that represent the best combination in the spectral region, when optimizing for model
performance. However, it should be noted that the variable set found may not be the
absolute best one when compared to more sophisticated variable selection methods
due to the buildup nature of FSS. Like theVIPmethod, the FSS is based on regression
against y and it is thus important to use a test set, when evaluating the selection of
new variables. An evaluation procedure based on cross-validation only will often
lead to severe overfitting.

Figure 7.30 shows the application of FSS variable selection to Dataset 1. The
performance when adding variables up to 10 provides a model performance with
RMSECV of 1.32%DE which is markedly better than the global PLS model
(Fig. 7.28) using only 2 components. The 10 variables that are picked up by the
algorithm facilitate “simple” interpretation and in this case make good sense for
modeling degree of esterification in pectins. The improvement in performance over
the global PLS model should give serious concern to the danger of overfitting, and
the model will need a real test set to be confirmed.

FSS variable selection is considered “quick and dirty” and is rarely implemented
in commercial software, but it is easy to program.
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Fig. 7.30 Forward stepwise selection on the PLS model to the pectin %DE in the combined
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7.7.4 Recursively Weighted PLS (rPLS)

Recursively weighted PLS (rPLS) [51] combines the selection of variables by regres-
sion coefficients with an automatic iterative variable selection procedure. rPLS iter-
atively eliminates variables by using the regression coefficients to magnify impor-
tant variables and thus down-weight less important variables. rPLS is based on a
process of repeated PLS models where the current regression coefficients are used
as cumulative weights on X:

Xi = Xi−1 · diag(bi−1) (7.29)

where Xi is the weighted X and bi is the regression coefficient for iteration i. Using
thismethod, a reduced subset of variables is identified for regressionby recursively re-
weighing of the independent variables (X) with the estimated regression coefficients
(b). The algorithm is started with a standard PLS model between X1 (equal to X)
and y, giving b1. The re-weighting is recursively repeated until no further change in
the regression coefficients occurs. The result is a regression vector bend that contains
only ones and zeros. This binary result is a direct output from the rPLS algorithm;
i.e., no rescaling of the final regression vector is performed. The rPLS model has
the advantage that it, under normal conditions, will converge to a limited number of
variables, normally including colinear neighbor variables, which is very useful for
interpretation. This is not the case in more complicated situations.

The method will ultimately and normally converge to a solution that has the same
number of variables as the number of principal components included in the regression.
rPLS has the advantage in comparison with other iterative variable selectionmethods
that no meta-parameters are required (i.e., interval sizes or number of components),
at the “optimum” a relative low number of variables will be included in the model,
and after recursive convergence very few variables are retained in the end model.
In the latter case, the model performance is slightly worse than the optimal, but the
interpretability may be significantly improved.

Figure 7.31 shows the application of rPLS variable selection to Dataset 1 using
only 2 components. The optimal performance is reached for iteration #7 and gives
a performance of RMSECV of 1.77%DE and a R2 of 0.97 which is markedly better
than the global PLS model (Fig. 7.28) using only 2 components and 13 variables
(centered around 1460 nm and 2244 nm). Then, the method is allowed to converge,
and it reaches 3 variables (1460 and 2244 nm) and a performance of 1.78%DE. The
model results thus give excellent interpretation and demonstrate that the multivariate
advantage may be gained by just adding a few or a single covariate neighbor variable.
Again, the improvement in performance should give serious concern to the danger of
overfitting and the model will need a real test set to be confirmed. The model shown
in this section was determined in MATLAB using the open-source rPLS algorithm
available at http://www.models.life.ku.dk/algorithms.

http://www.models.life.ku.dk/algorithms
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Fig. 7.31 Application of the rPLS algorithm to Dataset 1. The plot shows the output of the rPLS
algorithm, converged at 13 iterations for 2 components. The center frame shows the cumulative
regressionweights per iteration (colored according to theweight shown in the left frame). The lowest
RMSECV= 1.77%DE (right frame) was found at iteration #7, as indicated by the horizontal dotted
line. The mean spectra are superimposed for reference, with the selected wavelength highlighted

rPLS is a relatively new variable selection model, but it is included in the popular
PLS Toolbox (Eigenvector Research, Manson, WA, USA, http://www.eigenvector.
com) for MATLAB (MathWorks, Natick, MA, USA, http://www.mathworks.com).

7.7.5 Interval PLS (iPLS)

iPLS is an extension to PLS that creates local models on intervals from the full
spectrum focusing on important spectral regions, without including interferences
and noise from other regions [52]. This very pragmatic algorithm divides the NIR
spectrum into intervals for which individual PLSmodels are made. The performance
(RMSECV) of these interval models is then compared with the global, full spec-
trum model. This allows an immediate localization of those spectral regions that
are correlated with the response y. This simple exercise is able to provide an excel-
lent overview via the so-called iPLS plot that immediately visualizes which interval
performs better than the global model and that with how many PLS component(s).

http://www.eigenvector.com
http://www.mathworks.com
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Fig. 7.32 Application of the rPLS algorithm to Dataset 1. The plot shows an iPLS model, where
the spectral region has been divided into 19 segments. The height of the individual bars indicates
the resulting RMSECV when including only that region. The number above each bar indicates the
number of PLS components included in the subregion model, selected as the first occurring local
minimum from cross-validation. The small interval around 2244 nm gives a RMSECV= 2.09%DE,
using only two components. The blue stipulated line gives the global PLS performance of 2.15%
using 3 components

Figure 7.32 shows the iPLS plot when applying this variable selection strategy to
the Dataset 1. While the y vector containing the response variable remains invariant,
theX datamatrix is split into 19 intervals of equal width. As the figure shows, a single
region around the 2244 nm performs dramatically better than the others: RMSECV
= 2.09%DE and R2 of 0.89 using one PLS component less.

iPLS is implemented in several chemometric software packages, including the
PLS Toolbox (Eigenvector Research, Manson, WA, USA, http://www.eigenvector.
com) for MATLAB (MathWorks, Natick, MA, USA, www.mathworks.com). The
model shown in this section was determined in MATLAB using the open-source
iPLS Toolbox available at http://www.models.life.ku.dk/algorithms.

7.7.6 Outro

Variable selection is important to consider, when one is challenged by complex
multivariate NIR data. It serves three primary purposes:

http://www.eigenvector.com
http://www.mathworks.com
http://www.models.life.ku.dk/algorithms
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1. To improve the performance of multivariate regression models
(RMSEP/RMSECV)

2. To simplify multivariate regression models by excluding interferences, local
nonlinearities and noisy variables (fewer latent variables)

3. To improve interpretability of multivariate models.

It is normally not a good idea to compare and scrutinize variable selectionmethods
for better performance. The danger of overfitting is too high, and the applicability of
the final models will often become too limited and sensitive. The pragmatic compro-
mise is often to use a variation of iPLS in which a spectral region can be selected
with the relevant signals and without deteriorating noise or interferences present.
Remember the instrumental spectral range was not decided for a specific application!
However, when seeking for causality and interpretation, variable selection methods
may be a strong tool to combine with a priori knowledge.

7.8 ANOVA Simultaneous Component Analysis (ASCA)

While Variable Selection can be considered as a horizontal elimination
of interferences, ASCA can be considered as a vertical elimination of
interferences (partition of variances)

As mentioned previously, the most valuable meta-parameters in any spectral
recording sets are the experimental design factors. It is a good practice to use this
knowledge, and many NIRS studies provide multivariate datasets with an underlying
experimental design.

Biological systems exhibit sources of variation due to a large number of factors,
such as variety, soil and climate. Realizing this, led Fisher [53] (broadly recognized
as the father of modern statistics), to develop experimental designs suited for esti-
mation and handling of the variation based on these factors. The paired t-test and
analysis of variance (ANOVA) are examples of models used to analyze data from
designed experiments. The backbone of these methods is to estimate variance related
to the design factors, including both systematic factors such as treatment, but also
a nuisance factor like subject, and hence in turn be able to remove dominating but
un-interesting variation. In thisway, the variation of interest, like treatment, is empha-
sized, which in turn increases the chance of finding something interesting. For a wide
range of applications, the dominating variation in data is often trivial, while the inter-
esting—and new—variation sources can be minor in comparison, leaving it covered
or unresolved if not handled through a proper designed experimental structure and
in turn elucidated via a mathematical extraction of the relevant design effects.
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An interesting multivariate tool for exploiting the experimental design informa-
tion, combining the power of ANOVA to separate variance sources with the advan-
tages of simultaneous component analysis (SCA) to modeling of the individual sepa-
rate effect matrices, is called ANOVA simultaneous component analysis (ASCA)
[54]. It utilizes advantages of ANOVA in terms of both partitioning the sources of
variance and using PCA for multivariate interpretation. In order to exemplify how
this method works, imagine a simple experiment, where n samples are treated by
process A and process B in a randomized crossover fashion. At the end of each
process, a quality is measured. If this response is univariate, the difference between
processes A and B is naturally tested by a t-test. The power of a t-test is that each
sample serves as its own control and the variation is hence split into what origins
from the individual samples and what origins from the processes. More formally, the
model can be written as:

xi = a
(
processi

) + β
(
samplei

) + ei (7.30)

whereα has k levels (the number of different processes) and β has j levels (the number
of samples). ei is the error term, which often is assumed normally distributed and
may have an arbitrary number of levels. In a testing scenario, the aim is to compare
the effect, i.e., differences between different levels of α, with the magnitude of the
(random) error.

If the response is multivariate (e.g., NIR spectrum), this paradigm simply scales to
the multivariate case. Take the setup from above, but let the response be multivariate
(X); the model of X can now be formalized as follows:

X = X(process) + X(sample) + E (7.31)

For a full crossover, the dimension of the X’s is kj by m (m is the number of
variables). X(process) describes the information related to the different processes
and has k levels, while X(sample) describes between sample variations (j levels).
Equation 7.31 hence is merely a concatenation of Eq. 7.30 m times, one for each
variable. E represents the non-design-related information—it is often systematic but
just not related to the experimental design. The right-hand side of Eq. 7.31 can be
combined or analyzed individually by, for example, PCA (the working principle
in ASCA). Assume that X is made of NIR spectra, then a PCA on Xprocess will
point toward spectral patterns that discriminate between the processes, and likewise
a PCA on Xsample will reflect where the largest variation due to sample differences
(e.g., variety, soil, climate, etc.) is distributed. If the aim is to investigate the process-
related patterns by taking the error spread into account, a score plot made from
projecting Xprocess+ E onto loadings from a PCA on only Xprocess will reflect the
process differences in relation to the non-design-related variation in the data. If
the aim is to test for differences, multivariate classification models can be built on
relevant parts of Eq. 7.31. For example, a PLS-DA onXproces +E for classification of
processeswould point toward how strong the process-related variation is compared to
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the randomvariation. If formalized as aPLS-DAproblem, this is knownasmulti-level
PLS-DA [55].

A limitation of the application of ASCA is that it is most optimally applied to
balanced design structures. On the other hand, the statistical significance of the
strength of each design factor and their interactions can be evaluated using a permu-
tation test [56], thus providing a link to classical statistics. Needless to say that
appropriate pre-processing and centering of the X matrix will be essential to the
subsequent ASCA.

7.8.1 Application of ASCA to NIR Spectra

Since the ASCA description above can seem a little theoretical, it will be illustrative
to demonstrate the potential of ASCA from an example. Here, it is used to partition
(split) the variance due to different sampling geometries in Dataset 4. The ASCA
model thus reflects the experimental factors shown in Eq. 7.32 and Fig. 7.33. Only
three factors are included in the model, and the “individual” factor is left out.

It will make no sense to include “individual” as a design factor in the ASCA
model, as the different individuals are not the same for the different varieties. They
are physically different kernels and can thus not be compared across varieties. This
leaves us to focus on the partitioned effects of the three design factors:

X = Xvariety + Xposition + Xorientation + E (7.32)

TheASCAmodelwill be computed onDataset 4with the spectraX, pre-processed
by a 2nd order, derivative Savitzky-Golay filter of window width 7, followed by a
MSC, and finally a mean centering. The effect is evaluated with 1000 permutations.
For simplicity, interactions between the three factors are not included. The full rank
of each factor is also calculated.

The primary output of the ASCA model is the effect table (Table 7.2). From the
table, it is clear that largest effect is found in the residual (81.1%). In the current case,
this is primarily caused by the individual seed variation,whichwe choose to disregard
here. The second highest effect stems from variety, followed by the two sample
presentation parameters of position and orientation. Based on the permutation test,
we can determine the statistical significance of each of the factors. The orientation
factor is found not to be significant due to its high p-value. However, it seems that
variety and position both are highly important and are contributing significantly to
the variation in the dataset.

It can be concluded that the position is an important experimental factor and can
be directly compared to the more important variety effect. As previously mentioned,
the orientation factor describes the orientation of the single seed in the instrument—
which is thus a factor that should be controlled in the future use of the instrument or
in, e.g., a high throughput scenario with single-seed sorting!
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Fig. 7.33 Structure of the nested design in Dataset 4. The three factors are nested, so that each
of the 5 varieties contains 4 positions, which in turn each contains 2 orientations. The design is
thus balanced—all combinations exist at all levels. As the effect of the mean centering has been
partitioned out, the only remaining experimental variance is the effect of the individual kernels.
The individuals cannot be nested a factor, as they are biological individual specimens and would
break the design balance. See the text for discussion of effect and significance for the design levels.
The X shown here has been pre-processed, so that spectral artifacts (scatter) have been removed, in
addition to mean centering

Table 7.2 Effect table of the
ASCA model

Factor Principal
components (DF)

Effect
(%)

Significance
(p-value)

Variety 4 13.5 0.001

Position 3 5.0 0.001

Orientation 1 0.4 0.246

Residual >2 81.1

Further analysis of the ASCA solution includes examination of each of the factor
sub-models. Since the orientation factor was found to be insignificant, focus is
directed toward the variety and position, shown in Fig. 7.34. Each factor can be
analyzed using PCA and described in terms of their scores and loadings.

As for the variety (Fig. 7.34a and c), they seem to vary by the significant peak at
~1020 nm. This band relates to the second overtone of the N-H stretching vibrations
corresponding to a separation into different protein levels, meaning that each variety
will have a different “species”-dependent protein content, and further investigation
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Fig. 7.34 Two sub-models from the ASCA model. a and c show the scores and loadings for PC1
of the variety model and colored by each of the five varieties. The black lines indicate the score
averages of the individual varieties. b and d show the scores and loadings for the PC1 of the position
sub-model and colored by each of the 4 positions. The black lines indicate the score averages of the
individual positions

will in fact reveal that PC1 of the variety sub-model shows a high correlation to the
protein content. The picture for the position sub-model (Fig. 7.34b and d) is on the
other hand a bit more unclear and should be investigated further. Comparing the score
averages, it seems that the two first positions (left and right) are identical, whereas
the two following (front and back) are of much higher levels, in opposite directions.
It shows that rotating the kernel in the sample compartment has an influence on the
measurements, but not as much as the morphology of the variety has.

ASCA can be performed using the PLS Toolbox (Eigenvector Research, Manson,
WA, USA, http://www.eigenvector.com) or academic freeware such as the ASCA
package written in MATLAB by Morten Arendt Rasmussen found at https://bitbuc
ket.org/modelscat/asca/.

http://www.eigenvector.com
https://bitbucket.org/modelscat/asca/
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7.8.2 Outro

The idea of using ASCA to partition the variances of the experimental design param-
eters has great potential and has not been fully exploited in NIRS literature. ASCA
brings a valuable link between themultivariate data analysis and statistics, as it is able
to provide significance testing of the different design factor effects and interactions.

7.9 Process Analytical Technology, Machine Learning
and Other NIRS Trends

Collecting large quantities of extremely low-quality data will not be the
recipe for success!

—Tom Fearn, British chemometrician

Due to its unique capabilities and complex, holistic spectra, NIR spectroscopy has
served as the perfect playground for the development of multivariate data analysis
and chemometrics, and there is no sign for this to stop in the near future. Themajority
of spectroscopic sensors used in process analytical technology (PAT) are based on
NIR technology [57, 58]. This may be called “the second green analytical revolution
of NIRS analysis.” The first was introduced by Williams and Norris in 1975 when
replacing sulfuric acid demanding Kjeldahl analysis with clean NIRS analysis [59].
NIRS analysis in the PAT context has perhaps a much larger potential to change the
way that we produce sustainably and the way that we optimize processes for a new
circular and green economy (see Fig. 7.35). Moreover, portable NIRS sensors are
omnipresent in agriculture, we are beginning to see NIRS sensors on drones, NIRS
hyperspectral imaging and NIRS sensors on mobile phones are emerging. This will
drastically increase the amount of NIR data collected from practically all aspects of
life.

This technology revolution has created a strong quest for new and more efficient
data analytical tools. Artificial intelligence, machine learning and deep learning are
increasingly exploited to facilitate efficient information extraction from the enor-
mous data collections, and applications are starting to emerge for the spectroscopic
disciplines [60]. These methods can deal with nonlinear effects (abundant in NIR
spectroscopy), but are generally less interpretable (black box) for the scientist.

The developments of machine learning methods are primarily made in the NIR
imaging field, where neural networks have proven quite efficient in decoding the
complexity of hyperspectral images in their original multidimensional form [61], a
natural extension to the more traditional approach of applying PCA on deconvoluted
images.

The true application of “deep” neural processing, where the neural network is fed
raw sensor data and trained to form self-organizing feature detectors, is an obvious
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Fig. 7.35 Use of NIR spectroscopic monitoring in PAT context. (a) When new processes are scaled
up to industrial scale, they are often uncontrollable, use excess heat, substrate and stirring, use too
much reaction time and may lead to occasional scrap. (b) When the NIRS sensors are mounted
for online monitoring, the process engineers obtain knowledge and may get ideas for controlling
the reaction better. (c) When NIRS is used for active feedback control, the process can continue
smoothly with minimal energy and substrate use and with faster total reaction times which may
increase production capacity

tool for identification of hidden phenomena in data streams. This opens possibilities
involving difficult (nonlinear) classification tasks—especially process-based time
series data, where NIR spectra can be recorded very frequently in multiple process
streams using distributed sensor systems. The spectral data can be analyzed for
emerging patterns [62], for a holistic view over all process streams. Such detector
systems may be able to produce early warnings for process failures by the use of
long short-term memory (LSTM) neural nodes on NIR data directly, much earlier
than current PAT tools allow for.

These methods are also often marked as the “magic tool” in connection with
NIR sensors of lower quality, but this is not recommendable in praxis. The rule of
thumb of data quality also applies to machine learning. The quality of the generated
predictions will be just as good as the quality of the modeled data, but not better.

Another related trend is the combination of NIR data with signals from other
analytical platforms and metadata for fusion [63] or 2D correlation spectroscopy
[64]. This can sometimes be useful to add and co-model complementary information
to strengthen multivariate models and their interpretation.

Last but not least, there exist some more academic trends trying to create the
calibration-free NIR spectrometer using factor analysis [65], and trying to diagnose,
when NIRS calibration models rely on indirect correlations with the aim of under-
standing the boundaries for the validity of the covariance structures [66]. IndirectNIR
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calibrations are becoming more widespread, and they can be problematic in terms
of accuracy and robustness of the calibration models, since they rely on biological
covariance structures, which may not remain constant over time or other (changing)
external factors.
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Chapter 8
New Trend in Instrumentation of NIR
Spectroscopy—Miniaturization

Christian W. Huck

Abstract The emergence of handheld spectrometers in the past decade marked a
significant turning point in the evolution of the practical applications of near-infrared
(NIR) spectroscopy.Miniaturized sensors enabled a new and previously unattainable
spectrum of applications of NIR spectroscopy. Nonetheless, several issues connected
with the use of miniaturized spectrometers have become apparent. In contrast to a
matured design of a FT-NIR benchtop spectrometer, the handheld devices are much
less uniformand incorporate various novel technologies. These compact technologies
result in different performance of miniaturized spectrometers, with narrower spectral
regions or lower resolution over which they operate. For this reason, current research
focus is on thorough systematic evaluation of the applicability limits and analytical
performance of these devices in a variety of applications. This chapter aims to present
a comprehensive information on the principles of the technology and application
potential of miniaturized NIR spectrometers.

Keywords NIR spectroscopy · Portable · Handheld ·Miniaturized · Sensor

8.1 General Introduction

In principle, from the point-of-view of instrumentation, near-infrared (NIR) spec-
troscopy is an optical absorption spectroscopy. Therefore, NIR spectrometers share
the general design schemewith those used inmore popular types of spectroscopy such
as visible (Vis) or infrared (IR) spectroscopy. This similarity goes further, and often
instrument dedicated to operate in Vis or IR regions is able to measure at least some
part of NIR spectra. This is primarily limited by the emission spectrum of the source
and sensitivity of the detector. The performance of these key elements is not curtailed
sharply with any arbitrary wavelength boundaries, but rather steadily diminish at
the extended ranges. For this reason, ultraviolet–visible (UV–Vis) spectrometers
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are often capable of extending measurements to short-wavelength NIR region (SW-
NIR). There is no clear definition of SW-NIRwavelength boundaries in the literature,
and it mostly depends on the limitations of specific instrument; however, SW-NIR
region is quite important from the point-of-view of portable spectroscopy, as it will
be explained later on. On the other hand, most IR spectrometers can extend its opera-
tion to the long-wavelength NIR as the most commonly used IR detector (deuterated
triglycine sulfate detector with a cesium iodide window, DTGS/CsI) offers sufficient
sensitivity up to 6400 cm−1. Nonetheless, it requires a dedicated NIR spectrom-
eter equipped with a proper light source (e.g., tungsten halogen lamp) and detector
(e.g., high-performing indium gallium arsenide, InGaAs) to measure good-quality
spectrum in the entire NIR region. In this regard, laboratory-scale (benchtop) NIR
spectrometers are nowadays highly matured. In contrast, it is still a challenge to
design a miniaturized sensor that would offer similar capability. The properties of
light sources, detectors, and wavelength selection elements are of critical importance
for the design of miniaturized devices. It may be stated that the available technology
governs the level of miniaturization, performance, and affordability of portable NIR
spectrometers.

Further, the properties of molecular excitation in NIR region are meaningful for
the requirements issued to the instrumentation. Unlike IR bands, NIR spectra rather
feature broad absorption structures resulting from numerous overlapping contribu-
tions (combination and overtone transitions). This makes the optical resolution of
an NIR spectrometer relatively less critical. Instead, with lower resolution, a better
optical gain is achieved, which results in a greater signal-to-noise, and/or faster
scanning operation. Such high throughput capacity and rapid analysis are often the
critical factors of instrumental nature, which stand behind the wide adoption of NIR
spectroscopy in practical applications. IR spectrometers require transparent optical
elements to be made of alkali halides (e.g., KBr). In sharp contrast, glass optics is
transparent inNIR region. ThismakesNIR spectrometers easier to adopt to operate in
humid conditions, a fact of great importance for on-site analysis, process monitoring,
and for ease engineering of portable spectrometers.

8.1.1 Basic Technology Design of NIR Spectrometers

The design blocks of a generic NIR spectrometer constitute of a radiation source,
wavelength selector or interferometer and detector, interfaced by optics. Two general
classes of spectrometers may be differentiated: wavelength-dispersive and Fourier
transform (FT). In the former, the wavelength selector only passes selected, narrow
wavelengthwindows that can reach detector at a time (Fig. 8.1). Note that the conven-
tional dispersive devices are obsolete; however, miniaturization has introduced
concepts similar to them, which will be discussed in detail later on.

Benchtop spectrometers have nowadays almost entirely adopted FT principle.
Instead of a classical wavelength filter, an interferometer enables a simultaneous inci-
dence of all wavelength on the detector (Fig. 8.2). The spectrum is obtained through
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Fig. 8.1 Schematic spectrometer assembly

Fig. 8.2 Schematic illustration of a Michelson interferometer

Fourier transform.Noteworthy,Michelson interferometer is themost often employed
in laboratory-scale spectrometers. The core element there is formed by a fixed and a
moving mirror, onto which the polychromatic beam is simultaneously directed by a
beam splitter [1]. One of the beams is used to probe the sample, and afterward both
are recombined. The path difference between the beams introduced over the time
of the scan leads to periodically alternating interferences (phase differences), from
which a spectrum can be reconstructed (Fig. 8.3) [2].

The Fourier transform principle has a meaningful impact on the performance
as short scan times are possible and high-optical throughput improves the quality
of spectra [3, 4]. Further, optimization and adjustment of optical throughout vs.
resolution enable maintaining an excellent signal-to-noise ratio. However, very high
precision and stability of operation over time are critically important for the proper
function of Michelson interferometer. Nowadays, the precision of motion of the
interferometer’s elements is maintained pneumatically, with hovering on a layer of
air and/or inert gas. However, such features are not suitable for implementation in
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Fig. 8.3 Schematic illustration of applying the Fourier transform

compact spectrometers; firstly, because of the miniaturization, secondly, because of
the requirement for ruggedness of mobile, portable devices, and their intended use
as on-site sensors. Here again, modern technology could offer alternative solutions
that can exclude use of moving parts in miniaturized devices.

Dispersive devices necessarily require repetitive external calibrations in order to
prevent the drift andmaintain the control of the wavelength/wavenumber. In contrast,
in interferometer-based devices, the control over the wavelength axis can be easily
and continuously maintained by the interference of a reference laser (usually a He–
Ne laser). A highly accurate wavenumber calibration is obtained through correlation
of the laser´s wavelength with the interferogram zero-crossing sections [5].

The choice of the detector depends on the investigated wavelength region. There
exist two types of detectors, photon detectors (i.e., photodetectors), and thermal
detectors. Because of the ability to operate over a broad NIR region, the first class
almost exclusively dominates in scientific-grade benchtop spectrometers. However,
many types of detectors require stable temperature to operate, while some also need
to be actively cooled to deliver useful S/N. This is obviously much more diffi-
cult to achieve in miniaturized format. Some portable devices facilitate temperature
correction functions or active cooling elements, e.g., thermoelectric Peltier cooling.
Radiation sources are more uniform throughout the NIR spectroscopy. Benchtop
NIR spectrometers can operate with high stability and very good performance using
conventional incandescent tungsten halogen bulbs. While thermal stability and elec-
trical power of a few Watts needed for the operation of such source can be easily
maintained in a benchtop instrument, in a handheld spectrometer these requirements
may become challenging. Conveniently, current technology enables implementing
tungsten halogen sources in miniaturized instruments.

8.1.2 Overview of the Technological Advancements
in Miniaturized NIR Spectrometers

The instrumentation in spectroscopy and spectrometry can be divided into benchtop
spectrometers, operational only in a laboratory setting, and autonomous spectrom-
eters that can be deployed and used on-site. Commonly accepted classification of
deployability of the instrumentation distinguishes the transportable, ‘suitcase-type’
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and handheld spectrometers [6]. The criterion is based on the equipment weight, and
the first class groups autonomous instruments weighting over 20 kg, which means
they are deployable on field while mounted in a car. Next, an intermediate ‘suitcase’
format corresponds to equipment with weight of several kg. The handheld spectrom-
eters are designed to be carried and operates by hand, and typically weigh under 1 kg
[6]. Such classification should be understood broadly, as fieldable instrumentation
in mass spectrometry (MS), nuclear magnetic resonance (NMR, relaxometry), or
elemental (atomic) spectroscopy such as X-ray fluorescence (XRF) or laser-induced
breakdown spectroscopy (LIBS) is available as well. Figure 8.4 demonstrates the
progress of the miniaturization in different fields of spectroscopy and spectrometry
[7]. The physical principles of NIR spectroscopy make it very suitable for minia-
turization of the instrumentation, and NIR spectrometers achieved an outstanding
progress in compact technology. While very compact sensors emerged recently for

Fig. 8.4 Exemplary compact instrumentation in spectroscopy and spectrometrywith different levels
of portability. a Car-deployable long-path reflective FT-IR and GC–MS. b Portable sensor based
on tunable diode-laser absorption spectroscopy (TDLAS). c Handheld attenuated total reflection
(ATR) FT-IR spectrometer (Agilent 4300). dUltra-miniaturized NIR spectrometerMicroNIR 1700.
Panels in the figure reproduced; a from Ref. [24] with permission (Elsevier Open Access license);
b from Ref. [25] (CC-BY 4.0 license); c from Ref. [26] (CC-BY 4.0 license)
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some other techniques, e.g., fluorescence, NIR spectroscopy is superior in chem-
ical specificity and applicability to a broad range of sample types. The most recent
years have led to emerging new class of spectrometers, miniaturized NIR devices
that can reach weigh of sub-100 g, and ultra-miniaturized sensors that are compact
enough to be built-in directly into a smartphone device. Several ultra-miniaturized
NIR spectrometers appeared in the past decade. This new-generation devices areUSB
powered or operate under own power source (usually Li-ion battery) and are intended
for easy use. Such spectrometers often come with software designed for easy and
rapid operation by non-expert personnel. Moreover, spectra measurement by these
spectrometers is often much more rapid than in the case of benchtop instrument.

Sensor miniaturization has a critical importance for several practical applications
[8]. The first breakthrough to practical availability of handheld NIR instruments
was micro-optoelectronic-mechanical systems (MEMS) and miniature diode-array
detectors (DAD). The first handheld, all-in-one portable (1.5 kg) NIR spectrometer
was introduced commercially by Polychromix 2006, and the instrument is nowadays
known as microPHAZIR by Thermo Fischer Scientific. This design was engineered
withMEMSwavelength selector and tungsten light source. The next noteworthy step
into further miniaturization was made in 2012 by JDS Uniphase (currently ViaviSo-
lutions, Milpits, CA, USA) with the MicroNIR instrument. A very compact size was
achieved throughusing a linear variable filter (LVF) element for thewavelength selec-
tion together with a 128-pixel InGaAs DAD. This multi-channel design also enabled
very quick scanning, with less than 1 s required to measure the entire spectrum [9,
10]. In 2016, Texas Instrument presented an optical engine with the dimensions of 33
× 29 × 10 mm in their DLP NIRscan product. It incorporated a digital micromirror
device (DMD) principle with diffraction grating system. The current advances in
the miniature technology make it feasible to fully integrate a NIR spectrometer into
smartphone in the near future (Fig. 8.5) [11].

For most practical applications that adopt portable spectrometers of all kinds, a
successful design should possibly achieve the following characteristics; (i) handheld
format/high level ofminiaturization, (ii) ruggedness (e.g., nomoving parts, resilience
against external conditions, temperature, etc.), (iii) affordability, and (iv) straight-
forward applicability in routine analysis (e.g., rapid measurement, easy handling
by non-expert personnel). It may be safely stated that, in most points, NIR spec-
trometers are particularly suitable for miniaturization. However, as it is known, NIR
spectral analysis is not straightforward and typically requires supervision by expert
personnel. Significant efforts are being directed nowadays to make NIR analysis by
handheld devices more accessible for non-trained operators. Some of the proposed
solutions, e.g., blackbox operation, ‘factory’ chemometric calibration procedures,
cloud computing, still leave much to be desired and are discussed by the NIR
spectroscopic community [12].

Nonetheless, advancements made over the past decade enabled spectroscopic
measurements in previously unattainable scenarios and create new opportunities for
innovative applications in wide field of science and industry. Therefore, portable
instrumentation forms a significant breakthrough in NIR spectroscopy and may
become the key advancement for widespread of this technique in forthcoming time.
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Fig. 8.5 Miniaturization of NIR spectrometers

8.2 The Principles of the Technology Underlying
Miniaturized NIR Spectroscopy

The design of handheld NIR spectrometers mostly deciding about their working
characteristics is the detector and monochromating (i.e., wavelength selection) tech-
nology [6]. There is much less variety in the technology used for light sources here,
although certain notes need to be made below.

8.2.1 Light Sources

In general, there exist two types of light sources in commercially available minia-
turized spectrometers. Most devices employ the conventional principle of tung-
sten light bulb (e.g., microPHAZIR, MicroNIR), although adopted for the needs
of highly autonomous spectrometers. This primarily involves optimizations toward
low power consumption. To maintain control over the thermal stability and output of
these sources, manufacturers often recommend to perform frequent reference scans,
which are not problematic as these devices often rapid scanning. Another used tech-
nology are light emitting diodes (LEDs). Semiconductor-based sources offer unpar-
alleled power effectiveness, affordability, and compact dimensions. However, they
suffer from narrow emission spectrum, which makes such sensors practically useful
mostly in Vis/SW-NIR region (e.g., SCiO device).
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8.2.2 Detectors

The silicon detectors are entry-level solutions that enable constructing low cost 1D
and 2D array sensors. Multiplied Si detector elements can be fitted with own filter
each, with each such element tuned toward measuring its own channel (i.e., wave-
length region). Therefore, they are suitable for constructing very simple and inex-
pensive multichannel detectors. However, Si detectors yield inferior S/N parameter
and because of a cut-off at ca. 1000 nm (10,000 cm−1) are limited to operate in
a narrow spectral region of visible/short-wave NIR (Vis/SW-NIR). Silicon-based
detectors offer practical advantages, e.g., low power consumption. There exist two
major types of such detectors, complementary metal–oxide–semiconductor (CMOS)
and charge-coupled device (CCD), with CMOS requiring lower power consumption
[6]. Charge-coupled device (CCD) is a silicon-based photon detector. When light
strikes the chip, it directly induces as a small electrical charge in each cell of the
photosensor. The cell is an analog circuitry, and the charge is amplified, converted
into a digital value, and the output registered. Commercial success and wide-spread
use of CMOS and CCD technology have brought down the price per unit of such
detectors. However, silicon photodetectors offer inferior sensitivity toward sensing
the NIR wavelengths. Therefore, for higher S/N, better performing detectors are
preferable. Here, indium–gallium–arsenide (InGaAs) detector may be considered
state of the art, with excellent sensitivity at wavelengths longer than ca. 1050 nm,
superior S/N and scan time. The detector noise varies with temperature, which has
been a problem in some earlier designs. Temperature stabilization by thermoelectric
cooling was proved to be helpful in this regard [9]. Temperature correction functions
have been also introduced in newer designs, e.g., MicroNIR 2200.

8.2.3 Wavelength Selectors

Wavelength selector can be considered the most critical element for the design of
a miniaturized spectrometer. There is a large variety of the available solutions in
this regard. Micro-electro-mechanical systems (MEMS; in combination with micro-
optics: micro-opto-electro-mechanical systems, MOEMS or optical MEMS) are in-
silicon microscaled mechanical devices manufactured similar to integrated circuitry.
This technology advanced togetherwith the progressmade in semiconductor industry
enabling the assembly of extremely miniaturized moving parts. MEMS technology
can be used to implement few different wavelength selector principles in microscale,
e.g., Hadamard mask, digital micromirror, Michelson and Fabry–Perot interferome-
ters. Thus, grating-based monochromators for ‘dispersive-like’ and interferometers
for Fourier transform (FT) spectrometers can be manufactured. It has become fairly
popular solution for miniaturized NIR spectrometers with a number ofMEMS-based
devices proposed in the last 20 years.
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MEMS element appeared in the first commercial handheld NIR spectrometer,
microPHAZIR (known earlier as PHAZIR). In that case, a programmable Hadamard
mask principle was implemented through the MEMS chip, which contained a large
number of electronically actuated bars resembling a piano keyboard (Fig. 8.6a). A
Hadamard-based spectrometer employs one or two masks, to record more than one
wavelength at a time. Such optical configuration achieves both the Jacquinot and the
multiplex advantages. In the singlemask variant, the encodingmask selects half of the
resolution elements and directs the light onto a single element detector. An inverse

Fig. 8.6 Principles of wavelengths selectors built into different handheld NIR spectrometers:
a MEMS Hadamard mask—microPHAZIR, Thermo Fisher Scientific, Waltham, USA; b LVF—
MicroNIR Pro ES 1700, VIAVI, Santa Rosa, USA; c MEMS DMD—implementation of DLP
NIRscan module, Texas Instruments, Dallas, USA; d MEMS Fabry–Perot interferometer—
NIRONE Sensor S, Spectral Engines, Helsinki, Finland e MEMS Michelson interferometer—
NeoSpectra, Si-Ware, Cairo, Egypt; f MEMS Michelson interferometer with a large mirror—
nanoFTIR NIR, SouthNest Technology, Hefei, China. Reproduced from Ref [12]. (CC-BY 4.0
license)



202 C. W. Huck

Hadamard transform resolves the spectrum from the collected wavelengths [13].
Hadamard principle allows to employ a cost-effective single-pixel photodetector.
For example, in microPHAZIR, NIR beam emitted from a low-power tungsten bulb
is focused on a fixed grating that serves as the dispersive element. The keys of the
MOEMS chip are actuated successively, reflecting the selected wavelengths onto a
single-pixel InGaAs detector. This design enabled a rapid scanning capability (<10 s),
good S/N, and a reasonable optical resolution of 11 nm. However, the device operates
in a rather narrow wavelength region of 1596–2396 nm (6267–4173 cm−1) [14, 15].

In early 2010s, the success of microPHAZIR leads to anticipation that MEMS
spectrometers would rapidly dominate the market of miniaturized NIR sensors based
on Hadamard principle. However, the subsequent progress was much less dynamic
[6]. The limitations resulting from the size of the optics created issues with repeata-
bility of operation and the ability of a MEMS comb actuator to drive the moving
mirror; these factors outweigh the advantages of this technology, given its price.
Nonetheless, commercial success of some handheld FT-IR (mid-IR) devices even
paved the path for the appearance of FT-NIR spectrometers. NIR light sources are
brighter, and detectors have a higher specific detectivity than those used in IR spec-
trometers; hence, mirror size is less of a constraint. For example, Thermo Fisher
Scientific successfully scaled down the interferometer design, with a voice-coil
and piston-bearing scheme, and a moving mirror of 1.2 cm diameter. A MEMS-
based Michelson interferometer was commercialized by NeoSpectra, the division of
Si-Ware Systems, with their FT-NIR miniaturized instrument (Fig. 8.6a).

The problem of maintaining a stable operation of MEMS element and the optical
throughput of such devices is under constant development. Recent examples of
refined designs include NIRONE sensors from spectral engines (Fig. 8.6d) and
nanoFTIR NIR spectrometer from Hefei SouthNest Technology (Fig. 8.6f). The
nanoFTIR NIR is a very recent sensor that uses a MEMS Michelson interferometer,
in which in order to improve its light throughput efficiency, a large mirror in relation
to the area of MEMS chip was implemented. Further, the spectrometer operates over
the entire NIR wavelength region (800–2600 nm; 12,500–3846 cm−1), which is a
notable improvement over early MEMS-based sensors (Table 8.1). This is accompa-
nied by a relatively high spectral resolution (6 nm), good S/N, and rapid scanning.
Noteworthy, the design achieved significantly more compact dimensions (14.3× 4.9
× 2.8 cm; weight 220 g) than any previous MEMS-based FT-NIR spectrometers.

Fabry–Perot interferometers are very suitable to serve as wavelength selectors
in miniaturized spectrometers. The key element in such interferometer is Fabry–
Perot filter consisting of two mirrors, either planar or curved, facing each other and
separated by a distance d. Two variants exist, an etalonwith fixed d, and the otherwith
variable d. Interference condition in a Fabry–Perot interferometer is achieved through
the standingwave effect between the twomirrors anddivisionof a polychromatic light
into several narrow wavelength bands. Important for miniaturized spectrometers,
MEMS technology can be used to fabricate a fully programmable optical filter based
on Fabry–Perot interferometer in microscale. This solution is implemented, e.g.,
NIRONE sensor series (Fig. 8.6d).
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Table 8.1 Operatingparameters of the selectedhandheldNIR spectrometers available on themarket

Spectrometer Spectral region Spectral resolution (at
wavelength)a [nm][nm] [cm−1]

microPHAZIR (Thermo
Fisher Scientific)

1596–2396 6267–4173 11

MicroNIR Pro ES 1700
(VIAVI)

908–1676 11,013–5967 12.5 (at 1000) 25 (at
2000)

SCiO (Consumer Physics) 740–1070 13,514–9346 unknownb

NIRscan (Texas
Instruments)

900–1700 11,111–5882 10

NIRONE sensors (Spectral
Engines)

2000–2450 5000–4082 18–28c

NeoSpectra (Si-Ware
Systems)

1350–2500 7407–4000 16 (at 1550)

nanoFTIR NIR (SouthNest
Technology)

800–2600 12,500–3846 2.5 (at 1000) 6 (at 1600)
13 (at 2400)

a‘at wavelength’ parameter listed if available in the datasheet provided by the vendor
bSCiO presents to the operator interpolated spectra with 1 nm data spacing, but the real resolution
is considerably lower
cdepending on the sensor implementation/factory configuration

Digital micromirror device (DMD) is aMEMS-based array of mirrors. DMDmay
primarily be used to lower the cost of miniature dispersive scanning spectrometers,
and its key role is to enable replacing expensive micro-array detectors by a large
single-pixel detector, which is a much more cost-effective solution. DMD element is
used in DLP NIRscan module from Texas Instruments. The company’s proprietary
DLP technology is offered as two evaluation modules (EVMs): DLP NIRscan and
DLP NIRscan Nano (Fig. 8.6c).

There exist microscaled technology solutions other than MEMS, which are suit-
able for the construction of wavelength selectors in miniaturized NIR spectrom-
eters. For example, a linear variable filter (LVF) is an optical bandpass filter, in
which through varying thickness of an optical coating, and thus, transparence against
differentwavelengths varies linearly across awedgedgeometry of thefilter. LVF tech-
nology is cost-effective, and compared with MEMS relies less on large-scale manu-
facturing, although requires to be used with less affordable array detectors. On the
other hand, such configuration enables very rapid scanning capability. LVFs enable
constructing very compact spectrometers with no moving parts, which improves the
ruggedness of the spectrometer. A satisfying spectral resolution for real applications
and low power consumption should also be noted. DMDs coupled with InGaAs array
detectors are used in the line of NIR spectrometers, including specialized models
aimed for process control, that were introduced to the market by VIAVI (Fig. 8.6b).

It needs to be highlighted, that the design of a miniaturized NIR spectrometer
is a balance between the level of miniaturization, performance, and the economic
cost. Through accepting certain limitations, very affordable devices are feasible.
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For example, Consumer Physics designed a pocket-size spectrometer (SCiO), with
dimensions of 67.7 × 40.2 × 18.8 mm and weight of 35 g, available at a very low
price. Thiswas accomplished through incorporation of a LED (IrED) light source and
a silicon detector in the form of a 4× 3 photodiode array with optical filters over the
individual pixels. However, the device operates over a narrow Vis/SW-NIR spectral
region (740–1070 nm; 13,514–9346 cm−1) with a rather poor spectral resolution of
ca. 28 nm because of just 12 resolution elements and sub-par S/N of the measured
spectra.

8.3 Application and In-depth Evaluation of Performance
Characteristics of Portable NIR Spectrometers

Variety of the technology solutions andminiaturization itself has ameaningful impact
on the operating parameters and performance of handheld NIR spectrometers. The
key characteristics such as the working spectral region, spectral resolution, sensi-
tivity, and S/N, of such spectrometers differ from those available on benchtop instru-
mentation. These issues influence the applicability and analytical performance of
miniaturized NIR spectrometers. It is now an active field of research from several
scientific group to perform systematic evaluation studies of different handheld NIR
spectrometers in variety of analytical applications.

Various approaches can be helpful in examining the analytical worthiness of
miniaturized spectrometers. Themost straightforward and definitive evaluation of the
analytical accuracy is provided by the statistical errors of multivariate analysis, e.g.,
quantitative models constructed for prediction of the chemical contents or classifica-
tion models for qualitative discrimination between samples. Correlation coefficients
for regressions (e.g., by means of partial least squares), either for cross-validations
or test-set validations, and root mean square errors (of cross-validation, calibration,
estimation) deliver numerical values indicating the worthiness of a given spectrom-
eter. However, these values are only valid for the given, particular application and
are neither easily interpretable nor transferrable to other scenarios. As such, these
are not sufficient, if one aims for comprehensive evaluation of the instrumentation or
prediction how it should behave in other more or less similar scenarios. Therefore,
some other approaches can be helpful in obtaining a more general overview of the
concerning problem. Comparative measurements of the same sample sets on high-
performingbenchtopNIRspectrometers,with underlying reference analysis basedon
gold standardmethods of analytical chemistry (e.g., chromatography coupled tomass
spectrometry) are indispensable for establishing the performance level in best-case
scenarios. Differences between the devices in the wavelength-dependent sensitivity
levels can be easily visualized and assessed by performing 2D hetero-correlation
analysis, in which spectra measured on different NIR spectrometers (e.g., miniatur-
ized vs. benchtop) can be directly correlated. This approach should be repeated for
different samples, as well as experimental conditions, to outline the performance
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profile of a given miniaturized spectrometer in a comprehensive way. Yet, to be
able to fully predict even approximate performance in a given application, extensive
and tedious analyses of numerous samples are necessary. To mitigate this imitation,
quantum chemical simulations of NIR spectra are helpful. Firstly, detailed NIR band
assignments enable linking the wavenumber regions that are established as mean-
ingful in the chemometric models with the vibrational modes of the target molecule.
This allows to interpret the regression vectors and to assess the sensitivity of a spec-
trometer toward specific modes. More importantly, through these steps, the ability
to generalize the performance over a wider range of scenarios is given. For instance,
the performance against certain classes of analytes can be predicted following their
likeliness of appearing characteristic NIR bands within the sensitivity ranges of a
given spectrometer. This can be obtained without the need to perform analyses of
large number of analyses, or even measurement of standards. Furthermore, the influ-
ence of matrix effects on various vibrational modes can be obtained through quantum
mechanical calculation of NIR spectra [10, 16, 17]. The scheme presenting the gains
from combined approaches to comprehensive evaluation procedures of miniaturized
spectrometers is presented in Fig. 8.7.

Fig. 8.7 Methods useful for comprehensive dissection and comparison of performance profiles
of NIR spectrometers that are based on various design philosophies and differ in their operating
characteristics



206 C. W. Huck

8.3.1 Example of an Application Where Differences Between
Performances of Portable Instruments (Based
on Different Designs) and a Benchtop Spectrometer
Were Demonstrated

Validation of the performance of handheld NIR spectrometers in relation to a
benchtop instrument in analyzing polyphenols in medicinal plant was conducted by
Kirchler et al [10]. In that case, portable NIR sensors demonstrated high feasibility
to predict concentrations of anti-oxidative active ingredients (rosmarinic acid and
similar polyphenols) in Rosmarinus officinalis, folium. The operating characteris-
tics of two handled spectrometers, microPHAZIR andMicroNIR 1700, were closely
compared. These two devices differ significantly in the employed technology, i.e.,
wavelength selectors and detectors. The evaluation of the analytical performance
of miniaturized devices was conducted through the comparison with a reference
benchtop NIR spectrometer Büchi NIRFlex N-500. Sophisticated data analytical
tools were employed to obtain exhaustive comparison, e.g., hetero-correlated 2D
plots visualized the differences in the relative sensitivity toward differentNIR absorp-
tion bandsmeasured on the three spectrometers. In that study, the benchtop spectrom-
eter yielded the best prediction of the rosmarinic acid content in the plant extracts. The
moderate analyte concentration in the sample (less than 7%) and complex matrix, as
well as several NIRwavenumber regions inwhich themolecule absorbs significantly,
could have contributed toward the inferior capability of portable spectrometers,
because of their limited spectral windows and resolutions.

8.3.2 Example of an Application Where
an Ultra-miniaturized and Affordable NIR
Spectrometer Performed Semi-comparably
with a Benchtop Instrument

Wiedemair et al. have tested the performance of SCiO in comparison with Büchi
NIRFlex N-500 for the analysis of protein content in millet samples [18] and the
fat content in cheese samples [19]. As can be deduced from Tables 8.2 and 8.3,
they found that the analytical performance of portable devices may considerably
vary between different scenarios. Although clearly inferior in the former analytical
problem (Table 8.2), in the determination of fat content in cheese (Table 8.3), the
inexpensive SCiO sensor delivered the performance, evaluated by statistical values,
comparable to the high-performing benchtop instrument. In this case, the analysis of
major nutrient was more successful; presumably, because it was a more significant
chemical constituent in the sample.

These examples demonstrate somewhat uneven performance profiles of minia-
turized spectrometers, strongly depending on the particular analytical scenario.
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Table 8.2 Millet analysis toward gallic acid equivalents (GAE) by benchtop and ultra-portable
NIR spectrometers

Spectrometer Sample form R2 (CV) RMSECV/mgGAE/g R2 (TV) RMSEP/mgGAE/g

NIRFlex
N-500

Intact 0.953 0.365 0.940 0.467

Milled 0.985 0.223 0.920 0.479

SCiO Intact 0.876 0.601 0.814 0.806

Milled 0.8240 0.743 0.782 0.840

RMSECV and RMSEP values resulting from PLS-R models for protein content (7–14% w/w) are
used here as the parameters describing the prediction performance
CV cross-validated regressions; TV test set-validated regressions

Table 8.3 Cheese analysis toward gallic acid equivalents (GAE) by benchtop and ultra-portable
NIR spectrometers

Spectrometer Sample form R2 (CV) RMSECV/mgGAE/g R2 (TV) RMSEP/mgGAE/g

NIRFlex
N-500

Intact 0.9726 1.5711 0.9431 1.8964

Grated 0.9930 0.7845 0.9913 0.7676

SCiO Intact 0.9801 1.2466 0.9838 1.1874

Grated 0.9838 1.0527 0.9940 0.8194

RMSECV and RMSEP values resulting from PLS-R models for protein content (9–36% w/w) are
used here as the parameters describing the prediction performance
CV cross-validated regressions; TV test set-validated regressions

Nonetheless, their potential is demonstrated even for challenging analysis of multi-
constituent natural products where content variability and matrix effects are compa-
rably stronger than most other types of samples. The discussed problem of perfor-
mance in certain scenario is essential in various fields of research and analysis. Often,
practical applications benefit largely from routine measurements being carried out
on portable instrumentation, however, with calibration and validation controlled via
benchtop spectrometer as the reference. Transfer of multivariate models between
these devices is an essential feature and remains a focused lane of research. For
instance, transferability of spectra and the resulting qualitative and quantitative
calibrations, between benchtop and miniaturized spectrometers was explored by
Hoffman et al. [20]. Recent literature demonstrates keen interest in the performance
of handheld spectrometers in a variety of applications, e.g.,material identification and
product authentication [21]. Applicability and performance in quantitative analysis
of miniaturized NIR spectrometers were also conducted in the context of pharmaceu-
tical formulation [22]. Because of on-site capacity, miniaturized NIR spectrometers
have very high potential for applications in the analysis of natural products. However,
complex composition and demanding conditions in such analyses are challenging
for accurate quantitative analysis. Wiedemair and Huck evaluated the performance
of three different miniaturized NIR spectrometers in determining the antioxidant
capacity of gluten-free grains [23].
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8.4 The Conclusions and Prospects for Future

Over the past decade, a new generation of compact NIR instrumentation appeared
and underwent a successively progressing level of miniaturization. These devices
revolutionized several fields of application of NIR spectroscopy. However, in sharp
contrast to the matured technology used in laboratory-scale benchtop spectrometers,
the miniaturized NIR instrumentation available on the market is far less uniform as
it implements various engineering principles. Therefore, the performance profiles
of those devices differ considerably. The necessary design compromises, inevitably
accepted to achieve a compact size, impose certain limits in the applicability of
such devices. Furthermore, several miniaturized NIR sensors have been optimized
toward low cost and ease of use by a non-expert operator. These circumstances rise
considerable concerns on the miniaturization vs. performance factor in reference
to scientific-grade benchtop spectrometers. It still remains a relatively shallowly
explored problem. The aim of this chapter is to summarize the background of minia-
turized technology in NIR spectroscopy and its impact on the existing and potential
applications.

Rapidly increasing utilization of miniaturized NIR spectrometers in practical
applications throughout a broad spectrum of fields is evident from the literature
reports published over the last few years. It demonstrates the potential of portable
NIR spectroscopy and its importance for modern analytical chemistry. Furthermore,
this technology is one of the first methods of physicochemical analysis that aims to
cross the barrier between industrial or professional and everyday life applications
in general public. Notwithstanding, the impressive level of miniaturization often
comes as a give-and-take against the accuracy and robustness in analytical sense.
Furthermore, the diversity of the design principles implemented in portable NIR
spectrometers affects their performance profiles in device-specific ways. Therefore,
it is an active area of research to perform systematic evaluations of the analytical
performance of various miniaturized NIR spectrometers available on the market, and
to better direct future development of this technology.
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17. J. Grabska, K.B. Beć, C.G. Kirchler, Y. Ozaki, C.W. Huck, Distinct difference in sensitivity
of NIR versus IR bands of melamine to inter-molecular interactions with impact on analytical
spectroscopy explained by anharmonic quantummechanical study. Molecules 24, 1402 (2019)

18. V. Wiedemair, D. Mair, C. Held, C.W. Huck, Investigations into the use of handheld near-
infrared spectrometer and novel semi-automated data analysis for the determination of protein
content indifferent cultivars of Panicum miliaceum L. Talanta 205, 120115 (2019)

19. V. Wiedemair, D. Langore, R. Garsleitner, K. Dillinger, C.W. Huck, Investigations into the
performance of a novel pocket-sized near-infrared spectrometer for cheese analysis. Molecules
24, 428 (2019)

20. U. Hoffmann, F. Pfeifer, C. Hsuing, H.W. Siesler, Spectra transfer between a fourier transform
near-infrared laboratory and aminiaturizedhandheld near-infrared spectrometer.Appl. Spectro.
70, 852–860 (2016)

21. H. Yan, H.W. Siesler, Identification of textiles by handheld near infrared spectroscopy:
protecting customers against product counterfeiting. J. Near Infrared Spectro. 26, 311–321
(2018)

22. H. Yan, H.W. Siesler, Quantitative analysis of a pharmaceutical formulation: performance
comparison of different handheld near-infrared spectrometers. J. Pharm. Biomed. Anal. 160,
179–186 (2018)

23. V. Wiedemair, C.W. Huck, Evaluation of the performance of three hand-held near-infrared
spectrometer through investigation of total antioxidant capacity in gluten-free grains. Talanta
189, 233 (2018)

24. B.A. Eckenrode, Environmental and forensic applications of field-portable GC-MS: an
overview. J. Am. Soc. Mass Spectrom. 12, 683–693 (2001)



210 C. W. Huck

25. J. Zhang, C.C. Teng, T.G. van Kessel, L. Klein, R. Muralidhar, G. Wysocki, W.M.J. Green,
Field deployment of a portable optical spectrometer for methane fugitive emissions monitoring
on oil and gas well pads. Sensors 19, 2707 (2019)

26. C. Hutengs, B. Ludwig, A. Jung, A. Eisele, M. Vohland, Comparison of portable and bench-
top spectrometers for mid-infrared diffuse reflectance measurements of soils. Sensors 18, 993
(2018)



Chapter 9
NIR Optics and Measurement Methods

Akifumi Ikehata

Abstract What type of components does a NIR spectrometer consist of? How do
these parts determine the performance of the instruments? The measurement targets
of NIR spectroscopy span a wide variety from transparent liquids to opaque solid
samples, and as described in Chap. 8, the NIR spectrometers are characterized by a
wide variety of device specifications and shapes. Consequently, what are the criteria
for choosing a spectrometer? In the first half of this chapter (9.1), the basics of the
optics that comprise the NIR spectrometer, such as the light source, spectroscopic
element, and detector, are explained. This will allow the reader to understand the
specifications, that control the functions of the spectrometer. Next, in the latter half
of this chapter (9.2), the measurement method is explained for each sample form,
namely liquid, solid, and paste. The most characteristic feature of NIR spectroscopy
is the use of diffuse reflected light, and the “interactance” method, which is a unique
application. It can be inferred that diffuse reflectance method contributes to the
expansion of the range of sample forms that are measurable by NIR spectroscopy.

Keywords Light sources · Spectrometers · Detectors · Sample cells ·
Interactance · Transflectance

9.1 Optics

9.1.1 Device Configuration

Near-infrared (NIR) spectrometers are composed of a light source, a sample optical
system, a spectrometer, and a detector. The configuration of NIR spectrometers is
largely confined to two types, as shown in Fig. 9.1a and b. In type (a), the sample is
positioned after the spectrometer and thereby irradiated with monochromatic light.
This configuration is often used for standard desktop UV–VIS spectrometers. In type
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Fig. 9.1 Device configurationofNIRspectrometers.aMonochromatic light irradiation, andbwhite
light irradiation

(b) spectrometers, the sample is positioned just after the light source and irradiated
with white light. This configuration is often used for NIR applications, and achieves
high-speed detection by use of an array detector. However, type (a) is better than (b)
from the viewpoint of preventing damage to the sample by irradiation with light. A
sample and a reference are measured alternately, and a spectrum is calculated from
the ratio.

9.1.2 Near-Infrared Light Sources

9.1.2.1 Thermal Radiation

A light source that uses thermal radiation generated by heating a filament by passing
an electrical current through it (resistive heating) is the most popular light source in
the NIR region. Halogen lamps using tungsten filaments are inexpensive, constitute
a stable thermal radiation source, and are widely adopted in NIR spectrometers
on the market. Halogen lamps emit light with high brightness across the visible-
to-infrared range by a reaction called the halogen cycle. To stabilize the halogen
cycle, not only the filament but also the inner wall of the lamp must be heated to a
sufficiently high temperature. Since the temperature is very high, care must be taken
to prevent failure of the seal and deterioration of the socket. The emission spectrum
of a halogen lamp is generally explained by Planck’s law, and has an emission peak
of approximately 1μm. Higher filament temperatures result in higher brightness and
larger emission intensities of short wavelengths. Heated nichrome wire (wavelength
2–5μm) and Glover (silicon carbide;Wavelength 1–50μm), which are often used as
light sources formid-and far-infraredwavebands, are also used in the NIRwaveband.
Since emission characteristics follow Planck’s law, it is necessary to use a high
temperature by passing a large amount of current to produce the NIR waveband.
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Fig. 9.2 a A schematic
picture of an LED and b the
n- and p- type semiconductor
layers
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9.1.2.2 LED

A light-emitting diode (LED) consists of a pn junction, in which a p-type semicon-
ductor and an n-type semiconductor are joined (Fig. 9.2). When a forward voltage
is applied, holes and electrons recombine, and excess energy is emitted as light.
Although the emission bandwidth of LEDs is limited to about 100–200 nm, LEDs
are inexpensive and can be driven with low power, so are useful for reducing the size,
complexity cost of devices. The most common LED that emits NIR light is a gallium
arsenide (GaAs) semiconductor, which has an emission peak at 940 nm. These are
used in communication applications, such as remote control devices. For other wave-
lengths, GaAlAs LEDs emit shorter wavelengths (850, 880 nm) and InGaAs LEDs
emit longer wavelengths (1300, 1550 nm).

A medical instrument called a pulse oximeter, used mainly in hospitals, can
measure blood oxygen saturation non-invasively. The device mounts two single
LEDs emitting either red or NIR light, corresponding to deoxidized and oxidized
hemoglobin, respectively. The pulse oximeter is a successful example of cost
reduction and miniaturization with LEDs.

9.1.2.3 Laser Diode

A laser diode (LD) is a semiconductor laser having the same structure as an LED
but enables laser oscillation by forming a population inversion in a medium and
causing a stimulated emission. A LD emits a pulse wave or continuous wave (CW) of
monochromatic coherent photons and LDs are divided into several types, depending
on the structure of the active layer (core layer) sandwiched between the n- and p-
type semiconductor layers. Thus, LDs may be classified as Fabry–Perot type (FP
type), distributed feedback type (DFB type), and vertical cavity surface emitting
type (VCSEL). While the wavelength width of LEDs is about 100 nm, LDs have
high monochromaticity, and the wavelength width is only a few nm (Fig. 9.3). Laser
diodes with wavelengths that are often used in communication, such as 780, 850,
1310, and 1550 nm, are readily available. There are products with high outputs,
exceeding 10 W in multimode output, which are used for processing and pumping
light sources of solid-state lasers, as shown below.
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9.1.2.4 Solid-State Laser

Solid-state lasers are lasers with a solid-state medium. The most representative NIR
solid-state laser is Nd:YAG laser. An Nd:YAG laser oscillates very strong light of
1064 nm by using LDs as pump light. The titanium (Ti) sapphire laser is a tunable
laser whose output wavelength can be freely changed across the range 700–1000 nm
by introducing a wavelength selection element, such as an acousto-optic tunable
filter (AOTF), into the resonator. Owing to the fluorescence characteristics of the
Ti-sapphire crystal, the strongest light is emitted at around 800 nm. An argon ion
laser or a Nd:YAG second-harmonic laser (532 nm) is used as the pump light. The
Ti-sapphire laser excels at ultrashort pulse generation, but it can also emit CW light.

9.1.2.5 Supercontinuum Light

When ultrashort pulsed light with high peak power is introduced into a nonlinear
optical material, continuous coherent light over a wide band can be generated by
various nonlinear optical effects. This is called supercontinuum (SC) light and can
be used as a white laser light source. The generation of SC light was first reported in
1970, [1] and the development of photonic crystal fibers in recent years allowed the
development of a SC light pulse with a kW of peak power. The output wavelength
range depends on thewavelength of the excitation light source. Supercontinuum light
sources covering the wavelength range of approximately 500–2500 nm are on the
market. Commercially available SC light sources are designed to extract light with a
fiber optic, and the total output power is often about several mW. Since the SC light
source is a coherent light source, like other lasers, interference due to scattered light
from a rough surface (speckle) can occur.
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9.1.3 Spectroscopic Elements

9.1.3.1 Prism

A prism is a classic feature of spectroscopes and is still sometimes used today.
Because the refractive index of the prism differs depending on the wavelength (this
is called “wavelength dispersion” or simply “dispersion”), incident light is emitted in
different angles.Many opticalmaterials highly disperseNIR light, so that goodwave-
length resolution is possible. However, the internal transmittance itself is inadequate.
Consequently, most dispersion-type NIR spectrometers currently on the market use
diffraction gratings to replace prisms, as described below.

9.1.3.2 Diffraction Grating

A diffraction grating is a dispersive element that diffracts white light into constituent
wavelengths. The prototype was made by Fraunhofer in 1814, [2] and it has been
widely commercially available since 1945 [3]. The spectral characteristics of a
prism depend on its physical properties (refractive index), while the characteristics
of a diffraction grating are determined only by the geometric structure. In general, a
reflective diffraction grating, called a blaze-type grating (or an echelette grating),
contains fine grooves engraved at equal intervals and in parallel, on a planar surface,
is often used (Fig. 9.4). There are many commercially available gratings coated with
aluminum or gold on a replica surface that is molded with resin. The fine blaze is
produced by photoresist and ion beam irradiation. When light is incident at an angle
α with respect to the normal line to the surface of the grating, light diffracted at each
grating slope is strengthened or weakened under specific conditions. The condition
that light of a specific wavelength, λ, is diffracted at an angle, β, is expressed by the
following grating equation:

Fig. 9.4 a Schematic picture of a blaze-type diffraction grating. b The surface structure of a
blaze-type grating showing the single reflection diffraction
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d cos δ(sin β + sin α) = mλ (9.1)

Here, m, is called the order number and represents the integer 0, 1, 2, …. δ is the
angle that the incident or reflected beam makes with the plane perpendicular to the
grooves, and these angles are matched with one another for blaze-type gratings.

δ1 = δ2 = δ (9.2)

The enhanced diffracted light repeatedly appears in the angular direction
depending on the order number. The number of grooves permm,N, is themost impor-
tant parameter determining the performance of the grating. Commercially available
blaze gratings often have N = 600 or 1200 grooves/mm. Increasing the number of
grooves reduces the groove spacing and increases the resolution of different wave-
lengths. Furthermore, the edge angle (blaze angle, θ ) of the groove is an impor-
tant value in the design of spectrometers. This is defined as the angle at which
the m-th order diffracted light can be obtained with high reflection efficiency. The
wavelength of the light at this angle is called the blaze wavelength. The blaze wave-
length and blaze angle define the basic performance of diffraction gratings. When
performingNIR spectroscopy, the blaze wavelength should be in the NIR region. The
reflection efficiency rapidly decreases at wavelengths shorter than the blaze wave-
length, but gradually decreases at longer wavelengths. The wavelength range of the
diffraction grating is designed to be one to twice the blaze wavelength. The config-
uration of the spectrometer using a diffraction grating will be explained in detail in
the next section.

9.1.3.3 Fourier Transform

Fourier transform (FT) spectroscopy is the mainstream technique in the mid-
infrared region as FT-IR. An FT spectrometer specialized for the NIR region is
also commercially available, called an FT-NIR.

The FT spectrometer measures the interference of light beams divided in two by
use of a double-beam interferometer. Here, we will explain the principle of a double-
beam interferometer using the Michelson interferometer (Fig. 9.5) as an example.
The interferometer consists of a half mirror and two plane mirrors. One of the plane
mirrors can move along the optical axis. Light emitted from the light source is
collimated by the collimator, the beam reflected by the half mirror (HM) goes to
the fixed mirror (M1), and the transmitted beam goes to the movable mirror (M2).
The beams reflected by M1 and M2 are transmitted through, and reflected from,
the opposite surface of the half mirror and combined again. The FT spectrometer
detects the intensity of the combined wave with the detector (D) while changing the
position of M2. The measured intensity increases or decreases with respect to the
position x of the movable mirror, that is, produces an interference waveform, F (x),
called an interferogram. When the light source emits white light, the interferogram
is multiplied by the wavenumber distribution, B (k). In the FT spectrometer, the
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Fig. 9.5 Michelson
interferometer forming the
basis of FT spectrometers
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interferogram is Fourier-transformed by a built-in computer, and converted into a
distribution, B (k), that is, the corresponding spectrum. Note that this spectrum is a
function of wavenumber, k, not wavelength, λ. Owing to this measurement principle,
the output of FT spectrometers is a spectrum of wavenumber (cm−1).

In an actual interferometer, the movable range of M2 is finite. When the Fourier
transform is performedwith a limited range of integration, ringing occurs in the spec-
trum, so the transformation is performed bymultiplying thewindow functions,whose
ends of their integration range decrease smoothly. This window function is called an
apodizing or tapering function, and this integration operation is called apodization.
Themaximummovable distance of themovingmirror is inversely proportional to the
wavenumber resolution. In the FT calculation (discrete FT), the number of data points
must be a factorial of 2. Therefore, thewavenumber resolutionmust be set as 1, 2, 4, 8,
16 cm−1,…. In the NIR region, the spectral resolution is often set across the range 8–
32 cm−1. In FT spectroscopy, the position of the movable mirror does not correspond
to a certainwavelength, but the spectrum is obtained by Fourier transformof the inter-
ferogram. In other words, it is a spectrophotometer that measures all wavelengths
simultaneously. This is synonymous with multiplex processing in the field of signal
processing, and is extremely advantageous in improving the signal-to-noise ratio
(S/N) (Fellgett advantage) [4]. However, it is difficult to determine which has lower
noise, the grating type, or FT type. As explained in the next section, the noise level of
a grating spectrometer is the same for all the wavelengths. In contrast, noise is super-
imposed on the interferogram signal in Fourier-type spectrometers. Consequently,
the noise level at a specific frequency decreases the S/N at the corresponding wave-
length, i.e., longer wavelengths are influenced by low-frequency noise. In addition,
the effect of the slit width of FT spectrometers is smaller than that of dispersion-type
spectrometers. Therefore, an FT spectrophotometer is a bright and high-throughput
optical system (Jacquinot advantage) [5]. In order to accurately read the position of
the movable mirror, a laser with a known wavelength is incident on the same optical
axis as the observation light and is detected by another detector. Since the built-in
He–Ne laser is stable, the 7th digit (632.9914 nm) of the oscillation wavelength is
unchanged. Thus, the spectrum obtained with the FT spectrophotometer also has a
high wavenumber accuracy of 7 digits (Connes advantage) [6].
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Fourier transform spectrometers with excellent features were relatively large and
expensive in the early years of development. Consequently, they were often used
only in research laboratories. However, because the high wavenumber resolution is
not always necessary in the NIR region, the movable range of the movable mirror
can be reduced and miniaturization is now progressing. In recent years, devices with
a single-chip interferometer based on micro-electro-mechanical systems (MEMS)
technology have been released, and portable FT-NIR spectrometers using this device
are also commercially available [7, 8].

9.1.3.4 Bandpass Filters

The filters discussed here are bandpass filters that transmit only light of a specific
wavelength, such as interference filters and liquid crystal filters.

(1) Interference filter

Interference filters have a simple structure, in which a dielectric thin film is sand-
wiched between two semitransparent films. Interference filters are suitable for an
inexpensive and robust system. The dielectric thin film is constructed using low
refractive indexfluorides, includingMgF2 andCaF2, andhigh refractive indexoxides,
including TiO2, and Al2O3, laminated together, as shown in Fig. 9.6. The principle
of wavelength selection by the interference filter is the same as that of the thin-film
Fabry–Perot interferometer.

If the thickness of the low refractive index (n) film, d is equivalent to a half
wavelength for the desired wavelength, then transmitted wave and multiply reflected
waves coincide in phase resulting in a wave having an amplitude of twice or more.
This is constructive interference. At the same time, other wavelength components
are attenuated by destructive interference. In addition, when the filter is tilted with
respect to the incident light by the angle θ, the transmitted wavelength can be finely
adjusted. The transmitted light of wavelength, λ, satisfies:

Fig. 9.6 a Schematic
diagrams of an interference
filter. b An enlarged view of
the layer unit of dielectric
films d

High refractive index film

Dielectric films

Glass plates

low refractive index film (n)

(a) (b)
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mλ = 2nd cos θ (9.3)

Here, m is called order, and m = 1 or 2 is normally selected for NIR light. The
total transmittance of an interference filter is given as:

T = (1− R)2

(1− R)2 + 4R sin2(δ/2)
(9.4)

where R and δ represent the intensity of reflectance and the phase difference,
respectively. δ is expressed by the following equation:

δ = 4πnd cos θ

λ
(9.5)

Sincemany interferencewaves are also generated by phase-shifted light, filters for
blocking them are laminated on interference filters. The full width at half maximum
(FWHM) of the spectrum of the transmitted light is given by the following equation:

FWHM = 1− R

R1/2

c

2πnd cos θ
(9.6)

When reflectance, R, is increased, wavelength resolution is improved. However,
simultaneously, loss due to the absorption of the dielectric film itself and reflection at
the filter surface also increase, resulting in a decrease in transmittance. The effective
transmittance of most products is about 70%. The band width of the filter is wider for
longer wavelengths, the actual FWHM is about 10–30 nm. Those with transmission
characteristics tailored to the commonly used laser oscillationwavelengths, including
780, 850, 1064, and 1550 nm, are inexpensive and easy to obtain.

Examples of NIR spectrometers equipped with interference filters include
portable fruit sugar meters, moisture meters, and on-line meters that have been
commercialized, mainly for specific analysis targets.

(2) Variable filter

If the dielectric film of an interference filter has a taper, the transmitted wavelength
can be changed depending on the irradiation position on the film. A spectrometer that
utilizes this in the direction of rotation of a disk shape film is called a circular vari-
able filter (CVF). The wavelength can be continuously swept by rotating the CVF
around the central axis and using the light transmitted through a certain point. A
filter whose thickness varies in the linear direction of a rectangular dielectric film is
called a linear variable filter (LVF). Combining an LVF with an image sensor makes
it possible to create an ultra-compact spectrometer without a mechanical component
(Fig. 9.7). However, MEMS technology enabled a thickness control of a gap between
reflectors of an interference filter, which is known as a MEMS-based Fabry–Perot
interferometer (FPI) (Fig. 9.8). The MEMS-FPI realizes high-speed hyperspectral
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(b)

White light

Monochromatic light

2D sensor array(a)

Single sensor

CVF

White light
Monochromatic light

Fig. 9.7 a Circular variable filter (CVF) and b linear variable filter (CVF). The graduations show
the thickness of the interference filters

Fig. 9.8 A schematic
picture of a cross section of
MEMS-FPI ElectrodeUpper mirror (movable)

Lower mirror (fixed)

Air gap

Substrate

White light

Monochromatic light

imaging because of its fast on-axis wavelength selection [9]. The detailed perfor-
mance of commercially available variable filters will be described in Chap. 8 (New
trend in instrumentation of NIR spectroscopy—miniaturization).

(3) Liquid crystal tunable filter

A liquid crystal tunable filter (LCTF) is an optical element that can electrically
change the transmission wavelength. By laminating two birefringent plates having
inclined optical axes in ±45° between two polarizers arranged in parallel, a phase
difference (retardation) is caused, thereby transmitting a specific wavelength. This
is called the Lyot filter. Such LCTFs use nematic liquid crystal instead of one bire-
fringent plate. By applying an electric field to the liquid crystal, the same effect as
rotating a uniaxial crystal around the optical axis can be obtained, and the birefrin-
gence can be changed. The transmittance wavelength is proportional to the bire-
fringence. The high-speed response of liquid crystals results in high-speed wave-
length switching, with a response time of about 50 ms. Wavelength resolution can
be improved by connecting multiple sets of polarizers, birefringent plates, and liquid
crystals, although the FWHM is 10 nm or more even for high-resolution products.
Since LCTFs have a wide effective area, with a diameter of 20 mm, some spectral
imaging systems apply them in combination with an area image sensor. Control of
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Fig. 9.9 A geometry of
Bragg’s diffraction by AOTF

d

transducer 

w

the orientation of the sample is important because an LCTF uses the polarization of
light, which changes according to sample orientation.

(4) Acousto-optic tunable filter (AOTF)

An acousto-optic tunable filter (AOTF) is a spectroscopic device capable of wave-
length selection by external electrical modulation. An AOTF can select wavelengths
at high speed without using mechanical parts and it does not generate high-order
diffracted light. Although it is classified as a filter, it works as a transmissio-type
diffraction grating (see also volume phase holographic grating). As shown in Fig. 9.9,
a transducer (piezoelectric element) is brought into close contact with amedium such
as a TeO2 crystal, and an ultrasonic signal is generated in the medium by applying
an AC signal to the transducer. When the ultrasonic wave becomes a standing wave,
a periodic structure of density appears in the medium. The dense part corresponds
to a periodic change in refractive index and works as a diffraction grating for light.
The fringe pitch, that is, the ultrasonic wavelength, d, has the following relationship
with frequency, f , of the AC signal applied to the transducer:

v

f
= d (9.7)

where v is the velocity of sound in the medium. The spacing of the diffraction grating
can be changed by modulating the frequency of the ultrasonic waves. An AOTF is
designed to realize Bragg’s diffraction condition, whereby the angles of incidence
and diffraction are equal, θ . The Bragg’s condition satisfies the following equation:

2d sin θ = mλ (9.8)

Hence, the wavelength of light, λ, can be switched by changing the grating space,
d, while fixing the diffraction angle θ. Thus, AOTF works as a tunable bandpass
filter. Many commercially available AOTFs have a range of sweep wavelengths of
about 1000 nm. The wavelength resolution of an AOTF is lower than that of a blazed
diffraction grating and the FWHM is about several nm to several tens of nm in
the visible-to-NIR region. Although wavelength resolution is low, AOTFs have the
advantage of their high-speed electric sweep, and it is often used for spectral imaging,
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similar to LCTF, in the NIR region. The wavelength switching speed depends only
on the dwell time of the ultrasound. The higher the speed of sound, the faster the
wavelength switching speed, but the diffraction efficiency (the ratio of diffracted light
intensity to incident light intensity) is inversely proportional to the square of speed,
v. As a result, the use of a slow speed of sound is useful for AOTFs. The acoustic
velocity of a longitudinal wave along the surface of (001) surface in a TeO2 crystal is
4260 m s−1, and the transverse wave along (110) surface is very slow at 616 m s−1.
Consequently, AOTFs with a TeO2 crystal maintain their diffraction efficiency by
use of transverse waves, and achieve a wavelength switching speed within 10 ms.
When usedwith a thermal radiation source, the refractive index of the AOTFmedium
will change by warming, making it impossible to select the correct wavelength. For
this reason, it is desirable to use a cold filter or apply an electrical correction method
[10].

9.1.4 Detector

Since it is difficult to cover the entire NIR regionwith a single detector, it is necessary
to select from the detectors shown below, depending on the wavelength band of
interest [11].

9.1.4.1 Silicone Photo Diode (Si)

Photovoltaic silicon (Si) photodiodes can be used in the NIR region close to visible
light (700–1100 nm: often called short NIR). Si photodiodes are suitable for quan-
titative analysis because of their wide dynamic range. The short NIR region is espe-
cially suitable for samples with high water content, so Si photodiodes are often used
in sugar-content meters of fruits. Since Si photodiodes respond to visible light, it is
necessary to use a wavelength cut-off filter to avoid indoor lighting and sunlight.

9.1.4.2 Indium Gallium Arsenide (InGaAs)

Indium gallium arsenide (InGaAs) is a photovoltaic device with a pn junction. The
sensitivity band varies depending on the composition ratio of In and Ga. The larger
the In:Ga ratio, themore sensitive it is to longer wavelengths. The standard sensitivity
range is 900–1600 nm, but it is possible to extend this to 2600 nm. The pn junction
type has a response speed of GHz, and high-speedmeasurement is therefore possible.
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9.1.4.3 Lead Sulfide (PbS)

Lead sulfide (PbS) is a type of photoconductive element that decreases in resistance
when light is incident on it. PbS is often used in NIR spectrometers because of its
sensitivity across the range 900–2500 nm. However, since the decrease in resistance
varies with the area exposed to light, it is necessary to design it so that the beam’s
diameter does not fluctuate depending on the sample. Lead selenide (PbSe) is also a
NIR detector that can be used across the 1500–4500 nm range. In both cases, pink
noise (1/f noise) occurs when temperature rises. For this reason, it is recommended
to remove low-frequency components using an optical chopper. However, it is more
effective to speed up the wavelength sweep when used for NIR spectroscopy. High-
speed photovoltaic pn junction compounds of indium arsenide (InAs) and indium
antimonide (InSb), having the same wavelength range as PbS and PbSe, are also
available.

9.1.4.4 Photomultiplier Tube

In general, photomultiplier tubes (PMTs) are effective only for shorter wavelengths
in the NIR region because the photoelectric effect cannot be generated by long
wavelength light. The PMTs using a GaAs photocathode can be used across the
range 500–800 nm and PMTs utilizing In/InGaAs semiconductors cover the NIR
range up to 1700 nm. Since PMT was originally used for detection of faint light,
PMTs are rarely used for quantitative analysis.

9.1.4.5 Image Sensor

An image sensor is amulti-channel detector withmultiple sensors. An array of photo-
diodes arranged in a row is called a linear image sensor, and a two-dimensional array
spread on a plane is called an area image sensor (in contrast, an element with a single
sensor is called a discrete semiconductor). There are charge coupled device (CCD)
and complementary metal–oxide–semiconductor (CMOS) image sensors, and these
devices have different coupling methods. As described above, a dispersive spectro-
scope can distribute light of different wavelengths to different angles. Therefore, an
image sensor can simultaneously capture a spectrum of a certain wavelength range
without separating the wavelengths individually, using a slit. A spectrometer that
takes out one wavelength at a time using a discrete detector is called a monochro-
mator, and a spectrophotometer that measures multiple wavelengths simultaneously
is called a polychromator. A device using an image sensor does not require mechan-
ical parts, so it can be made robust and downsized. Since the two-dimensional area
image sensor is used for a camera, it can be applied to spectral imaging in combination
with LCTFs and AOTFs (Chap. 22).
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9.1.5 Other Optical Materials

9.1.5.1 Transparent Materials for NIR Light

Materials transparent in the visible region are often transparent in the NIR region.
Although ordinary glass, such as BK7, can be used in the short wavelength NIR
range, because it contains O–H groups due to impurities, it exhibits absorption near
1400 and 2200 nm. For longer NIR wavelengths, fused silica (fused quartz), which
is pure silicon dioxide glass, is most often used. However, fused quartz also contains
O–H groups, depending on its purity. To avoid this problem, infrared grade high-
purity quartz should be used. In terms of durability, sapphire is a very good material.
However, attention should be paid to the possibility of loss and interference due to
reflection, because sapphire has a refractive index of 1.7 or higher, even in the NIR
region. CaF2 andMgF2 crystals used in the mid-infrared region are completely trans-
parent in the NIR region, but they are rarely used because of problems of mechanical
strength except, in cases where the low refractive index is essential.

9.1.5.2 High- and Low-Reflection Materials

The most popular mirror in the visible range has an aluminum-coated surface, but
the reflectivity of Al decreases near 850 nm. Therefore, gold is used as a standard
reflector in the NIR region. The reflectivity of gold consistently exceeds 96% in
the NIR region (700–2500 nm). To prevent reflection, black materials tend to be
used. However, even objects that appear black in the visible spectrum may reflect
NIR light. For example, black alumite that is often used for optical mounts has a
reflectance of nearly 50% in the NIR region, and this may cause stray light. Carbon
black paint without lacquer or black flock paper can achieve lower reflectivity than
black alumite. Black bakelite (phenolic resin) is also a good low-reflection material.
An anti-reflective cloth with flocked fibers dyed black having a reflectance of only
2% is available at camera stores.

9.1.5.3 Polarizer

In normal use, a polarizer made by monoaxially stretched dye polymer film is easy
to use in a large area. It can transmit light with electric field amplitude perpendicular
to the stretching direction. However, transmittance is about 30–40% due to the dye.
When using a laser, the polarizing film may be destroyed, so a polarizer based on
the birefringence of the crystal is required. A typical Rochon prism polarizer made
from quartz or MgF2 is available in the NIR region.
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9.2 Measuring Methods of NIR Spectroscopy

NIR spectroscopy can be used to analyze various kinds of samples such as liquids,
solutions, suspensions, pastes, solids, fibers, powders, and gases. Moreover, it is
used to assess a variety of bulk and raw materials along with biomedical samples.
Therefore, different types of measuring methods are employed in NIR spectroscopy
[12–14]. Both the selection of the measuring method as well as that of the pretreat-
ment method and measuring conditions are crucial. The most characteristic feature
of practical NIR spectroscopy is the measurement of a large number of samples in a
series to create a calibration model for a wide range of target objective variables such
as concentration. In this case, one must carefully choose the methods and conditions,
and operate it in the samemanner each time to obtain good prediction results. Sample
selection is another important point for NIR measurements. Although this knowl-
edge of experimental design is essential, it is not treated in this book. Reference [12]
provides an outline for sample selection. In this section, the measurement methods,
sample pretreatment methods, and measuring conditions in NIR spectroscopy are
described.

9.2.1 Outline of NIR Measuring Methods

NIR measuring methods can be divided into two, namely, transmittance and
reflectance. Figure 9.10 shows the schematics of the transmittance and reflectance
method. The former can be employed for only clear liquids or thin solid samples such
as solutions, suspensions, films, fibers, powders, and gases [12–14]. Conversely,
the reflectance method can be used even for bulk materials such as whole small
fruits, tablets, and human fingers. In addition, the Beet–Lambert law can be assumed
to hold in the transmittance measurement but not in the reflectance measurement.
The transmittance method can be further divided into two methods, namely regular
transmittance and transflectance.

The reflectance method can be employed for solid samples such as suspensions,
solids, cloths, grain, powders, and pastes, and it is based on reflection from the rough
surfaces of the scatterers. A variety of bulk materials, such as tablets, agricultural

Fig. 9.10 Schematic of
a transmittance method and
b reflectance method. Top:
reference measurement,
bottom: sample measurement

(a) (b) 
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products, foods, polymers, and the human body, act as targets in reflectancemeasure-
ments. As shown in Fig. 9.11, the incident ray is partially reflected by the surface
and partially transmitted beneath the surface. The latter ray is refracted and reflected
many times on the surfaces of particles (milled grain, microcrystals, emulsions, cells,
etc.), and a part of it goes outside the scatterer. This is called the diffuse reflection
(DR) light and is comparable to the transmittance light because the DR ray travels
inside the absorptive material. As the rays jump out in different directions from
the object surface, a gold-evaporated integrating sphere (Fig. 9.12a) is often used
to efficiently collect them. In the case of rapid measurements, a detector is placed
at the off-angle side of the regular reflection such that it is not in contact with the
sample (Fig. 9.12b). Note that, in DRmeasurements, the sample functions as a small
reflector itself. The theory of DR is described in detail in Chap. 3.

For both transmittance and reflectancemethods, it is necessary to carry out a refer-
ence measurement (background measurement). For this purpose, the intensity, I0, of
the transmittance or reflectance light of the reference must be measured (Fig. 9.10).
The intensity, I0, can be measured before every sample or every convenient set of
samples in a routine analysis. Next, the intensity of the light of the sample, I, is
measured. Then, the absorbance, A = −log(I/I0), of the sample is evaluated. In the
case of reflectancemeasurement reflectivity,R= I/I0, is obtained, and the absorbance

DR

R: regular reflection
DR: diffuse reflection

R

DR

Fig. 9.11 Schematic of rays reflected from the surface of a material and within a material

window

detector

sample

incident light light shade 

DR DR

sample

detector

incident light regular reflectionDR

(a) (b)

Fig. 9.12 a Gold-evaporated integrating sphere and b non-contact measurement arrangement
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of the reflectance is expressed as log(1/R). Although NIR spectrometers for prac-
tical use often output only a single absorbance spectrum, I0 and I are independently
measured by single beam measurements in the apparatus. Note that the absorbance
in NIR spectroscopy is the ratio of two single beam measurements.

NIR spectroscopy rarely uses attenuated total reflection (ATR) optics. Such ATR
optics are used to suppress absorption that is too strong, for example, mid-IR. Thus,
ATR is normally useless in the NIR. However, it may be applied if one needs to
increase absorption. A method has been proposed in which a thin film of gold or
metal oxide is formed in the ATR configuration and the absorption signal is enhanced
by surface plasmon resonance [15]. This may be especially useful when only a small
amount of sample can be used for measurement.

9.2.1.1 Clear Liquids and Solution Samples

For clear liquids and solutions, the transmittance method is used, and for such cases,
the Beer–Lambert law can be applied except for dense solutions. It is the most
commonly employed method for a variety of spectroscopic techniques. When the
transmittancemethod is applied for a liquid sample, the selection ofwindowmaterials
and optimum path length of a cell becomes imperative. In the selection of a window
material, its usable wavelength region, refractive index, and solubility in solvents
must be considered.Glass or quartz (fused silica) ismost often employed as awindow
material for the NIR region; however, they are not suitable for alkaline solutions. The
thickness of a cell will be discussed later. Various kinds of liquid transmittance cells
are commercially available, out of which three examples are displayed in Fig. 9.13.
A cell with a fixed path length is commonly used, so that it is easy to perform
precise quantitative analysis. Moreover, the effect of adsorption of a sample onto a
cell wall, which is often a problem in IR spectroscopy, is negligible in the case of
NIR spectroscopy because of the relatively long path length.

Another type of cell suitable for clear liquids and solutions is the transflection
cell shown in Fig. 9.14. In this cell, the transmitted light is reflected back from a

Fig. 9.13 Transmittance
cells for liquid sample
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Fig. 9.14 a Transflection cell and b schematic

mirror and hence termed as “transflection”. A transflection cell can be used as a DR-
type instrument wherein the path length of the light is double the cell thickness. For
practical purposes, transflectance is suitable for transmittance measurement because
the cell is capable of being overhauled and cleaned, as the materials for the reflection
plate employed are mostly ceramic, aluminum, stainless steel, and gold. This type
of cell can also be used as a flow cell.

In the cases of liquid and solution samples, one must be careful about the effect
of temperature. As already explained in Sect. 4.2 (Fig. 4.3), the NIR spectrum of
water is sensitive to temperature; hence, the cell is often inserted into a thermostatted
cell holder. For clear liquids and solutions, the sample pretreatment is, in general,
not necessary; however, it is better to remove light scattering components from the
solution as per the situation.

9.2.1.2 Suspensions

For suspensions, the measurement type should be selected based on the turbidity of
a sample. A highly turbid sample such as milk scatters most of the incident light and
transmits a small part. In such a case, the DR method is effective. In contrast, if the
turbidity of a sample is low, transmittance or transflectance measurement is better
for obtaining efficient absorption spectra. In the NIR measurement of suspensions,
it is recommended to stir the sample well and measure its homogeneous part.

9.2.1.3 Solids

There are numerous types of solid samples. Typically, the DR method is employed
for opaque solid samples. For thin transparent films such as thin polymer films,
the transmittance methods are useful. In DR measurement of solid samples, it is
necessary to avoid regular reflection from the surface as much as possible, because
the intensity is very high, but the information obtained from it is relatively low.
To solve this problem, interactance method is often used for NIR measurements
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(a) (b)
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Fig. 9.15 a Interactance method and b an actual example

for various solid samples and bulk materials. Figure 9.15a depicts an interactance
probe. It avoids regular reflection from the surface of a sample. In the interactance
method, the irradiation and detection parts are separated physically, and thus, only
DR light from the inside of the sample can reach the detector. Usually, a probe
that integrates both the irradiation and detection parts is pushed directly onto the
sample. Figure 9.15b shows an example of an interactance probe of a stationary NIR
spectrometer.

When the distance between the irradiation and detection parts is small, the light
that passes statistically through the shallow part of the sample can be detected. Alter-
natively, when the distance is large, the DR light that enters the deep interior of the
sample can be collected. Therefore, an interactance probe provides a simple method
to explore the depth profile of absorbance by changing the distance between the two
parts. One of the representative applications of the interactance method is fNIRS,
which enables noninvasive investigation of brain activity. The fNIRS monitors the
changes in blood flow by delivering NIR light to the cerebral cortex by separating
an irradiation probe and a light reception probe by several centimeters.

9.2.1.4 Powders and Grains

As emphasized before, DR method is used for powders, particles, and whole grains,
and the corresponding cells are commercially available (Fig. 9.16). Before loading
the powder and particle samples into the cell, homogenization is generally required
to ensure that the samples have a uniform particle size because the effect of scattering
on an NIR spectrum varies with the change in the particle size, particle shape, and its
surface state. Proper pretreatment enables high precision in quantitative analysis and
reproducibility in qualitative analysis of powders and particles. Grinders and mills
equipped with a screen of an appropriate mesh size are commercially available for
the pretreatment of NIR measurement.

For loading powder or particle samples, the packing density is significant because
it affects the absorptivity and scattering conditions. To ensure constant and repro-
ducible packing density, samples with equal weights should be loaded into the cell.
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Fig. 9.16 Sample cells for powders and grains

Thus, sample setting is a key practice. In addition, to obtain a position average
spectrum, some NIR instruments have a rotating or sliding cell option.

9.2.1.5 Pastes

Various kinds of pastes, such as ground meat, mayonnaise, fermented soybean paste
(miso), and dough, are subjected to NIR measurement. Commercially available cells
for the DR measurement of powders and grains are also useful for pastes. If it is
possible to create a smooth surface, a paste sample packed in a polyethylene bag
can be used as a measuring object. Smooth viscose paste samples, e.g., mayonnaise
and butter, can be assessed using the transmittance method with a thin quartz cell
comprising a sandwich of two quartz plates and a spacer of known thickness.

9.2.2 Sample Pretreatments and Measurement Conditions

As previously described, sample pretreatment is often necessary for NIR
measurements. Some of them were already mentioned above, and examples of
sample pretreatments are presented in Chap. 15 (agricultural products), Chap. 16
(woods and soils), Chap. 17 (sugarcane), Chap. 18 (pharmaceutical applications),
Chap. 20 (medical applications), Chap. 21 (polymers), and Chap. 22 (on-line anal-
ysis). Various pretreatment methods have been used in NIR measurements, and a
number of instruments and equipment are commercially available. Pretreatment
methods may be divided into grinding, slicing, cutting, shredding, juicing, and
homogenizing. For some samples, moisture control is also important. Some of these
are described in different chapters. In addition, a detailed explanation about the
pretreatments is provided in Refs. [12, 13].
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Table 9.1 Molecular absorption coefficient of water at different wavelengths and optimum cell
thicknesses

Wavelength/nm
(Wavenumber/cm−1)

970
(10,300)

1450
(6897)

1930
(5180)

ε/dm3 mol−1 cm−1 0.0038 0.257 1.07

Pathlength for A = 2 (mm) 94.7 1.4 0.336

Cell thickness (mm) 10 1 0.3

9.2.2.1 Optimization of Light Pathlength

To obtain stable spectra, measurements should be performed within a dynamic range
of the detector. As a general guideline for NIR absorption, it is highly desirable to
maintain absorbance below 2 (or transmittance above 1/100). To satisfy this condi-
tion, onemust optimize the light path length or devise a reference. In the transmittance
measurement of transparent liquids, an optimum cell path length should be selected.
In the IR spectral measurement, it is not easy to maintain a constant light path length,
but in the NIR measurement, it is possible to use a cell with a mm size path length.
Further, the absorbance of water can be a good reference for the selection of a cell.
Table 9.1 summarizes the relationship between the peak wavelength of water in the
NIR region and its absorption coefficient. The optimal path length for each peak is
listed in the table. As the molar absorption coefficient, ε, of water is known, it is
possible to determine the optimal light path length from the Beer–Lambert Law, A=
εcl. In the case of opaque liquid samples, the ray cannot pass straight in a sample, and
thus, the practical light path length becomes longer than l. Moreover, the absorbance
increases (the transmittance decreases) due to the diffusion of a significant part of
the light. As the effects of the elongation of path length and scattering are difficult to
remove, a practical method for maintaining absorbance below 2 is to perform NIR
measurements by changing the sample thickness and reference materials.

9.2.2.2 Selection of a Reference

A reference is an external standard, which is used for comparing absorbance with
transmittance or reflectance of an incident light. There are some NIR instruments
housing references but if they are not available, the reference must be properly
selected depending on the purpose.

9.2.2.3 References for Transparent Samples

In the case of a transparent sample that does not contain any scattering matter such
as a solid transparent film, or a clear solution, one can measure a reference spectrum
with nothing in the sample holder. For quantitative analysis of the concentration of
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solute in a solution using a UV–VIS spectrometer, a cell with the solvent can be used
as a reference (blank sample). However, most solvents show strong absorption in the
NIR region and often overlap with the absorption of the target solute. Therefore, for
the NIR measurement of a clear solution, nothing or an empty cell should be placed
in the sample chamber as a reference.

9.2.2.4 References for Opaque Samples

It is not easy to choose a reference for an opaque sample, i.e., when DR is appli-
cable. For NIR measurements, it is highly desirable to cancel the contribution of the
scattering component. To ensure this, the scattering coefficient of a reference should
be similar to that of the sample, but the reference should not show absorbance in
an objective wavelength region. For these reasons, polytetrafluorethylene (PTFE),
ceramic plate, and gold are normally used as reference materials. Figure 9.17a shows
the single beam intensity of PTFE, ceramic, and gold plates. It is noted that ceramic
and gold have high reflectivity, but the reflectivity is low for PTFE. PTFE has negli-
gibly small absorption in the NIR region but microcrystalline acts as its scattering
component. Figure 9.17b compares the NIR DR spectra of brown rice (unpolished
rice)measured using gold, ceramic plate, and PTFE references. Notably, PTFE yields
a good spectrum without a rising baseline; however, the best reference for quantita-
tive analysis and discriminant analysis is another matter. One has to determine the
best reference from the precision of the results.
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Fig. 9.17 a Single beam intensity profiles of reflection from gold, ceramic, and PTFE plates, bNIR
DR spectra of brown rice measured using gold, ceramic, and PTFE plates as a reference
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Chapter 10
Hardware of Near-Infrared Spectroscopy

Tsutomu Okura

Abstract The hardware of near-infrared (NIR) spectroscopy is almost the same as
UV-VIS and infrared spectrometer except the wavelength area. However, the high
SN ratio and stability of the instruments are required for a quantitative analysis
by NIR spectroscopy, because of the smooth and dull absorption peaks of the NIR
spectral shapes. These are realized by the hardware and computer technologies and
are special features of the hardware ofNIR spectroscopy. It is important to understand
what they are when you use or design a near-infrared spectrometer. These aspects of
the technologies are described. Instrumental difference also is an important problem
in NIR spectroscopy where a calibration is used to predict contents of the matter. In
this Chapter, not only the method to avoid the instrumental difference, but also the
sources of the instrumental are described. To decrease the instrumental difference, it
is crucial to understand why and how the instrumental difference is generated. The
information described in this chapter will help you design a new NIR instrument,
and a designing process with less effort is also described.

Keywords 1/f noise · Grating · Spectrometer · Hadamard · Instrumental
difference

10.1 Noise Reduction Technology of the NIR Spectrometer

Karl Norris successfully evaluated agricultural products using near-infrared (NIR)
spectroscopy around 1970 [1]. Near-infrared absorption was first discovered by
Abney and Festing in 1881. However, it took 100 years to develop practical NIR
applications.

It is said that the electronics and computer technologies played an important role
in Karl Norris’ success. However, it actually was a fight against the noise in the
spectra.
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Karl Norris specialized in the field of electronics and was unfamiliar with spec-
troscopy, which is based on the wavelength and height of the absorption peak. His
background enabled him to easily adopt a new scanning method and statistics to
eliminate the noise from the spectra, thus enabling the detection of subtle spectral
changes. This would have been difficult to achieve using an infrared spectrometer,
which generated the spectra on a chart paper recorder using a pen. The experiments
performed to eliminate noise were successful, and using statistics, information on
the ingredients could be retrieved from the NIR spectra [2].

10.1.1 Noise and NIR Spectroscopy

Figure 10.1 shows the reflectance spectra of beef meat obtained using the Foss XDS
analyzer. In Fig. 10.1, abs refers to the absorption, which is the logarithm of the
reflectance R (%), as shown below in Eq. 10.1.

abs = −log(R/100) (10.1)

The intensity of the 928 nm fat absorption peak increases with increasing fat.
Although it is difficult to confirm fat absorption peak in the lean spectra (Fig. 10.2a),
the second derivative spectrum clearly indicates the presence of the fat peak
(Fig. 10.2b).

The vertical scale of the spectrum shown in Fig. 10.2a is in (abs), while that of
the spectrum in Fig. 10.2b corresponding to the second derivative is in (µabs).

Figure 10.3 shows the spectrum to which 20 µabs noise was added in the simu-
lations. It is difficult to differentiate between Figs. 10.2a and 10.3a. However, the
second derivative spectra shown in Figs. 10.2b and 10.3b are completely different.
Even a low noise of 20 µabs, which is not easily discernible, deteriorated the second
derivative spectrum illustrated Fig. 10.3b.

Fig. 10.1 Reflectance
spectra of beef meat
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Fig. 10.2 Lean reflectance of beef (a) and its second derivative (b)

Fig. 10.3 Lean reflectance of beef with 20 µabs noise (a) and its second derivative (b)

The presence of noise affects the estimation of the ingredients, which depends
on the sample characteristics. The effects of noise on the ratio of performance to
deviation (RPD) [3] of three samples are shown on Fig. 10.4.

RPD of approximately 2.5 is obtained when the noise level is 20 mabs for the
sugar in a tomato, 500 µabs for the protein in polished rice, and 50 µabs for the
protein in unhulled rice. The required noise limits of the instrument are different

Fig. 10.4 RPD versus noise
corresponding to different
samples
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depending on the nature of the target of measurements. A typical high-grade NIR
spectrometer has a low noise level of less than 20 µabs. Such a low noise level can
be realized using high-grade A/D conversion instead of a pen recorder, and the new
fast repeat scanning (FRS) method developed by Karl Norris.

10.1.2 Noise Reduction Using the FRS Method

The noise reduction technology used for an instrument, before the advent of digital
technology until 1970, involved slow speed measurements and noise reduction using
the time constant of the amplifier circuit. For example, the UV-VIS or Raman spec-
trometers employed in that era took a long time (>10 min or sometimes hours) to
measure the sample, and the spectra were generated using a long time constant.

White noise with flat frequency characteristics can be reduced by employing slow
scanning speeds and longer time constants. However, the actual noise is composed of
white noise and 1/f noise [4], as shown in Fig. 10.5, which has larger amplitudes at
low wavelengths. The sources of the 1/f noise include temperature and time, which
influence many factors such as the sensor, optical parts, mechanism, and light source
of the NIR spectrometer. The actual noise has a larger amplitude at lower frequencies
than the 1/f noise.

Karl Norris employed amethodwith FRS to avoid the effect of high noise levels at
low frequencies. For example, when the wavelength scanning speed is 100× faster,
the signal frequency is 100× higher, which reduces the noise due to the 1/f noise.
However, the frequency bandwidth of the signal is then 100× wider, which would
require 100 × averages to obtain the same noise level as white noise.

The noise can be reduced by using a large number of averages. This method is
called FRS, which cannot be realized using an analog instrument. The NIR spec-
trometers available in the market have a high-speed scanning mechanism of around
0.2 s per scan.

Fig. 10.5 Noise—frequency
characteristics



10 Hardware of Near-Infrared Spectroscopy 239

Fig. 10.6 The NIR spectral shape (a) and measured signals (b)

A typical waveform of the NIR spectrum is shown in Fig. 10.6a. The noise and
signals measured using the slow scan and FRS methods over a 1 min duration are
shown in Fig. 10.6b.

The signals and noise measured using the slow single scan and FRS methods are
shown in Fig. 10.7.

In the spectrum obtained with the slow single scan, as shown in Fig. 10.7a, the
noise is reduced by smoothing, similar to the time constant circuit. In Fig. 10.7b,
nine repeated data with noise measured using the FRS method are averaged. These
results are shown in Fig. 10.8, which indicate that the FRS scan method has a lower
noise level than the slow single scan.

Karl Norris succeeded in retrieving the spectra with low noise using the FRS
method and could estimate the ingredients of a material using statistics. This method
can be realized only using digitalized technology.Almost all thewavelength scanning
NIR spectrometers available in the market employ the above-discussed FRSmethod.

Fig. 10.7 The signals and noise measured using the slow single scan (a) and FRS (b) methods
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Fig. 10.8 Spectra measured
using the slow single scan
and FRS methods

10.1.3 Noise Reduction in a Linear Array Spectrometer

Many NIR linear array spectrometers containing a linear array and grating spec-
trometer have been widely used for onsite ingredient measurements. A linear array
spectrometermeasures all thewavelengths simultaneously to ensure low noise levels.
Most of the noise sources in a linear array spectrometer are intrinsic to the sensor.

The photoelectrons produced by light in a pixel of the linear array sensor are
accumulated in a capacitor connected to each pixel. The number of accumulated
photoelectrons in the capacitor is proportional to the incident light intensity. The
noise in the linear array includes the circuit and quantum noises. Quantum noise is
caused by the photoelectric effect. The number of photoelectrons produced by the
incident light is proportional to the light intensity, and the noise is

√
N when the

averaged photoelectron number is N . The signal-to-noise ratio (SNR) (Eq. 10.2) can
then be defined as follows [5].

SNR = N√
N

= √
N (10.2)

Although the noise
√
N increases at large N, the SNR improves. This indicates

that high intensity light is required to achieve a good SNR in a NIR spectrometer.
The maximum number of photoelectrons is limited by the size of the capacitor.

This is called saturation exposure, which is expressed in terms of the number of
electrons (Me-). As shown in Fig. 10.9, when the saturation exposure is large, the
capacitance of the linear array is large along with an improved SNR. A linear array
with a large saturation exposure is called a “deep well.”

The saturation exposure ranges from 0.03 × 106 to 1000 × 106 (Table 10.1). In
a NIR spectrometer, a saturation exposure of 500–1000 × 106 is preferred to obtain
a good SNR. As shown in Table 10.1, the saturation exposure of a CCD linear array
is smaller, while that of the NMOS linear arrays is larger. Recently, CMOS linear
arrays with large saturation exposures of around 1000 × 106 have been developed.
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Fig. 10.9 Signal and
saturation exposure of a
linear array

Table 10.1 Saturation
exposure of a linear array

Linear array type Saturation exposure (×106)

Silicon
Linear array

CCD 0.03 ~ 0.6

CMOS 0.08 ~ 900

NMOS 31 ~ 312

InGaAs linear array 30

The SNR can be improved by averaging repeated measurements even when a
linear array with a small saturation exposure is used. However, in this case, noise
from the circuit is added with each measurement. Hence, a linear array with a large
saturation exposure is preferred, and the exposure time should be selected such that
a signal close to the saturation exposure is obtained.

When a “deepwell” linear array is used, the light intensity should be high to obtain
sufficient signal. Therefore, the optical design that supplies light of high intensity to
the linear array detector should be considered.

10.1.4 Noise Caused by Wavelength Accuracy
and Repeatability

In the IRorRaman spectroscopic techniques,where the peak position and peak height
of spectral absorption are evaluated, thewavelength accuracy is approximately a third
or fifth of the wavelength resolution. In NIR spectroscopy, though all the peaks are
not sharp and thewavelength resolution is around ten nm, a highwavelength accuracy
is still required to observe small subtle changes in the spectrum.

The spectrum shown in Fig. 10.10a (reflectance spectrum of a leaf) has a small
absorption peak at 1728 nm, with its magnified plot shown in Fig. 10.10b. The peak
height of the second derivative is approximately 20 µabs. The original spectrum has
a slope of 1000 µabs/nm around 1728 nm. A 0.005 nm change in the wavelength
around the 1728 nm position will cause a 5 (1000 × 0.005) µabs change. A higher
wavelength accuracy is required where the spectrum has a large slope.
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Fig. 10.10 The effect of the spectral slope on the wavelength accuracy, the reflectance of a leaf
and its second derivative (a), and magnified graph around 1728 nm (b)

A laser is incorporated to calibratewavelengthwith high accuracy in aFourier-type
spectrometer. A high-resolution rotary encoder is used to detect the grating rotation
angle with high accuracy in a wavelength scanning-type grating spectrometer.

10.2 Grating Spectrometer

When considering the in-plane optics of a spectrometer, the off-plane angle δ is set
to zero with the first order of diffraction, as shown in Fig. 10.11.

The relationship between the incident angle α, diffracted angle β, and wavelength
λ can be expressed by Eq. 10.3 using the groove density N of the grating (see 5.2)
[6].

λ = 106

N
· (sinα + sinβ) (10.3)

λ Wavelength (nm)
N Groove density (mm−1)

Fig. 10.11 The principle
behind diffraction grating



10 Hardware of Near-Infrared Spectroscopy 243

α Incident angle
β Diffraction angle.

The optics of the grating spectrometers can be examined based on Eq. 10.3.

10.2.1 Wavelength Scanning Grating Spectrometer

In a plane grating spectrometer, the parallel light beam on a grating is diffracted along
the direction determined by Eq. 10.3. The diffracted parallel light is collimated into
the exit slit. The wavelength can be scanned by rotating the grating.

(a) Optical Mount of the Plane Grating Spectrometer

The Czerny-Turner mount spectrometer shown in Fig. 10.12 is the commonly used
opticalmount [7]. The incident light from the entrance slit is reflected by the spherical
mirror to form a parallel beam, which enters the plane grating. The light diffracted
from the grating surface is collimated into the exit slit by the second spherical mirror.
The wavelength of the spectrometer can be calculated using Eq. 10.3, producing
Eq. 10.4 as shown below.

λ = 2

N
· cosγ · sinθ · 106 (10.4)

Fig. 10.12 The
Czerny-Turner mount
spectrometer
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Fig. 10.13 Various optical mounts of a spectrometer a Ebert, b Littrow, and c Fastie Ebert

where

λ Wavelength (nm)
N Groove density of the grating (mm−1)
γ Deviation angle from the center axis (rad)
θ Rotation angle of the grating (rad).

Various other types of opticalmounts have been developed, as shown in Fig. 10.13.
A grating spectrometer has stray light depending on the location of the optical

axis on the principal plane [8]. The spectrometer should be designed such that any
stray light is effectively eliminated.

(b) Concave Grating with Constant Interval Grooves—Seya-Namioka Mount

A spectrometer using a concave grating with constant interval grooves does not
require any other additional optics (Fig. 10.14). This results in a simple instrument
with minimized optical loss. In the Seya-Namioka mount [6, 9], the optical configu-
ration can be calculated using Eqs. 10.5 and 10.6. The wavelength can be determined
using Eq. 10.4.

2γ = 70.5◦ (10.5)

R = R′ = r · cos 35.25◦ (10.6)

Fig. 10.14 Seya-Namioka mount
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Fig. 10.15 Constant deviation mount using a concave grating

r Radius of curvature of the concave grating (mm)
R Entrance slit position (mm)
R′ Exit slit position (mm).

The wavelength is calculated using Eq. 10.4.

(c) Concave Grating of Constant Deviation

Using a concave grating with grooves at unequal intervals, a spectrometer with a
constant deviation angle of 2γ can be realized (Fig. 10.15). The specific angle γ , and
focal points R and R′ are determined based on the design of this grating [6]. Although
the groove interval is not constant, the nominal groove density of the grating N is
used in Eq. 10.4 to determine the wavelength.

10.2.2 Spectrometer with a Linear Array Detector

A spectrum can be measured by deploying a linear array detector at the exit slit
position of a grating spectrometer [6]. This type of spectrometer has a compact size
and enables rapid measurement. The NIR spectrometer can be realized using this
type of spectrometer for specific samples.

(a) Linear Array Spectrometer with a Plane Grating

The focal point of each wavelength at the exit slit of a grating spectrometer should
be on a flat plane to detect the spectrum without blurring, as the detector plane of a
linear array is flat.

In a grating spectrometer where all the optical axes are on the principle plane, such
as the Czerny-Turner, Ebert, or Littrow mounts shown in Fig. 10.13, the positions
of the grating collimating spherical mirror, and linear array determine the flatness of
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Fig. 10.16 The super flat
condition for a linear array
grating spectrometer

the focal plane. The grating position shown in Fig. 10.16, which is 1/
√
3 · R from

the center of the radius curvature of the collimating spherical mirror, is known as a
super flat condition [7] that achieves the flattest focal plane.

Astigmatism perpendicular to the slit image is generated in the Fastie-Ebert spec-
trometer (Fig. 10.13c) where the optical axis is out of the principle plane. However,
by deploying the linear array just above the grating, the image plane becomes approx-
imately flat in a narrow wavelength band without any stray light. Thus, this mount
is appropriate for specific NIR applications.

The configuration parameters of the Czerny-Turner linear array spectrometer
(Fig. 10.17), i.e., the focal length, grating position, angle γ , and angle ϑ are
determined by Eq. 10.4 using the center wavelength λ0, as shown in Eq. 10.7.

λ0 = 2/N · cos γ · sinθ · 106 (10.7)

The angles β1 and β2 corresponding to λmin and λmax, respectively, can be
determined using Eqs. 10.8 and 10.9.

λmin = 106

N
· (sin(θ − γ ) + sin β1) (10.8)
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Fig. 10.17 Czerny-Turner
linear array spectrometer

λmax = 106

N
· (sin(θ − γ ) + sin β2) (10.9)

All configurations of the spectrometer can be determined based on the above
calculations.

(b) Concave Grating with Constant Interval Grooves

When a concave grating with constant interval grooves is used, the incident light
through an entrance slit on the Rowland circle [6] is diffracted and focused back
onto the same Rowland circle (Fig. 10.18). The Rowland circle has a diameter R,
which is the radius of curvature of the concave grating and is in contact with its
surface.

Fig. 10.18 A concave
grating mount for a linear
array spectrometer
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Fig. 10.19 Flat field
concave grating for a linear
array spectrometer

The relationship between α, β1, and β2 can be described using Eqs. 10.7–10.9.
The spectra can be measured by deploying a linear array on the Rowland circle.

Some blurring is inevitable as the focal plane of the spectra is on the Rowland circle,
while the linear array sensing area is on the flat plane.

(c) Flat Field Concave Grating

By adopting grooves with uneven/unequal intervals using holographic technology,
a flat field concave grating with a flat spectral focal plane can be realized [6]
(Fig. 10.19).

The configuration of the spectrometer (R1, α, R4, β3) can be determined based on
the grating design. The other parameters (β1, β2) can be calculated using Eqs. 10.7–
10.9.

(d) Volume Phase Holographic (VPH) Grating

A grating with high efficiency is preferred for NIR spectrometer, which requires a
high intensity light signal to decrease the noise. The VPH grating, which is based
on Bragg diffraction, has a high efficiency of approximately 90% in the narrow
wavelength band [10].

The VPH grating is a transmissive-type grating that is fabricated using holo-
graphic technology. The interference fringes generated by a laser are recorded three-
dimensionally in a photosensitive material sandwiched between glass plates. The
three-dimensional periodic modulation in the material causes Bragg diffraction,
which occurs when α = β. This enables an efficiency of >90% and produces the
characteristics of the narrow wavelength range based on its thickness. Therefore,
this grating is used around the Bragg condition. The anomaly that appears in a plane
grating is not observed.

The Bragg condition is calculated using Eqs. 10.10 and 10.11. Angles β1 and β2

corresponding to λmin and λmax, respectively, are calculated using Eqs. 10.12 and
10.13 (Fig. 10.20).

α = β (10.10)
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Fig. 10.20 Optics of a VPH
grating

λ0 = 2 · 10
6

N
· sin α (10.11)

λmin = 106

N
· (sin α + sin β1) (10.12)

λmax = 106

N
· (sin α + sin β2) (10.13)

Higher-order diffraction does not exist in Bragg diffraction. Therefore, a cut filter
is not necessary in a VPH spectrometer to eliminate second and higher order diffrac-
tion. The VPH grating is easy to handle due to its sandwich structure. The surface of
the VPH grating can be wiped or polished. The typical optical alignment of a VPH
grating spectrometer is shown in Fig. 10.21.

10.2.3 Hadamard Spectrometer

In a Hadamard spectrometer, an image of the spectrum is focused onto the exit slit
position of a grating spectrometer. The light passing through a multi-aperture plate
deployed at the exit slit position is detected by a single detector (Fig. 10.22). This
measurement is repeated more than n times for different multi-aperture plates. The
signal intensity of the n signals corresponding to the different multi-aperture plates
can be expressed in terms of Eq. 10.14.
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Fig. 10.21 Optical mount of
a VPH grating spectrometer

Fig. 10.22 Hadamard
spectrometer

Ik =
n∑

i=1

Pk
i · Ii (10.14)

where

Ik n-summed detector signal corresponding to the different multi-apertures
Pk
i Multi-aperture pattern

Ii Spectral component.

Equation 10.14 can be rewritten as Eq. 10.15. The spectral shape can be calcu-
lated from the n signals and n aperture patterns [11]. This is called the Hadamard
spectrometer.
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In Eq. 10.15, matrix I can be calculated using P−1, which is the inverse matrix
of s P (Eq. 10.16).

I = P−1 × M (10.16)

When noise e is present in the measurements, the signal can be expressed in terms
of Eq. 10.17.

M = P × I + e (10.17)

The result of Eq. 10.15 would then be Eq. 10.18, as shown below.

I = P−1 × (M − e) = P−1 × M − P−1 × e (10.18)

Finally, the noise in the spectrum would be P−1 × e, which can be minimized
using a multi-aperture pattern. This is known as Hadamard transform spectroscopy.
Although this method was proposed around 1970, it did not become popular because
itwas difficult to realize a dynamic nmulti-aperturemechanism.However, theMEMS
DLPelement has been used as amulti-aperture since the advent ofMEMS technology
around 1990. This type of spectrometer has been available since 2015 [12]. Using
the MEMS DLP element, users can design their own multi-aperture patterns for the
desired applications.

10.2.4 Wavelength Resolution and Measurement Interval

(a) Wavelength Resolution of a Grating Spectrometer

A wavelength resolution of five to ten nm is sufficient for a NIR spectrometer due
to the broad absorbance peak of the NIR spectra. The light intensity attained by
the grating spectrometer is proportional to the square of the wavelength resolution.
The lower the wavelength resolution of a NIR spectrometer, the higher is the signal
intensity, which results in a good SNR. Therefore, the minimum possible low wave-
length resolution should be selected. However, as explained later in Sect. 10.4, a
lower wavelength resolution might cause greater instrumental differences induced
by the spectral response of the spectrometer. Thus, both of SNR and instrumental
difference should be considered.

As the grating spectrometer for NIR spectroscopy has a wavelength resolution
of five to ten nm, the wavelength resolution of a spectrometer is decided mainly
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by the wavelength dispersion of the grating. Other factors such as the aberration of
the optics, optical surface accuracy, and insufficient adjustment of the focal point
increase the wavelength resolution of spectrometer. These factors will cause differ-
ences in the wavelength resolution even between the same spectrometer designs, and
the instrumental differences will be larger depending on the different wavelength
resolutions. The difference between the wavelength resolutions of the instruments
should be within 10% to avoid any instrumental differences.

The wavelength resolution resulting from the dispersion caused by the entrance
and exit slits can be described as follows [6, 13].

The dependence of the position deviation on the entrance slit and wavelength can
be calculated by differentiating Eq. 10.3. The relationship between the wavelength
and incident angle α or slit position can be expressed using Eq. 10.19. The slit
wavelength width corresponding to the mechanical slit width can be expressed using
Eq. 10.20.

dλ

dα
= 106

N
· cosα · dλ

dwin
= 106

N · f
· cosα (10.19)

ωin = 106

N · f
· cosα · Win (10.20)

ωin Entrance slit wavelength width
Win Mechanical entrance slit width
f Focal length of the spectrometer.

At the exit slit, the relationship between the wavelength and diffracted angle or
slit position can be expressed in terms of Eq. 10.21, while the exit slit wavelength
width caused by the mechanical slit width can be expressed by Eq. 10.22.

dλ

dβ
= 106

N
· cosβ · dλ

dwexit
= 106d · cosα

N · f
(10.21)

ωexit = 106 · cosα
N · f

· Wexit (10.22)

ωexit Exit slit wavelength width
Wexit Exit slit mechanical width.

The shape of the total slit function of the spectrometer will be trapezoidal, with the
top side and base line given by ωin −ωexit and ωin +ωexit, respectively (Fig. 10.23b).
When ωexit is small, the shape in Fig. 10.23a is obtained, while a triangle shape is
obtained when ωexit = ωin (Fig. 10.23c).

In a wavelength scanning grating spectrometer, the ωexit = ωin condition is
selected to achieve the highest intensity at the same wavelength resolution.

In a linear array grating spectrometer, the pixel width is assumed to be the exit
slit width and ωexit · ωin. The slit function is illustrated in Fig. 10.23b.
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Fig. 10.23 Slit function of
the spectrometer

(b) Wavelength Interval for Measurement

Selecting the right wavelength interval for a measurement is important to obtain the
right spectral shape. Thus, the spectral shape is influenced by the wavelength interval
[13].

When thewavelength interval is larger than the wavelength resolution, some spec-
tral components between the measurement points will not be measured. When the
interval is too narrow, some spectral components will be overlapped in the measure-
ment. The following important aspects should be considered to enable an even/equal
measurement of all the spectral components.

(b-1) Wavelength Scanning Grating Spectrometer

The shape of the slit function of a wavelength scanning grating spectrometer is
usually triangular with a half bandwidth (HBW) of ω, as shown in Fig. 10.23.

When the wavelength interval 
λ is ω (Fig. 10.23b) or ω
n (Eq. 10.23), all the

spectral components will be measured evenly.


λ = ω

n
(10.23)


λ Wavelength interval
ω HBW of the slit function
n Integer 1, 2, …
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When the wavelength interval 
λ �= ω
n (Fig. 10.23a, c), the spectral components

will not be measured evenly (Fig. 10.24). However, a large n in Eq. 10.23 will result
in a smaller error.

(b-2) Linear Array Grating Spectrometer

The entrance slit wavelength width ωin is always larger than the pixel width ωpix−w.
The slit function of the signal from a pixel of the linear array in a spectrometer cannot
be triangular. This is shown in Fig. 10.25, which is the same as Fig. 10.23b, where
the exit slit wavelength width ωexit is replaced by the pixel width wavelength ωpix−w.

This slit function is lined-up with the interval of the pixel interval wavelength
width ωpix−i . When the entrance slit wavelength width ωin is n times the pixel
interval wavelength width ωpix−i (Eq. 10.24), all the spectral components are eval-
uated evenly. The relationship between the mechanical size of the entrance slit Win

and pixel interval Wpix−i is also described in Eq. 10.24.

Fig. 10.24 Wavelength interval and wavelength resolution

Fig. 10.25 Slit function of a
pixel
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ωin = n · ωpix−i · Win = n · cosβ

cosα
· Wpix−i (10.24)

However, the wavelength widths of the slit and pixel vary according to the wave-
length, and it is impossible to realize the condition defined in Eq. 10.24 at all
wavelengths. Therefore, this condition can be realized around the center wavelength
region.

(c) Calculation of the Absorbance Data

At the wavelength λ j , which is determined by the hardware of the spectrometer,
the detector signal intensity is acquired for the white reference W

(
λ j

)
and sample

X
(
λ j

)
. The wavelength interval of the measurement is decided by the encoder in a

wavelength scanning-type spectrometer and by a pixel in a linear array spectrometer
and is not a constant round number, i.e., 1 nm or 0.5 nm.

Using the data W
(
λ j

)
and X

(
λ j

)
at the wavelength determined by the hardware,

the reflectance, transmittance, or absorbance values at even wavelengths should be
calculated. The process used for the calculations is described in the following sub-
sections. The sequence of the calculations is important for avoiding the instrumental
difference.

(c-1) Calculation of the Absorbance

Before processing the data, the transmittance or reflectance D
(
λ j

)
should be

calculated according to Eq. 10.25.

D
(
λ j

) = X
(
λ j

)

W
(
λ j

) (10.25)

λ j Wavelength used for the measurement
W

(
λ j

)
Signal intensity of the white reference

X
(
λ j

)
Signal intensity of the sample

() Reflectance or transmittance.

(c-2) Calculation of the Wavelength Spectra

Using the calculated reflectance or transmittance D
(
λ j

)
, the data S(λn) are calculated

using Eq. 10.26 at each even wavelength, i.e., 1000, 1001, and 1002 nm.

S(λn) =
∑g

j= f

[(

 − ∣∣λn − λ j

∣∣) · D(
λ j

)]
∑g

j= f

(

 · D(

λ j
)) (10.26)

S(λn) Reflectance or transmittance at any wavelength λn (nm)
D

(
λ j

)
Reflectance or transmittance at the wavelength λ j (nm) determined by the
hardware


 Wavelength resolution used in the calculations (nm)
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j Measurement number (a smaller number corresponds to a shorter wave-
length)

f Minimum measurement number that satisfies the condition
(
λn − λ f

)
< 


g Maximummeasurement number that satisfies the condition
(
λg − λn

)
< 
.

Based on the above calculations, the reflectance or transmittance at any wave-
length λn with the wavelength resolution 
 can be acquired. The actual wavelength
resolution following these calculations will be a convolution of the slit function with
the wavelength resolution ω, and the triangular shape with the wavelength resolution

. If ω is very small compared to 
, the actual wavelength resolution will be close
to 
. If ω and 
 are almost identical, then the total wavelength resolution will be
approximately 1.43 × 
.

(c-3) Preprocessing of the Spectral Data

The absorbance A(λn) of the spectrum S(λn) can be calculated using Eq. 10.27 if
required.

A(λn) = − log(S(λn)) (10.27)

Using the spectral data A(λn) or S(λn), the calibration can be established using
statistics. Various data preprocessing steps, such as smoothing, can be applied prior
to the statistical analysis to obtain good calibrations.

10.3 Designing a NIR Spectrometer for Special Materials

The main application of NIR spectroscopy is to measure the ingredients of a certain
material, which is an easy and non-destructive method used onsite. An appropriate
method of designing such a spectrometer is explained in the following sections. The
performance of the desired instrument should be examined before commencing the
design. It is particularly critical to assess the permissible noise levels with respect to
the desired instrument.

When an instrument is designed without knowledge of the allowable noise levels
for a particular application, the instrument should be repeatedly improved until satis-
factory calibration is achieved. Generating calibrations repeatedly to evaluate the
instrument is a waste of time and money.

The efficient design process of NIR spectroscopy with minimum waste is
explained in Fig. 10.26. The process involves three steps, namely the first test
measurement, the second step to determine the specification, and the third step
involving the final manufacture of the instrument.
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Fig. 10.26 Flow chart showing the design process of a NIR spectrometer

10.3.1 The First Step: Test Measurement

At least thirty samples, which have various ingredient values, are prepared and the
spectra are measured using a high-grade laboratory-type NIR spectrometer. The true
ingredient values of the samples are also analyzed using other official/established
methods. The calibration is retrieved from the spectra and ingredient values using
multivariate statistical analysis.

If the calibration performance is not satisfactory, the conditions (optics, wave-
length range etc.) are changed and measurements are repeated until a satisfactory
calibration is established.
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Once satisfactory calibration is established, the second step is implemented to
determine the specifications of the instrument hardware using this calibration data.
The NIR method is replaced if satisfactory results are not obtained after many trials.

10.3.2 The Second Step: Determining the Specification

Noise of various amplitudes is added to the acquired spectral data via simulations
and the calibrations are generated for each noise amplitude. The allowable noise
level can be determined based on the relationship between the noise amplitude and
calibration performance (R2, SEP and RPD). Other performance parameters such as
the wavelength resolution andwavelength accuracy can also be determined similarly.

The sampling optics should be decided in this step. Using experimental sampling
optics to determine the specification, the samples are measured to check whether the
optics generated the appropriate spectral shape for this application. It is important
to note that the purpose of the measurement is not just to obtain the correct spectral
shape but also to generate an appropriate spectral shape with good SNR, which in
turn provides good calibration for estimating the ingredients.

10.3.3 The Third Step: Manufacturing

The NIR instrument is designed according to the determined specification andmanu-
factured. This process ensures the development of a NIR instrument with satisfactory
performance. Subsequently, the satisfactory calibration can be established using this
developed instrument.

10.4 Instrumental Differences

10.4.1 Effect of Instrumental Differences

The main application of NIR spectroscopy is not to study the molecular structure but
to measure the ingredients of a material. Therefore, many NIR instruments are being
employed at various sites for manufacturing or agriculture. Even when the same type
of instruments and same calibration are used, the measured ingredients differ due to
a phenomenon known as the instrumental difference.

In UV-VIS or infrared spectroscopy, the main purpose of the measurement is to
obtain the spectral waveform, and a small difference in the spectral shape does not
present a major problem. However, in NIR spectroscopy, a small subtle difference
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in the spectral shape results in large differences in the predicted ingredient values,
thus presenting a significant problem.

It is necessary to establish a calibration for each instrument when the instrumental
difference is large. However, generation of the calibration requires substantial cost
and time, which is awasteful process. It is important to understand the factors causing
the instrumental differences to find an effective solution. Instruments with small
differences can be effectively designed by understanding the underlying causes.

10.4.2 Instrumental Differences Caused by the Sampling
Optics

The spectral shape of the light reflected or transmitted by the sample depends on the
physical configuration of the sample optics. During the manufacture of the sample
optics, the angle of the optical axis and position of the optical parts should be
precisely adjusted. The distance between the irradiated and observed areas should
be considered to generate the identical spectra when manufacturing the interactance
optics.

Furthermore, each lamp has light intensity angular characteristics due to the fila-
ment shape, and each spectrometer also has angular sensitivity dependence. Thus,
when the lamp or entrance slit is collimated onto the sample, the angular character-
istics of the lamp and spectrometer influence the spectral shape. The non-collimated
optics and fiber optics are effective for eliminating the spectral shape difference,
although the light intensity reduces.

10.4.3 Instrumental Differences Caused by the Spectral
Sensitivity and Slit Function

Based on the spectral sensitivity of the spectrometer H(λ) and slit function 
(a),
the measured signals for the sample x(λ0) and reference w(λ0) can be expressed by
Eqs. 10.28 and 10.29 [14].

x(λ0) =
∫ +D
−D X(λ0 − a) · H(λ0 − a) · 
(a) · da

∫ +D
−D ·
(a) · da (10.28)

w(λ0) =
∫ +D
−D W (λ0 − a) · H(λ0 − a) · 
(a) · da

∫ +D
−D 
(a) · da (10.29)

where

x(λ0) Sample signal intensity
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w(λ0) Reference signal intensity
λ0 Wavelength of the spectrometer
X(λ0) Sample spectrum
W (λ0) Reference spectrum
a Wavelength shift from λ0

H(λ) Spectral sensitivity of the spectrometer

(a) Slit function of the spectrometer
D Integral width of the slit function.

Using Eqs. 10.28 and 10.29, the reflectance (or transmittance) spectrum R(λ0)

can be calculated (Eq. 10.30) [15].

R(λ0) = x(λ0)

w(λ0)
· W (λ0) =

∫ +D
−D X(λ0 − a) · H(λ0 − a) · 
(a) · da

∫ +D
−D W (λ0 − a) · H(λ0 − a) · 
(a) · da · W (λ0)

(10.30)

Equation 10.30 can be expressed as Eq. 10.31when the reference spectrumW (λ0)

is constant within the integral width D.

R(λ0) =
∫ +D
−D X(λ0 − a) · H(λ0 − a) · 
(a) · da

∫ +D
−D H(λ0 − a) · 
(a) · da (10.31)

It is obvious from Eq. 10.31 that the reflectance R(λ) is influenced by the spectral
sensitivity H(λ) and slit function 
(a) [15].

Variations in H(λ) within the integral width ±D cause instrumental differences.
Variations in H(λ) can mainly be attributed to the detector and grating. These optical
elements should not exhibit steep/sharp changes within the integral width ±D. The
linear array has an etaloning effect that causes periodic sensitivity variations with
respect to the wavelength. This effect differs depending on the manufacturing lot and
is a significant factor producing of the instrumental difference.

When the variation of H(λ)within the integral width±D is small and considered
constant, the slit function 
(a) will be the only source affecting the reflectance
spectral shape.

The slit function is a wavelength response of the spectrometer with respect to
monochromatic light and is determined by the slit width and wavelength dispersion
at the entrance and exit slits in the case of a grating spectrometer. The width of a
slit function, which is equal to the wavelength resolution, increases due to aberra-
tions in the optical system, mirror surface imprecision, and insufficient adjustment
of the spectrometer optics. The mirror surface precision should be within 1/4 · λ.
The adjustments should be checked by measuring the sharp spectral lines from a
mercury or argon discharge lamp. The wavelength resolution of the grating-type
NIR spectrometer should be adjusted to <0.1 nm of the master instrument to avoid
instrumental difference.
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10.4.4 Considerations to Avoid Instrumental Differences

The following factors should be considered to minimize the instrumental difference
[15].

• The characteristics of the sample optics should be made approximately equal via
adjustments.

• Thewavelength resolution of each spectrometer should be adjustedwithin 0.1 nm.
• The spectral sensitivity of the spectrometer should be as flat as possible.
• A wide wavelength resolution generates low noise levels; however, the instru-

mental difference increases.
• The sequence of calculations is important (see Sect. 10.2.4c). The reflectance

should be calculated first.

10.4.5 Standardization Methods for the Calibration

To compensate for the instrumental difference, the calibration or predicted results
should be modified. The modification process is called standardization. Several
standardization methods have been reported [16].

(a) The SBC Method

Thevalue predicted by a slave instrument using the calibration established by amaster
instrument can be corrected using the slope and bias correction (SBC) method [17].
As shown in the scatter plot in Fig. 10.27, the relationship between the predicted
values from the master and slave instruments can be calculated.

The spectra of about 30 samples should be measured by the master and slave
instruments. Subsequently, the same calibration is applied to both the instruments
to obtain the predicted value. Using the predicted values from the master and slave

Fig. 10.27 The slope and bias correction (SBC) method
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Fig. 10.28 The Shenk
method

instruments, the relationship between these two instruments (slope and bias) is deter-
mined using regression analysis. These values are then applied to the value predicted
by the slave instrument, as defined in Eq. 10.32.

AK = Slope ·
∑

Kλi · Iλi + Bias (10.32)

Ak Corrected predicted value from the slave instrument
Kλi Calibration by the master instrument
Iλi Sample spectrum obtained using the slave instrument.

This method can be applied when the instrumental difference is small.

(b) Shenk Method

Shenk andWesterhaus proposed this method in a US patent [18] in 1991 (Fig. 10.28).
Though this method is old, it is nevertheless important.

The principle idea is to identify a function that modifies the spectra from the slave
instrument to match that of the master instrument. Subsequently, the calibration of
the master instrument can be used for the slave instrument.

A minimum of 30 samples are measured using both the master and slave
instruments. It is desirable that the samples cover all the features of the target.

Based on the correlation between the absorbance at λi of the master and λ j of the
slave, the relationship between λi of the master and λ j of the slave can be acquired.
Using these results, the wavelength of the slave instrument can be corrected.

Based on the absorbance values of the master and slave instruments at each
corrected wavelength λ j , the correction factors for the slope and bias corresponding
to the absorbance value at each wavelength can be retrieved. Using the correction
matrix that includes all the corrections for thewavelength and absorbance, the spectra
of the slave instrument match those of the master. Subsequently, the ingredients can
be calculated using the slave spectra and calibration established by the master.
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Fig. 10.29 The PDS method

(c) PDS Method

The piecewise direct standardization (PDS)method is similar to the Shenkmethod. In
this method, the wavelength and absorbance are corrected usingmultivariate analysis
[19] (Fig. 10.29).

Using the absorbance values of K samples from the master and slave instruments,
the AK

λi
of themaster at wavelengthλi can be calculated based on the slave absorbance

values (CK
λi
) in the wavelength band λi−X to λi+X using the coefficient (βλi

n ). The
coefficient (βλi

n ) can be calculated from the MLR, PCA, or PLS.
The direct standardization (DS) method involves using all the wavelength data of

the slave instrument.
In the calculation of the above corrections, it is important to ensure the

repeatability of the measurements for this standardization.
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Chapter 11
Time-of-Flight Spectroscopy

Tetsuya Inagaki and Satoru Tsuchikawa

Abstract This chapter summarizes the principle and application of time-of-flight
(TOF) NIR spectroscopy, which can evaluate the contribution of scattering and
absorption of light in samples simultaneously. In order to construct robust calibrations
for organic materials by NIR spectroscopy, it is important to evaluate and understand
the spectral contribution from light absorption (absorption resulting from harmonics
or overtones of the fundamental absorptions of molecular vibrations) and light scat-
tering (mainly due to the cellular structure). In this chapter, we introduce the principle
of TOF-NIR spectroscopy and some applications to agricultural, medical area, and
forest products.

Keywords Time-resolved spectroscopy · Time-of-flight spectroscopy · Spatially
resolved spectroscopy · Absorption coefficient · Reduced scattering coefficient

11.1 Introduction

In the past three decades, many researchers have paid attention to the potential use
of NIR spectroscopy as a practical use for the detection of organic compounds in
materials. In fields such as agriculture, food, pharmaceuticals, medical, paper, and
polymers, there is a strong interest in NIR spectroscopy because of its nondestruc-
tiveness, accuracy, quick measurement, and easy operation. The measurement of
NIR spectra (i.e., detection of NIR light from the sample) is done by transmittance
(including interactance) or diffuse reflectance mode. The transmission method is
desirable for detecting internal information in large quantities of material, although
the optical information from the diffuse reflectance spectrum is limited to the surface
of the sample. It is particularly important to proceed with the development of NIR
transmission devices for detecting the internal properties of high moisture fruits,
vegetable products, or thick wood products.
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Behavior of transmitted or diffuse reflected light from an agricultural, forest
product or human body (i.e., highly scattering media) is strongly affected by
both physical and chemical properties of the tissues, making it complicate to
examine the optical characteristics of the tissue in detail and to evaluate the
sample constituents accurately. Especially in the 500–1100 nm wavelength range
for most biological media, the scattering coefficient is much higher than the absorp-
tion coefficient. Although many studies have reported that the chemical, phys-
ical, and mechanical properties of biological material can be predicted by NIR
diffuse reflectance/transmittance spectroscopy with the aid of statistical methods
(i.e., chemometrics), such chemometric NIR approaches have some disadvantages.
First, the contribution of the light absorption and scattering phenomena in acquired
spectra cannot be explained independently. Second, the construction of a calibration
model, which is usually not transferable among instruments, requires a considerable
amount of spectral and objective data. Additionally, the light scattering contribution
toNIR spectra is significant when thematerial has complex cellular structure result in
the high scattering of light. In order to construct robust calibrations for organic mate-
rials by NIR spectroscopy, it is of importance to independently evaluate the spectral
contribution from light absorption (absorption resulting from harmonics or overtones
of the fundamental absorptions of molecular vibrations) and light scattering (mainly
due to the cellular structure and refractive index mismatch at the boundary).

In order to understand such a complex phenomena of light propagation in organic
materials, many researchers have given attention to time-of-flight (TOF) or time-
resolved (TR) spectroscopy using short pulses of light emission and observe the
reflected or transmitted light as a function of time in nano or pico order. A time-
resolved measurement, or time domain system, could provide the TOF information
of the detected light. In the TOF approach, tens of picosecond light pulses are usually
injected into the tissue, usually using a suitable optical fiber.

The intensity of light pulse propagates through the tissue is detected at a certain
distance from the injection point (Fig. 11.1). It is also possible to examine biological
tissue using the transmission approach. In this approach, the source and detector
fibers are placed on opposite sides of the tissue. Time domain intensity of photons
propagated into the tissue, known as the photon distribution of time of flight (DTOF),
results delayed, broadened, and attenuated because of the scattering and absorption of
light inside the diffusivemedium. Although it is possible to estimate the optical prop-
erties of materials by spatially resolved technique (SR) or spatial frequency domain
technique, it is considered that TR technique is more accurate in the measuring of
optical properties.

Patterson et al. [1] proposed the usefulness of the time-resolved reflectance and
transmittance spectroscopy for the noninvasive measurement of tissue optical prop-
erties theoretically. They developed a model based on the diffusion approximation of
radiative transfer, which yielded an analytical expression for pulse shape in terms of
the interaction with a homogeneous slab, for the determination of optical properties
[i.e., absorption coefficient (μa) and reduced scattering coefficient (μ′

s)] in tissue.μ
′
s

is defined as
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Fig. 11.1 Summary of TR NIR spectroscopy. The injected pulse (IRF: instruments response func-
tion) propagate into scattering media with absorption coefficient and reduced scattering coefficient.
The detected light intensity at certain distance from injected point (ρ) with time domain broadens
due to light scattering (DTOF: distribution of time-of-flight)

μ′
s = (1 − g)μs

whereμs is the linear scattering coefficient, and g is the mean cosine of the scattering
angle. A value of g= 1 represents forward scattering, while g= 0 represents isotropic
scattering. Under the assumption that μa � μ′

s (i.e., high scattering media), the
diffusion of a photon can be considered to be in a random walk of step size 1/μ′

s ,
where each step involves isotropic scattering. Patterson et al. solve the diffusion
equation using Green’s function with two assumptions; 1. All the incident photon
are initially scattered at the depth of z0 = 1/μ′

s and 2. diffuse photon rate at the
physical boundary between tissue and non-scattering medium would be 0. They
successfully express the reflectance and transmittance ratio with the function of
distance from light source and time. The usefulness of the function they reported
has been proven by many researches. However, Leonardi and Burns [2] investigated
quantitativemeasurements in scatteringmedia on the basis of TOF spectroscopywith
analytical descriptors. They found that experimental analysis from time-resolved
profiles is efficient in estimating absorption and scattering coefficients. Numerical
methods such as adding-doubling and Monte Carlo (MC) methods simulating light
propagation in biological tissues are also often used.

Many researches revealed that the determination of μa and μ′
s in agricultural and

food products can be used for the evaluation of chemical and physical properties
in samples [3–5]. In the field of medical science, time domain method is expected
to develop optical tomography techniques, which can be used for the noninvasive
detection of cancer [6] or the changes of hemoglobin concentration associated with
neural activation in human brain [7]. In this chapter, we introduce the principle of
TOF-NIR spectroscopy and some applications to agricultural,medical area and forest
products.
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11.2 Measuring Apparatus

For the detection of DTOF data of samples, measuring system should contain 1. laser
source, 2. photodetector, and 3. time-resolved system. Torricelli et al. summarized
[4] the evolution history of TR spectroscopic components, i.e., in the first genera-
tion since the early 1990s, the laser from gas, dye, or solid state laser was used as
light source and detected DTOF profiles using microchannel plate photomultiplier
(PMT) with electronic chain for time-correlated single photon counting (TCSPC)
with NIM module. The TR spectroscopic components at the second generation,
2000–2010, semiconductor laser heads with external RF driver was used as light
source and detected by compact metal channel dynode PMT with TCSPC electronic
board system. Now it is possible to use the supercontinuum fiber laser with powerful
emission with broad wavelength range as light source and detected by hybrid PMT
with time-to-digital converters module with USB controller. The distance from light
injection points to receiver (ρ in Fig. 11.1) should be optimized according to the range
ofμa andμ′

s of the samples. Estimated value of attenuation is in the order of 106–108,
and temporal dynamic span is over a 1–10 nm range when the sample has general
optical properties in the NIR region, i.e., μa = 0 − 0.05 cm−1, μ′

s = 5 − 25 cm−1

and ρ = 1 − 3 cm.

11.3 Data Analysis

After obtaining the time-resolved light intensity signal, μa and μ′
s are estimated by

fitting the TR data obtained with the analytical solution of the diffusion equation by
the nonlinear inverse algorithm. Convolution between the theoretical TR reflectance
with the IRF is calculated at first in order to take the broad shape of the IRF and then
used to fit the experimental TR reflectance curve. Asmentioned in introduction, solu-
tion of diffusion equation can be applied only if the scattering is dominant compared
to absorption in media, and radiance is detected at a sufficient larger distance from
the injection point, i.e., distance should be much longer than one mean free path
1/μ′. MC simulation is also used to model the light propagation in biological tissue
because of its flexibility and simplicity to simulate photon propagation processes
in arbitrary shapes with complex boundary conditions or spatial localization. For
that simulation, the photon propagation in the turbid medium is traced until it exits
the sample surface or is absorbed. The movement of photons from one photon tissue
interaction to the next photon tissue interaction is described by a probability function
using the optical properties of the tissue. Repeat these processes for a large number
of photons to estimate the photon distribution in the tissue. Detailed explanation for
the data analysis with fitting or MC simulation can be found in book [8].
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11.4 Application of TOF-NIRS to Agricultural Science

The important parameters for fruits or vegetables (i.e., maturity, quality parameters,
and defect) can be detected by measuring the optical parameters as Lu et al. reviewed
[5]. The couple of most important quality attributes to different fruits are firmness
and soluble solids content (SSC). Many studies demonstrate that both μa and μ′

s
have relation to hardness, SSC, and skin color. However, it was generally reported
that μa was suitable for predicting these quality parameters. This may be due to the
fact that pigments or other chemical compositions would change during maturation
with changes of cell structure directly affecting hardness. In most of the cases, the
combination of μa and μ′

s was found to improve the prediction of fruit maturity
and quality parameters. The prediction of firmness and SSC by TR technology was
widely reported for apple, kiwifruit, mango, nectarine, peach, and pear. Because
physiological disorders often cause the changes in the chemical and structural prop-
erties of the fruits product result in the change of μa and μ′

s , it is possible to detect
the defect in the fruits by observing the optical properties in fruits. Especially, TR
technology can be used to detect internal browning and internal bleeding of apples,
nectarines, plums, thanks to its ability to penetrate tissue deeper inside the fruits.
Determined bulked absorption coefficients of fruits in the spectral regions of 500–
1850 nm were largely dominated by the water in the NIR range and fruit-specific
pigments in the visible range. The differences in μ′

s behavior (μ
′
sdecrease exponen-

tially with the increase of wavelength) between fruits, cultivars and tissue type are
related to microstructural differences, such as differences in cellular structure and
porosity. μ′

svalues are reported for various fruits ranging from 0 to 20 cm−1.

11.5 Application of TOF-NIRS to Medical Science

One of the research areas where TR investigation is most actively conducted is the
medical science.Diffuse optical tomography inNIR region at the range ofwavelength
from 700 to 1000 nm is proven to have the potential for noninvasive diagnoses of
tissue oxygenation and thyroid cancers. As a first step toward properly designing
devices, interpreting diagnostic measurements or planning therapeutic is to identify
the accurate optical properties of a tissue. Following research might be the use of
optical properties determined to describe the light transportation and absorption.
Jacques [9] summarized 1. μa of various tissues in terms of the average hemoglobin
concentration or some similar properties and 2. μ′

s with the parameters (a, b), or
alternatively (a′, fRayleigh, bMie) which explain the μ′

s variation with wavelength

change. The μ′
s(λ) were expressed by the equation μ′

s = a
(

λ
500(nm)

)−b
or μ′

s =
a′

(
fRayleigh

(
λ

500(nm)

)−4 + (
1 − fRayleigh

)(
λ

500(nm)

)−bMie
)
where the λ is wavelength.

In the later equation, scattering is described in terms of the separate contribution
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of Rayleigh and Mie scattering. Author explained that the equations are good for
use in predicting behavior of light propagation or diffusion within the 400–1300 nm
wavelength range. Author summarized also the mean values of coefficient a and
b (skin: a = 46.0 cm−1, b = 1.421, brain: a = 24.2 cm−1, b = 1.611, breast: a
= 16.8 cm−1, b = 1.055, bone: a = 22.9 cm−1, b = 0.716, other soft tissues: a
= 18.9 cm−1, b = 1.286, other fibrous tissues: a = 27.1 cm−1, b = 1.627, fatty
tissue: a = 18.4 cm−1, b = 0.672). Fujii et al. [6] investigated the effects of three
factors (trachea, refractive index mismatch at the boundary of trachea tissue, and
neck organs other than the trachea [spine, spinal cord, and blood vessels]) on light
propagation in the neck by 2D time-dependent radiative transfer equation. After they
constructed an anatomical model of human neck from MR image, they performed
segmentation of the MR image and recognized the pixel corresponding to organs of
the human neck: the trachea, spine, spinal cord, and blood vessels. They simulated the
light propagation in anatomical human neck models by numerical method and MC
simulation. They showed that reflection and refraction at the trachea tissue interface
significantly effect on the light intensities in the region between the trachea and the
front of the neck surface. So, it is necessary to take into account the refractive index
mismatch at the trachea tissue interface. Hoshi summarized the use of TR system for
clinical monitoring of tissue oxygenation [7].

11.6 Application of TOF-NIRS to Forest Products

As many reviews and manuscripts about application of TR spectroscopy for medical
and food product science are published, TR spectroscopic application for these
research area is briefly explained in previous chapter. In present chapter, the use
of TR spectroscopy for the determination of optical properties in wood is explained
in detail.

Wood is a naturalmaterialwidely used in construction because of its versatility and
strength. As wood is a biomaterial, there are significant variations in wood properties
(e.g., density, moisture content, grain angle) between species and even among the
same species. From the point of view of quality assurance in industry, nondestructive
measuring and control of the mechanical, physical, and chemical properties of wood
are strongly desired. The light scattering in wood is especially complex because
of the complex cellular structure in wood. Softwood mainly possesses a tracheid
structure, arrayed along the longitudinal direction; whereas, hardwood structures
have wide variation of cell structure (e.g., tracheids, vessels, libriform wood fibers,
or ray cells). The optical properties of wood are significantly affected also by the
water retained in cell walls or cell lumens.

Some groups reported the use of TR diffuse reflectance spectroscopy to deter-
mine the optical properties of wood. D’Andrea et al. [10] decided μa and
μ′
s in the wavelength range of 700–1040 nm of two wood species treated in

different conditions (dry wood, wet wood, and degraded wood) by TR spectroscopy
with two orientations of the optical fiber (i.e., the emitted and detected fibers
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are set perpendicular or parallel to wood grain orientation) and obtained many
interesting results. They reported that theμ′

s ( 10–200 cm
−1)wasmuch larger than the

μa ( 0.05–1.00 cm−1) for all wood samples.μ′
s spectra were almost constant over the

measured wavelength ranges. It was also found that μ′
s highly depends on the wood

species (μ′
s value differs between silver fir and sweet chestnut wood greatly). μ′

s
of wet wood was significantly small compared to dried wood because the refractive
index mismatch between the wood cell wall substance and water in the pores is much
smaller than that between wood cell and air. D’Andrea et al. also evaluated the mois-
ture content of wood using the μa and found a high relationship between moisture
content and the μa at a specific wavelength [11]. Kienle et al. investigated the origin
of scattering in wood by comparing the light propagation in the microstructure of
silver fir measured experimentally to simulation modeled by MC method [12]. They
determined μ′

s (wet wood: 1.79 mm−1, dried wood: 6.68 mm−1) due to tracheids by
solving Maxwell’s equation. They also determined μ′

s−iso, which is the scattering
coefficient due to all other scattering media (rough border between the lumen and
wood cell substance, pits, ray cells), calculated by fitting measured light propagation
to simulated data. The light scattering in wood is significantly complex as wood is a
hygroscopic, heterogeneous, cellular, and anisotropic material. Although the wood
samples were regarded as a homogenous material when theμ′

s values were estimated
using TR spectroscopic method, in fact, the scattering properties highly depended
on the wood species and fiber direction because the cellular structure, which caused
multiple light reflections at the boundary between cell wall and air (water), signifi-
cantly differs between wood species (i.e., hardwood has various cell arrangements
like ring-porous, diffuse-porous, radial-porous, and figured-porous). Kitamura et al.
tried to determine true μa and μ′

s values of wood cell wall substance itself in order
to construct the robust calibrations wood properties by NIR spectroscopy [13]. They
expected that the μa and μ′

s values of the cell wall substance are identical or similar
between species because the density of wood cell wall itself is about 1.4–1.5 g cm−3

regardless of species ( wood density depends on the ratio of pore and cell wall volume
in wood). As the density of cell wall is identical between species, it is thought that
the factor affecting the optical properties might be the concentration ratio of the three
main polymers in the cell wall (cellulose, hemicellulose, and lignin). As there was no
specific absorption band at the wavelength used in their study (846 nm) as shown by
Hans et al. [14], it implied that the concentration ratio of the cellulose, hemicellulose,
and lignin does not strongly affect μa . In order to decide the true optical parameters
of wood cell wall, Douglas fir wood samples were immersed in hexane, toluene,
or quinolone and saturated with them to minimize the multiple light reflections at
the boundary between pore cell wall substance in wood. TR transmittance result
of organic liquid saturated wood samples was fitted to the diffusion approximation
equation to decide μa and μ′

s . μ′
s showed the minimum value when the wood was

saturated with toluene because the refractive index of toluene is close to wood cell
wall substance. In the toluene saturated wood sample, Fresnel reflection (1) at small
particle, (2) between lumen and wood cell wall substance for all cell types (tracheid,
ray cells, vessel), and (3) at the rough border are minimized because refractive index
mismatch between toluene and cell wall was very small. The optical parameters of
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wood cell wall substance calculated taking into account the volume fraction of wood
cell wall substance were μa = 0.030 mm−1 and μ′

s = 18.4 mm−1. Konagaya et al.
[15] fully investigated the effect of boundary between cell wall substance and air
or water (refractive index mismatch) on the μ′

s . They investigated optical properties
of drying wood with the moisture contents ranging from 10 to 200% by TR spec-
troscopy. They divided the source of light scattering into two factors, 1. scattering
from large scatters (i.e., scattering diameter is much larger than the wavelength λ of
the light), which can be described by geometric optics, expressing light propagation
in terms of rays, and 2. scattering from small scatters (i.e., when the scattering diam-
eter is the same as or less than λ), where Mie theory (≈λ) or Rayleigh theory (<λ) is
applicable. They revealed the contribution of scattering source at each stage of wood
drying (constant rate, initial part of the first decreasing rate, later part, and second
decreasing rate period). Scattering from dry pores dominated during the constant
drying rate period, and the drying process of smaller pores dominated during the
period of decreasing drying rate. The surface layer and interior of the wood exhibit
different moisture states, which affect the scattering properties of the wood. The
light propagation in wood complex cell structure is simulated by MC method taking
into account the light reflection and transmission at the boundary between wood
cell wall substance and pore by Ban et al. [16]. They investigated the relation of
wood texture parameters calculated from cross-sectional microscopic images of the
13 species of wood samples and μ′

s at 846 nm. They found that μ′
s has linear relation

to the air-dry density (R2 = 0.56), quadratical relation to the cell–wall area ratio
(R2 = 0.76), and exponentially relation to the median pore area (R2 = 0.54). 85
percent of the variation in μ′

s between many wood species can be explained by these
three parameters. They simulated the light propagation in wood using the measured
cross-sectional microscopic image of wood. After they performed segmentation of
the microscopic image and recognized the pixel corresponding to cell wall substance
and air area, the simulations were performed in the MC code, MCVM. The refrac-
tive index mismatch at the boundaries is also considered to improve the precision of
simulations in MCVM code. Figure 11.2 shows simulated photon propagation in (a)
agathis, (b) yellow poplar, and (c) rubber wood. It is observed that photon spreads
farther in wood cell wall woods through continuously connected cell walls. The high
correlation of cell–wall area ratio and median pore area on μ′

s can be attributed to
the thicker, more connected cell walls associated with large cell–wall area ratio and
small median pore area. Accordingly, increasing the area ratio of the cell wall and
decreasing the pore area increased the μ′

s .

11.7 Brief Explanation for SR Spectroscopy

Not only the TR spectroscopy, some techniques are used to determine the optical
properties. SR technique was developed to understand light propagation in turbid
media. Compared to TR spectroscopy, SR technique is well suitable for use in post-
harvest applications thanks to its low instrumentation cost, easy implementation.
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Fig. 11.2 Light propagation in a agathis, b yellow poplar, and c rubber wood simulated by the
Monte Carlo method

For the SR technique, the point light source is generally injected on sample and the
spatial distribution surrounding the injected light is detected by optical fiber arrays
or non-contact reflectance image, which can be implemented with fiber optic probe,
monochromatic imaging, and hyperspectral imaging. Measured spatial distributions
were fitted by the analytical equation derived by Farrell et al. [17] with an appropriate
inverse algorithm.

11.8 New Measurement System Minimizing the Effect
of Light Scattering.

It can be extremely difficult to obtain reliable calibrations with highly scattering
medium by conventional NIR spectrometer if both of the scattering and absorption
properties of the samples vary. For example, variations of light scattering with size
or concentration of rubber particles in latex samples are complicate. The variation of
scattering properties in sample makes it difficult to interpret the quantitative analyses
and to construct linear calibrations (multiple linear regression, principal component
regression, and partial least squares regression). Shimomura et al. established three-
fiber-based diffuse reflectance spectroscopy (TFDRS) based on spatially resolved
spectroscopy to estimate the sugar content in fruits or total hemoglobin concentration
and tissue oxygen saturation in human tissues using wavelengths range of 800 nm
to 1100 nm [18–20]. A geometry of the TFDR spectrometer is shown in Fig. 11.3.
A continuous wave laser beam is emitted into the sample through an optical fiber.
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Fig. 11.3 Geometry of
TFDRS

The spatially resolved light is collected by fibers that guide the light to the detector.
The receiving fibers are aligned parallel to the distance of ρ and ρ + � apart from
the emitting fiber. Shimomura et al. showed that a new physical parameter γ , which
is calculated using the ratio of light intensity detected at distances ρ and ρ + �,
is independent of the optical path length and showed good linear relation to the
analyte material concentration. One of the advantages of this method is that it is
not necessary to measure reference signal. Shimomura et al. further developed a
new system using three laser diodes at wavelengths of 911, 936, and 1055 nm,
which were found as the best combination of wavelength to predict the sugar content
of fruit. The sugar content in apples in the range of about 9–15 Brix was greatly
predicted with high accuracy (Brix is an approximation of dissolved solid content in
samples, representing the relation to a solution as a percentage of mass). They also
constructed a small and cheap handheld commercial device employingNIR-LEDand
Si detector. Inagaki et al. showed this kind of technique using the wavelength range
850–1060 nm, which is a good method to decide the quality in highly scattering
media, natural rubber latex samples [21]. They showed parameter γ has a strong
linear relation to total solid content in latex (range 0.3–0.6 g g−1) with a coefficient
of determination value of 0.98 and root mean square error for total solid content
of 0.014 g g−1. Although the NIR spectra measured by conventional transmission
or reflectance spectroscopy were highly affected by the scattering coefficient in the
sample, simulation results in that study showed that the effects of scattering in the
samples on γ can be reduced.
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Chapter 12
Method Development

Benoît Igne , Gary McGeorge , and Zhenqi Shi

Abstract A general framework for method development based on the analytical
quality by design process is presented and applied to the development of near-infrared
spectroscopic methods. The framework is particularly well suited to secure stake-
holder alignment, setting appropriate expectations and ensuring that resources are
spent appropriately. After setting method goals and expectations and confirming
feasibility, a risk assessment is performed to identify all the factors that could affect
the method. The method is then developed with the intention to mitigate the impact
of those risks. The result is a robust method that can be tested and validated if
required by the regulatory environment of use. Aspects of method lifecycle are also
discussed as method development is only a part of the process of successfully using
near-infrared spectroscopic methods in routine commercial applications. Aspects
of interface to the process, sample set selection, model optimization, system suit-
ability, and performance monitoring are discussed in the context of building robust
methods. The analytical quality by design framework can significantly streamline
method development and lifecyclemanagement efforts to ensure a successful deploy-
ment and long-term value generation from a NIR spectroscopic method. Continuous
improvement ensures method performance over the useful life of the method.
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12.1 Introduction

An analytical method is a collection of documents and procedures describing how
an analytical signal is collected and processed, how information is generated from
the signal, and how it is reported. It is not only the chemometrics model that takes
spectra as inputs to provide predictions or classifications, but also a description of
how the samples are measured (frequency, instrument configuration, and operation),
how the instrument performance is monitored (hardware calibration, frequency of
recalibration and system suitability), how the model was built, tested, validated (if
applicable), and will be maintained throughout its lifecycle, and what is done with
the output (reporting, link to informatics systems). In this chapter, the general proce-
dure for method development and lifecycle management will be discussed through
the concept of analytical quality by design [1, 2] (AQbD) developed by the phar-
maceutical industry, but applicable to all analytical fields of use of near-infrared
spectroscopy (NIRS).

12.2 General Procedure for Method Development,
Validation, and Lifecycle

Near-infrared spectra are usually too complex for directly establishing a relationship
between an absorbance at a particular wavelength and a parameter of interest. While
for clear liquids Beer’s law may be directly applicable, most samples will exhibit
diffuse reflectance or transmittance. The resulting spectra will differ in path lengths
and require the development of empirical models. These models can be supervised
or unsupervised depending on the intended use. The development of these models
must follow a rigorous methodology to ensure that the resulting analytical method
meets its intended purpose. The analytical quality by design framework presents an
approach to building, testing, validation, and maintaining a NIR method.

Practitioners of near-infrared spectroscopy will be very familiar with the process
described in Fig. 12.1 corresponding to a generic flow diagram of how a supervised
model is built, tested, and validated if required by the regulatory environment of
use. The model is critical, but only a part of an analytical method and the general
framework of method development will be discussed in the next section. However,
general principles need to be explored before focusing on the AQbD framework. The
following paragraphs present generalities about model development.

As indicated in Fig. 12.1, a calibration set, corresponding to relevant variability for
which the model will need to account during operational deployment (i.e., variability
in chemical and physical parameters expected to be encountered), is regressed against
the “true” (known or measured) quantity in the parameter of interest. The range of
sample variability included in the model will dictate how robust a model is. If the
model does not span an appropriate range (what the model is expected to encounter
during deployment), the model usefulness will be limited to the variability included
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Fig. 12.1 Generic method development, testing, and validation workflow

in calibration. In addition, there is always error in the determination of the reference
values, andboth the accuracy andprecisionof the reference data should bedetermined
to understand the impact on the NIR method as the error in the reference method
will impact the performance of the chemometrics model.

Prior to regression, the spectra are often preprocessed to remove unwanted vari-
ance and highlight specific information through variable range selection and pretreat-
ment methods. The choice of regression method will depend on the nature of the
signal. The data collected bymost spectrometers are highly collinear and will require
the use of regression techniques that can handle the collinearity. The most utilized
methods are based on latent variable extraction techniques [3, 4] (partial least-squares
regression (PLSR), principal component regression (PCR)). These algorithms find
the main directions of variance in the data and correlate them to the reference values
(PCR) or the main directions of covariance between the spectra and the reference
values (PLSR). However, for well-defined systems, Beer’s law can be used through
classical least-squares [4] (CLS) regression or more computationally intensive
techniques such as artificial neural networks (ANN) or support vector machines
(SVM) [5].

After regression, the model stability and performance are internally tested with
cross-validation techniques. Numerous cross-validation approaches have been devel-
oped, but, in general, they remove a part of the calibration samples, redevelop the
model without these samples, and subsequently predict the excluded samples. The
operation is repeated until all samples have beenused to test themodel.Care should be
taken to select the right approach for cross-validation. Leave-one-out cross-validation
is a very simple approach, where only one sample is taken out at a time; but it will tend
to be over-optimistic. Alternatively, if using block cross-validation, an entire source
of variability could be inadvertently removed, and the resulting cross-validation error
would be overly inflated resulting in a loss of confidence that the model will perform
as required. Random block and venetian blinds are alternative sample selection tech-
niques that can provide a more realistic estimate of the model performance. The
selected approach should consider the specificities of the samples in the calibration
set.
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Once the calibration algorithm and testing approach are chosen, an iterative
process of sample selection, variable selection, and spectral preprocessing is initi-
ated, with the goal of obtaining the most suitable model for the intended purpose.
Once that model has been developed, it should be tested, and if necessary validated,
against independent data to confirm its performance.

The workflow displayed in Fig. 12.1 should however only be applied as a result
of a careful consideration of the method purpose and expected performance and
numerous activities should take place before a single model is built. The frequency
at which spectra are collected should ensure that the information generated by the
method meets the intended goals of the analytical method and should be driven
by the measured process variability and the analytical instrument capability. The
most accurate model may not prove useful if not associated with a method that
measures the right information. For instance, an instrument known to be affected by
environmental conditions that cannot be controlled effectively (e.g., temperature) but
referenced only at the beginning and end of a week-long campaign may not allow the
method to perform appropriately. Another consideration is related to the error of the
reference method. If the desired error of the NIRS method is significantly lower than
the error of the reference method, the model may not be able to meet expectations.
Finally, if variability in raw materials are expected beyond what can be included
in the calibration set (i.e., year-to-year variability of natural products), resulting in
a significant change in the spectra, the model will lack robustness and need to be
updated. If collecting new samples for reference analysis and model update is not
feasible, the validity of the method will be limited.

For these reasons, following the analytical quality by design framework can be of
significant help to set the parameters of the method and ensure that the expectations
are set before undergoing a long and costly method development activity.

12.3 Analytical Quality by Design (AQbD)

12.3.1 Introduction to AQbD

The concept of analytical quality by design arises from the quality by design (QbD)
concept documented by the International Council for Harmonisation of Technical
Requirements for Pharmaceuticals for Human Use (ICH) [6]. Quality by design is
defined as “a systematic approach to development that begins with predefined objec-
tives and emphasizes […] understanding and […] control, based on sound science
and quality risk management”. A process developed using the QbD framework is
well understood and delivers quality product within a design space identified during
method development. For analytical methods, AQbD allows for a “well understood,
fit for purpose, and robustmethod that consistently delivers the intended performance
throughout its lifecycle” [2]. Figure 12.2 presents the components of AQbD. Each
item will be discussed below.
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Fig. 12.2 Components of
the analytical quality by
design framework

12.3.2 Analytical Target Profile

The analytical target profile (ATP) defines the intent of the method: What is the
method aiming to measure? How should the method work? What will be done with
the outputs of the method? It is a document where the method developers and the
stakeholders agree on what the method needs to deliver. The criteria may be in terms
of figures of merit (accuracy, precision, robustness, …), in terms of lifecycle (how
is the method supposed to work and be updated on the long run?) and in terms
of deployment (who will use the method and in which condition). For instance, a
method built on a laboratory instrument and targeted for a manufacturing application
may not meet the performance and deployment criteria; the sample properties may
change between laboratory and plant, or the expert users in the laboratory will not
be in charge of all the activities affecting the instrument once deployed.

Table 12.1 presents an example of figures of merits and corresponding high-
level performance criteria a hypothetical method would need to satisfy to meet the
needs of a hypothetical application. Refer to ICHQ2(R1) [7], regulatory guidance
[8, 9], or standards [10] for definitions. Examples of statistical tests that can be
used to evaluate these figures of merit are available in regulatory guidance and
standards [11].

Thus, the ATP should be the document that sets the expectations and the direction
of work for the technical team. However, it is a living document that is periodically
evaluated. It is not because a method does not meet the criteria after development
and testing that it may not be fit for purpose. As the ATP is initially drafted several
months or years ahead of completion, it can be difficult to determine all the criteria
and their acceptance limits.



282 B. Igne et al.

Table 12.1 Example method performance category and high-level corresponding criteria

Category Criteria

Accuracy Fit for purpose based on the specifications and requirements of the method.

Precision Repeat measurements error is acceptable with and without repositioning, by
operators, at different concentration levels.

Specificity The NIRS procedure should be able to assess unequivocally the analyte in the
presence of other components, which may vary

Linearity Model predictions are linear over the range of interest.

Range Covers a relevant range of the parameter of interest to allow for the
determination of non-conforming materials.

Robustness Robust to chemical and physical variables, sampling and sample preparation,
and variations in procedure parameters.

12.3.3 Feasibility Study

NIRmodels can often be expensive to develop depending upon the application, and it
is beneficial to consider a staged approach to developmentwhereby smaller feasibility
studies explore the potential method. Often used as an input to, and completed in
parallel to the ATP, a feasibility study can be used to de-risk an application before
significant resources are deployed. However, an ill-designed or too limited feasibility
study will provide over-optimistic results and further risks of feasibility studies are
provided below.

The feasibility study should confirm elements that will become critical when
moving forward with method development:

• Is the targeted analytical tool suitable for the measurement? When a feasibility
study finds that NIRS is not the best tool for the job, other analytical tools shall
be considered.

• What is the nature and stability of the sample? Developing a method for a sample
that degrades or reacts upon sampling for reference analysis may be challenging.

• What is the appropriate means of sampling? While optimization of the scale of
scrutiny and sample presentation can be completed during method development,
the feasibility study should try to identify the factors that will affect the method.
For example, if the feasibility study for an in-line measurement is performed on a
benchtop system after manual sampling, then only a portion of the ATP has been
answered; i.e., NIRS is a viable technology, or NIRS provides specificity, etc.
Often, the sampling conditions (representativity, matrix effect of moving powder,
reproducibility of sampling, etc.) can cause the method to not meet ATP criteria.

• What is the error of the laboratory reference values? A reference method with 5%
error may not allow the development of a NIRS method with less than 5% error.

• What is the process variability? If significant variability in the process is expected
(i.e., the process is developed at the same time as the analytical method), uncer-
tainty can exist onwhat variability in rawmaterials, environmental, and processing
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conditions will exist during routine use of the method and impact the perfor-
mance of themodel. Having a clear picture of the expected variability will provide
insights into the scope of application and the variables/properties that may affect
method robustness.

Needless to say, however, that comprehensively addressing these questions may
not be feasible at an early stage. By its nature, a feasibility study cannot explore all
the sources of variability that a model will need to handle during routine use. For
instance, exposure to limited sources of variability may provide over-confidence in
the performance of a method. A feasibility study designed to not address known risks
will not provide the relevant outcomes, specifically for robustness.

Progressing from a feasibility study tomethod development is a business decision,
and the scientific team should weigh the costs of progressing without all the answers
versus performing amore extensive feasibility study (whose data could be used in the
method development) and advance with more certainty. The feasibility study should
also be used to potentially update the ATP and gain endorsement from stakeholders
if factors have been identified that will change the desired performance criteria.

12.3.4 Risk Assessment

The risk assessment is the process of identifying and scoring the causes that could
have an impact on the method. The result of a risk assessment is a formal document
identifying the risks that exist to themethod andhow theywill be controlled, accepted,
mitigated, or avoided.

There are many ways to conduct a risk assessment. But, the general principles are
as follows. First, all the stakeholders should be identified and convened together to
conduct the exercise. These members should represent management (if appropriate),
the process engineers, themethod developers, and themethod users. Getting the right
membership to the risk assessment will ensure that all the relevant risks are identified.
Second, the team should list all the possible failuremodes that could affect themethod
performance. Figure 12.3 presents an example of a risk identification process also
known as a fishbone diagram for a hypothetical method aimed at predicting the
content of an active ingredient in-line. As presented, the risk identification should
cover all relevant causes of impact to the model performance. Third, the risks should
be categorized or scored by the team. If using a scoring system, each risk is assessed
one at a time, for criteria such as the probability of occurrence, the severity if it
occurred, and the probability of detection. Setting scores for the various risks will
require team members to use a priori information from previous projects, feasibility
studies, or experiences. Some risks may be scored high at first because at the time of
the risk assessment, limited information may be available and then re-scored as new
knowledge becomes available. On the contrary, a risk could have been determined
to be low after the feasibility study but may prove to require controls or mitigation
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upon method development. Finally, plans are put in place to address those with the
highest scores. They can be categorized as:

• Controlled variables.

– Procedural control (i.e., lamp warm up may have a high risk because running
the instrument when the lamp is not stable will affect the results. However, it
can be proceduralized that the lamp needs to be on for a set time prior to use)

– Physical control (i.e., sample will be presented in a holder to ensure repro-
ducibility)

• Experimental variables. These variables should be explored during method
development and will result in the risks being:

– Accepted: variability during use will not significantly affect the method (i.e.,
environmental pressures and humidity for well-controlled instruments)

– Avoided: variability of the sample will be removed prior to analysis (i.e.,
milling to a target particle size, drying to a constant moisture level)

– Mitigated: variabilitywill be built in the chemometricsmodel (i.e., if the sample
varies inmoisture, removing the -OHabsorption bands from the spectra prior to
modeling can limit the method from being sensitive to moisture variability, or
if the sample particle size is expected to change, a design of experiment should
be used to ensure that variability is presented to the model and preprocessing
methods are employed to reduce their impact on the analytes(s) of interest and
the remaining impact is maintained in the model as within-model variability
(i.e., measured with the model diagnostic Hotelling’s T2) or out-of-model
variability (i.e., measured with the model diagnostic Q-residual)

However, mitigating or avoiding all risks is impossible. Resource and time
constraints will push the scientific team to make trade-offs when building a model.
The result will be models that are robust to certain degrees to most but not all sources
of variability that the method could encounter in the future. It is also important
to recognize that identifying a risk does not mean that it can be fully managed or
addressed.

Fig. 12.3 Examples of risks identified for an in-line pharmaceutical method
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As a result, some risk will be passed onto the method users because model robust-
ness needs to be monitored throughout lifecycle management. They need to accept
risk factors that may arise from previously unseen sources of variability as well as
factors that were simply not identified a priori. These unforeseen sources of vari-
ability and their potential impacts on the method will be handled through the method
lifecycle management process and a plan should be in place to maintain robustness
of the model throughout its lifecycle.

12.3.5 Method Development

When reaching this stage of development, a significant amount of information is
known about the desired performance criteria (analyte target profile), the suitability of
the sampling approach and analytical technique (feasibility study), and the factors that
may affect themodel (risk assessment). These learnings are now taken into account to
optimize the sampling methodology, the sample presentation to the analytical instru-
ment, the data collection (to ensure measurement representativity), etc. It is essential
that these factors are set prior to spectral data collection for the calibration, test and
if applicable validation sets. Any change to instrument configuration and collection
parameters should be assessed for impact on the method. This is particularly impor-
tant in cases where the calibration set is collected with a different experimental setup,
e.g., off-line calibration for in-line use. Such an example may occur when in-line
calibration samples cannot be prepared and presented in a representative manner.

12.3.5.1 Sample Set Membership Considerations

The sample membership of the calibration set, test set(s), and potential validation set
should be carefully designed. Specifically, the validation set should be completely
independent from the calibration and test sets, should represent expected variability
from the process, and should challenge the model across an appropriate range that
the model is intended to cover. The test set(s) should be representative of variability
expected during normal operating conditions. The calibration set should be built
from the experimental variables identified in the risk assessment. If sample particle
size, density, batch-to-batch or seasonal variability, etc., is expected to change, that
information should be included in the model. If too much variability is included,
the model may suffer from a lack of accuracy at the expense of robustness. If the
process is expected to be highly variable, local chemometric methods segmenting
large ranges of variability into smaller segments for model development may be
better suited [12].

The model should be qualified for its use irrespective of the application, and the
requirements for qualification (or validation) will vary across industries. In the phar-
maceutical industry, it is necessary to satisfy ICH Q2(R1) requirements for method
validation in addition to the relevant guidelines (e.g., EMA and FDA guidelines on
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NIR) [7]. The ASTM E55.01 committee has also issued several documents on the
topic [10, 11]. Proper testing of any model requires independence of the calibration
and representative samples used for performance evaluation.

12.3.5.2 Sample Variability or Origin

Samples for building a NIR spectroscopic model may come from natural sources
or manufacturing sources. In cases where it is difficult to design specific samples
for model development, care should be taken to ensure that the calibration set is
well balanced and not over representing a particular source of variability that may
artificially influence the predictions.

The modeling team should ensure that all relevant variability is included in the
calibration set. Algorithms such as the Kennard and Stone [13] sample selection
approach can help reduce redundancy in spectra presenting the same variability for
large datasets but the team must understand the data included and excluded, and
rationalize the sample selection.

When feasible, particularly for the chemical and pharmaceutical industries, arti-
ficial samples can be produced at small or pilot scales. Designs of experiments are
often used to derive a suitable spectral space by varying the chemical and physical
properties in the samples to represent normal operating ranges of the process and that
the model should be expected to suitably handle. Figure 12.4 provides an example of
such a design (a 3-factor 2-level full factorial design with a center point) where the

Fig. 12.4 Example of full factorial design commonly used for designing synthetic samples
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chemical content in a sample is varied along with the concentration of other ingre-
dients. There are many other types of designs that can be used (central composite
designs, fractional factorial designs, mixture designs, spiral designs, D, and I optimal
designs) and attempts at comparing their performance have been published [14, 15].
In situations where the samples are expected to vary both in chemical and physical
properties, designs can be augmented through exposure to the conditions (i.e., cali-
bration set is scannedmultiple time after exposition to variousmoisture environments
to build moisture robustness). Nested designs can also be employed where at each
chemical design point (i.e., Fig. 12.4, point (1, 1, −1)) a design for other param-
eters is built. This approach is very common for pharmaceutical oral solid dosage
forms such as tablets where the model is expected to be robust to tablet thickness
and density variability.

The use of artificial samples is very attractive as it allows the rapid development of
models for a fraction of the cost of running a manufacturing line. However, care must
be taken to ensure the representativity of the samples designed at a scale different to
what the model is expected to encounter during commercial use. In situations where
the difference between small- and large-scale production samples is significant and
cannot be accommodated for by spectral preprocessing, much of the work may not
be relevant and a new approach to model buildingmay need to be designed. Attempts
to bridge the difference in sample matrix between small and large scale for powder
mixing have been published [16].

12.3.5.3 Model Optimization

NIR spectroscopy relies on the use of multivariate regression methods such as PCR,
PLS, CLS, ANN, or SVM to relate the absorbance values with the reference values.
The description of each method and situation of use is beyond the scope of this
chapter, and readers should refer to the chemometrics chapter, but all these methods
will generate a set of coefficients that can be used to relate a new spectrum to its value
in the parameter of interest as outlined in Fig. 12.1. Once a method is selected, much
of the model optimization relies on determining the calibration set membership, the
wavelength or wavenumber range, the pretreatment of the spectra, and setting the
model complexity (i.e., number of factors for PCR and PLS, network structure and
neuron numbers for ANN, kernel type for SVM).

The optimization is an iterative empirical process and should be performed to
meet the method requirements outlined in the ATP (Table 12.1). Below are some
elements to consider:

• Variable range: it should be optimized to ensure specificity and robustness. For
instance, the development of a model for moisture should use spectral ranges at
1450 nm and or 1920 nm corresponding to the -OH absorption band. But the
overlap of chemical absorption bands in the NIR range usually means that large
variable ranges are included in the model.
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• Preprocessing: used to reduce irrelevant variance, enhance relevant variance
and/or linearize the relationship between the spectral data and the parameter of
interest. Preprocessing options should be selected to address the particular needs
of the model based on the sample matrix. For instance, if a difference in particle
size exists across the samples, varying scattering intensities could be mitigated
by standard normal variate [17] or multiplicative scatter correction [18].

• Model complexity: over- or under-determined models can significantly impact
robustness, and the model complexity should be set so that the model is able to
handle future variability while still delivering adequate accuracy.

12.3.5.4 Sources of Method Errors

The final method error is the combination of several sources of error that not only
have the potential to impact the model accuracy but also the measurement suitability.
Sources of error to consider include the sampling error, the error of the laboratory,
the error due to instrument variability, etc.

Ensuring the measurement is representative of the process being analyzed is crit-
ical to the quality of themethod outputs. There are several items to consider: the scale
of scrutiny (the volume of sample analyzed by the instrument), the spectral collec-
tion frequency, the sampling method, and the process variability. If a spectrometer
analyzes the entire sample volume but the sample is collected in a way that does
not represent the variability of the process, the model error may be low (meeting
the predefined criteria for figures of merit) but method error would be high. If the
sampling is unbiased, the measurement volume is appropriate, but the frequency of
measurement is low, the manufacturing process may not be appropriately monitored.
Ensuring that the sample measured is representative of the process is critical to a
method success.

As a secondary analytical method, NIRS relies on the determination of the param-
eter(s) of interest by a primarymethod (i.e., scale, chromatography and spectroscopy,
etc.) for model building. The larger the error in the reference methodology (error of
the laboratory), the larger the error of the NIRS model.

Another element related to the error of the laboratory is the quantity being
measured as reference values (or the unit in which it is expressed) and its relationship
with what NIRS measures. In a publication, the impact of selecting the unit of the
parameter of interest (volume fraction vs. weight fraction) was shown to result in
nonlinearities with the authors commenting on the fact that the sensitivity of NIRS to
volume fraction overweight is distorting the established concept of artificial design of
experiments based on weight [19]. The work was done on liquid samples but should
apply to other forms of samples. Authors argue that the nonlinearity generated by
using the “wrong” unit cannot be fully accommodated for by spectral preprocessing
methods.

Instrumental error should also not be under-estimated. While modern instruments
are highly reproducible with nearly noise-free detectors, variability in lamp intensity
can be observed as a function of time and care should be taken to ensure a model
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is built over the range of intensity and several lamps (as lamp-to-lamp variability
can be expected), and if necessary, limits on lamp intensity should be set. If the
instrument is in a space where the ambient temperature will vary, variability in the
spectra can be observed. Finally, if the instrument is deployed in-line or on-line,
reproducibility of the positioning of the probe or probe fouling can have a significant
effect on the resulting spectra. This is also the case for sample holders for at-line or
off-line measurements. Any change in how a sample is presented to the sampling
system will increase the error of the measurement.

12.3.6 Method Testing and Validation

As discussed in the introduction, a model is only a part of an analytical method.
Method testing and potential validation does not solely mean applying independent
spectra to the model but also ensuring the spectrometer is deployed as intended
and that the model outputs are provided to the reporting system. Testing should
be performed on relevant samples (independent from calibration and if possible,
from different lots of materials) to evaluate the impact of the risks identified in the
risk assessment on the method performance. If new factors affecting the method
are identified during testing or if the experimental work proved to not adequately
address some of the risks previously identified, the method and model may need
to be updated. Evaluation of any new update to a model should be performed with
independent samples. If the method performs as expected, the method development
effort can be concluded.

12.3.7 Referencing, System Suitability, and Performance
Monitoring

During routine use, themethodmust be usedwithin the conditions it was built for, the
suitability of the instrument must be confirmed, and the performance of the method
must be monitored. Ensuring that the instrument, sampling, data collection, etc.,
are consistent between method development and method use is critical. While the
sampleswill change, procedures should be in place to ensure that all the variables that
could affect themethod performance are controlled. If there is a significant difference
between the conditions where the method was built and the routine manufacturing
conditions, the method may need to be updated. That scenario will be discussed in a
next section.
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12.3.7.1 Referencing

One potential difference betweenmethod development andmethod use is the require-
ment for referencing the spectrometer. Off-line or at-line methods will usually call
for referencing either before each sample (this is very common when the reference
standards are built in the instrument) or at a set frequency that has been proven
to sustain method performance. However, for on-line or in-line deployments, other
considerations are at play. If the instrument is located in a manufacturing suite or
technical space and these environments are expected to change in thermal condi-
tions during use, the stability of the lamps and detectors may be affected. In such
case, the referencing of the instrument (white reference (e.g., 99% reflectance stan-
dard) and potentially dark reference) may be required more frequently. The chosen
rate/periodicity should ensure suitable spectrometer performance.

For in-line applications, it may not be possible to remove and clean the probe
for referencing. Off-the-shelf commercial systems allow for the probe to be auto-
matically removed from the process, cleaned and referenced. In addition, probes and
spectrometer systems are commercially availablewith built-in referencing that allows
the system to avoid drifts for extended periods of use (several days). But regardless
of how the referencing is performed, it must be done at a relevant frequency to ensure
that any change in the analytical system is accommodated for.

12.3.7.2 System Suitability

Turning on a spectrometer, letting it warm up, and collecting a reference should not
be the only actions performed prior to use. Instruments usually follow a scheduled
performance qualification program either completed by the vendor or the user, but
these could be completed once a year or once every few months. Additional tests are
necessary prior to use and during use to confirm that the instrument and sampling
system are performing as intended when compared against acceptance criteria and
these should be trended against historical values. These tests, often called system
suitability tests or on-going performance verifications, will often use traceable stan-
dards to confirm that the equipment is meeting acceptance criteria and can be used to
generate data as per themethod procedure. System suitability is specifically discussed
in guidelines and standards [7, 20].

12.3.7.3 Method Performance Monitoring

With chromatographic methods, it is typical to run a known working standard refer-
ence sample before and periodically throughout a sample set run to confirm that, over
the duration of the run, the system performed as intended. In addition, thesemeasure-
ments are used to generate the model calibration curve at the time of use. However,
as described earlier, typical NIR methods rely on a priori established calibration
curves, and future samples will be projected onto that model. To ensure that the
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multivariate regression models are still valid, diagnostic metrics need to be routinely
collected and trended. The calculation of diagnostic values such as the Hotelling’s
T2 and the Q-residuals will confirm for every spectrum that it appropriately belongs
to the model space. This will provide confidence that the spectrometer, sample, and
environment are all producing a spectrum that is as required for the model to perform
as developed, tested, and potentially validated.

Tracking and trending of the diagnostic values are essential to the successful
deployment of a NIRS-based method. Statistical limits can then be set to raise
alarms when a measurement appears to be different or tending toward process limits.
The limits for the diagnostics can be set by incorporating the assessment into the
method qualification or in parallel with initial batch experience during the first several
production runs. These diagnostics will determine whether the sample belongs to the
model space (Hotelling’s T2) and whether there is excessive unmodelled variance
(Q-residual). Note that it is possible for a prediction to be within process limits but
for the diagnostics to flag the sample as being “different” or an outlier. If a sample
is determined as exceeding an outlier limit, it should not be assumed however that
the sample is different or that the instrument is not functioning properly. If justified
by consistent out of specification results beyond the expected statistical limits, an
investigation of the system, the process, and the materials used should be undergone
to determine the root cause. If it is determined that the sample was appropriate and
that no instrument issue occurred, an update to the method may be considered.

12.4 Method Lifecycle

Maintaining method performance years after method development is the current
challenge that NIRS practitioners are facing to ensure the successful use of NIRS,
regardless of the field of application. A number of scenarios can be envisioned that
may affect a method such as instrument changes and replacement (either caused by
optical part replacement, instrument failure or transfer of the process to a newmanu-
facturing site), process changes (process wear and tear and process improvements),
and raw materials changes (long-term lot-to-lot variability and sourcing changes).
It is also important to systematically monitor risk factors identified during the risk
assessment until they are deprioritized or eliminated. Alternatively, when new risks
arise, it may be necessary to either control the risks or update themodel to handle that
new variability. Finally, periodic assessment against the reference method should be
performed to demonstrate the method is still performing adequately. This may be
done even if predictions and diagnostics do not show any new concerns. In a regu-
lated environment such as the pharmaceutical industry, it shall be noted that periodic
assessment does not mean periodically performing a verification exercise against the
original validation dataset, i.e., re-validation. Re-validation is only needed when a
model update takes place.

If it is determined that an update to themodel is required, the following approaches
could be used:
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• Optimizing the existing model (preprocessing, variable range, number of latent
variables) to accommodate for the new sources of variability

• Update the calibration set to add a limited number of samples representing the
missing sources of variability

• Re-build the model

In situations where the process is transferred to a different facility and/or analyt-
ical instrument, ensuring that the model performance before and after transfer is
practically equivalent is critical. This can be done as part of method development by
including samples from multiple instruments in the calibration, test and validation
sets (robust models across units) or through the use of calibration transfer methods
[21]. If calibration transfer cannot be achieved (resulting error on the secondary unit
is too high), model re-build may be necessary.

12.5 Additional Considerations for Multipoint Systems

All the concepts discussed in this chapter are applicable to any NIR spectroscopic
system. However, some additional considerations should be noted for multipoint
(imaging) systems. Without discussing the details of how images are constructed,
NIR imaging systems usually consist of arrays of sensing elements that can be
considered as juxtaposed single point spectrometers. There are numerous NIR
systems where the sample is measured at multiple points, but the resulting light is
usually directed toward a single detector channel. On the contrary, imaging systems
or specialized systems such as those employed in spatially resolved spectroscopy
will detect light coming back to different detector elements, as being measured at
different locations on the sample. This spatial information is key to imaging but also
brings some additional points to consider regarding sample membership and how to
construct a representative calibration dataset.

A single-point spectrometer assumes that the collected spectrum is representative
of the area interrogated (scale of scrutiny).When collecting the equivalent sample for
reference analysis, care is taken to ensure that the volume sampled for reference anal-
ysis corresponds to the variability measured by the NIR measurement. In multipoint
systems, this assumption is not correct. While there will be a degree of correla-
tion between neighboring sampling points, homogeneity of the sample cannot be
assumed at the scale of measurement, particularly when using microscopic or wide-
angle lenses. It is actually the desired intent: to investigate the distribution of physical
and/or chemical properties within the area of interest via spectral information from
pixel to pixel (or sampling location to sampling location).

What makes imaging an ideal tool for the investigation of sample spatial distribu-
tion also makes it a challenge for model development. In many cases, it is no longer
correct to assume that the percentage of light reflected by a 99% reflectance standard
is actually homogeneous across the detector array; it is no longer correct to assume
that a wavelength standard will have the same composition at all pixel locations; and
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it is certainly incorrect to assume that the bulk content of a sample will be directly
assignable to the individual spectrum from individual pixels from the image array of
that same sample. In other words, if a sample containing a binary mixture of 92–8
for component A to B, the local aspect of using detector arrays does not result in
every single pixel containing the signal of 92% of A and 8% of B. A distribution
of spectra representing different levels of content for a particular analyte of interest
is obtained for a particular spatial area. In addition, due to the photons’ “random
walk”, the spectrum collected from a single pixel is a weighted averaged signal from
adjacent pixels.

However, this has not stopped scientists from building successful applications
and deploying them in commercial settings. There are two common approaches
to building models for multipoint systems. The first simply consists of taking the
mean of an image as a representative spectrum for the sample being analyzed by
the reference method. The resulting spectrum (average of potentially thousands of
spectra) will have a different signal to noise ratio to the individual pixel spectra but be
relevant for model building. The second approach is to divide the sample in smaller
areas for reference analysis and binning (averaging) spectra spatially so a bin, smaller
than the entire image, can be associated to a local value of the property of interest.
Readers should refer to the chapter on imaging for more information about how these
techniques are used.

12.6 Summary

NIRS is a very powerful technology. It can determine in a matter of seconds the
content of a particular attribute of interest in a complex sample matrix without
preparation, in-line and in real-time. It is sensitive to both the physical and chemical
make-up of the sample which can make any deployment challenging. The Analytical
Quality by Design framework can significantly streamline method development and
lifecycle management efforts to ensure a successful deployment and long-term value
generation fromaNIR spectroscopicmethod. The process of stating themethod goals
and requirements, performing feasibility study(ies), and a risk assessment before
method development will help address knowledge gaps and set expectations before
significant resources are spent. The result is a robust method that can be tested and
validated if required by the regulatory environment of use. Continuous improvement
through method lifecycle management ensures method performance over the useful
life of the method.
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Chapter 13
Overview of Application of NIR
Spectroscopy to Physical Chemistry

Mirosław A. Czarnecki, Krzysztof B. Beć, Justyna Grabska,
Thomas S. Hofer, and Yukihiro Ozaki

Abstract Near-infrared (NIR) spectroscopy is a powerful tool in studies of physic-
ochemical properties of various kinds of samples. In particular, NIR spectroscopy
contributed considerable to our understanding of intermolecular interactions (e.g.
hydrogen bonding), molecular structure, solvent effect, clustering, phase transitions,
kinetics. Because of mechanical and electrical anharmonicity of molecular vibra-
tions, NIR spectra provide unique information not available from the other spectral
regions. On the other hand, to elucidate useful information from NIR spectra, more
sophisticated methods of data analysis than those applied in mid-infrared (mid–
IR, MIR) region are necessary. This chapter presents selected examples demon-
strating the variety of problems in the field of physical chemistry that have been
studied by NIR spectroscopy.
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13.1 Introduction

As discussed in the other chapters of this book, recent progress in instrumentation,
in particular interest of instruments based on Fourier transform (FT) measurements
significantly improved the accuracy of NIR spectra both in terms of wavenumbers
and absorbance scale. The possibility of recording high accuracy spectra permitted
to study fine effects and distinguished very small differences between individual
spectra. Also, the rapid development of computational hardware and software stimu-
latedprogress inNIRspectroscopy and theoretical calculations of anharmonic spectra
became an important tool for the understanding and interpretation of NIR spectra [1–
4]. All these circumstances opened new possibilities and areas of applications in NIR
spectroscopy.One of themost important fields of these applications is physical chem-
istry, which covers a variety of topics like molecular structure, intra- and intramolec-
ular interactions (in particular hydrogen bonding), solvent effects, clustering, phase
transitions, solution, kinetic studies, and so on [5].

The NIR region is very unique since it provides information not accessible from
the other spectral regions [5]. This specificity results from the anharmonicity of
molecular vibrations and the nonlinearity in the change of the dipole moments. Both
phenomena influence the positions and intensities of bands originating from vibra-
tional modes of different molecular fragments. Therefore, NIR spectra are a rich
source of information on molecular structure and interactions. Since the overtones
and combination modes are forbidden in the harmonic approximation, the corre-
sponding bands are much weaker as compared with the fundamental ones. For these
reasons, NIR spectroscopy is a very powerful tool for studies of highly absorbing
samples like bulk materials, pure liquids, or even aqueous solutions. NIR spectra of
bulk liquids can be recorded in commercially available cells of 1–10mmwidth (path-
lengths). Typically, these cells are made of quartz, which is water resistant. Hence,
NIR spectroscopy can be employed for study of bulk water and aqueous solutions.
However, due to very strong absorption from water, one has to use cells with shorter
pathlengths (<1 mm). As can be seen in Fig. 13.1, both combination bands from bulk
water are accurately recorded in a 0.1 mm quartz cell. In Fig. 13.1 are compared the
spectra of neat 1–propyl alcohol and a 1:1 water/1–propyl alcohol mixture. It appears
that the ν2 + ν3 combination band of water is particularly useful for spectroscopic
studies since it is located in the region, which is free from the absorption of the
other overtones and combination bands (5000–5300 cm−1). In contrast, the ν1 + ν3
combination band of water (6800–7200 cm−1) is overlapped by the first overtone of
the alcoholic OH and the C–H combination bands [5].

In principle, NIR spectra do not reveal bands originating from carbon–carbon
double and triple bonds. However, bands originating from C–H stretching groups
attached to double or triple bonds are usually blue-shifted [5]. This shift is very well
seen for the first and second overtones of the C–H stretching vibrations of cyclo-
hexane and benzene (Fig. 13.2). This figure illustrates one more important property
of NIR spectra. The first overtones of both compounds have a complex structure,
since it results from the coexistence of the normal and local vibrations [6]. On the
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Fig. 13.1 Normalized NIR
spectra of bulk water (blue
solid line), bulk 1–propyl
alcohol (red solid line) and
an 1:1 water/1–propyl
alcohol mixture (black
dashed line) at 20 °C

Fig. 13.2 NIR spectrum of
liquid cyclohexane (blue)
and benzene (red) at 20 °C

other hand, the structures of the second overtones (and higher) are relatively simple as
these bands are due to more local vibrations [7, 8]. In some cases, absorption arising
from the second overtone of the C = O stretching vibration in the 5150−5050 cm−1

region can be observed [9]. The position and intensity of this band appears to be
very sensitive to solvation. Recently, the first identification of the bands due to the
overtones of the ν(C ≡ N) in NIR spectra of simple nitriles has been reported [10].
Despite of their weak intensity, these bands can be a valuable source of information
on the structure of liquid nitriles.

NIR spectra also contain rich physicochemical information on the sample [5].
These include not only the structural properties of the absorbing molecules but also
a variety of other important features of matter and processes [5]. NIR spectroscopy
plays a profound role in the exploration of hydrogen bonding, in which its sensitivity
towardX–H stretching vibrations has been a key advantage [5, 11, 12]. In this context
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NIR imaging spectroscopy should bementioned aswell since it demonstrates a strong
potential in this area as well, e.g. when investigating processes involving solvent
molecules or molecular interaction in polymers [13].

NIR spectroscopy has frequently been used when studying solution phase and
various solvent effects [5]. Certain vibrations, e.g. ν(OH), undergo distinct spectral
changes in response to change in the chemical environment (for instance change
in the concentration level of solvent) [5]. Similar observations have been made for
hydrogen-bonded complexes [14]. It has been noticed that the underlying mecha-
nisms are non-trivial and involve an interplay of the anharmonicity in the vibra-
tional potential and the nonlinearity of the transition dipole moments [2, 9]. NIR
spectroscopy is indispensable in investigation of this phenomenon, as data on funda-
mental, first, second, and often third overtone bands are necessary. At the same time,
conventional methods of spectral analysis fail to deliver decisive insights in this case
and advanced tools of computational chemistry proofed necessary to reproduce and
explain the changes occurring inmechanical and electrical anharmonicity in response
to the changing environment [2, 9].

13.2 Hydrogen Bonding Studies

Vibrational spectra are sensitive markers of hydrogen bond interactions. The most
evident proof of the presence of hydrogen bonding is a shift in the position of IR
peaks originating from the groups involved in this interaction. The shift is often
easily observable in vibrational spectra and enables a monitoring of hydrogen bond
properties. The origin of this shift can be explained by using a relatively simplemodel
of molecular vibrations, namely the classical harmonic oscillator. For a diatomic
molecule with masses m and M, the reduced mass μ is given as:

μ = Mm

M + m
(13.1)

This oscillator has a single vibration with the frequency νosc expressed as:

νosc = 1

2π

√
k

μ
(13.2)

with k being the associated force constant. The frequency of vibration is propor-
tional to the square root of the force constant specific to the bond. Hydrogen bond
formation leads to changes in the effective force constant of the vibration, which is
manifested as a shift of the corresponding band. Upon formation of a hydrogen bond,
the oscillator may be subjected to two kinds of changes, depending on the type of
vibration and the geometry of the bond (Fig. 13.3). Typically, the force constant of
an X–H stretching vibration is red-shifted upon the formation of a hydrogen bond
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Fig. 13.3 Simplified scheme of the relation between the force constant of an X–H oscillator with
respect to the formation of an X–H:::Y hydrogen bond. a Non-bonded group. b X–H stretching
vibration in the hydrogen-bonded group. c X–H bending vibration in the hydrogen-bonded group

(X–H:::Y). This results from the attractive interaction between the positively charged
H–atom and electron rich acceptor Y, which weakens the X–H bond and reduces the
associated force required for its elongation [15]. On the contrary, the force constant
of a bending vibration is effectively increased upon hydrogen bond formation since
the X–H:::Y bond is more rigid. As a result, a higher energy is required to induce
angular deformations and the bending bands associated to the X–H bond are shifted
to higher wavenumber (blue-shift). This is a simplified picture, however as it neglects
a number of other factors influencing hydrogen bonding and the associated molec-
ular vibrations. Comprehensive information on these phenomena may be found in
the literature [15, 16]. It should be noted that the manifestation of hydrogen bonding
in NIR spectra is different than in MIR spectra. The bands resulting from hydrogen-
bonded species are strong in the fundamental but relatively weak in the overtone
region. The stronger the hydrogen bonding, the more pronounced is this tendency.
On the other hand, weakly bound and the free OH groups are more visible in the
overtone region. Hence, an analysis of both spectral regions provides more compre-
hensive information on the hydrogen bonding properties. An overview of the current
state of knowledge on this subject will be provided in Sect. 13.4 of this chapter.

The apparent manifestation of hydrogen bonding in NIR spectra attracted consid-
erable attention since the 1950s [11]. As discussed earlier, MIR spectra of self-
associating samples are dominated by broad absorption from the hydrogen-bonded
species, whereas the absorption resulting from free and weakly bound groups is very
weak [5, 17, 14].Anopposite situation is observed inNIR region. Figure 13.4 displays
MIR and NIR spectra of neat tert-butyl alcohol. It can be seen that the absorption
of the free OH group is not visible in the fundamental region, whereas the corre-
sponding first overtone displays a prominent band. Most of models of association
of alcohols are based on the knowledge of the population of the monomers [5, 18–
20]. Therefore, examination of the dissociation of higher associates into monomers
and smaller associates is more convenient by using NIR spectroscopy. In addition,
the overtones of different hydrogen–bonded species are better separated as compared
with the analogous fundamentals. As a result, NIR spectroscopy has been intensively
applied for studies of a variety of hydrogen–bonded systems ranging from simple
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Fig. 13.4 MIR (a) and NIR (b) spectra of neat tert-butyl alcohol at 20 °C. The red arrows indicates
the position of the band due to the free OH group

organic liquids to complex biological samples. Particular interest has been given to
the examination of bulk water and aqueous solutions [20–22]. Also, self-association
of alcohols and phenols was intensively explored by NIR spectroscopy [5, 19, 23].

The introduction of FT technique to NIR spectroscopy opened new possibilities in
studies of hydrogen bonding. One of the first works showing a potential of FT–NIR
spectroscopy was devoted to temperature-induced dissociation of fatty acids in the
liquid phase [24]. The obtained high-quality spectra enabled to remove the contribu-
tion from theC–H combination bands and determine the intensity of the first overtone
of the free OH as a function of the temperature. This way, it was possible to determine
the population of the free OH groups and associated thermodynamical parameters
such as �H and �S for the process of dissociation of the dimers into the monomers.
As expected, the mean association number decreases upon elevation of the temper-
ature. Later, the usefulness of the second overtone of the OH stretching mode for
studies of the hydrogen bondingwas demonstrated [5]. However, most works employ
the first overtone since its intensity is significantly higher. NIR spectroscopic studies
also explored the dissociation and thermodynamic properties of N–methylacetamide
in the pure liquid state and CCl4 solutions [5]. Another study of decan–1–ol in the
pure liquid phase and CCl4 solutions revealed that the bands of the first and second
overtones associated to the free OH have a fine structure. As shown, this structure has
a complex origin and is due to the rotational isomerism of the OH group (for the first
time observed in NIR spectra) and the presence of the free terminal OH groups in
linear associates [25]. Afterward, this assignment was confirmed by 2DCOS analysis
of temperature-dependent NIR spectra of oleyl alcohol and numerous other studies
reviewed elsewhere [5].
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Self-association of a series of aliphatic alcohols in CCl4 (0.01–1.00 M) has for
the first time been examined by means of multivariate curve resolution (MCR) in the
NIR region from 1900–2200 nm (5263–4556 cm−1) [19]. TheMCRmethod enabled
to resolve NIR spectra into three components originating from monomers, linear
aggregates, and cyclic aggregates. As shown, the size of the aggregates increases
with increasing concentration. Due to steric hindrance, the branched alcohols tend
to form smaller aggregates as compared to straight chain alcohols. It should be noted
that the formation of the cyclic aggregates is more favorable than theô linear ones.
As a result, at low to moderate concentrations of alcohols, the solutions are expected
to consist mainly of the cyclic aggregates.

The examination of concentration and temperature-induced changes in NIR
spectra of different alcohols lead to the conclusion that the degree of association
in the saturated straight-chain 1–alcohols decreases with an increase in the chain
length [26, 27]. For long-chain alcohols the hydrophobic interactions between the
chains have a stronger effect on the aggregation than the OH···OH interactions. Simi-
larly, an increase in the order of the alcohol also leads to a decrease in the extent of
the self-association as a result of restricted accessibility of the OH group [18, 27,
28]. In spite of using FT–NIR spectroscopy coupled with 2DCOS it was not possible
to identify any differences between the spectra of the optically active and racemic
samples of octan–2–ol [28]. A possible explanation is that the relatively high degree
of freedomof theOHgroup in octan–2–ol is reducing the chiral discrimination effect.

The combination of NIR spectroscopy with measurements of nonlinear dielectric
effects provided further information on the hydrogen bonding and association of
octyl alcohols in the pure liquid phase and CCl4 solutions [29]. At low to moderate
concentrations of the alcohol, nonpolar cyclic species dominate. An increase in the
concentration of the alcohol leads to the formation of linear species showing a signif-
icant dipole moment, and this tendency is more pronounced in case of straight-chain
alcohols. The branching in the vicinity of the OH group enhances the probability of
the formation of cyclic associates.

Recently, Orzechowski and Czarnecki studied the association of 1–hexanol in
n–hexane by using experimental (nonlinear dielectric effect, NIR spectroscopy) and
theoretical (DFT) methods [30]. Numerical fitting of the dielectric data provided
populations of all species present in themixture (Fig. 13.5). At lower alcohol content,
the cyclic species dominate, while at higher concentrations of 1–hexanol, the equi-
librium shifts toward linear associates. The obtained results do not confirm common
assumption that the cyclic tetramers are themost populated species in liquid alcohols.
It appears that the most abundant cyclic species are trimers and population of the
cyclic associates rapidly decreases with increasing size of the associates. An average
size of the associates depends on the range of concentrations. This observation nicely
explains differences between models of association obtained from various studies.
Differences in the population of the free OH group obtained from dielectric and
NIR measurements may suggest that the bands due to the free OH do not include
contribution from free-terminal OH groups in the open associates. However, this
controversial supposition needs further experimental verification.
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Fig. 13.5 Fraction of 1–hexanol included in the open (a) and cyclic (b) associates consisting of
“i” molecules for different mole fractions of 1–hexanol in hexane. An insert shows the sum of mole
fractions of molecules in cyclic associates as a function of themole fraction of 1–hexanol. Reprinted
with permission from Elsevier (Ref. [30])
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Morisawa and Suga studied the effect of intermolecular interactions on intensity
of the overtones of OH stretching vibrations of methanol, methanol–d3, and tert-
butanol-d9 in n–hexane [31]. The authors determined the relative intensities of the
free and hydrogen–bondedOH for the fundamental and overtone bands (ν01, ν02, ν03,
and ν04). The obtained results suggest that variation in the dipole moment function of
theOHgroup generated by hydrogen bond formation induces changes in the transient
dipole moment. Dong et al. examined interactions in ethanol/water mixture by using
NIR spectroscopy [32]. The application of a curve-fitting method enabled the iden-
tification of six different kinds of water species in the alcohol–poor region (<10%).
The connection of the excess spectra and 2DCOS for mixtures with higher alcohol
content (10–100%) revealed that the maximum of the alcohol–water interactions
occur at an alcohol concentration of 40%. Further increase of the alcohol content
resulted in self-association of ethanol molecules at the expense of the water–alcohol
associates.

The structure of water has been also studied by NIR spectroscopy together with
PCA, 2DCOS, andMCR. The studies are described in the other chapters of this book.

13.3 Anharmonic Effects in Vibrational Spectroscopy

NIR spectroscopy is a powerful tool to investigate the anharmonicity in molecular
vibrations and its impact on vibrational spectra. Considerable attention has been paid
to the interplay of hydrogen bonding and anharmonic effects [12]. It is known that the
formation of a hydrogen bond induces a change in anharmonicity in the vibrations
of the respective bonded groups. However, an intensive discussion of the extent of
this change in anharmonicity took place over the years. For some hydrogen–bonded
complexes, anharmonicity leads to a decrease in the fundamental excitation of an
X–H bond, whereas the wavenumbers of overtones displays an increase. However, in
many cases, it has been difficult to obtain quantitative insight into the anharmonicity
and the associated coupling constants since experimental methods have a limited
potential in this regard. Therefore, progress achieved in this area is strongly connected
with quantum chemical calculation studies. Over the last decades, numerous inves-
tigations have been aimed at different types of hydrogen–bonded complexes. The
anharmonicity of a moderately strong hydrogen–bonded HCN:::HF complex is rela-
tively well studied. It was determined that a moderate increase by 27 cm−1 (from 90
to 117 cm−1) in the anharmonic constant of the ν(HF) mode occurs in the HCN:::HF
complex as compared to non-bonded HF [12]. Investigations of alcohols enabled to
draw comparative data on the change of anharmonicity induced to stretching and
bending OH vibrations upon formation of hydrogen-bonded OH:::O complexes. The
conclusion was drawn that the anharmonicity of the high–frequency stretching vibra-
tion is amplified and the magnitude of this effect is correlated to the strength of the
hydrogen bond [12].



306 M. A. Czarnecki et al.

The theory of hydrogen bonding and the role of anharmonicity remained a matter
of intense research. With the availability of advanced quantum mechanical calcula-
tions further progress in the understanding of the relation between hydrogen bonding
and anharmonicity could be achieved. By applying the methodologies described in
the chapter “Introduction to Quantum Vibrational Spectroscopy,” detailed informa-
tion on the change in the anharmonicity of the vibrational potential and the transition
dipole moments upon the formation of hydrogen bonding can be obtained. A number
of examples have been discussed in the recent literature, for instance, a systematic
research by Futami and co-workers [3]. These investigations yielded deep insights
into the discussed phenomenon by studying NIR and IR spectra of pyrrole, pyridine,
and pyrrole–pyridine complex in solution phase (CCl4). The foundation for the study
was formed by the observation that the first overtone of the NH stretching vibration
of a non-bonded pyrrole molecule appears as a well-resolved band at 6856 cm−1;
however, it is not observed for a pyrrole–pyridine complex. The theoretical calcula-
tions by Futami et al. used Johnson’s reformulation of the Numerov approach and
yielded detailed information on the vibrational levels and the dipole moment func-
tions of the ν(NH) mode in a non-bonded pyrrole molecule as well as the pyrrole–
pyridine complex. Those results explained why the 2ν(NH) transition of pyrrole is
weakened upon the formation of a NH–N hydrogen bond in the pyrrole–pyridine
complex. Firstly, reproduction of the shift observed for the experimental peak as
well as the variation in its intensity was achieved. Further insight was obtained from
the analysis of the one-dimensional vibrational wave functions of the two molecular
systems. The conclusion was drawn that upon the formation of hydrogen bonding,
the transition dipole moment diminishes while at the same time the overlap integral
of the wave function is enhanced. This leads to a dramatic decrease in the intensity
of the 2ν(NH) band of pyrrole to a level at which it is hardly detectable by the exper-
iment. Therefore, the study revealed a significant decrease in the 2ν(NH) transition
dipole moment upon formation of the pyrrole–pyridine complex. This in turn results
in a remarkably weak intensity of the first overtone band observed experimentally
for the hydrogen–bonded NH group [3].

The investigation of the changes caused by hydrogen bonding to the anhar-
monicity of vibrational potential and transition dipole moment has been continued
with a number of different systems [3]. Those included complexes featuring NH–π
hydrogen bonding such as pyrrole–ethylene and pyrrole–acetylene. This investiga-
tion revealed that the stabilization energy of NH–π hydrogen bond is almost two-
thirds lower than the stabilization energy of a typical NH–N bond. Furthermore, the
formation of NH–π hydrogen bonding induces a comparably small red-shift in the
fundamental and first overtone of ν(NH) bands. It was concluded that the energy
shift depends on the intermolecular force between the hydrogen–bonded molecules.
On the other hand, Futami et al. also observed an increasing trend in the intensity
of the ν(NH) fundamental absorption but a decreasing trend in the intensity of the
ν(NH) first overtone band. Consequently, this observation made for NH–π hydrogen
bonding remained in full agreement with earlier results for the pyrrole–pyridine case,
in which NH–N hydrogen bonding is present.
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Highly accurate calculations of vibrational levels and transition dipolemoments is
indispensable in reproducing fine effects observed in NIR spectra that are induced by
the interactions with solvent molecules. The spectral manifestation of the interaction
with solvent was investigated in detail by Futami et al. using similar methods [33].
Again, a pyrrole molecule was examined while the selection of solvents (n–hexane,
CCl4, CHCl3, and CH2Cl2) was dictated by their gradually changing properties,
being dielectric constant, polarity, and acidity. These solvents are suitable for spec-
tral measurements in the NIR and IR regions where ν(NH) fundamental and the first
overtone bands appear. A variation in the shift and intensity of the ν(NH) and 2ν(NH)
bands of pyrrolewas observed depending on the solvent used. It was observed that the
shift in the wavenumbers decreases in the following order of solvents: CCl4 > CHCl3
> CH2Cl2. At the same time, the absorption intensity of these two bands increases
in the same order and is more pronounced for the fundamental than the overtone
band. These trends correspond directly to the increasing order of the static solvent
permittivity of the solvents being CCl4 > CHCl3 > CH2Cl2. The study suggested
that the dependency of the solvent shift on the solvent permittivity results from the
anharmonicity of the vibrational potential. However, the intensity variations result
from changes in the slope of the dipole moment function (Fig. 13.6) [33]. There-
fore, the study suggested that mechanical and electrical anharmonicity each have a
distinct and non-trivial impact on the observed NIR spectra [33]. Interestingly, the
spectral variability of NH stretching bands of pyrrole caused by solvent effects is
quite different from the trends resulting from hydrogen bonding.

Further insights into the dependency X–H stretching vibrations of a solvated
moleculewith respect to the solvent permittivitywere reported byFutami et al. in their
examination of theHFmolecule [34].HF is an archetypal polarmolecule and a simple
electronic system suitable for application of more advanced theoretical methods.
In addition to density functional theory (DFT) calculations on B3LYP/6–311 +
+G(3df,3pd) level, the significantlymore reliable coupled-cluster singles and doubles
method (CCSD) in conjunction with the aug-cc-pVQZ basis set was applied as well.
Both approaches utilize a solvent cavity model by means of SCRF/IPCM [34]. The
study revealed that the vibrational potential and dipolemoment function of a solvated
HFmolecule vary in accordance with the permittivity of the solvent. Another finding
indicated that the absorption intensities of the fundamental increase proportionally
to the permittivity. However, the intensities of the first, second, and third overtones
do not increase continuously. In addition, the study demonstrated the accuracy of the
applied quantum chemical approaches, with the DFT–B3LYP and CCSD methods
leading to substantially different calculation results in the dependence of absorption
intensities on static solvent permittivity [34].

The impact of solvent effects on the anharmonicity of the potential was further
explored by Gonjo et al. [2]. They examined solvent effects in MIR and NIR spectra
of phenol and its 2,6–dihalogenated derivatives with F, Br, and Cl atoms (Fig. 13.7).
The experimental study revealed a characteristic pattern in the intensity of the consec-
utive OH stretching band of the fundamental, first, second, and third overtone. More-
over, it was deemed sensitive to the interaction with solvent molecules. Again, the
same solvents as in previous studies were used, namely CH2Cl2, CHCl3, CCl4, and
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Fig. 13.6 a Dependences of the potential energy curve, dipole moment function (ε = 1 to 10) and
wave function (ε=1) ofNHstretchingmode on the relative permittivity.bDifference of the potential
energy curve between the calculation result for permittivity of 1 and a variety of permittivity.
c difference of the dipole moment function between the calculation result for permittivity of 1 and
a variety of permittivity. Reprinted with permission from Ref. [33]. Copyright (2011) American
Chemical Society

n–hexane. These solvents were shown to modulate the magnitude of the observed
intensity variations [2]. A bandshift of ν(OH) bands (ν01, ν02, ν03, and ν04) from a
gas state to a solution state (solvent shift) was observed and a linear relationship with
the solvent was concluded (Fig. 13.7). Moreover, a solvent slope effect is observed
for the ν(OH) mode of phenols. Comparison of the relative ν01, ν02, ν03, and ν04

band intensities of ν(OH) measured in CCl4, CHCl3, and CH2Cl2 against the corre-
sponding intensity in n–hexane demonstrated an increase in the fundamental and the
second overtone but a decrease in case of the first and third overtones (Fig. 13.7). The
slope of the solvent shift decreases in the order of phenol, 2,6–difluorophenol and
2,6–dichlorophenol while becoming larger with the increase in the solvent permit-
tivity. To analyze the experimental spectra in a wide range of wavenumbers, covering
visible, near-infrared, and infrared regions (15,600–2500 cm−1), quantum chemical
calculations capable of accurate reproduction of these transitionswere applied. These
required to determine the potential energy curve along the OH stretching coordinate
q within the boundaries of −0.7 to 1.0 q0 around the equilibrium q0 with a fine step
0.02 q0. In that case, q0 denoted the atomic displacement vectors in Å along the
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Fig. 13.7 Slopes of solvent
shifts of phenol,
2,6–difluorophenol,
2,6–dichlorophenol and
2,6–dibromophenol in
n–hexane, CCl4, CHCl3, and
CH2Cl2. a Observed and
b calculated B3LYP/6–311
++G(3df,3pd) level.
c Calculated at
B3LYP/cc–pVTZ level.
Reprinted with permission
from Ref. [2]. Copyright
(2011) American Chemical
Society
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normal coordinate corresponding of ν(OH) mode. The potential energy in each point
was obtained at the B3LYP/6-311++G(3df,3pd) level employing the IPCM solvation
model. Subsequently, to obtain vibrational states, the one-dimensional Schrödinger
equation was solved using Johnson’s reformulation of Numerov’s approach. This
approach yielded the vibrational levels at the accuracy level exceeding 0.001 cm−1

with respect to the determined vibrational potential, and allowed to avoid approx-
imations such as the fitting of a Morse function [2]. The corresponding transition
intensities were obtained from the integrated absorption coefficient (km mol−1, base
e). The accurate calculation of wavenumbers and intensities of the ν(OH), 2ν(OH)
and 3ν(OH) bands enabled a direct interpretation of the observed intensity variations
as well as respective solvent dependency. The calculations reproduced the observed
“parity” in the intensity of the ν(OH) bands ν01, ν02, ν03, and ν04 in phenols as well
as the respective solvent dependency. The parity effect was notably more prominent
for phenol than for 2,6–dihalogenated phenols. It was concluded that this difference
results from phenol having a stronger intermolecular hydrogen bonding in contrast to
its derivatives that feature aweaker intramolecular hydrogen bond. By this reasoning,
it was suggested that the intermolecular hydrogen bond between the OH group and
the Cl atom is responsible for the observed tendencies [2]. The electrical anhar-
monicity in the system, manifested as a nonlinear dependence of the transition dipole
moments with respect to the nuclear coordinates [35], may contribute to the parity
effects observed by Gonjo et al. [2].

Most of the combined experimental and computational studies of anharmonic
effects focused on X–H vibrations (e.g. N–H, O–H, and F–H) since the respective
fundamental and overtone bands are relatively strong and well-resolved. Compara-
tively little knowledge is available about the anharmonicity of other kinds of vibra-
tions and how they are influenced by the molecule’s chemical surrounding. However,
ν(C = O) modes were investigated in the context of anharmonicity and solvent
effects by Chen et al. [9]. The study focused on the IR and NIR spectral regions of
acetone and 2–hexanone.As solvents, n–hexane, CCl4, andCHCl3, were used and the
study considered vapor phase data for comparison as well. It was confirmed that the
wavenumbers, absorption intensities, and oscillator strengths of the ν(C=O) modes
demonstrate a distinct solvent dependence. In case of the fundamental and the first
overtone bands, the ν(C=O) intensities were found to be significantly stronger than
those of the ν(C–H) vibration. At the same time however, the ν(C = O) and ν(C–H)
bands were found to be comparable in terms of their intensity. Quantum chemical
calculations reproduced the observed trends in integrated intensity upon going from
the fundamental to the first overtone of the ν(C = O), ν(O–H), ν(C–H), and ν(S–H)
vibrations (Fig. 13.8). The combined theoretical and experimental results suggest
that the weak intensity observed for the 2ν(C=O) stretching overtone has a twofold
cause. Low anharmonicity of the vibrational potential and a substantial reduction in
the oscillator strength were suggested to contribute to this spectral effect [9].

As one may conclude from this chapter so far, studies focusing on solvent
effects are of particular importance in physicochemical NIR spectroscopy. However,
advanced computational approaches (e.g. Refs. [2, 9]), explicitly taking into account
solvent effects may often be unsuitable in practice, e.g. for investigations of larger
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Fig. 13.8 Experimental
oscillator strength of the C =
O stretching mode of acetone
and 2–hexanone in
n–hexane, CCl4, and CHCl3,
along with the oscillator
strengths of the O–H, C–H,
N–H, and S–H stretching
modes. Reproduced with
permission from Ref. [9].
Copyright (2014) American
Chemical Society

molecules in solution. Therefore, it is of particular importance to evaluate the accu-
racy vs. efficiency of different approaches. It is essential to know, when it is permis-
sible to accept approximations in order to be able to perform reliable quantum chem-
ical calculations of NIR bands of more complex systems. The impact of a relatively
inert solvent, such as CCl4, can often be reasonably approximated by an implicit
solvation included in the calculations. For instance, the polarizable continuummodel
(PCM) is a commonly used method and was shown to improve the calculated spec-
trum in large number of cases [36]. However, inclusion of solvent effects has to
be carefully considered. In spite of its low relatively permittivity of 2.228, CCl4
may act as both a weak hydrogen bond acceptor as well as a halogen bond donor.
The impact of these interactions significantly influences the vibrational behavior of a
solvated molecule. Accordingly, explicit structural motifs formed between the solute
and solvent molecules have to be taken into account. This problem has recently been
investigated in detail based on anharmonic analysis using the Numerov and VPT2
methods (refer to the chapter Introduction to Quantum Vibrational Spectroscopy).
The former approach yields highly accurate prediction of vibrational frequencies and
is very useful to explore fine spectral effects. Although in practice limited to appli-
cations focused on smaller molecules, it may be used to benchmark the accuracy of
the method intended to use for larger systems. The evaluation carried out by Schuler
et al. [37] on the basis of methanol, phenol, and thymol molecules highlighted a
consistent decrease in the ν(OH) and 2ν(OH) wavenumbers in the order vacuum
> implicit solvation > explicit CCl4 model (using one or two solvent molecules)
in vacuum. The explicit approach provided better results as compared with implicit
treatment of solvation effects. Harmonic andNumerov approaches showed no further
improvement by placing the explicit solute–solvent model in an implicit solvation.
However, in this example, Numerov approach yielded the best predictions with devi-
ations from experiment of 5, 20, and 18 cm−1 in case of the fundamental bands
and 10, 39, and 40 cm−1 for the first overtone of methanol, phenol, and thymol,
respectively. This corresponds to errors being smaller than 0.5% in each case that
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can be attributed to the approximations inherent to the underlying electronic structure
theory. Unfortunately, modeling an explicit solvation in CCl4 dramatically increases
the computational demand with each solvent molecules adding 74 electrons to the
calculation. This is in contrast to the comparably inexpensive PCM implicit model.
As benchmarked, it adds only miniscule cost to VPT2 calculations of NIR spectra
[38]. Conveniently, the strongly local character of the ν(OH) mode opens a way for a
feasible simplification applied within the Numerov approach. Accordingly, the rOH
distance can be varied only by changing the coordinate of the associated oxygen and
hydrogen atom, thus serving as a simple approximation to the normal coordinate.
Hence, the harmonic analysis step may be skipped in this approach. Interestingly,
the VPT2 calculations by Schuler et al. [37] led to the best results with implicit
solvation. This result confirmed previous findings by Beć et al. [39] which have
not been benchmarked vs. higher level anharmonic computations, but instead were
based on comparisons with the experimental spectra. Nevertheless, it is advised to
examine carefully the frequencies predicted by VPT2 calculations in conjunction
with an implicit solvation model. The studies discussed here reveal the need to take
spectral shifts in the calculated frequencies into account, which depend on the chosen
theoretical method and the examined solute as well.

Finally, one should highlight the key importance in spectroscopy of anharmonic
approaches to molecules in aqueous environment [40]. As it was mentioned earlier,
water serves as the essential medium for biochemical processes. Therefore, the
detailed understanding of the vibrational spectra of hydrated molecules is crucial for
progressing the potential of vibrational spectroscopy in the monitoring of biological
samples. However, water creates a polar solvation environment with high permit-
tivity, a high mobility of solvent molecules as well as directional interactions, e.g.
change dipole interactions and hydrogen bonding. It is challenging to properly
account for the related effects, which calls for reliable high-quality computational
solvation treatments. The considerations toward feasible approaches to this problem
have been recently reviewed [3]. Typical examples are sophisticated stationary point
calculations incorporating implicit solvation models or explicitly considered solvent
molecules, as well as applications of ab initiomolecular dynamics (MD) [3]. Because
of the high computational cost of the latter, one needs to consider the accuracy level
necessary to describe inner and outer solvation layers and the impact of the neces-
sary approximations on the vibrational analysis. Such considerations have beenmade
by Lutz et al. in their methodological study of the vibrational spectrum of aqueous
glycine [40]. The authors compared the spectra of hydrated glycine simulated using
diverse approaches to solvation modeling with subsequent anharmonic treatments
[40]. Simplified MD simulations indicated that an accurate quantum–mechanical
treatment that is applied solely to the hydrated molecule, leads to an inadequate
description of the hydration. An adequate account for the influence of hydration
requires stepping beyond a simplifiedQM/MMscheme, inwhich the coupling is real-
izedvia empiricalCoulombic andnon-Coulombic interactionpotentials. Further,MD
simulations with electrostatic embedding offered only a slightly improved descrip-
tion but still did not reproduce the preferred charge configuration of the solvated
glycine. In contrast, Hartree–Fock-based QMCF-MD simulation that included a QM
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treatment of the inner hydration shell showed an improved accuracy of the simulated
vibrational spectrum. The authors reasoned that application of a higher ab initio level
method such as perturbation theory to the latter scheme would likely yield an excel-
lent agreement with the experimental spectrum. The study indicated the promising
development directions toward the interpretation of the spectra of hydratedmolecules
[40].

13.4 Structural Information Derived from NIR Spectra

NIR spectra are a rich source of information on molecular structures, which are
sensitive to the chemical environment and solvent effects. Sophisticated approaches
are often required to effectively elucidate this information. Toyama et al. examined
temperature-dependent spectral changes in the first overtone of the OH groups of
alkane–α,ω–diols in the liquid and solid phase [41]. It appears that the spectra of
alkane–α,ω–diols with an odd number of carbon atoms are similar in the pure liquid
and solid states. On the other hand, the spectra of diols with an even number of
carbon atoms reveal significant changes upon moving from the solid to the liquid
phase. Hence, an analysis of NIR spectra confirmed the presence of the even–odd
alternation in solid alkane–α,ω–diols. Liu et al. applied NIR spectroscopy coupled
with chemometric methods for the examination of polymorphic transformations of
oleic acid [42]. Temperature-dependent NIR spectra were resolved into independent
spectral components by using alternating least squares (ALS) optimization. The
obtained results demonstrate that the γ→α transition is determined by the behavior
of the COOH group, while the α→β transition is due to the conformational changes
of the acyl chain.

A significant advancement in elucidating structural information fromNIR spectra
is linked to the progress in the practical applications of anharmonic methods in
computational chemistry [1]. The theory of NIR spectroscopy and selected appli-
cations is presented in another chapter (Introduction to Quantum Vibrational Spec-
troscopy ). Here, a number of examples of using computational chemistry to increase
the chemical structural specificity of NIR spectroscopy are outlined. General anhar-
monic approaches, such as VSCF or VPT2 (Introduction to Quantum Vibrational
Spectroscopy ), have been implemented in an almost a routineway in popular compu-
tational chemistry software packages. The computationally efficient VPT2 method
has mostly been used in practical applications to NIR spectroscopy. Relatively accu-
rate calculations of entire NIR spectra of medium-sized organic molecules have
become feasible over the recent years [3] improving our understanding of this spec-
tral range. In comparison with MIR or Raman spectroscopies, computational studies
are of particular importance for NIR spectroscopy, due to the complex character of
NIR spectra. Even relatively simple molecules have a large number of contributing
bands as demonstrated by the calculated spectra [43]. As an example, we show
the reconstructed spectra of vinylacetic acid. Figure 13.9 displays the individually
modeled bands and the predicted theoretical lineshapes, which result via summation
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Fig. 13.9 Experimental and simulated NIR spectra of vinylacetic acid. All bands are depicted on
a common scale; note the significant band overlapping. Reprinted with permission from Ref. [43].
Copyright (2017) American Chemical Society

of these bands, in comparison to the experimental spectrum, presented in a common
intensity scale. To better identify specific details, the bands predicted in these two
regions are additionally enlarged (Fig. 13.9). One should mention that the number of
contributing bands rapidly increases with an increase in the size of molecule. Hence,
NIR spectra of more complex molecules can be expected to show a huge number of
underlying contributions steaming from overtones and combination bands.

Theoretical investigations also reveal that the majority of the meaningful NIR
bands result from two–quanta vibrational transitions—the first overtones ν0→2 and
binary sum combinations ν00→11. The probability of a transition decreases substan-
tially for higher order excitations. Hence, three–quanta bands, i.e. second overtones
ν0→3 and ternary sum combinations ν000→111, generally have amarkedly lower inten-
sity and are meaningful only in region of higher wavenumbers where the two–quanta
bands are missing. For instance, the region above ca. 7200 cm−1 includes exclusively
bands resulting from higher order transition [44, 45]. Besides, the contributions
from higher order overtones and combination bands are important for molecules
with heavy atoms only. It should be mentioned that apart from sum combinations,
the vibrational spectra may include difference combinations as well; however, the
probability of such transitions is extremely low. Unlike sum combinations, a differ-
ence combination involves a transition that takes place from an excited state, e.g.
ν012→001. At room temperatures, the majority of molecules populate the vibrational
ground state and the associated difference combination bands are very weak.

Grabska et al. [44]. and Beć et al. [45] have systematically studied methanol
and ethanol. They quantitatively estimated the relative contributions from different
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types of transitions to NIR spectra. This estimation is based on the ratio between
the integrated intensities of the calculated bands, showing approximately only 19%
(methanol) and 27% (ethanol) of the relative contribution to entire NIR region
(10,000–4000 cm−1) originate from three–quanta transitions. Moreover, the three–
quanta bands are numerous but very weak and tend to show a large degree of overlap.
Thus, these bands are far less specific than the two–quanta counterparts. Therefore,
it is sufficient to limit the calculations to the first overtones and binary combina-
tions to predict NIR spectra with good accuracy. This conclusion has important
practical implications, as for larger systems the requirement in terms of computa-
tional resources rises rapidly for the prediction of three–quanta transitions. Note that
the results obtained for methanol and ethanol confirm the previous conclusions that
bands resulting from two–quanta transitions are sufficient to explain the majority of
features observed in NIR spectra [3, 4].

The theoretical reconstruction of the spectra enables robust band assignments, and
the potential benefit is already evident in cases of relatively simple molecules such as
methanol (Fig. 13.10) [3]. Similar improvements in the reconstruction of NIR spectra
have been reported for a number of medium–sized molecules in diluted solutions.
For instance, the simulations carried out by Grabska et al. [46] for the isomers of
butyl alcohol (n–butanol, sec–butanol, iso–butanol and tert–butanol) reconstructed
the differences in the respective NIR spectra between 6000 and 4000 cm−1 and
reproduced the fine structure of NIR spectra in the regions from 5200 to 4600 and
from 4500 to 4000 cm−1 (Fig. 13.11).

The rotational freedom of the OH group may lead to energetically distinguishable
structures, called “rotational isomers.” The OH group in various rotational isomers
absorbs at different wavenumbers, but the corresponding bands are close to each
other. Hence, the presence of the rotational isomers can be observed only in high-
resolution spectra of diluted alcohols in inert solvents. MIR, NIR, andDFT studies of
butyl alcohols in dilute CCl4 solutions (0.01M) revealed the presence of various rota-
tional isomers in n–, iso- and sec–butanol (Fig. 13.12) [48]. The trans conformer is
more favorable than its gauche counterpart, and as a result absorbs at lowerwavenum-
bers. These studies revealed a minor effect of C–C dihedral rotation on the position
of the first and second overtone of the OH group. The position of the OH bands
due to rotational isomers primarily results from the order of the alcohol, while the
relative population of a particular rotational isomer depends on the steric effects of
the groups in α and β positions in relation to the OH group.

Highly accurate simulations are capable of reproducing the effect of conforma-
tional isomerismmanifested also in the otherNIRbands [46]. Isomers of butyl alcohol
have very different conformational flexibility depending on the structure of the main
chain. The number of stable rotational conformers is 14, 9, 5, and 1 for n–butanol,
sec–butanol, iso–butanol, and tert–butanol, respectively. As shown in Fig. 13.11, the
spectra of conformers differ noticeably throughout the entire NIR region, not only in
vicinity of the 2ν(OH) band. To reproduce NIR spectrum in detail, it is necessary to
calculate the spectra of each form co-existing in the sample and mix them in accor-
dance to the relative Boltzmann population. Grabska et al. [46] have performed a
detailed conformational search for all butyl alcohols and estimated populations of
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Fig. 13.10 Exemplary progress in the understanding of NIR spectra of methanol diluted in CCl4
achieved via theoretical calculations of NIR spectra a band assignments of methanol obtained
with classical spectroscopic methods. Reproduced with permission from Weyer and Lo [47],
b the improvement achieved through anharmonic calculations (GVPT2//DFT–B2PLYP/SNST +
CPCM). Reproduced from Ref. [39] with permission from the PCCP Owner Societies

all conformational isomers. Figure 13.11 displays the simulated spectra of each of
the conformer weighted using the calculated Boltzmann terms, demonstrating the
importance of taking the full conformational space into account. For instance, the
band near 4050 cm−1 in the spectrum of iso–butanol (Fig. 13.11c) results from the
second most abundant form Gg’ (thin violet line in this figure), while the major
conformer Gg (thin green line in this figure) does not contribute to this band in a
significant way. The simulated spectra accurately reproduces the experimental shape
of the 2ν(OH) band for butyl alcohols (Fig. 13.13) [46] and confirms the previous
conclusions that it is an effect of conformational isomerism with respect to the rota-
tion over C–O(H) bond [48]. The manifestation of conformational isomerism in NIR
spectra has been reproduced for several other alcohols including ethanol, n–propanol,
n–hexanol, and cyclohexanol as well as fatty acids [3, 43]. In case of particularly flex-
ible molecules, it is essential to pre-screen their wide conformational space in order
to select the most meaningful conformers for the more detailed spectra calculations.
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Fig. 13.11 Experimental and simulated (harmonic: B2PLYP/def2–TZVP; VPT2: B3LYP/SNST;
CPCM)NIR spectra of 1–butanol (a), 2–butanol (b), iso–butanol (c), and tert–butyl alcohol (d). The
contributions of the spectral lineshapes corresponding to conformational isomers presented as well
(colored lines). Reprinted with permission from Ref. [46] Copyright (2017) American Chemical
Society

Fig. 13.12 FT–NIR
spectrum of 2ν(OH) of
n–butanol in 0.01 M CCl4
solution at 20 °C together
with resolved trans (right)
and gauche (left) conformers
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Fig. 13.13 Details of the first overtone band of OH stretching mode of n–butanol (a), sec–butanol
(b), iso–butanol (c), and tert–butanol (d). Experimental spectrum, fourth derivative of the experi-
mental spectrum, the calculated lineshape and contributions to NIR spectra originating from confor-
mational isomers. Reprinted with permission from Ref. [46] Copyright (2017) American Chemical
Society

For n–hexanol, where a selection of the 32 most stable forms out of 243 theoretically
possible conformers resulted in the efficient modeling of theNIR spectrum [3]. High-
level quantummechanical calculations enhance the potential of NIR spectroscopy in
conformational studies, as they allow to elucidate structural information even from
weak and strongly overlapping bands. Moreover, such investigations are no longer
limited to well-resolved bands (e.g. non-bonded 2ν(OH)), and may include broad
spectral regions.

A reasonably accurate reproduction of NIR spectra was achieved for medium-size
molecules like rosmarinic acid (Fig. 13.14) by Kirchler et al. [49]. The obtained band
assignments (Table 13.1) was used to interpret the relationships between 2DCOS
hetero–correlation contour plots and PLSR regression coefficients constructed from
NIR spectra measured on different benchtop and miniaturized portable spectrom-
eters. This example evidences the ability of obtaining detailed and reliable band
assignments even for molecules with more than 40 atoms. However, the complex
nature of NIR spectra resulting from the large number of overlapping bands decrease
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Fig. 13.14 Experimental (powder) and theoretical NIR spectrum of rosmarinic acid obtained in
anharmonic GVPT2//DFT–B3LYP/N07D simulation. Band numbers correspond to those presented
in Table 13.1. Reproduced from Ref. [49] with permission from The Royal Society of Chemistry

the utility of presenting band assignments in a conventional way (Table 13.1). In
NIR spectra well-resolved bands seldom appear separated. Because of band overlap,
e.g. as illustrated in Fig. 13.9, it is rarely possible to distinguish dominant vibrations
that could be written in a simple tabular form. A far more suitable way to present
the complex nature of NIR spectra are colormaps developed by Beć et al. [36].
Figure 13.15 shows an exemplary colormap for thymol. The NIR spectrum is repre-
sented in form of densitymaps of vibrational intensities in false-color code, reflecting
the relative contribution as a function of wavenumber. This way, the band assign-
ments can be visualized in an alternativeway. In the case of thymol, thismethodology
permitted for observation of a distinct spectral pattern in response to the change of
the sample state. The study based on thymol in polycrystalline, melted and solu-
tion (100 and 10 mg mL−1 in CCl4) states revealed two spectral regions, in which
the bands manifest relatively low sensitivity to the sample state. Spectra simulation
evidenced that these two regions are populated by C–H and CH3 stretching overtones
and combinations (6000–5600 cm−1) as well as combinations of CH3 stretching and
deformationmodes, in addition of ring deformation (4490–4000 cm−1). Interestingly,
the bands with contributions from OH modes undergo significant spectral shifts and
width changes. This result is reasonable since the OH group is much more sensitive
to the environment as compared to the C–H and CH3 groups.

Isotopic substitution is another powerful tool for the interpretation ofMIR spectra.
In particular, a selective deuteration of X–H groups (X=C, O, N) leads to noticeable
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Table 13.1 Band assignments in NIR spectrum of rosmarinic acid, based on GVPT2//DFT–
B3LYP/N07D calculation

Wavenumber/cm−1 Major contributions

Exp. Calc.

1 6854.9 6853 2νOH (ar)

2 6767.2 6741 2νOH (ar)

3 ~6680 6645 2νOH (carboxyl)

4 ~6044 6056 2νCH (ar, aliph, in–phase)

5 5986.5 6001 2νCH (ar, aliph, opp.–phase);
2νCH (ar)

6 5929.7 5930 2νCH (ar);
2νCH (ar)

7 5752.5 5780 [νasCH2, νCH (ar)] + [νas CH2, νCH
(ar)];

8 5128.0 5126 [ν C = O, δipOH (carboxyl)] +[νOH
(carboxyl)]

9 5075.8 5027 [δring, δipOH (ar)] + [νOH (ar, para–)];
[δring, δipOH (ar)] + [νOH (ar, para–)];
[δring] + [νOH (ar, para–)]

10 4994.9 4980 [δring, δipOH (ar)] + [νOH (ar, meta–)];
[δring, δipOH (ar)] + [νOH (ar, meta–)]

11 4923.8 4906 [δring, δipOH (ar)] + [νOH (ar, para–)];
[δring, δipOH (ar)] + [νOH (ar, para–)]

12 4860.0 4847 [δring, δipOH (ar)] + [νOH (ar, meta–)];
[δring, δipOH (ar)] + [νOH (ar, meta–)]

13 4788.3 4798 [νCC] + [νOH (ar, para–)];
[νCC] + [νOH (ar, para–)];
[νCC] + [νOH (ar, meta–)];
[δCCH (carboxyl)] + [νOH (carboxyl)];
[δCH (ar), δipOH (ar)] + [νOH (ar,
para–)];
[δCH (ar), δipOH (ar)] + [νOH (ar,
para–)]

14 4701.0 4701 [δCH (aliph)] + [νOH (ar, meta–)];
[δCH (ar), δipOH (ar)] + [νOH (ar,
meta–)]

15 4629.4 4632 [δCH (ar), δring, δipOH (ar)] + [νOH
(ar, meta–)];
[δCH (ar), δring, δipOH (ar)] + [νOH
(ar, para–)];
[δipOH (ar), δCH (ar), δring] + [νOH
(ar, para–)]

(continued)
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Table 13.1 (continued)

Wavenumber/cm−1 Major contributions

Exp. Calc.

16 4575.7 4757 [δCH (ar), δring, δipOH (ar)] + [νOH
(ar, meta–)];
[δipOH (ar), δCH (ar), δring] + [νOH
(ar, meta–)]

17 ~4508 4465 [δring, δipOH (ar)] + [νCH (ar)];
[δring] + [νCH (ar)];
[δring, δipOH (ar)] + [νCH (ar)];
[νC–O (carboxyl), δipOH (carboxyl)] +
[νOH (carboxyl)];
[δring] + [νCH (ar)];
[δring, δipOH (ar)] + [νCH (ar)]

18 4372.3 4360 [δring] + [νCH (ar)];
[δring] + [νCH (ar)]

19 4233.3 4237 [δscissCH2] + [νasCH2, νCH (ar)];
[δscissCH2] + [νasCH2, νCH (ar)]

20 4179.4 4194 [δCH (aliph)] + [νCH (ar, aliph,
opp.–phase)];
[δsciss CH2] + [νsCH2];
[δCH (aliph)] + [νCH (ar, aliph,
in–phase)]

Arbitrary band numbers correspond to those presented in Fig. 13.14. Reproduced from Ref. [49]
with permission from The Royal Society of Chemistry

shifts in the frequencies of the respective oscillators [50]. In contrast, due to band
overlapping, the corresponding changes in the NIR spectra are less obvious. More-
over, combination modes may involve substituted and unsubstituted groups leading
to more complex spectral pattern. For these reasons, spectra simulations provide
a more comprehensive understanding of fine details in NIR spectra of deuterated
samples. Grabska et al. [44]. applied anharmonic calculations to study methanol
and all its possible deuterated species (CXXXOX; X = H, D). This study resulted
in a number of novel conclusions including detailed band assignments in methanol
(CH3OH) and its major derivatives (CH3OD, CD3OH, CD3OD). This way, it was
possible to propose a complete picture of the NIR spectral patterns resulting from
the isotopic substitution of the methyl and hydroxyl groups. In the same study [44],
NIR spectra of several samples of CH3ODobtained fromdifferent chemical suppliers
have beenmeasured. Isotopic impurities from co-existent OH/ODgroupswere easily
identified based on the prominent 2ν(OH)/2ν(OD) peak. At the same time, the NIR
spectra of CH3OD showed the additional peaks that could not be assigned to CH3OH,
CH3OD, CD3OH, or CD3OD. The origin of these peaks was explained by compar-
ison with the spectra simulated for all kinds of unevenly substituted forms. This way
the presence of CDHHOH in a commercial sample of CH3OD could be demonstrated
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Fig. 13.15 Quantum mechanically calculated contributions to NIR spectrum of thymol (solution;
100 mg mL−1 CCl4) presented in the form of false-color density maps for the selected vibrations.
Reprinted with permission from Elsevier (Ref. [36])
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[44]. This conclusion was possible to attain from the spectra simulations only, as the
corresponding experimental spectra were not accessible.

Beć et al. [45] explored the effect of isotopic substitution onNIR spectra of ethanol
and its derivatives by applying similar methodology further in detail. NIR spectra of
these molecules are more complex than that of methanol, as a consequence of pres-
ence of themethylene group and co-existence of gauche and trans rotamers. Detailed
band assignments for six ethanol isotopomers including CH3CH2OH, CH3CH2OD,
CH3CD2OH, CD3CH2OH, CD3CD2OH, and CD3CD2OD were presented. In addi-
tion, the NIR spectra of CH3CD2OD and CD3CH2OD were theoretically predicted,
since these samples are not commercially available. This way, the spectra simula-
tions provide information not accessible from experimental studies. The examination
of ethanol and its isotopomers provided an in-depth understanding of the effect of
isotopic substitution on NIR spectra. Table 13.2 summarizes the relative contribu-
tions from two (2νx and νx + νy) and three–quanta (3νx, νx + νy + νz, and 2νx

+ νy) transitions. The obtained results lead to the conclusion that the contributions
from the CH3 group appear to be more important than those from the CH2 group.
The isotopic substitution in the CH3 group results in the most prominent intensity
changes in the NIR spectra as compared to the changes due to the substitution of the
other atoms. The bands resulting from three–quanta transitions appear to be more
important for isotopomers of ethanol [45] than for derivatives of methanol [44].

Quantum mechanical calculations of NIR spectra proved to be very useful in
explaining several other observations. For instance, the effect of baseline elevation
appearing in the spectra of carboxylic acids is due to a significant red-shift and
broadening of specific combination bands originating from hydrogen–bonded cyclic
dimers. These findings were consistent in the studies of eight different systems [3].
However, further investigations are required to provide a decisive explanation of
the mechanism underlying such selective shifts and broadening. Further, the mani-
festation of the C = C bond in aliphatic chains of long-chain fatty acids has been
reproduced in simulation as well [51]. NIR spectra are highly sensitive to differences
in the molecular structure as shown for n–hexanol, cyclohexanol, and phenol [52].
These structural differences induce prominent changes in the associated spectra that
can be accurately reconstructed by theoretical approaches.

Spectra simulations are helpful in elucidating similarities and dissimilarities
between the overtone and the fundamental regions. The fundamental bands of
acetonitrile as well as the first, second, and third overtones, together with binary
and ternary combination transitions, have been calculated by Lutz et al. with an
attempt to benchmark a novel, highly correlated treatment of anharmonic spectra
based on the CR–CC(2,3) method [52]. The examination of vibrational spectra of
nitriles by quantum chemical calculations was essential for the successful elucida-
tion of structural information [10]. The combined MIR, Raman, and NIR study of
acetonitrile, acetonitrile–d3, and trichloroacetonitrile suggested a distinct influence
of the chemical environment on MIR and NIR spectra [10]. Further evidences of this
effect were provided in a study of MIR and NIR spectra of polycrystalline spectra of
melamine by Grabska et al. [53]. The explanation of different effects of the chemical
environment on MIR and NIR spectra was obtained from the spectra simulation. IR
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Table 13.2 Contributions (in %) from the first and second overtones as well as binary and ternary
combinations into NIR spectra of ethanol isotopomers based on GVPT2//B2PLYP–GD3BJ/def2–
TZVP//CPCM calculations)a

10,00–4000 cm−1

2νx 3νx νx +νy νx +νy +νz 2νx +ν y

CH3CH2OH 26.1 1.7 47.0 14.3 10.9

CH3CH2OD 18.0 2.2 51.2 17.4 11.1

CH3CD2OH 35.8 1.7 41.5 11.8 9.2

CD3CH2OH 40.9 1.2 32.6 15.1 10.1

CD3CD2OH 46.0 0.3 23.7 15.8 14.2

CD3CD2OD 43.1 2.0 19.2 17.8 17.9

CH3CD2OD 27.9 3.2 44.7 15.0 9.2

CD3CH2OD 36.0 2.5 35.5 10.8 15.2

10,000–7500 cm−1

2νx 3νx νx +νy νx +νy +νz 2νx +ν y

CH3CH2OH 0.0 39.7 0.0 22.3 38.0

CH3CH2OD 0.0 55.5 0.0 15.4 29.1

CH3CD2OH 0.0 43.9 0.0 30.5 25.6

CD3CH2OH 0.0 66.9 0.0 1.4 31.7

CD3CD2OH 0.0 0.0 0.0 43.0 57.0

CD3CD2OD 0.0 100.0 0.0 0.0 0.0

CH3CD2OD 0.0 69.9 0.0 16.7 13.4

CD3CH2OD 0.0 76.3 0.0 0.5 23.2

7500–4000 cm−1

2νx 3νx νx +νy νx +νy +νz 2νx +ν y

CH3CH2OH 26.5 1.2 47.6 14.2 10.5

CH3CH2OD 18.4 1.0 52.4 17.5 10.7

CH3CD2OH 36.0 1.4 41.8 11.7 9.1

CD3CH2OH 41.4 0.4 33.0 15.3 9.9

CD3CD2OH 46.0 0.3 23.7 15.8 14.2

CD3CD2OD 43.7 0.5 19.5 18.0 18.2

CH3CD2OD 28.4 2.0 45.5 15.0 9.1

CD3CH2OD 37.0 0.5 36.4 11.1 15.0

aThe comparison is based on integrated intensity (cm−1) summed over simulated bands, convoluted
with the use of Cauchy–Gauss product function (details in the text) in relation to the total integrated
intensity
Reproduced with permission from Ref. [45]
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bands of melamine are more sensitive to the molecule’s chemical neighborhood as
compared to NIR bands. It was reasoned that neglecting the chemical environment
as done in simple models (e.g. single molecule) largely reduces the accuracy in the
description of those vibrations. In contrast, NIR bands seem to be less dependent on
the chemical environment, in particular to the adjacent crystalline planes in the struc-
ture of melamine [53]. Comprehension of the relationships between MIR and NIR
spectra is important from the point of view of spectroscopic studies and applications.
Further investigations are necessary to provide a more complete picture; however,
it is clear that spectral simulations play an important role in the exploration of this
important aspect.

It is to be noted that new developments in anharmonic theories and applications
are predominantly validated on the basis of MIR spectra, which are readily avail-
able and simpler for analysis [40]. However, results of these studies have important
implications for NIR spectroscopy as well [3]. For instance, an in–depth under-
standing of the origin and nature of overtone and combination bands in the MIR
range may be achieved [54]. Interestingly, also in MIR region, these bands are far
more numerous than fundamental counterparts [54]. Typically, overtones and combi-
nations bands are very weak, unless they are in resonance with the fundamental
bands. In practical applications, calculations based on VSCF have a less favorable
efficiency–to–accuracy ratio and a number of improvements have been proposed in
recent years. These improvements increase the efficiency of the VSCF approach, e.g.
by reducing the grid density for potential evaluations or by employing more efficient
ways for determination of the electronic structure underlying of anharmonic vibra-
tional analysis (e.g. resolution of the identity (RI) approximation in connection with
Moller–Plesset second-order perturbation, i.e. RI–MP2). Interestingly, anharmonic
(VSCF and VPT2) calculations have been used in connection with IR power spectra
predicted by velocity autocorrelation of ab initio QMCF–MD and QM/MM–MD
trajectories [40]. Such approaches can substantially increase the potential of inter-
pretation of MIR spectra measured for highly labile systems, e.g. hydrogen–bonded
molecules in aqueous solution [40].

13.5 Solution Chemistry

In the NIR region, molar absorption coefficients of many molecules are small, and
thus, NIR spectroscopy is highly suitable for the investigation of hydrogen bonding
in condensed phase. One can measure bands such as those due to water and solutions
easily with high reproducibility. One can also reduce the effect of interface which
often yields a serious issue in IR and ATR–IR spectroscopy. Using these advantages,
Ikehata et al. [55] explored miscibility of solutions. They investigated the thermal
phase behavior of triethylamine (TEA)–water mixtures which show phase separation
with the lower critical solution temperature (LCST) type by NIR spectroscopy. They
paid attention on a band shift of the first overtone of the C–H stretching modes
of TEA and made a phase diagram of the mixtures. They originally thought that
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Fig. 13.16 Temperature-dependent changes of the wavenumber of the first overtone of CH3 asym-
metric stretching band (ca. 5930 cm−1) in NIR spectra of triethylamine aqueous solutions with
the concentration of 10, 15, 20, 30, 40, 50, 60, 70, and 80 wt%). Reprinted with permission from
Elsevier (Ref. [55])

probably the shifts of the C–H bands occur due to the increase in the compression
rate upon the phase separation. It has turned out that the observed shifts are bigger
than the expected ones. Figure 13.16 shows the temperature-dependent changes of the
wavenumber of the first overtone of CH3 asymmetric stretching band (ca. 5930 cm−1)
in the NIR spectra of triethylamine aqueous solutions with the concentration of
10, 15, 20, 30, 40, 50, 60, 70, and 80 wt%. The largest shift was observed at the
critical composition(Cc; 32.12 wt% The compression rate is the largest). In this
way, Ikehata et al. [55] obtained the result which has a relation with density and
partial molal volume. NIR spectroscopy is concerned with overtones, so that one can
plot more detailed shifts than in IR spectroscopy. This result demonstrates that NIR
spectroscopy is very useful for the observation of micro phase separation.

The analysis of hydrogen bonding based on concentration difference spectra and
the specific attention on the vibrational modes of hydrophobic parts by Ikehata et al.
[55] also suggested that even ethanol–water mixtures, which is a miscible solution,
is microscopically in a state close to phase separation.

13.6 Summary and Future Perspective

In many aspects of physicochemical investigation, NIR spectroscopy is a powerful
tool capable for providing unique insights that are not easily accessible from IR or
Raman spectroscopy. NIR spectra consist of weak absorption bands that result from
mechanical and electrical anharmonicity, which are not obscured by strong funda-
mental bands. The positions and intensities of these two kinds of bands are often
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affected in different ways, which creates a rich source of information on molec-
ular structure and interactions. For these exclusive values, NIR spectroscopy has
contributed remarkably to advancements accomplished in these fields over the last
three decades. On the other hand, because of extensive band overlapping, NIR spectra
are far more difficult for direct interpretation in comparison to fundamental transi-
tions. Therefore, NIR spectroscopy in physicochemical research strongly depends on
advanced methods of spectra analysis, e.g. chemometrics or 2DCOS tools. In the
recent years, progress achieved in computational chemistry enabled the feasible simu-
lation of NIR spectra by anharmonic quantum chemical calculations. This develop-
ment dramatically increases the level of detail in band assignments, enables to follow
up on fine spectral effects and to ascribe them to structural changes occurring at the
molecular scale. Still, large molecules or some effects that are delocalized over a
volume of the sample presently remain inaccessible for computational approaches
due to the prohibitive cost associated to the anharmonic treatment. However, once
these practical limitations are overcome, new insights, e.g. into solvent effects,molec-
ular dynamics in large interacting systems, polymer properties, etc., can be achieved.
With the continued progress in technology and quantum theory in the near future,
it may be anticipated that the research focus in NIR spectroscopy will be strongly
influenced in the coming years as well.
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20. Segtnan, V.H., Šašić, S., Isaksson, T., Ozaki, Y. Studies on the structure of water using two-
dimensional near-infrared correlation spectroscopy and principal component analysis. Anal.
Chem. 2001, 73, 3153 − 3161
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43. Grabska, J., Ishigaki,M., Beć, K.B.,Wójcik,M.J., Ozaki, Y. Structure and near-infrared spectra
of saturated and unsaturated carboxylic acids. An insight from anharmonic DFT calculations.
J. Phys. Chem. A 2017, 121, 3437–3451
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45. Beć, K.B., Grabska, J., Huck, C.W., Czarnecki, M.A. Spectra–structure correlations in
isotopomers of ethanol (CX3CX2OX; X = H, D): combined near-infrared and anharmonic
computational study. Molecules 2019, 24, 2189
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Chapter 14
Application of NIR in Agriculture

Baeten Vincent and Pierre Dardenne

Abstract NIR has been used for decades as an innovative technique in agriculture.
There are many benefits, and today, researchers active in agronomy science are not
the only ones using NIR extensively in their daily research but also breeders, farmers
and agri-processors, using it as an efficient tool for the assessment of a large number
of parameters and criteria including detection of contaminants. Undoubtedly, NIRS
has demonstrated clear advantages in the analysis of soil, crops, forages, silages and
faeces, but also for the analysis of agro-food products such as feed and dairy products.
These analyses are no more conducted only at the laboratory level but go more
and more to the sample. The new generation of instruments (portable and handheld
devices) allow to perform the analyses at the field, farm, orchard or greenhouse
level in order to get information to take the right decision at the right moment.
This chapter aims to summarise some of these applications and attempts to give the
trends of a selection of recently completed or current projects. Readers aiming to
delve further into the potential of NIR in agriculture can refer to dedicated books
(Williams and Norris in Amer Assn of Cereal Chemists, 312 p, 2001 [1]) or recent
reviews (Baeten et al. in Handbook of food analysis, pp 591–614, 2015 [2], Dale
et al. in Appl. Spectrosc. Rev. 48(2):142–159, 2013 [3], García-Sánchez et al. in
Agricultural systems, pp 97–127, 2017 [4]).
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14.1 Introduction

Different areas will be considered in this short section regarding applications of NIR
in agriculture: soil analysis, field analysis, forage and silage analysis, feed anal-
ysis, milk analysis, faeces and effluent analysis and orchard analysis. In order to
help the readers to assess the potential of NIR agriculture, some practical results in
terms of NIR equations are provided. The figures presented are those of the Belgian
REQUASUD network. This network has been in place in the Walloon Region of
Belgium (south part of the country) since 1989 and has the ambition of providing
classical analyses and NIR analyses of premium quality for the agri-food sector. The
network currently includes seven quality control laboratories performing routine
analyses for the public and private sectors (www.requasud.be). The Walloon Agri-
culture Research Centre (CRA-W) manages the NIR instrument network consisting
of 10 NIR spectrometers. A brochure in French explaining the organisation of the
NIR network, the current achievements and future developments can be down-
loaded from the following address: http://www.requasud.be/wp-content/uploads/
2017/07/brochure_requasud_spectrometrie_proche_infrarouge.pdf. In this chapter,
it has been decided to provide R2, SEC and RPDsec of the NIR equations in use in
the REQUASUD network. These figures could be considered to be a good estima-
tion of the performance that could be achieved by NIR technology. It is important to
underline that the performance figures have been obtained with multi-annual spectral
databases covering awide diversity in terms of origin and assembled in aNIRnetwork
equipped with one single type of benchtop instrument (Foss XDS). Moreover, refer-
ence values have been provided by different laboratories having high quality stan-
dards. Indeed, REQUASUD frequently organises interlaboratory studies to assess the
quality of implementation of the Reference and NIR techniques. Frequent tailored
trainings are provided to members of the NIR network.

14.2 Applications in the Field and Crop Analysis

Applications of NIR to field and soil analysis are well illustrated in the literature.
These topics are also widely presented and discussed in NIR-focused conferences
(e.g. ICNIRS=www.icnirs.org; IDRC=www.idrc-chambersburg.org;HELIOSPIR
=www.heliospir.net). In the following section, the current status of application of the
NIR technique to soil and crop analysis is given. Some ongoing research with their
challenging objectives is briefly presented to give an idea of some of the forthcoming
developments in these fields.

http://www.requasud.be
http://www.requasud.be/wp-content/uploads/2017/07/brochure_requasud_spectrometrie_proche_infrarouge.pdf
http://www.icnirs.org
http://www.idrc-chambersburg.org
http://www.heliospir.net
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14.2.1 Soil Analysis by NIR—A Technique in Development

There is great interest for farmers having a good knowledge of the quality of their soil.
Specifically, it is strategic and crucial to be able to adequately determine the physical
and chemical characteristics and properties of the soils proposed and used for agricul-
tural purposes. Based on different quality parameters, farmers will decide which crop
to plant and which agricultural practices to follow in order to maximise the intrinsic
value of their plots. Adequate management of inputs is of prime importance in order
to maximise the benefits and to maintain the soil fertility. Soil analysis by clas-
sical techniques is tedious, time consuming and requires standardised methods using
significant amounts of reagents, making such analyses particularly unfriendly for
the environment. Several reviews have been published dealing with the perspectives
offered by NIRS for soil analysis [5–7]. Chabrillat et al. reviewed the achievements
and perspectives in soil mapping and monitoring based on imaging spectroscopy
from air and space-borne sensors [8]. This review underlines that the next generation
of hyperspectral satellite sensors could greatly help to meet the demand for global
soil mapping and monitoring. Recently, Hutengs and co-authors have compared the
performance of portable NIR and mid-infrared (MIR) devices for assessment of
organic carbon in soils. Even though a comparison has not been made on the same
sample batches, they conclude with the fact that handheld MIR gives significantly
more accurate results for on-field analyses. This work clearly demonstrates that the
prediction of soil properties (whatever the technique) is improved when the samples
are dried and ground (RMSE = 0.155 for NIR) instead of being analysed in situ
(RMSE = 0.243 for NIR). Ongoing projects also aim to develop the application
of NIR to tackle the current challenges faced by soil analysis. For instance, the
INDIGGES project (http://www.cra.wallonie.be/fr/indigges) aims to develop direct
and indirect indicators to evaluate greenhouse gas emissions and carbon storage at the
farm. In this project, the NIRS technique is tested for characterising both fresh and
dried soils. NIR benchtop, portable, handheld and hyperspectral imaging devices are
tested (Fig. 14.1). Another challenging issue where NIR approaches are interesting
is the detection of foreign material in soil. An example is the detection, identification
and quantification of macro- and micro-plastics in cultivated lands. Micro-plastics
are emerging as persistent contaminants of increasing concern. They come from
mulching film, sludge, wastewater irrigation and atmospheric deposition. It seems
that the micro-plastics influence soil physio-chemistry and biota [9].

A key issue regarding soil analysis is the heterogeneity of samples proposed for
classical or NIR analyses. It is crucial to take care and devote the required resources
to be sure that the sample specimen analysed is representative of the soil for which
we want to determine the physical and chemical properties.

Table 14.1 presents the performance of equations used in the REQUASUD
network for soil analysis (2018 status). Only the parameters for which a RPDsec

is higher than 2 are presented, i.e. organic carbon content, nitrogen, CEC and clay
content. The performance for soil from grasslands and lands under cultivation is
given [6, 10]. The NIR analysis protocol for soil and the spectral database has been

http://www.cra.wallonie.be/fr/indigges
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Fig. 14.1 Illustrations of NIR soil measurements taken in the framework of the INDIGGES project.
Portable VIS-NIR measurements taken directly in the field (Source CRA-W)

Table 14.1 Performance of equations implemented in the REQUASUD network for analysis of
soil from grasslands and lands under cultivation

Grasslands

Properties N Min Max Mean SD R2 SEC RPD

Total organic carbon % MS 8849 0.01 14.91 3.64 1.49 0.91 0.49 3.4

CEC (meq/100 g) 855 0.02 71.2 9.6 7.03 0.85 3.15 2.6

Nitrogen (g/kg) 1077 0.2 6.92 3.18 1.25 0.82 0.59 2.4

Clay % MS 210 2.56 57.7 18.52 8.23 0.82 4.12 2.3

Lands under cultivation

Total organic carbon % MS 10,139 0.05 7.66 1.54 0.69 0.93 0.21 3.8

CEC (meq/100 g) 1228 0.48 44.3 12.01 4.3 0.81 2.47 2.3

Nitrogen (g/kg) 3240 0.17 9.31 1.61 0.75 0.92 0.25 3.6

Clay % MS 575 1.9 72.65 19.92 8.41 0.84 4.08 2.5

N—Number of samples in the spectral database; Min—Minimum; Max—Maximum; SD—
Standard Deviation; SEC—Standard Error of Calibration; R2—Coefficient of determination;
RPD—Ratio of Performance to Deviation = SDref/SEC; DM—Dry Matter Basis; CEC—Cation
Exchange Capacity
Source CRA-W, Adapted from [10]

built since 2011 by the University of Liège in collaboration with CRA-W. Different
regression algorithms have been tested. The LOCAL approach with the use of PLS is
the most appropriate [6]. An important public resource is the NIR spectral database
developed in the framework of the European LUCAS initiative (https://esdac.jrc.ec.
europa.eu/projects/lucas). In this initiative, about 20,000 topsoil samples have been
collected in 25 European Union (EU) Member States with the goal of producing
a European physical and chemical topsoil database with the aim to harmonise soil
monitoring [11].

https://esdac.jrc.ec.europa.eu/projects/lucas
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14.2.2 Crop Analysis—Direct Analysis in the Field
or Laboratory Analysis to Support Farmers
and Breeders

For themonitoring the crop before and during harvesting,NIR spectroscopy can be an
interesting solution. Indeed, it can be used for optimising the harvest date and for crop
management. NIR technology is used, among other things, for measuring moisture,
production yield, nitrogen status of the crop and to monitor the occurrence of plant
pests and diseases. Determining these chemical compositions and properties can be
done directly in the field during farm operations or at the harvesting stage for optimal
monitoring of crops throughout their life cycle. The objective is to support breeders or
farmers in their management. It can also be done in the field to support breeder obser-
vations or farmer choices, as well as at the receipt stages of storage facilities or of
industry. Today, there is a common effort by farmers, researchers, instrument manu-
facturers and farm advisory services to develop operational solutions for assessing
optimal crop management, to optimise the use of inputs, to assure the best product
quality and to maximise the financial benefits [2]. Classical NIR benchtop instru-
ments are also used by researchers and breeders for routine analysis of the dried and
ground aerial parts of the crop in order to determine key parameters such as nitrogen
and carbon content [12]. Moreover, near-infrared microscopy (NIRM) has also been
proposed as a rapid technique to predict the chemical composition (e.g. nitrogen
content) of dried and ground materials when the material quantity is insufficient to
perform analysis by classical instrumentation. It has been demonstrated with very
small samples (�1 g) of tomato (Solanum lycopersicum L.) leaf powder coming
from experiments. The calibration model obtained for nitrogen content proved to be
excellent, with a calibration coefficient of determination (R2

c ) higher than 0.9 and a
ratio of performance to deviation (RPDc) higher than 3. It appears that NIRM is a
promising and suitable tool for a rapid, non-destructive and reliable determination
of nitrogen content of tiny samples of leaf powder [13]. The use of the NIR hyper-
spectral imaging instrument for crop analysis seems to be an increasingly interesting
approach as it provides spatial information in addition to chemical information from
the spectral data. In that sense, this approach is being investigated to build pheno-
typing strategies useful in breeding programmes that focus on wheat varieties (e.g.
PhenWheat project; http://www.cra.wallonie.be/fr/phenwheat), sugar beet varieties
(e.g. BeetPhen project; http://www.cra.wallonie.be/en/beetphen) and potato varieties
(e.g. First project; http://www.cra.wallonie.be/fr/first). Figure 14.2 shows the NIR
hyperspectral imaging device used at CRA-W. Challenges are presentation of the
device to the crop and the development of a robust protocol to calibrate and vali-
date the system using spectral data not collected in the controlled environment of a
laboratory.

The potential of NIR hyperspectral imaging spectroscopy and chemometrics for
the discriminationof roots and crop residues extracted fromsoil samples has also been
demonstrated. The study of these materials in different field conditions is important
to identify suitable soil management practices for sustainable crop production. In

http://www.cra.wallonie.be/fr/phenwheat
http://www.cra.wallonie.be/en/beetphen
http://www.cra.wallonie.be/fr/first
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Fig. 14.2 Use of Hyperspectral NIR imaging for crop status monitoring (Source CRA-W)

order to eliminate the cumbersome hand-sorting step, avoid confusion between these
elements and reduce the time needed to quantify roots, a protocol based on near-
infrared hyperspectral imaging spectroscopy has been established. The best results
have been achieved using a support vector machine to first discriminate the materials
and then to quantify them in the soil samples [14]. The methodology has been used,
for instance, to better understand the effect of tillage or fertilisation on root system
development. Another interesting application of NIR to crops is the use of NIR
hyperspectral imaging in the study of legume root systems. This technology has been
used in the framework of several studies conducted on pea root systems. First, the
suitability of this approach to quantify the mass of pea roots in root samples collected
under pea–wheat intercropping has been demonstrated. Secondly, this analytical
method was used to quantify leghaemoglobin in individual pea nodules. Fixation
activity of the nodules is related to the concentration of this molecule in the pea
nodules (Fig. 14.3; [15]).

14.3 Applications on Farm Products or Effluents

Different studies have proposed NIR technology to assess at the farm the control
of feed, forages (fresh, dried and silages), milk and effluents [16]. The interest is in
optimising costs and reducing the impact on the environment.
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Fig. 14.3 Cross-validation (open circles) and validation (crosses) results of the PLS regression
model. Leghaemoglobin contentwasmeasuredwith the cyanmethaemoglobinmethod and predicted
on the basis of noduleNIR imaging spectra.Results are expressed inmg leghaemoglobin g−1 of fresh
nodules. Leghaemoglobin was predicted with a RMSECV of 0.45 and a determination coefficient
(R2) of 0.74 (Source CRA-W)

14.3.1 An Efficient Tool to Assess Forage and Silage Quality
for Precision Feeding

In the current economic (e.g. price volatility of main inputs and agricultural produc-
tions) and environmental (e.g. reduction of inputs, optimal valuation of farm produc-
tion by maximising the use of productions and reducing the impact of effluents)
context, the appropriate control of forage quality is of prime importance. In some
region (e.g. Walloon Region of Belgium), feed produced at the farm contributes
significantly (around 50%) to the feeding autonomy of the farm. Different types of
forage are generally identified: green forages (i.e. grazed grass, whole plant maize,
immature cereals and protein mixed crop); silage forages of grass, whole plant maize
or beet pulp obtained by the application of a process to preserve wet forages through
anaerobic lactic fermentation; dry fodder; artificially dehydrated and pelleted fodder
and cereal/pea straws (Minet et al., to be published). One of themost important issues
of forages is their high heterogeneity in terms of physical appearance and nutritional
value. This heterogeneity is observed between different types, but also inside each
class of forages making determination of forage quality essential in farm manage-
ment. Sampling is a critical step for forage quality assessment whether analysed by
classical techniques or NIR techniques. Samples must be as representative of the
whole forage batch as possible regardless of its conditioning. When sampling has to
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be performed, several portions of the batch must be taken. It is advisable to collect at
least 10 sub-samples (and even better 20) of 50 g each. Then, the sub-samples, also
called primary samples, are mixed and transferred to a hermetic plastic bag, stored
and transported at low temperature to the laboratory in order to avoid deterioration.

For the farmer, knowing the composition and nutrition value of their forage
precisely and throughout the year enables feeding of the animals to be optimised
for meeting the animals’ requirements [10]. Economic losses can be avoided by
ensuring that animals receive the diet that allows them to reach optimal milk produc-
tion (for instance) without a risk of underfeeding or overfeeding. On the basis of
forage quality, a farmer may either overestimate the nutritive value of feed and not
cover his animals’ needs, or underestimate it, with the risk of producing manure
that is too rich and could potentially pollute the environment (Minet et al., to be
published). Determining the chemical composition and nutritive value of feed ingre-
dients produced at the farm is crucial. Even though several initiatives are being taken
to perform it at the farm on fresh samples, this determination is usually done on
previously dried and ground samples in an external laboratory using classical chem-
ical methods or NIR methods. Several studies and reviews on the potential of NIR
for assessing feeding values of forages exist. Generally, the LOCAL approach gives
better results for the analysis of forages [17].

Table 14.2 presents the performance of equations used in the REQUASUD
network (2018 status). A selection of parameters for which a RPDsec higher than
2 is presented, i.e. dry matter, proteins, cellulose, ash, digestibility of dry matter,
digestibility of the organic matter and total soluble sugar. It is commonly accepted
that most of the parameters that allow the farmer to estimate nutritional value of

Table 14.2 Performance of equations used in the REQUASUD network for analysis of grass
forages

Grass forages

Properties N Min Max Mean SD R2 SEC RPD

Dry matter 1877 88.84 97.49 93.16 1.44 0.78 0.68 2.1

Protein % MS 1877 4.45 31.26 15.49 5.26 0.98 0.76 6.9

Cellulose % MS 1465 11.27 41.10 26.18 4.97 0.95 1.11 4.5

ASH % MS 1989 3.44 16.66 10.05 2.20 0.85 0.86 2.6

Digestibility of dry matter
(De Boever) % MS

1156 50.19 108.28 79.23 9.68 0.96 1.89 5.1

Digestibility of the organic dry
matter
(De Boever) % MS

1291 46.02 108.06 77.04 10.34 0.96 1.97 5.3

Total soluble sugar % MS 629 0.12 36.12 11.47 8.22 0.97 1.35 6.1

N—Number of samples in the spectral database; Min—Minimum; Max—Maximum; SD—
Standard Deviation; SEC—Standard Error of Calibration; R2—Coefficient of determination;
RPD—Ratio of Performance to Deviation = SDref/SEC; DM—Dry Matter Basis
Source CRA-W, Adapted from [10]
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forages can be determined by NIRS with relevant precision. The cost of this NIR
determination is about one-tenth of the cost of determination by classical methods,
and it is obtained in less time, which is more compatible with farm management
requirements. Table 14.2 presents the performance for grass forages only [10, 17].

Today, with the evolution of technology, forage analysis can be performed at the
farm with handheld NIR instruments and applied directly on wet samples. Several
private companies have dedicated instruments for testing of forages and silages at
farm (e.g. AURORA = http://www.grainit.it/en/portfolio-items/aurora-nir-analisi-
dei-foraggi-in-stalla/) and some offer a full service to the farmer (e.g. NIR4FARM=
https://www.abvista.com/Products/GB/NIR-4-Farm.aspx). Another new perspective
is the use of NIR hyperspectral imaging to detect and discriminate grassland species
in forage [3].

14.3.2 Determination of Key Parameters and Detection
of Contaminants/Impurities in Feed

Today, for compound feed specialists, NIR spectroscopy is considered an essen-
tial analytical tool that can contribute greatly to quality and safety control and
enhancement of their products. The technology has been implemented with success
at different stages of feed production chains. This provides not only gains in speed
of analysis but also larger analytical throughputs. For instance, NIR spectroscopy
is used to characterise raw materials entering the factory and allows the production
process to be optimised to assess the nutritive features of the different processed feeds.
Networks of tens (even hundreds in some cases) of spectrometers are implemented
in major feed companies that daily and routinely perform numerous determinations
to assess the quality of feed ingredients, feed additives and compound feeds. Several
reviews have addressed the application of NIR to feed analysis [18, 19].

Different parameters can be adequately predicted by NIR [20, 21]. Table 14.3
presents the performance of the equation used in the REQUASUD network to assess
the quality of feed (2018 status). Only the parameters for which a RPDsec higher than
2 are presented, i.e. moisture, nitrogen, fat, cellulose, ash and starch [10].

In the feed area, NIR technology can be also relevant to detect contamination by
plant, animal, mineral, chemical contaminants or any undesirable substances [22].
It has to be admitted that the use of NIR for detecting contaminants and undesirable
substances in feed products is not widely practised. However, several studies have
demonstrated the unique advantages of using this fingerprinting technique in the
continuing effort to give stakeholders themeans to check the safety of the feed chains
[23]. Examples include the potential of NIR (NIRmicroscope and NIR hyperspectral
imaging devices) for detection of animal protein in feed ingredients and compound
feeds [24–26], detection of plant contaminants [21, 27], the detection of chemical
contaminants such as melamine [28, 21], paper and plastic residues coming from
packaging, assessment of the origin of feed ingredients [28–30] and the presence of

http://www.grainit.it/en/portfolio-items/aurora-nir-analisi-dei-foraggi-in-stalla/
https://www.abvista.com/Products/GB/NIR-4-Farm.aspx
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Table 14.3 Performance of equations used in the REQUASUD network for analysis of compound
feeds

Compound feeds

Properties N Min Max Mean SD R2 SEC RPD

Moisture 24,962 2.60 16.65 11.27 1.99 0.88 0.68 2.9

Proteins 23,734 7.10 62.10 20.91 8.66 0.97 1.39 6.2

Fat 8391 0.70 31.40 5.61 4.49 0.97 0.73 6.2

Fibre 5792 0.20 17.90 5.45 2.99 0.91 0.91 3.3

Ash 21,678 1.30 33.00 7.54 3.49 0.79 1.59 2.2

Starch 961 3.30 59.20 30.77 10.86 0.96 2.10 5.2

N—Number of samples in the spectral database; Min—Minimum; Max—Maximum; SD—
Standard Deviation; SEC—Standard Error of Calibration; R2—Coefficient of determination;
RPD—Ratio of Performance to Deviation = SDref/SEC; DM—Dry Matter Basis
Source CRA-W, Adapted from [10]

insects [5]. A study conducted in a feed factory has also demonstrated the interest
to use NIR technique coupled to a fibre optic probe to detect at the early stage
non-conformity of feed ingredients [21]. In this study, issued from a EC project
(Q-saffe output project = https://cordis.europa.eu/project/rcn/97821/factsheet/en),
online spectrometer allows automatically and sequentially acquiring NIR spectra of
sub-samples from incoming batch and detect if it differs to the spectra of the rest of
the batch and to the spectra obtained from similar feed ingredient.

14.3.3 A Tool to Assess the Quality of Dairy Products
and to Track Milk Quality in the Milking Parlour

Whereas NIR analysis of derived dairy products is common in the industry (for
instance, determination of composition parameters and properties in cheese and
butter), NIR analysis of milk is more anecdotal [31]. The main reason seems to
be the fact that milk should be ideally measured in the transmission mode, and also
that control of the temperature and homogenisation of the milk have to be properly
addressed [22]. As far we know, only a few dedicated and appropriate instruments for
milk analysis have been developed in the framework of research project and industrial
initiatives [32], and only one including a temperature control system and homogeni-
sation system has been commercialised (www.bruker.com).Milk is a complexmatrix
and contains many components such as lipids, proteins, carbohydrates and minerals
in variable concentrations. Several authors have reviewed the potential of NIR in
the analysis of milk and dairy products to assess the quality, discriminate the origin
and detect adulteration [33, 34]. Quality analysis of dairy products relies mainly
on manual sampling followed by chemical or physical measurements. This proce-
dure uses laboratory methods characterised by a significant time lag between sample

https://cordis.europa.eu/project/rcn/97821/factsheet/en
http://www.bruker.com
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collection and generation of a result. One of the characteristics of this procedure is the
fact that it does not permit interaction with the industrial process in order to instantly
correct for deviations from target parameters of the process. In the framework of the
Walloon Milkinir research project [32], a near-infrared (NIR) spectrometer-based
system is used for online monitoring of milk quality during the process, allowing
the milk quality of an individual cow to be monitored. Daily measurement of milk
components individual cows could be a decisive tool for farmmanagement and devel-
opment of animal breeding or feeding programmes to produce milk with a specific
milk composition.

14.3.4 Analysis of Faeces and Farm Effluent, A Way
to Optimise Their Valuation

At the farm, NIR technology can be also used for the analysis of effluents and
faeces. Farmactivities produceorganic residues, i.e. farmeffluents andmanure.These
residues are of great interest to improve the fields as they are rich in phosphorus,
potassium and nitrogen. Rational use of farm effluent and manure based on their
intrinsic quality is interesting from the economic point of view. The challenge is the
appropriate strategy in the preparation of the sample submit for analysis in order
to take into account the high heterogenic nature of this product. Misuse can lead
to reduction of soil fertility, environmental pollution and reduction of the farm’s
profitability.

NIR technique has been also proposed to analyse faeces in order to correlate
spectral information to chemical composition or biological status of the diet. Devel-
opment of models to determine quantitative and qualitative characteristics of grass
and feed on the basis NIR spectra has been proposed [35]. It has been demonstrated,
among other things, that this approach is relevant for estimating in vivo digestibility
and voluntary intake of animals. Moreover, ruminants’ diet composition in terms of
plant species can be ranked using NIR data. The current work relates to the devel-
opment of decision support tools for improving grazing management schemes based
on NIR determination.

14.4 Applications in the Orchard and in the Fruit Sector

In the fruit sector and since beginning of the twentieth century, VIS and NIR tech-
niques are becoming more and more widely adopted as a non-destructive technique
to rapidly and cost effectively assess the quality of fruit. In production, harvesting,
storage, processing and consumption of fruit, it is crucial to determine several quality
parameters and criteria. A key issue in the analysis of fruit by NIR is appropriate
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sample presentation.Different studies have concluded thatmeasurement in the reflec-
tion and interaction modes is more appropriate for fruit analysis. It is essential to
report that the penetration depth for apples has been measured in the reflection mode
and is about 4 mm for the 700–900 nm range and 2–3 mm for the 900–1900 nm
range. In the transmission mode and in the 1400–1600 nm range, less than 1% of the
initial intensity of the radiation goes through a 1 mm slice. The skin definitely poses
a major barrier for the light entering the flesh of the apple, requiring a strict protocol
for presentation of the sample to the instrument. This protocol will be adapted to
the fruit analysed, the architecture of the instrument (mainly the relative position of
the source/sources and detector/detectors). Several reviews summarise the potential
of NIR for determining different parameters and criteria of fruit [36, 37]. A specific
review has been dedicated to challenges and solutions for quality inspection for
robotic fruit instrumentation [38].

Several parameters can be determined with enough precision to be used routinely.
A number of authors have reported on the use ofNIR spectroscopy to determine apple
quality parameters, such as soluble solids, acidity, pulp firmness, maturity indexes,
polyphenols and vitamin C [36]. Pissard et al. has shown that NIR technique can
be used to determine sugar, vitamin C and total polyphenols contents [39]. This
study, based on large spectral databases (between 1274 and 2646 depending on the
parameter studied) built in the framework of breeding programmes and European
projects, has demonstrated the high precision of models that can be achieved. Low
standard error of prediction values, in addition to relatively high ratio to prediction
(RPD) values, has been obtained especially for total polyphenol and sugar content
(RPD values of 5.1 and 4.3 for polyphenol and sugar, respectively). These same
authors have also studied the intra-fruit variability in apples using classical and NIR
techniques [40]. This paper proposes and validates a protocol to analyse fruit based
on reference analyses of a representative sample of the apple and NIRmeasurements
collected at four points 45° from each other in the equatorial region of the fruit (i.e.
apple). It has been demonstrated that there was little difference between the mean
value at the four points and the mean value of the entire apple. The potential of NIR
spectroscopy on fresh apples to determine the phenolic compounds and dry matter
content in peel and flesh has been also studied [41]. In general, one of the challenges
is the online analysis of intact fruit.

More and more handheld NIR devices are commercially available and proposed
to analyse fruit. NIR uses under field conditions (i.e. orchard) have been limited
for many years due to restrictions imposed by the size and low robustness of the
instruments available. Recently, the development of new technologies used in the
construction of NIR spectrometers and data acquisition strategies has enabled a
significant reduction in size and cost of these instruments but often a decreased of
the robustness of the methods developed [42, 43]. The challenge is to set up the
right procedure to use the historical databases and calibration models, previously
developed using benchtop spectrometers.
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Pfister, J.A. Fernández Pierna, Discrimination of grassland species and their classification in
botanical families by laboratory scale NIR hyperspectral imaging: preliminary results. Talanta
116, 149–154 (2013)

30. P. Vermeulen, M.-B. Ebene, B. Orlando, J.A. Fernández Pierna, V. Baeten, Online detection
and quantification of particles of ergot bodies in cereal flour using near infrared hyperspectral
imaging. Food Addit. Contam. Part A, 34 (8: 5th International Feed Conference), 1312–1319
(2017)

31. T. Troch, E. Lefébure, V. Baeten, F. Colinet, N. Gengler, M. Sindic, Cow milk coagulation:
process description, variation factors and evaluation methodologies. A review. Biotechnol.
Agron. Soc. Environ. 21(4), 276–287 (2017)

32. H.N. Nguyen, F. Dehareng, M. Hammida, V. Baeten, E. Froidmont, H. Soyeurt, A. Niemöeller,
P. Dardenne, Potential of near infrared spectroscopy for on-line analysis at the milking parlour
using a fibre-optic probe presentation. NIR News 22(7), 11–13 (2011)

33. T.M.P. Cattaneo, S.E. Holroyd, The use of near infrared spectroscopy for determination of
adulteration and contamination in milk and milk powder: updating knowledge. J. Near Infrared
Spectrosc. 21(5), 341–349 (2013)

34. M. Kamal, R. Karoui, Using near-infrared spectroscopy in agricultural systems. Trends Food
Sci. Technol. 46(1), 27–48 (2015)

35. V. Decruyenaere, V. Planchon, P. Dardenne, D. Stilmant, Prediction error and repeatability of
near infrared reflectance spectroscopy applied to faeces samples in order to predict voluntary
intake and digestibility of forages by ruminants. Anim. Feed Sci. Technol. 205, 49–59 (2015)

36. B.M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K.I. Theron, J. Lammertyn,
Postharvest Biol. Technol. 46(2), 99–118 (2007)



14 Application of NIR in Agriculture 345

37. W. Saeys, N.N.DoTrong, R.VanBeers, B.M.Nicolaï,Multivariate calibration of spectroscopic
sensors for postharvest quality evaluation: a review. Postharvest Biol. Technol. 158, 2019–
110981 (2019)

38. B.Zhang,B.Gu,G.Tian, J. Zhou, J.Huang,Y.Xiong,Challenges and solutions of optical-based
nondestructive quality inspection for robotic fruit and vegetable grading systems: a technical
review. Trends Food Sci. Technol. 81, 213–231 (2018)

39. A. Pissard, H. Bastiaanse, V. Baeten, G. Sinnaeve, J.-M. Romnee, P. Dupont, A. Mouteau,
M. Lateur, Use of NIR spectroscopy in an apple breeding program for quality and nutritional
parameters. Acta Hort. 976, 409–414 (2013)

40. A. Pissard, V. Baeten, J.M. Romnee, P. Dupont, A. Mouteau, M. Lateur, Classical and NIR
measurements of the quality and nutritional parameters of apples: a methodological study of
intra-fruit variability. Biotechnol. Agron. Soc. Environ. 16(3), 294–306 (2012)

41. A. Pissard, V. Baeten, P. Dardenne, P. Dupont, M. Lateur, Use of NIR spectroscopy on
fresh apples to determine the phenolic compounds and dry matter content in peel and flesh.
Biotechnol. Agron. Soc. Environ. 22(1), 3–12 (2018)

42. J.A. Fernández Pierna, P. Vermeulen, B. Lecler, V. Baeten, P. Dardenne, Calibration transfer
from dispersive instruments to handheld spectrometers (MEMS). Appl. Spectrosc. 64(6), 644–
648 (2010)

43. N.A. O’Brien, C.A. Hulse, D.M. Friedrich, F.J.V. Milligen, M.K. Von Gunten, F. Pfeifer,
H.W. Siesler, Nondestructive measurement of fruit and vegetable quality by means of NIR
spectroscopy: a review. Proc. SPIE 8374(837404), 1–8 (2012)

44. J.A. Fernández Pierna, V. Baeten, P. Dardenne, Screening of compound feeds using NIR
hyperspectral data. Chemometr. Intell. Lab. Syst. 84, 114–118 (2006)

45. L.S. Magwaza, U.L. Opara, H. Nieuwoudt, P.J.R. Cronje, W. Saeys, B. Nicolaï, NIR spec-
troscopy applications for internal and external quality analysis of citrus fruit–a review. Food
Bioprocess Technol. 5(2), 425–444 (2012)

46. P. Vermeulen, J.A. Fernández Pierna, H.P. van Egmond, J. Zegers, P. Dardenne, V. Baeten,
Validation and transferability study of a method based on near-infrared hyperspectral imaging
for the detection and quantification of ergot bodies in cereals. Anal. Bioanal. Chem. 405(24),
7765–7772 (2013)



Chapter 15
Applications: Food Science

Marena Manley and Paul James Williams

Abstract The combination of speed, accuracy and simplicity provided byNIR spec-
troscopy ensured its use as a preferred quality control tool in the food and beverage
industries. These applications are increasingly simplified by the availability of readily
available factory calibrations. A challenge receiving increasing attention is that of
the detection of food adulteration, and a large effort is being made to evaluate NIR
spectroscopy as a suitable method. The recent trend towards miniaturisation of NIR
instruments contributes to the technology becoming portable and more affordable.
The trust put into NIR spectroscopy as an effective analytical tool in the food industry
will remain. In addition, investigations into new and innovative applications to the
benefit of the food industry are seen on a daily basis.

Keywords Beer · Dairy · Cereals · Fish · Food authenticity · Fruit ·Meat ·Wine ·
Quality control · Vegetables

15.1 Introduction

Following agricultural applications, NIR spectroscopy is used as a quality control
tool predominantly in the food industry [1]. The first use of infrared spectroscopy in
foods was reported in the late 1930s when Ellis and Bath [2] determined the amount
of water in gelatine. In 1975, Phil Williams replaced the Kjeldahl testing method for
protein determination in the CanadaWestern Red Spring (CWRS) wheat programme
with NIR spectroscopy [3]. This was the first-ever application of NIR technology in
industry. Since then, NIR spectroscopy applications rapidly extended to now cover
a wide range of food and beverage analyses [1, 4]. These include, apart from the
initial wheat flour analysis, also other cereals and cereal products [4], meat and meat
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products [5], beer [6], wine [7], fruit and vegetables [8] as well as sensory properties
of foods [9]. Commodities not considered in earlier years include cocoa beans [10],
pistachio nuts [11], hazelnut kernels [12] and honey [13]. Investigations on olive oil
[14] are still prominent.

Although NIR spectroscopy should theoretically only be applied to organic mate-
rials, of which the C–H, O–H and N–H bonds absorb in the NIR region, calibration
models can also be developed to predict physical properties of samples. Wheat and
maize kernel hardness are related to the particle size of the flour and meal, which can
be measured due to the different size particles scattering the NIR light differently.
It is also possible to measure the content of disolved salt (NaCl), which does not
absorb in the NIR region, in food products [15]. This is because the presence of salt
causes a shift in the water bands along the wavelength axis proportional to the salt
concentration. The magnitude of the shift depends on the salt concentration which
can be measured by NIR spectroscopy.

Food authenticity issues are a major concern in the industry and products or
ingredients that are high in value are usually targeted [16]. Products with Protected
Designation of Origin (PDO) or Protected Geographical Indication (PGI) which are
usually produced at high costs are also prone to be adulterated with cheaper substi-
tutes. Due to the complexity of the food matrix and its heterogeneous composition,
it is difficult to identify adulterated products. The variability of the adulterations
adds to this complexity. Adulteration has also become more refined in recent years.
NIR spectroscopy has been evaluated for its potential to detect adulteration and/or
confirm the authenticity of food products for many years. Manley and Baeten [17]
recently provided an extensive review on the use of NIR spectroscopy in authenticity
studies. NIR spectroscopy adulteration studies are expensive to perform due to the
costs involved to collect suitable and large sample sets that include adequate varia-
tion. Because of this, many authenticity studies are performed on a limited number
of samples, thus usually only demonstrating feasibility. There is a good likelihood
of successful applications in industry, but such work is usually performed in-house
and the results are not made available in the public domain.

In this chapter, quantitative and qualitative NIR spectroscopy food and beverage
applications will be considered and briefly discussed.

15.2 Cereals and Cereal Products

The first application of NIR spectroscopy in the wheat industry dates back to 1975
when NIR spectroscopy was used to predict protein content in wheat [3]. Protein
and moisture content measurements on wheat flour and whole grain are still one of
the most widely used applications. Routine wheat applications have since extended
to also include wheat hardness as well as ash content and starch damage. NIR spec-
troscopy is now commonly used as a rapid cereal quality control technique, and
factory calibrations for a number of the measurements are readily available which
can be purchased from NIR instrument manufacturers.
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Distinguishing between wheat varieties based on their breadmaking quality was
thefirst qualitative analysis performed in the 1980s [18].Downey et al. [19] correlated
wheat hardness with breadmaking quality, using a wheat hardness index, to differ-
entiate between the wheat samples. Differences in particle sizes and the presence
of inorganic additives enabled 97% correct classification of a range of commercial
white flours, i.e. biscuit, self-raising, household, cake, bakers’ and soda bread mix
[20].

Wheat used for food applications comprised bread wheat (Triticum aestivum)
and durum wheat (Triticum durum). The latter is used for pasta production and
has different chemical and physical properties compared to bread wheat. In some
European countries such as Italy, pasta is required to be produced using only durum
wheat semolina and water. The addition of bread wheat results in a lower-quality
product which would have inadequate resistance to cooking. Potential adulteration
of durum wheat with bread wheat is thus of great concern. The potential to detect the
addition of bread wheat flour to durum wheat flour was illustrated with uncertainties
associated with the models to be about half of that of the official Italian method [4].

Although NIR spectroscopy is extensively used to quantify chemical composi-
tion in cereals (e.g. protein, moisture, oil), limited studies are available on cultivar
discrimination and traceability of cereals [21].

15.3 Meat and Meat Products

NIR spectroscopy is extensively used to determine the content of meat components.
The first NIR spectroscopy models developed included those which could predict
intramuscular fat and moisture content. These could be predicted at excellent accu-
racies with low SEP results (0.18% for intramuscular fat; 0.37% for moisture) and
high RPD values (9.17 for intramuscular fat; 7.21 for moisture) demonstrated [22].
Quantification of protein also with excellent prediction accuracies (SEP = 0.35%;
RPD= 5.13) followed soon. NIR prediction of technological properties is more chal-
lenging as can be seen in SEP results and RPD values obtained for pH (0.05; 1.28),
colour (0.42; 2.16) and water-holding capacity (WHC; 2.355; 1.27). Better results
were obtained for pH when spectra were collected from intact meat samples. When
minced meat was used, chemical composition predictions were more successful
than for intact meat. Some success was achieved with more complex predictions
such as ash content (SEP = 0.15%; RPD = 4.53). Adding the visible range enabled
improved NIR spectroscopy predictions for colour. Water-holding capacity and drip
loss measurements could, however, only be done with limited success thus far.

NIR spectroscopy measurement of sensory properties has not been successful
due to intact meat samples not being homogenous, which is the main reason for
poor predictions to date. The subjectivity of taste panels also contributes, in addition
to inconsistent sample preparation. Consistent presentation of the sample to the
instrument is also important and should receive the required attentionwhen acquiring
NIR spectra.A reasonable accuracywas obtainedwhenbeef tendernesswas predicted
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with an SEP result of 0.35 and an RPD value of 3.82. NIR spectroscopy meat and
meat product applications have been comprehensively reviewed by Prieto et al. [5].

Discrimination studies in meat receive continuous attention with the main issues
being replacement of meat cuts of high value with cuts less costly. The potential of
NIR spectroscopy to distinguish between different meat cuts has been considered
extensively over the years. Discrimination between raw pork, chicken and turkey [4]
as well as kangaroo and beef [23] have been demonstrated. McElhinney et al. [24]
determined the lamb content mixed in raw minced beef. Classification accuracies of
more than 85%were obtained when raw beef, lamb, pork and chicken were classified
[4]. Meat properties such as intramuscular fat, fatty acids as well as muscle structure
and type of muscle fibres would have contributed to the discrimination in these
studies.

One of the earlier meat adulteration studies addressed the concern of selling
frozen-then-thawed meat as fresh meat cuts [4], which is still evaluated today [25].
A more recent study also included assessment of mince beef adulteration [26] while
the most recent study classified turkey meat products [27].

15.4 Fish and Fish Products

Quantification of moisture, fat and free fatty acids is the most common analysis
performed with NIR spectroscopy on fish [28]. Because fish is highly perishable,
microbial spoilage and freshness are important quality characteristics. Selling frozen-
then-thawed fish as fresh is an important concern for the fish industry. Zhou et al. [29]
demonstrated the use of NIR spectroscopy to determine freshness in fish flesh. As
was the case for meat, heterogeneity of the fish samples resulted in NIR spectroscopy
having limited potential for prediction of sensory properties. Subjectivity of the taste
panel, which is the reference method in this case, could also have contributed to
inaccurate predictions. The first application of the use of a small (miniature) handheld
NIR devicewas demonstrated in fish authenticity studies [30] and is now increasingly
evaluated [31] with the added advantage of onsite analysis.

15.5 Milk and Milk Products

Milk, a turbid and opaque liquid, is a challenging commodity to analyse with NIR
spectroscopy. This is due to milk being a suspension containing fat globules and
casein micelles which cause it to be a highly scattering medium [32]. NIR spec-
troscopy has initially only been used on lowmoisture products such as milk powders.
Nowadays, it is widely used covering the entire range of dairy products. Holroyd [33]
extensively reviewed the application of NIR spectroscopy in milk and milk products
whileCattaneo andHolroyd [34] reviewed determination of adulteration and contam-
ination inmilk andmilk powder. Chemical composition predictions in cheese, i.e. dry
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matter, fat and sodium chloride, could be done with accuracies suitable for routine
analysis. RPD values of 6.0, 3.2 and 2.9 were obtained, respectively.

If is often difficult to develop calibration models in industry, due to the lack of
variation between the samples. The compound to be measured would cover only a
limited range. Filho and Volery [35] demonstrated how this can be overcome when
they quantified the solids content using a ‘broad-based’ calibration including five
different fresh cheeses with low, medium and high solids contents.

More recently, qualitative calibration model development has progressed consid-
erably.González-Martín et al. [9] illustrated the power ofNIR spectroscopy to predict
sensory attributes of cheese. Texture measurements such as hardness, chewiness and
creamy could be predicted with RPD values of 3.3, 2.7 and 1.6, respectively, with
the hardness measurements suitable for routine analysis. Taste predictions resulted
in RPD values of 1.6, 2.1, 2.3 and 2.6 for salty, buttery, rancid flavour and pungency,
respectively. Volatile compounds could also be measured with reasonable accuracy,
i.e. 2-nonanone (RPD = 3.4), acetaldehyde (RPD = 2.3), ethanol (RPD = 2.8),
2-heptanone (RPD = 2.8), 2-butanol (RPD = 2.1) and 2-pentanone (RPD = 2.0).

One of the most common methods of milk adulteration is the addition of water.
Adulteration with melamine which is harmful when consumed is, however, of much
greater concern. Melamine gives a false indication of increased protein content. The
difficulty in using NIR spectroscopy as a method of analysis [36] is the low levels of
melamine required to be detected.

15.6 Vegetable and Olive Oils

Sato et al. [37] performed the first NIR spectroscopy study on fats and oils. They
suggested that a spectral library could be compiled which could then be used to check
if the spectrum of an unknown sample matches any of the spectra in the database.
They continued with a study in which they successfully distinguished between nine
different types of vegetable oils, using principal component analysis (PCA) [37]. At
the same time, Bewig et al. [38] illustrated the use of discriminant analysis and only
four wavelengths to classify four different oils (cottonseed, peanut, soybean, canola).
Similarly, Hourant et al. [39] demonstrated the use of selected wavelength ranges
(1700–1800 and 2100–2400 nm) to classify seven vegetable oils.

The high value of extra virgin olive oil resulted in its potential adulter-
ation with less costly oils [40]. Adulteration with inferior olive oils tends to be
of concern, especially in olive oil producing countries. In contrast, addition of
vegetable or seed oils seems to be of concern more likely in countries which
produce these oils and import olive oils. The most important indicator of adul-
teration is the fatty acid composition of the oil [41]. Detection and quantifica-
tion of the type of adulterant in virgin olive oil at an accuracy of 75% were
demonstrated in an early study [42]. Using discriminant analysis, the authors
subsequently correctly identified the type of adulterant in extra virgin oil with a



352 M. Manley and P. J. Williams

90% accuracy [42]. The level of adulteration could also be accurately predicted
(±0.9% w/w).

Downey et al. [4] used SIMCA to classify authentic extra virgin olive oils from
the same oils adulterated with sunflower oil. It was possible to detect adulteration at
levels as low as 1% (w/w) as well as to predict the level of sunflower oil added using
PLS regression (SECV= 0.8% w/w). They developed a model that could determine
the level of sunflower oil adulterant with an accuracy suitable for industry use. Subse-
quent studies detected the adulteration of olive oils with a range of adulterants with
very low error limits [43]. A recent study confirmed the use of NIR spectroscopy
as a method to screen for adulterated olive oils [14]. When an unadulterated sample
was also analysed, the level of detection was as low as 2.7% (w/w). Using SIMCA
and without an unadulterated sample, the level of detection was less accurate (20%).

The use of handheld instruments has also been considered for oil analysis [44].
In spite of the handheld device only using the wavelength range of 950–1650 nm,
lard adulteration in palm oil could be detected with a model accuracy of more than
0.95 using SIMCA. Using PLS regression gave even better results (R2 = 0.99). As
is the case with many adulteration studies, the sample set was limited, thus only
demonstrating the feasibility of the application.

15.7 Fruit and Vegetables

One of the earliest fruit-related studies, detection of adulteration of orange juices, was
reviewed by Shilton et al. [45]. As was the case with the early studies on oil, Shilton
et al. [45] suggested the use of NIR spectroscopy as a ‘fingerprint’ technique rather
than trying to predict specific constituent levels. In a subsequent study, however,
LDA and PLS were used to classify apple juices up to 100% correctly, based on fruit
variety [4].

The ability of NIR instruments, in association with chemometrics, to predict
fruit and vegetable quality properties has been comprehensively reviewed [46].
Studies considered include dry matter content of onions, soluble solids content
(SSC) of apples and water in mushrooms. Prediction of acidity was less accurate
than predicting SSC due to NIR spectroscopy not being able to measure it directly,
but based on its correlation with sugars. Similarly, fruit maturity could be predicted
based on its correlation with sugar content and the microstructure of the fruit tissue.
The microstructure of the fruit affects how the NIR light penetrates into and scatters
within the fruit tissue which enables measurement of stiffness, internal damage as
well as sensory attributes.

The successful measurement of changes in soluble solids and dry matter in indi-
vidual mango fruit over time during ripening was demonstrated with a handheld
device (950–1650 nm) [47]. The penetration depth of about 7.4 mm into the fruit
tissue ensured representative sampling and contributed to the success of the developed
models.
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15.8 Honey

Initial NIR spectroscopy studies on honey mainly comprised the determination of
its chemical composition [48]. Honey is a completely natural, high-value product
comprising simple carbohydrates with a distinct sucrose–glucose–fructose profile
and water. Cane invert sugar preparations are often prepared to mimic this profile
and added to pure honey. Addition of such preparations is usually difficult to detect.
Differences in floral species, maturity, environment, processing and storage tech-
niques contribute to the natural variability of honey and thus the complexity of
detecting honey adulteration.

The use of NIR spectroscopy and PLS-DA to detect adulterated honey has been
demonstrated [49]. The addition of fructose and glucose could be detected with a
high degree of success (99%). Similarly, the pure honey could be accurately identified
(96%). The importance of temperature control during NIR analysis was, however,
stressed.When SIMCAwas evaluated as a discrimination technique [50], the adulter-
ated honey could be 100% correctly identified compared to only 90% of the authentic
honey. PLS-DAwas shownas an effective classificationmethod to discriminate South
African from intentionally adulterated as well as imported honey [51]. Overall clas-
sification accuracies of between 93.3 and 99.9%were obtained. The handheld device
evaluated in this study performed as accurately as the desktop instrument.

15.9 Tea

Growth in the functional food and bioactive ingredients markets encouraged the
application of NIR spectroscopy within this field. McGoverin et al. [52] provided
an extensive review on the quantification of bioactive compounds within food
commodities such as tea.

Tea is of great interest due to its beneficial health properties. It is made from
the processed leaves of Camellia sinensis and one of the most popular beverages
consumed worldwide. Osborne and Fearn [53] reported one of the first discriminant
studies on tea, distinguishing between black teas of differing sensory profiles. Grant
et al. [54] showed a reliable classification of six teas differing in origins and taste.
The effect of the grinding method when preparing and analysing powdered samples
by NIR spectroscopy should always receive suitable attention [53]. Using SIMCA
as a classification modelling technique, it was possible to identify four different tea
varieties [55]. Manley et al. [56] quantified the major phenolic compounds, soluble
solid content and total antioxidant activity of green rooibos (Aspalathus linearis), an
indigenous South African herbal tea.
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15.10 Coffee

The initial work on coffee, aimed at process control, illustrated the ability to distin-
guish between regular and decaffeinated coffee [57].While this is no longer the focus
of current work, at the time it showed the great potential of NIR spectroscopy. Today,
the majority of commercially produced coffee is either Arabica or Robusta, with the
former highly regarded for its improved sensory attributes. Since replacing the one
with the other, or mixing/blending Arabica with Robusta is considered adulteration,
detecting and quantifying this are important. Downey et al. [58] illustrated the capa-
bility of NIR spectroscopy to discriminate between pure and blends of Arabica and
Robusta coffees. The coffee sampleswere either green or roasted andwhole or ground
beans, and a classification accuracy of 96.2% was achieved for the pure whole bean
coffees. This was attributed to the caffeine content; it is well known that Robusta
has a higher concentration than Arabica. When 50:50 blends were included in the
model, lower accuracies of between 82.9 and 87.6% were, respectively, obtained for
20 green and 20 roast samples. A handheld device was successfully used for Arabica
coffee grading, detecting the presence of peel/sticks, maize and Robusta coffee [59].

15.11 Wine and Distilled Alcoholic Beverages

There are numerous and diverse applications of NIR spectroscopy for wine analysis.
Cozzolino et al. [7] predicted a number of phenolic compounds, simultaneously, in
fermentingmust and redwine.Most of the applications onwine focused on character-
istics such as alcohol content, sensory and aromatic attributes and fermentation [4].
Cozzolino et al. [7] reviewed additional properties, such as the measurement of grape
composition. Good to excellent RPD values were reported for total soluble solids
(4.0), total anthocyanins (4.2), acidity and pH (2.8). In addition, measures such as
alcoholic degree (5.7), total acidity (2.27), pH (2.4), glycerol (4.0), reducing sugars
(10.3) and total sulphur dioxide (1.8) were reported for wine composition. Dambergs
et al. [7] and Cozzolino et al. [7] were able to predict wine sensory quality, demon-
strating the versatility of NIR spectroscopy. A problem often encountered with wine
analysis and specifically when observing the fermentation process is the fact that the
sample changes with time. In another study, Manley et al. [7] used NIR spectroscopy
to measure sugar in grape must and to distinguish between samples based on their
free amino nitrogen (FAN) content. Furthermore, the authors distinguished between
Chardonnay wines and tables wines, based on their malolactic fermentation status
and ethyl carbamate content, respectively.

Wine authenticity received considerable attention in the past [60]. Manley et al.
[61] categorised four classes of rebate brandy; whereas, Pontes et al. [62] proposed
a strategy to detect adulteration in whiskeys, brandies, rums and vodkas.

Since its first application for grape compositional analysis, there has always been
a need to take the instrument to the sample, enabling analysis of grapes on the vine.
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This is now possible due to technological advancement which led to the development
of not only portable, but low-cost small handheld instruments [63].

15.12 Beer

Process control, with processing information continuously provided, is important
during beer production, in addition to using good-quality raw materials. The main
application in this field has been the development of models to select the best barley
varieties to produce high-qualitymalt for beer production [6]. Investigations included
genotype classification, mycotoxin detection and quantitative analysis of intact and
ground grain for moisture, protein and β-glucan. In addition, intermediate products
such as wort, extract and free amino nitrogen (FAN) were also investigated, while on
the completed product real extract and ethanol were determined. Process analytical
technology (PAT) is rapidly developing and becoming synonymous with product
process optimisation strategies [7].

15.13 Aquaphotomics

Water plays a complex role in food systems and despite being studied extensively
over many years, it is still not well understood. The term, aquaphotomics, has been
introduced by Tshenkova [64] to describe the concept of approaching water as a
multi-elemental system. Visible–NIR spectroscopy, being a powerful tool and source
of spectral information, facilitated the establishment of this term. Aquaphotomics
uses the information from water absorbance bands and patterns to provide knowl-
edge of water structures and interactions between water and other components in,
for example, a food system. The aim of aquaphotomics is thus to build up knowledge
of and understand water absorbance bands over the entire electromagnetic spec-
trum in relation to functions of different biological systems. Bazar et al. [65] used
aquaphotomics-based analysis to study honey adulteration. A difference in the water
molecular structure of the honey and the added high fructose corn syrup (HFCS)
was shown, with the honey samples containing a larger amount of highly organised
water. Water matrix coordinates were assigned to the characteristic water bands of
the honey with different levels of HFCS mixed into them. The variation of these
coordinates describes the water spectral patterns of the different samples and can be
visualised in aquagrams.
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15.14 Conclusion

NIR spectroscopy has developed into a prominent analytical quality control tool
in the food and beverage industries, due to its distinctive combination of speed,
accuracy and simplicity. The requirement for the development of calibration models
for each application and commodity is nowadays addressed by the availability of a
number of factory calibrations readily available. The capabilities ofNIR spectroscopy
instrumentation are continually improving to maximise its performance, and the
availability of small handheld instruments makes NIR spectroscopy portable and
more affordable.
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Chapter 16
Wooden Material and Environmental
Sciences

Te Ma, Satoru Tsuchikawa, and Tetsuya Inagaki

Abstract Near-infrared spectroscopy (NIRS) is suitable for both the qualification
and quantification of organic properties associated with C–H, O–H, or N–H groups.
There have been considerable efforts made toward proposing and developing various
technologies and devices for the rapid and nondestructive measurement of various
samples related to natural materials and environmental sciences. In this chapter,
the utilizations of NIRS in the fields of wood material, soil, sediment, waste liquid,
atmospheric gas detection, and archeological science will be explained through some
representative studies.

Keywords Wood material · Soil · Sediment ·Waste liquid · Archeological science

16.1 Introduction

Near-infrared spectroscopy (NIRS) is useful for the nondestructive measurement of
various samples related to natural materials and environmental sciences. A typical
example is wood material. The advantages of wood as a building material still
outweigh other products (e.g., steel and brick) when looking at the environmental
impact. It is naturally renewable and helps to mitigate climate change through carbon
storage. However, there still is a limited extent in industry practice. The main reason
is that wood has some drawbacks as a typical natural material such as deforma-
tion and cracking, caused by its heterogeneous structures and hygroscopic nature.
Quality assessment of such characteristics just can get customers truly approbate and
support and promote the development of the whole wood industry finally. Recently,
there have been considerable efforts made toward proposing and developing various
technologies, and NIRS makes great contributions to this field. NIRS also has been
developed significantly at soil composition analysis since the 1990s, taking advantage
of previous advances in agricultural instrumentation and chemometrics. Currently,
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NIRS has been envisioned as a replacement for laboratory analysis in certain applica-
tions (e.g., soil carbon credit assessment at the farm level).Moreover, there have been
many studies on the evaluation of lake sediment core composition changes by NIRS.
Since the sediment core length increases when the sampling interval decreases, the
need for a quick and inexpensivemeans of determining sediment compositionbecame
apparent. Finally, the utilizations of NIRS for waste liquid evaluation, i.e., wastew-
ater, sewage, black liquor (a waste product from the crafting process in digesting
pulpwood into paper pulp to remove lignin, hemicellulose, and other extracts from the
wood and to release cellulose fibers), atmospheric gas detection, and archeological
science will be explained in this chapter.

16.2 Wood

Figure 16.1 shows the IR and NIR spectra of Chamaecyparis obtusa (softwood) and
Zelkova serrata (hardwood). Most absorption bands in the NIR region are corre-
sponding to overtones or combinations of fundamental vibrations in the IR region.
However, the absorption of NIR light in organic materials is very weak compared to
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Fig. 16.2 Number of publications due to “NIR” and “Wood,” searching by Web of Science

that of IR light; hence samples can be measured nondestructively. Another important
advantage of NIRS is that many properties could be evaluated simultaneously which
use the sameNIR data. It is superior to sort wood, which generally is based on several
criteria together.

However, as overtones or combinations of fundamental vibrations are multiply
overlapped each other at the NIR range, measured spectra are “opaque spectroscopic
information.” They are generally analyzed with the aid of multivariate analysis, such
as principal component analysis (PCA), partial least squares regression (PLS-R),
to observe “useful material information.” Some other NIR spectra collection and
data analysis methods have also been developed since wood samples have much
higher light scattering than light absorption. The spectral contributions of them were
evaluated independently, for constructing robust calibration models of various wood
properties without relying on complex multivariate statistical analysis.

InvestigatingNIRS for the quality assessment of pulp and paper has been going on
for a number of years, Brikett and Gambino estimated pulp kappa number with NIRS
approximately 30 years ago [1]. After that, the publication related to wood science
and technology with NIRS dramatically increased. Figure 16.2 shows the number of
research publications, including the keywords “NIR” and “Wood,” searching byWeb
of Science. Nowadays, NIRS has already been exploited successfully bymany paper-
making companies to evaluate moisture content (MC) online. Below we introduce
some representative studies separated into different wood properties.

16.2.1 Wood Chemical Composition

Wood is typically composed of three main chemical components: cellulose, hemi-
cellulose, and lignin. Their percentages are roughly 45%, 25%, and 25%, respec-
tively [2]. Wood also contains extractives that can be removed by solvents, which
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has been shown to play a large role in the protection of living tree [3]. The first
NIR works were mostly focused on evaluating wood chemistry directly, especially
the cellulose content [4–6] and then, shift to estimate wood lignin and extractives.
Da Silva et al. presented an assessment of total phenolic compounds and extractive
contents of mahogany wood rapidly by NIRS [7]. He and Hu indicated the bene-
fits of FT-NIR to predict the lignin and extractive content of different wood species
[8]. The validation results confirm that the selection of relevant wavenumbers and
suitable data preprocessingmethods produced values within tolerance levels. Lepoit-
tevin et al. indicated that it is important to remove extractives before NIR spectra
collection for the prediction of other wood chemistry traits [9]. Uner et al. utilized
the genetic inverse least squares method for constructing the calibration models of
lignin and extractive contents in milled Turkish pine wood samples. The standard
error of calibration (SEC) and standard error of prediction (SEP) were 0.35% and
2.40%, respectively [10].

16.2.2 Wood Moisture Content

The molar absorption of water at the NIR range is 1/1000–1/10,000 compared to that
of IR region [11]. Nevertheless, as the NIR range has rich light absorbance infor-
mation of oxygen and hydrogen (O–H) structures, many researchers have invested
NIRS to predict water within wood. In general, the state of water within wood can
be categorized as either free or bound water. Here, free water is defined as liquid
water located in the lumens and intercellular spaces of wood but without a chemical
bond with the wood cell wall; whereas, the water attached by intermolecular forces
between the major chemical components of wood cell walls is considered as bound
water, which has profound effects on wood physical properties. For MC by mass
(i.e., both free and bound water), Watanabe et al. compared the accuracy of NIRS
with a commercial capacitance-type moisture meter for greenwood sorting purposes.
Their experimental results showed the performance of NIR approach was better than
the capacitance-type at predicting high moisture wood samples. Besides, compared
to the capacitance-type moisture meter, the NIR method also has the advantage of
measuring MC without the need for density correction [12]. However, Defo et al.
suggested that NIR spectrometer may be less useful for the lumbers with signifi-
cant gradients between core and surface layers [13]. For this limitation, Tham et al.
recently highlighted the potential of NIRS combined with an industrial MC capac-
itance meter to predict MC from greenwood to oven-dried conditions [14]. Experi-
mental results showed a good prediction accuracy (coefficient of determination (R2)
= 0.80, root mean square error of cross-validation (RMSECV) = 25.70%, and the
ratio of percentage deviation (RPD) = 2.22) could be achieved at various sample
thicknesses and wood species without density correction. It suggests that NIRS can
be assisted by other techniques with higher transmission abilities, when measuring
thick wood samples such as timber and lumber wood.
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NIRS also could contribute to study bound water within wood, and it is a powerful
tool for evaluating molecular water dynamics based on wavelength shift characteris-
tics [15]. Inagaki et al. compared the variation of water adsorption between modern
and archeological wood samples. The wavelength range of 1818–2128 nm due to
the O–H first overtone was selected. Curve-fitting method was used to separate the
baseline-corrected NIR difference spectra into three components that have different
vibrational energy. Ma. et al. used PCA to characterize the variance of NIR spectral
range of 1340–1610 nm due to the O–H second overtone after baseline correction.
The data analysis results showed PC1 loading mainly correlates with wood water
content by mass; however, the PC2 loading values contain the information about
water–wood hydrogen structure interactions [16].

16.2.3 Wood Density

Density is a crucial parameter for wood strength and stiffness, which are critical
considerations for awooden structure.MostNIR calibrationmodelswere constructed
basedon light absorptiondifferences causedby the threemain chemicalwood compo-
nents (i.e., cellulose, hemicellulose, and lignin). Alves et al. calibrated the maritime
pine and hybrid larch wood density measured by an X-ray densitometer with NIR
spectra using PLS-R analysis [17]. The best PLS-R model could fulfill the require-
ments for the NIR model development and maintenance guidelines provided by the
American Association of Cereal Chemists (AACCMethod 39-00). Santos et al. also
estimated the wood density of Portuguese Blackwood using NIRS combined with
PLS-R analysis [18]. The RPD limit was 2.5, even though the number of spectra
collected from each wood disk was only three. Fujimoto et al. examined the effect
of MC on the accuracy of predicting wood density. They discussed the chemometric
background for the potential to predict the wood density (R2= 0.86 − 0.87, SEP =
22 kg m−3) at various moisture conditions [19].

Some studies also focused on light scattering caused by physical wood structure
to predict density. Hans et al. measured seven softwood and hardwood species using
time-of-flight NIRS (TOF-NIRS) which provides additional light scattering infor-
mation. Then, curve-fitting procedure was used to separate absorption and reduced
scattering coefficients. The square root of the adsorption/scattering ratio could correct
the scattering effects in absorbanceNIR spectra [20].Ma et al. used spatially resolved
spectroscopy (SRS) method, and a NIR imaging camera was utilized to catch the
light scattering patterns on Douglas fir wood surface which illuminated by a concen-
trated halogen light source (Ø 1 mm). A steady-state diffusion theory model was
applied to estimate light absorption and reduced scattering coefficients. The exper-
imental results indicate that a few key wavelengths could achieve the prediction
of subsurface density and grain direction without relying on multivariate statistical
analysis [20]. Such an approach is worth pursuing further since it will contribute to
the design of a low-cost measurement system and with robust prediction accuracy.
Recently, Kitamura and Tsuchikawa [21] have shown the possibility of designing
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a cost-effective densitometer by a continuous NIR single wavelength laser source
and an avalanche photodiode module. It could obtain a good calibration result with
a conventional X-ray densitometer (RMSECV = 0.046 g cm−3).

16.2.4 Wooden Anatomical Features

Wood has a porous three-dimensional structure. It is composed mostly of elongated
cells that are parallel along the tree. A basic understanding of the wooden anatomical
features is essential. Hein has developed NIR models to predict the microfibril angle
(MFA) of Eucalyptus wood [22]. The RMSE between NIR predicted and X-ray
diffraction derived values was 1.3°. Inagaki et al. demonstrated high-quality results
when utilizing NIR to predict the fiber length of Eucalyptus solid [23]. Isik et al.
examinedNIRS to predictwood cellwall thickness, coarseness, air-dry density,MFA,
andmodulus of elasticity (MOE) of loblolly pine [24]. Furthermore, it suggested that
NIRS can be utilized for screening loblolly pine progeny tests for surrogate wood
traits.

16.2.5 Wood Mechanical Properties

The mechanical properties of wood are its fitness to resist outside forces. Knowledge
of these properties is very important in the wood industry. However, conventional
measurement methods are mostly destructive and time-consuming. Many studies
have shown that woodmechanical properties could be evaluated by NIRS assisted by
chemometrics. Wood density and the cellulosic feature are important in constructing
prediction models from the viewpoint of the chemical absorption band. Horvath
et al. utilized NIRS to predict the green modulus of elasticity (MOE) and green
ultimate compression strength (UCS) of 1- and 2-year-old transgenic and wild-type
aspen. Calibration results showed a well-predicted UCS (R2 = 0.91, RMSEP =
1.04 MPa) and green MOE (R2 = 0.78, RMSEP = 538 MPa) [25]. Scimleck et al.
examined to predictMOE, density, andmodulus of rupture (MOR) simultaneously by
diffuse NIR reflectance collected from the transverse surface of Pernambuco blocks
[26]. Calibration results showed that the density prediction had the highest accuracy,
followed byMOE, which results in MORwere pore. They suggested the presence of
extractivesmayweaken theNIR-based calibrationmodels.Watanabe et al. developed
PLS-R-based calibration models for rapidly evaluating longitudinal growth strain
(LGS) [27]. The LGS is one of the most important wood quality indices, and high
levels easily cause end splitting. NIR spectra and LGS were measured from the
peripheral locations of three Sugi green logs. The spectra with higher LGS tended to
be lower absorbancemay be caused by the chemical and physical properties related to
the LGS. The calibration model achieved good accuracy (R2 was 0.61 with a RMSEP
of 0.015%). Kobori et al. and Sofianto et al. tested to measure NIR spectra from the
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Fig. 16.3 Development of the spectrometer with linear sensor for estimation of moisture content
and Young’s modulus. Conveyor speed: 120 m/min [28, 29]

tangential surface of Hinoki [28] and Sugi [29] lumbers at a developed spectrometer
with a speed of 120mmin−1 (Fig. 16.3). A diffraction grating linear sensor and high-
intensity lighting were utilized in the measurement system. It showed fast speed and
a sufficient prediction accuracy for the quality screening of wood lumber with the
aid of PLS-R analysis, although the Sugi lumber samples cover more knots.

16.2.6 Wood Engineering Wood

Engineering wood, also called composite wood, human-made wood, is commonly
composed of some kinds of wooden materials such as veneers, fibers, or parti-
cles together with adhesives. The advantage of engineering wood is that it can be
designed to meet application-specific performance requirements. However, because
the raw materials are continually changing during the compositing process, quality
monitoring technique is also required to ensure its reliable performance. Maioli
Campos et al. reported that NIRS combined with multivariate statistical analysis
could be used for agro-based particleboards classification [30]. Rials et al. reported
that good predictive models were generated for MOE, MOR, and internal bond of
medium-density fiberboard (MDF) samples by NIRS with PLS-R analysis. Kohan
et al. demonstrated the potential of NIRS to predict the ultimate tensile strength,
tensile MOE, bending strength, and bending stiffness of strand feedstock [31]. Hein
et al. showed the key role of adhesives, cellulose, and lignin for the mechanical and
physical properties NIRS calibrations of agro-based particleboards [32].
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16.2.7 Wood Modification and Degradation

Wood modification and degradation are other great topics. Wood is a hygroscopic
natural material, and cell wall moisture adsorption or desorption occurs until an equi-
librium moisture content (EMC) is reached in response to variation in surrounding
relative humidity and temperature. Such sorption behaviors influence the stability of
the wood dimension and mechanical properties. Hence, wood modification typically
required before using. For example, when wood is treated with acetic anhydride,
the hydroxyl groups of lignin, hemicelluloses, and cellulose are replaced with acetyl
groups, and it has the advantages of dimensional stability, decay resistance to fungi.
Schwanninger et al. reported that the chemical changes in wood due to acetylation
could be monitored by NIRS [33]. Green et al. utilized NIRS for accessing wood
decay in pine sapwood wafers [34]. Experimental results showed a strong correlation
between NIR spectral data and sample mass loss, compression strength, and early
stages of wood decay. Sandak et al. developed an FT-NIR-based methodology for
estimating the biodegradation rate of recycled paper [35]. Therewere significant light
absorption differences that correspond to C–H and O–H functional groups of cellu-
lose. They found a good agreement between spectroscopic and reference methods
(microscopy, mechanical testing, mycological tests). Inagaki et al. measured NIR
reflectance spectra from the wood samples heated at 90, 120, 150, and 180 °C from
5 min to approximately 1.4 years. Kinetic analysis of principal component scores
was useful to understand the chemical change in the thermally treated wood samples
[36].

16.2.8 Wood Pulp and Paper

NIRS has been traditionally used in the quality analysis of pulp and paper. Downes
et al. reported to predict Kraft pulp yield and cellulose content in Eucalyptus wood
using NIRS [37]. Gigac and Fiserova indicated that NIR spectra could be used to
predict the filler content, Kappa number, and strength properties of raw materials
and paper [38]. Meder et al. compared the performance of laboratory and handheld
NIR instruments in predicting Kraft pulp yield in standing trees (5 mm or 12 mm
increment cores). The results showed the handheld NIR devices were also capable of
predicting cellulose content and Kraft pulp yield [39]. Tyson et al. indicated that the
tightly regulated pulping processes reduce the variability of the pulps, which affect
on constructing physical and mechanical prediction models based on NIR spectra
[40]. Yonenobu et al. [53] pointed out that NIRS was powerful in investigating the
chemical condition of washi (literally “Japanese paper,” which has played a vital
role in Japanese culture since the early eighth century). This approach had obtained
satisfactory results with conventional sugar analysis.
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Fig. 16.4 Microscopic images of five representative wood sample species. Castor aralia and
Manchurian ash are ring-porous hardwood, Japanese cedar is softwood, and Ulin and Beech are
diffuse-porous hardwood, respectively. Each sample structure is unique from the other

16.2.9 Wood Species Classification

With the high diversity of species, it is of high importance to obtain accurate iden-
tification. Figure 16.4 shows five representative wood species, including the three
main types ofwood: softwood, diffuse-porous hardwood, and ring-porous hardwood.
The conventional identification approach is based on wood macroscopic charac-
teristics. However, such methods are time-consuming and need full knowledge of
wood anatomy. Hence, automatic identification systems are required in the fields of
wood recycling and monitoring illegal logging protected tree species. Batista et al.
explored NIRS as a potential option for the classification of several wood species.
Experimental results showed that NIR spectra obtained from solid wood surfaces
assisted with PLS discriminant analysis (PLS-DA) could achieve low identifica-
tion errors [41]. Cooper et al. also pointed out that several factors may influence the
NIRS performance, such as surface roughness,MC, and localized density differences
[42]. Yang et al. classified softwood and hardwood by NIRS coupled with PLS-DA.
They indicated that the differences of hemicelluloses and lignin components between
softwood and hardwood species contributed much to the classification model [43].
Abe et al. were successful in the separation of two softwood species and indicated
that light scattering might be useful for wood species classification purposes with
advanced measurement systems [44]. Recently, Ma et al. evaluated the light scat-
tering differences of five softwood and ten hardwood species based on NIR-SRS.
They also encourage the observations that light scattering patterns in wood samples
could be used for wood classification [45].

16.2.10 Imaging Analysis at the Field of Wood

Since the above wood properties are significantly varied between different regions of
wood samples, NIR hyperspectral imaging (HSI) technique is a powerful approach
that can provide not only spectral information but also including spatial informa-
tion. It can provide a more detailed property analysis in every single annual ring.
For example, Fernandes et al. measured wood density with a high spatial resolution
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of 79 μm by means of visible-NIR-HSI imaging [46]. The R2 value between the
present method and X-ray microdensitometer was 0.810 with an RMSE of 6.54 ×
10−2 g cm−3. The difference between latewood and earlywood (i.e., inside every
single annual ring) was shown clearly. Lestander et al. applied NIR-HSI images to
separate wood chips with elevated levels of extractives [47]. Meder et al. used HSI
images for detecting the compression part of softwood. The compression wood is
required to be detected at an early age since its higher proportion of lignin and lower
cellulose easily, which causes further trucks. [48]. Kobori et al. [49] and Ma. et al.
[16] successfully visualizedMC distribution in wood by HSI techniques. Figure 16.5
shows theMCmapping results of three representativewood samples (Japanese cedar:
softwood, Beech: diffuse-porous hardwood, and Manchurian ash: ring-porous hard-
wood), and water was preferentially retained in the latewood as the wood dries. Ma
et al. evaluated the calibration between the SilviScan analysis system (FPInnovations,
Vancouver, Canada) data and NIR-HSI imaging. The SilviScan system with a high
spatial resolution provided the reference data for wood density with 25 μm resolu-
tion and for microfibril angle (MFA) with 1 mm resolution. Both the two important
indexes were successfully mapped at a 156 μm spatial resolution [50]. Using the
same HSI camera, Sofianto et al. successfully constructed a prediction model and

Fig. 16.5 Wood MC mapping result of three wood samples (Japanese cedar: softwood, Beech:
diffuse-porous hardwood, andManchurian ash: ring-porous hardwood), andwaterwaspreferentially
retained in the latewood as the wood dries [16]
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map the predicted modulus of elasticity (MOE) values. The results of MOEmapping
could distinguish between a sound knot and a dead knot [51].

16.3 Soil

Soil is important to humans and all living things on the earth because it produces
food, fiber, and energy. The ability of the soil to support these functions depends on its
biological, chemical, and physical properties. NIRS for soil analysis started later than
agricultural research. However, this research field has experienced a boom over the
past couple of decades. NIRS can be used to estimate important properties in soil like
salinity,moisture, total carbon, organic carbon, totalN, or clayminerals. The assigned
bands due to clay minerals (kaolin doublet, smectite, illite, carbonate) and organics
(aromatics, amine, alkyl asymmetric–symmetric doublet, carboxylic acids, amides,
aliphatics, methyls, phenolics, polysaccharides, carbohydrates) were summarized
by Rossel et al. [52]. For the quantifications of soil parameters, visible (VIS) region
spectra have been generally measured with NIR region. The light absorption by soil
organic matter in the visible region is wide but more clear [53]. There are various
reports suggesting that VIS–NIR is superior to built accurate calibration for organic
matter than NIR alone [54]. Soil organic carbon (SOC) is an important property of
soil quality that affects the type of organic compounds in the soil and the physical
properties of the soil, therefore frequently estimated by VIS–NIR calibrations. The
prediction results reported until 2010, summarized by Stenberg et al. [55], showed
that the RMSEP for the prediction of SOC or total C was in the range of 2.5–
9.0 mg g−1. The variation of R2 and RMSEP is due to the soil types, soil classes, and
range of concentrations. Properties of which the calibration is reported are moisture,
clayminerals, texture, pH, plant nutrients, and contaminant (i.e., heavymetals). Some
metals, which are not absorbed by NIR light, can be detected because of covariation
with spectrally active components.

16.4 Sediment

The nondestructiveness and rapidity of NIRS are particularly advantageous for
the measurement of lake sediments and marine sediments. Lake sediments are
derived from autochthonous production, substances derived from the lake itself, or
allochthonous material (basin or aerial) and provide information about the region
and its environmental history. Sediment is formed continuously in all lakes, and its
composition depends on the biogeochemistry of the lake and the chemistry of the
basin. Thus, lake sediments reflect the lake’s average biogeochemistry, allowing inte-
grated measurements of lake chemistry variables estimated based on sediment char-
acteristics. Sediments have not only large spatial and temporal variations in physical
and chemical properties but also show elemental flow between this compartment,
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hydrosphere, and atmosphere. Sediment records provide much information about
the history of a body of water. This information can be used to reconstruct historical
changes in water quality and to identify the natural state of waters prior to impacting
the human body, thereby setting goals for lake restoration and restoration activities.
The important thing for climatologists is the coherence between climate change and
carbon cycling. Several studies have shown that most lakes in the world are net
sources of CO2 to the atmosphere and that the CO2 emission from lakes is propor-
tional to the input and lake mineralization of terrestrial organic carbon. Distribution
and retention of heavymetals in lake sediments are also critical to understand biogeo-
chemical processes in aquatic systems and lake management. Moreover, the investi-
gation ofmarine sediments is also important for paleoceanographic and paleoclimatic
views. A quick, inexpensive, high spatial resolution, and reproducible method for
determining various chemistry of sediments likeNIRSwould be very useful formany
environmental research and monitoring programs related to the aquatic system.

Malley et al. [56] reported the prediction of Cd, Cu, Zn, Pb, Ni, Mn, and Fe with
an R2 value of 0.86, 0.63, 0.91, 0.93, 0.81, 0.88, and 0.93, respectively, from the
NIR reflection spectra of sandy and highly organic littoral sediments from a Precam-
brian Shield lake (37-ha surface area) in northwestern. In this research, cores were
taken by scuba diver using a 5 cm plexiglass tube inserted by hand. After cutting
the core (6–14 cm) into 1-cm-thick sections, samples were freeze-dried and sieved
thorough no. 10 sieves before NIR measurement. Although there is no absorbance
band due to these meatal in the NIR region, they attribute the reason for the high
accuracy of heavy metal by NIR spectra to the correlation between heavy metals
and organic matter containing protein, cellulose, and oil. Inagaki et al. [57] predicted
values for water content, total nitrogen, total organic carbon, total sulfur, Al2O3,
S/Al2O3, Fe2O3/Al2O3, Sc/Al2O3, Cu/Al2O3, and Zn/Al2O3 with coefficients of
determination for cross-validation of 0.73, 0.89, 0.88, 0.73, 0.92, 0.81, 0.82, 0.75,
0.82, and 0.82, respectively, from the sediments samples from almost 20-m-depth
cores, covering approximately the last 10,000 years in Lake Ogawara, Japan. They
concluded NIR absorbances of organic matter contributed to the calibration and
interpreted this absorbance primarily describes the ligands in the highly organic
samples. Kleinebecker et al. [58] reported the acceptable to the excellent predic-
tion for total and NaCl-extractable concentrations of Al, Ca, Fe, K, Mg, N, Na, P,
S, Si, and Zn as well as oxalate-extractable concentrations of Al, Fe, Mn, and P
in sediment samples collected from core samples (0–10 cm) using piston sampler.
They collected the samples from 191 locations distributed over the Netherlands.
Air-dried samples were screened through a sieve with 2 mm mesh wire before NIR
measurement in their study. The prediction of total C, CO3

2–, N, P, and diatoms 47-
cm-long freeze core from the deepest point in Lake Arendsee, Mecklenburg Plain
in northern Germany by NIR spectroscopy was reported by Malley et al. [59]. Total
organic carbon (TOC) prediction in 400 core samples from Lake Suigetsu, Japan,
was reported by Pearson et al. [60]. Korsman et al. [61] investigated the spatial vari-
ance in the NIR spectral data from 165 surface sediments samples from a northern
Swedish humic, mesotrophic lake, and revealed that water depth and organic matter
account for 20 and 16%, respectively, of the variance in the NIR absorbance data.
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They regarded this result, indicating that NIR analysis might become a valuable
complementary tool to traditional sediment characterization.

16.5 Wastewater

Because the advantage ofNIRS including the optical path length can be longer and no
reagent is required for such measurement, some researches attempt to build accurate
calibration models for the estimation of some pollution degrees in wastewater (i.e.,
sewage, wastewater from sugar refinery processing, and black liquor). Ding et al.
[62] reported the accurate prediction model for the mixture samples tributyl phos-
phate and methyl iso-butyl ketone in aqueous solutions over the concentration range
of 1 ± 160 ppm with SEP for MIBK of 3.82 ppm. They used the C–H combination
bands in the range of 5000–4000 cm−1 measured in transmittance mode (2 mm path
length) with a spectrometer equipped with the liquid nitrogen cooled InSb detector.
Pan et al. [63] showed NIRS could be used for the prediction of chemical oxygen
demand (COD) in sugar refinery wastewater with validation SEP of 25.0 mg L−1

using transmittance absorbance spectra (2 mm path length) in the range of 780–
1100 nm. The COD is an indicative measure of the amount of oxygen that can be
consumed by reactions in a measured solution. They optimized the wavelength for
the prediction by MWPLS. Quintelas et al. [64] investigated the feasibility of NIR
transmittance spectroscopy for the quantification of pollutants, like pharmaceuticals,
in wastewater. Two hundred seventy-six samples obtained from an activated sludge
wastewater treatment process were analyzed in the range of 200–14,000 cm−1 (trans-
mittance mode, 0.7 mm pathlength). They obtained an adequate calibration curve
for the prediction of ibuprofen, sulfamethoxazole, 17β-estradiol, and carbamazepine
with coefficients of determination around 0.95. Lindgrerz et al. [65] reported it is
possible to monitor the delignification process during a laboratory Kraft cook on
softwood by NIR transmission measurement of the black liquor. They showed a
good calibration result for Klason lignin content in the pulps and pulp yield. Some
researchers conducted to monitor the pollution degree which was reported [66–68].
TheCODvalues inwastewater samples collected inwastewater treatment plantswere
well predicted [66] with an RMSEP value of 19 mgO2 L−1. Many organic matter
index [68] and volatile fatty acids, bicarbonate alkalinity, and total and volatile solids
content [67] were also predicted from NIR spectra of sewage sludge.

16.6 Atmospheric Gas Detection

The development of effective gas detectors is essential because many gases can
be harmful to humans or animals. NIR-tunable diode laser spectroscopy has the
potential for the development of effective and inexpensive detectors for moni-
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toring of gas species as Martin summarized [69]. For example, Scott et al. devel-
oped the airborne laser infrared absorption spectrometer II (ALIAS-II), including a
lightweight mid-infrared absorption spectrometer based on cooled lead salt-tunable
diode laser sources. The chemical species such as long-lived tracers N2O and CH4

and chemically active species HCl and NO2 could be measured precisely [70]. Durry
et al. used commercial distributed- feedback InGaAs laser diodes for the monitoring
of CH4 and H2O [71].

16.7 Archeological Science

Archeological science is to develop techniques for the analysis of archeological
materials. Because most archeological materials are rare, nondestructive ways are
required. Yonenobu et al. [72] compared the NIR spectra of modern hinoki cypress
(Chamaecyparis obtusa) and antique ones from the upright pillars of an old building
with a construction date estimated to be aroundA.D. 750.They reported that the hemi-
cellulose and holocellulose decrease, whereas lignin increased relatively with aging
for −1300 years under atmospheric conditions without fungal hyphae or some kind
of beetles attack by checking the difference second-derivative NIR spectra. Sandak
et al. [73] also evaluate the archeologicalwood samples byNIRS. They examined five
pedunculate oak (Quercus robur L.) pieces of the archeological wood collected from
the waterlogged sites in Poland. The range of waterlogged period of these samples
was 700–2700 years. They measured moisture content, density, cellulose, holocel-
lulose, lignin, extractive contents, crystallinity, and degree of polymerization by the
traditional method and constructed a good calibration curve for lignin and cellulose.
They also showed oak samples representing several degradation levels are grouped
and clearly separated from each other by PCA score from NIR spectra. Linderholm
et al. [74] measured the NIR spectra of rock paintings and local lithology background
in Scandinavian Stone Age rock paintings site Flatruet, Härjedalen, Sweden using
field-based NIR spectrometer. They showed that, although there was a large spread
in the spectra of both background and red paint objects, PLS-DA for NIR spectra
can separate the background and paintings. Their group used a hyper spectral image
to identify the animal bone materials in complex sieved soil sediments matrics from
archeological evacuation in northern Scandinavia [75]. They took NIR hyperspec-
tral image of elk bone and a sieved sediment fraction and identified the presence of
bones, even including variate states of preservation. They further proposed a new
methodology-based NIRS for studying stratigraphy and depth profiles in archeolog-
ical excavations [76]. The soil sampleswere collected from a 0.8-m-deep stratigraphy
of a Neolithic site that was analyzed by NIRS and hyperspectral measurement. It was
shown the NIRS combined with multivariate analysis could be useful for finding soil
horizon traits.
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16.8 Conclusion

As shown above, NIR applied research has attracted considerable attention recently
at the fields ofwoodenmaterials and environmental sciences due to its rapidmeasure-
ment and nondestructive sampling and low-cost characteristics. Another significant
advantage is that many properties could be evaluated simultaneously.

Meanwhile, basic research also has been proceeded actively to make sure predic-
tion model robustness. It is very important to clarify the spectroscopic background
and know the limitation of NIRS. Sometimes, a “bridge” research between theory
and practice is also required.
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Chapter 17
Information and Communication
Technology in Agriculture

Eizo Taira

Abstract Near-infrared spectroscopy (NIRS) enables rapid andnondestructive anal-
yses of the components of an object. NIRS has many applications in agriculture. In
particular, it has been combined with information and communication technology
(ICT) to facilitate the management of equipment and data, thereby significantly
expanding its application range. This chapter discusses the application of ICT,
especially in sugarcane production.

Keywords Information and communication technology (ICT) · Network ·
Geographic information system (GIS) · Unmanned aerial vehicles (UAV)

17.1 NIR Network System

Near-infrared spectroscopy (NIRS) can provide desired data through calibration or
discrimination models. NIR instruments can be used to rapidly measure data related
to product management, grading, and pricing. An Internet-connected NIR network
system enables the efficient and effective collection, analysis, and use of these data
[1]. Further, an NIR network system comprising several NIR devices can not only
collect data but also perform device diagnostics, calibration transfer, and manage-
ment of several calibration models simultaneously. Such systems are, therefore, very
important tools for system managers because they allow end users to perform all
measurements without setting up a calibration model for the given NIR device and
measuring conditions. NIR network software systems are provided either by NIR
manufacturers or by other developers.

NIR network systems afford significant benefits to users. For example, Taira et al.
used anNIR network system to set up sugarcane quality payment [2]. In Japan, sugar-
cane is cultivated on ten islands in the southern region. Further, 16 sugarcane facto-
ries are located across 14 islands. Both users and distributing companies face some
transportation and maintenance issues on these islands when using NIR instruments.

E. Taira (B)
University of the Ryukyus, Nishihara, Japan
e-mail: e-taira@agr.u-ryukyu.ac.jp

© Springer Nature Singapore Pte Ltd. 2021
Y. Ozaki et al. (eds.), Near-Infrared Spectroscopy,
https://doi.org/10.1007/978-981-15-8648-4_17

381

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8648-4_17&domain=pdf
mailto:e-taira@agr.u-ryukyu.ac.jp
https://doi.org/10.1007/978-981-15-8648-4_17


382 E. Taira

Further, NIR instrument operations such as calibration transfer, database manage-
ment, and measurement settings require considerable time and effort. To solve these
problems, 16 NIR instruments connected through a networked system have been
introduced in each sugarcane factory for operations such as updating calibration
models and performing database maintenance.

As these NIR instruments were distributed across distances of 1000 km over
these islands, an effective monitoring and control system was necessary. A computer
network was the best solution for this problem. The network’s control center was
located at the sugar association on Okinawa Main Island, where monitoring and
control operations were performed. Each local system was connected to the control
center through the Internet. The network system worked very well and was easy
to operate. The network system operator could conduct daily checks and address
any minor problems experienced by the slave instruments. Further, sugar content
measurement results collected from all the slave systems could be monitored daily.

Such network systems are advantageous when a calibration manager needs to
update the calibration model on all instruments. Once a sample has been measured
using all instruments, the user can correct biases arising due to slight instrument
differences by using a “repeatability file”. Taira et al. showed the calibration result
for Pol in cane (sugar index for payment) with and without a repeatability file [2].

These calibration models showed lower pooled standard error (P-SE) and pooled
bias than the no repeatability file models, with the first-derivative standard normal
variate (1DSNV) pre-treatment showing the lowest rootmean square errors of predic-
tion (RMSEPs). The network system can be used to apply calibration models to all
instruments in all regions. Furthermore, this system can be used to estimate nutrient
compositions for supporting fertilization operations (Fig. 17.1).

17.2 Assisting Smart Agriculture in Sugarcane Production

In Japan, growers’ sugarcane prices are based on the sugarcane quality. Therefore,
growers try to maintain the unit yield and preserve and/or increase the sugar content.
Quality data, such as sugar content and yield, for all sugarcanefields are automatically
collected by the quality payment system. Thus, this system functions as a big data
collection system.

Watanabe et al. investigated the nutrients present in sugarcane juice to identify
the key factors affecting sugarcane quality [3]. Juice analysis over a 3-year period
showed that potassium (K+) and chloride (Cl−) were the most abundant cation and
anion in the juice, respectively, and that both negatively correlated with the sucrose
concentration. Further, K+ and Cl− concentrations varied significantly depending on
the production area. Traditionally, most growers could not obtain information about
the soil and plant chemistry on their farm, and for decades, they simply applied
fertilizers in an unscientific way. Even for sugarcane production, fertilizers, such as
the potassium fertilizer KCl, were applied without confirming the soil condition and
chemical compositions. When typhoons strike these islands, many farms suffer soil
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Fig. 17.1 NIR network system for sugarcane payment in Japan

depletion because of physical and salt stress. Moreover, these islands do not have
mountains, and therefore, water resources for irrigation are limited; water resources,
including life water, are only available from underground sources. Fertilizers and
irrigation are crucial to the sustainability of agriculture; therefore, plant diagnosis is
a key technique for improving the sugarcane quality and ensuring sustainability.

Several studies have applied NIRS to plant nutritional diagnosis in the field of
agriculture [4–6]. Taira et al. reported calibration performances for basic nutrients,
including nitrogen, phosphorus, and potassium, using a NIR instrument for payment
[7].

Simple diagnoses asmentioned above aswell as those of the sugar content revealed
a negative correlation between the sugar and potassium contents, as shown in the
scatter plot in Fig. 17.2. These results were obtained using NIRS and were similar
to those obtained through laboratory methods. Such results can be obtained in the
payment system simultaneously without requiring additional cost and effort. NIRS
provides similar results to those of other conventional chemical analysis methods.
These results could assist, for example, fertilizer application on farmlands. NIRS
also has a big potential to find use in cane farming and farmers’ decision makings.

17.3 Combining NIR System with a GIS

A geographic information system (GIS) is an effective tool for analyzing the spatial
characteristics of quality data. Through a GIS, low-quality sugarcane and low-yield



384 E. Taira

Fig. 17.2 Relationship
between sugar content and
potassium content in cane
juice measured by NIRS in
Minami Daito Island, Japan
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fields can be visualized easily. Such visualization is important for accurately fertil-
izing sugarcane fields. Figure 17.3 shows a map of sugarcane fields in Minami Daito
Island, Japan. This island is located 400 km east of Okinawa, Japan, and is heavily
dependent on its sugar industry. All polygons represent agricultural farmlands, and
sugarcane is cultivated on 87% of these farmlands. This map shows farmlands where

Fig. 17.3 Farming
evaluation a using
combination of NIR and GIS
in Minami Daito Island,
Japan
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the sugar content decreased from 2012 to 2013, with red and blue indicating sugar
content of less than andmore than 14%, respectively. However, the potassium content
in cane juice increased in all farmlands. This indicates that potassium and the sugar
content are negatively correlated, that is, reducing potassium in the soil or adding an
organic fertilizer can increase the sugar content [8]. This evaluation system has been
used not only for cane payment but also as a low-cost diagnostic system to improve
field management. The NIR database contains information on all cane farmers in
Japan and could be extended to other farm management applications.

17.4 On-Site Analysis for Agriculture

In sugarcane production, estimating the cane quality and quantity prior to harvest is
key for optimizing harvest scheduling and supply chainmanagement.Doing sowould
contribute to increasing profitability for growers and sugar production factories.
A previous study reported a calibration model for analyzing sugarcane stalks and
evaluating components such as sugar, moisture, and fiber contents [9–11]. It used a
portable NIR instrument for the direct scanning of cane stalks (Fig. 17.4). Further, it
investigated the optimum integration times and preprocessing techniques. The best
model for Pol and fiber had coefficients of determination of the prediction set (r2) of
0.84 and 0.81 and RMSEPs of 1.2% and 0.63%, respectively. These models could be
used for screening, and, therefore, they help breeders perform rapid measurements
and potentially monitor sugarcane quality in the field to aid breeding programs.
Moreover, the measured results could enable the estimation of harvest times and the
early detection of diseases.

Fig. 17.4 Direct scanning of cane stalk using portable NIR instrument (P-TF1, HNK Engineering
Co., Ltd., Iwade, Japan)
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Fig. 17.5 UAV equipped with multispectral camera (left) and flight planner (right) (HG Robotic
Co., Ltd., Bangkok, Thailand)

NIRS is also being used in remote sensing systems on unmanned aerial vehicles
(UAV). Studies have shown that the properties of agricultural fields can be easily
estimated from infrared images [12, 13]. UAV could be used to acquire the canopy
reflectance to explore correlations between desired crop parameters. For example, a
UAV equipped with multispectral cameras and operated with a customizable flight
planner (Fig. 17.5) and an automatic controller as well as analysis software for
mapping, interpreting, visualizing, and reporting the quantity and quality of sugar-
cane in fields was used as a farm monitoring and mapping platform for sugarcane in
Thailand.

Flight conditions that affected the quality of the reflectancemap, such as the height
that determines the ground sampling distance, traveling speed, front overlapping,
and side overlapping, were tested and verified. The acquired images were generated
using five bands of reflectance maps—blue, green, red, NIR, and red edge. Then,
these reflectance maps were used to calculate the potential vegetation indices and
paired with averaged references values to create simple linear regression models.

Chea et al. reported calibration performance of cane properties using the UAV
system [14]. The best R2 values for different vegetation indices for Brix, Pol, CCS,
and fiber were 0.84, 0.77, 0.68, and 0.50, respectively. They also showed a seasonal
trend and a distribution of different varieties in the fields. Because the physiological
characteristics of different varieties affect the vegetation indices chosen for use in the
prediction models, feasibility tests are required to confirm whether these prediction
equations can be applied to varieties which possess other noticeable physiological
characteristics. This platform can be useful for optimizing harvest schedules and
supply chain management and for planning cultivation in the next season based on
the cane quality distribution in the field (Fig. 17.6).
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Fig. 17.6 Distribution of Brix of sugarcane in the field predicted by multispectral reflectance map
fromUAV imagery reported by farmmapping andmonitoring service (KhonKaenUniversity, Khon
Kaen, Thailand)

17.5 Advanced Unique Applications

Soil sensors are already available for analyzing soil properties in real time. Shibusawa
suggested that soil components can be estimated using an NIR sensor attached to
a tractor [15, 16]. Currently, an automated tractor controlling system based on the
global navigation satellite system (GNSS) is under development. This system stores
results measured by real-time soil sensors in the field in a database. These data can
be used for fertilization management and understanding farmland characteristics.

Recent years have seen rapid developments in microcomputers and device minia-
turization.Microcomputers, like theRaspberryPi, enable user-specific customization
for realizing various applications [17, 18].

Overall, the findings suggest that the combination of NIR and ICT can serve
as a powerful tool in the field of agriculture for optimizing limited resources and
supporting farming operations.
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Chapter 18
Near-Infrared Spectroscopy
in the Pharmaceutical Industry

Benoît Igne and Emil W. Ciurczak

Abstract Since the first applications of near-infrared spectroscopy in the pharma-
ceutical industry to today’s in-line and in real-time monitoring and control of manu-
facturing processes, the technology has come a long way in sensitivity, robustness,
and deployability. The pharmaceutical industry is now able to rely on the technology
to release medicine to patients without having to sample for off-line analyses. The
sensitivity of NIR light to the matrix, which makes it a tool of choice for rawmaterial
identification and counterfeit detection, can be an issue for quantitative and quali-
tative methods as much of the variance has to be captured by the model prior to
validation to avoid repeated method updates. Nevertheless, its flexibility of imple-
mentation, hardware ruggedness, and wide range of applicability makes it a tool
of choice for process understanding, monitoring, and control. In this chapter, an
overview of the current usage is provided for the development, understanding, and
control of pharmaceutical processes for small molecule drug substances, drug prod-
ucts, and biopharmaceutical materials. A discussion of the regulatory environment
and available guidance documents is provided. Finally, the intended method use
and the associated method validation requirements are discussed in the context of
building fit for purpose methods.

Keywords Near-infrared spectroscopy · Pharmaceutical · Drug substance · Drug
product · Biopharmaceutical
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18.1 Introduction

The pharmaceutical industry aims to discover, develop, and manufacture chemical
and biological compounds with a therapeutic activity that benefits patients. These
active pharmaceutical ingredients (APIs) can be synthetized by synthetic chemical
reactions (small molecules) or natural processes through the use of microorganisms
(large molecules). After an entity has been found to have a desired therapeutic effect
and is approved for sale by health authorities, it needs to bemanufactured in sufficient
quantity to ensure patient access.

Since the first applications of near-infrared spectroscopy (NIRS) in the pharma-
ceutical industry [1] to today’s in-line and in real-time monitoring and control of
manufacturing processes, the technology has come a long way in sensitivity, robust-
ness, and deployability. While that evolution was inevitable, it still took several
decades to demonstrate the value the technology can bring to ensure product quality.
In this chapter, an overview of the current uses of near-infrared spectroscopy will
be provided for the development, understanding, and control of pharmaceutical
processes for small molecule drug substances, drug products, and biopharmaceutical
materials.

While an active field of research and development in the 1980s and 1990s, it is
the US FDA that put NIRS and other rapid, non-destructive analytical tools on the
map of senior stakeholders with the Process Analytical Technology (PAT) guidance
of 2004 [2]. It defined Process Analytical Technologies as “a system for designing,
analyzing, and controlling manufacturing through timely measurements (i.e. during
processing) of critical quality and performance attributes of raw and in-process mate-
rials and processes,with the goal of ensuring final product quality” [2].WhileNIRS is
certainly not the only process analytical tool, it is one of the most robust, the safest,
and most widely used tool by pharmaceutical scientists. The reasons are multiple
(i.e., good sample penetration depth, no sample preparation, rapid acquisition, and
good sensitivity), but the combination of spectroscopy and chemometrics led to the
development of NIRS as a technology of choice and to the training of a generation of
process analytical scientists, skilled in spectroscopy, chemometrics, sampling, and
engineering. It is nevertheless important to note that much work has been done with
IR, Raman, fluorescence, and UV–Vis spectroscopy. Readers can get an idea of the
current state of the process analytics field in several reviews [3, 4].

In this chapter, an overview of the current usages of NIR Spectroscopy in the phar-
maceutical industry for small and large molecules will be presented. For a historical
perspective, readers should refer to other books and book chapters [5–7].
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18.2 ICH Guidance, Validation Principles, and Lifecycle
Management

The industry is highly regulated to ensure that patients are provided with safe and
effective active pharmaceutical ingredients (APIs). Health authorities publish guide-
lines that describe the clinical and manufacturing principles that companies should
consider to potentially gain market approval in their respective jurisdictions. In an
effort to harmonize expectations and requirements across the industry, the Interna-
tional Council for Harmonization of Technical Requirements for Pharmaceuticals for
Human Use (ICH) has published since 1990 several guidelines on manufacturing,
quality control and assurance and some specific countries have also published guide-
lines on the use of PAT [2], describing a framework designed to encourage compa-
nies to use process analytics tools to support development and innovation in the
manufacturing of medicines.

The development of PAT applications typically requires a multidisciplinary
approach, combining the use of simple process sensors and analyzers, chemometric
tools (multivariate tools for experimental design and analysis), process supervision
and control, and continuous improvement tools.

While the majority of spectroscopic PAT applications are for process under-
standing, an increasing number of submissions are specifically for assuring quality or
releasing product. Because spectroscopic PAT methods often rely on a multivariate
model, the impact of these models to the patient dictates the required level of model
verification and validation. Three levels were discussed by ICH [8]:

– Low-Impact Models: typically used to support product and/or process develop-
ment

– Medium-Impact Models: assuring quality of the product but are not the sole
indicators of product quality

– High-Impact Models: prediction from the model is a significant indicator of
quality of the product.

ICH-Q2(R1) [9] is usually the framework followed by pharmaceutical scien-
tists to validate analytical methods. It references the requirements for the various
figures of merit an analytical methodmust include (i.e., accuracy, precision, linearity,
range, robustness,…). A number of articles describing the validation of near-infrared
analytical methods have been published [10, 11]. In addition, frameworks of analyt-
ical development practices have been published such as the Analytical Quality by
Design [12]. Several standards discuss these in detail [13, 14] and regulatory agencies
have also published their expectations [15, 16].

Finally, it is necessary to state that the current challenge in the use of PATmethods,
includingNIRS, is their lifecyclemanagement.Method validation is nowwell under-
stood but as these tools get used in commercial settings and need updates as the instru-
ments, raw materials, and processes change, more experience needs to be developed
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in how models can be made more robust, reducing the need for updates, or stream-
lining the updates, or applying re-calibration/re-validation approaches to ensure these
methods are ready with minimal to no downtime [17].

18.3 Large Molecules

The manufacturing of biologics (i.e., monoclonal antibodies, recombinant proteins
and DNA, vaccines, etc.) relies on complex cellular systems with high sensitivity
to their environment and feeding regimen. The production of large molecules by
microbes and mammalian cells requires the control of numerous processing param-
eters such as nutrient concentration, temperature, pH, gases, agitation, etc. The
host cells, the product, the by-products (lactate, ammonium, CO2, etc.), and the
growth medium constitute a complex mixture with many of the chemical species
present in a bioreactor at levels undetectable by many analytical tools, including
NIR spectroscopy.

The production of large molecules typically follows a two-step process: first the
microorganisms produce the molecules of interest, then the molecule is purified from
the growthmedium, cells, viruses, and other impurities.However, to date,much of the
published work involving NIRS has been to produce large molecule in bioreactors.

The manufacturing process heavily relies on the in-line and in real-time measure-
ments and control of processing parameters such as pH, dissolved oxygen, dissolved
CO2, and other elements impacting cell health. Depending on the desired feeding
strategy, nutrients (i.e., glucose) may need to be measured and controlled throughout
the duration of the batch and by-products (i.e., lactate, ammonia) may also need
to be monitored. However, their measurements have been and remain a challenge.
As a consequence, manual sampling and off-line measurements with fundamental
primary analytical methods are still predominant. Nevertheless, the use of in-line
spectroscopy as a process analytical tool to monitor and control these bioreactors
has seen a significant increase over the last decade. While Raman spectroscopy may
appear to be better suited to a water rich process, near-infrared spectroscopy has been
widely utilized [18].

18.3.1 Bioreactor Monitoring and Control

Initially employed for the analysis of pulled samples at-line or off-line, it is now
commonly used on-line through a recirculation loop or in-line with a probe directly
introduced in the bioreactor.

Thefirst report of the use of off-line spectroscopywas performedon a fermentation
process for A. awamori and P. oxalicum [19] at 1L scale.

Further work was performed for the analysis of the yeast fermentation processes
for the production of mammalian proteins. A significant body of literature exists
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on Pichia pastoris. The monitoring of product, methanol, glycerol, and biomass
using both transmittance and reflectance (when sample was too optically dense) NIR
spectroscopic modes was demonstrated [20]. On-line monitoring through a recircu-
lation loop showed the ability to monitor methanol and developing feed-back control
to maintain its level at various set points [21]. In-line monitoring of a fermentation
process with Streptomyces coelicolor was published for the prediction of glucose and
ammonium using a fiber-based system. Authors compared the results with off-line
samples and showed that signal attenuation above 2000 nm resulted in lower quality
models for ammonium [22]. Further in-line examples of fermentation monitoring
demonstrated prediction errors relevant for considering the reduction or elimination
of manual sampling while maintaining a higher level of process monitoring, control,
and fault detection [23].

Fermentations are progressively being replacedbymammalian cell-basedbioreac-
tors such as the Chinese Hamster Ovary (CHO) cells for the production of complex
monoclonal antibodies. For mammalian cell reactors, the monitoring of glucose,
lactate, and ammonia has been investigated [24, 25].

An example of deployment of several transflectance probes using a multiplexed
FT-NIR spectrometer was published. Author monitored 12,500 L bioreactors using
partial least-squares (PLS) regression models for seven parameters: glucose concen-
tration, osmolality, packed cell volume, product titer, viable cell density, integrated
viable cell count, and integrated viable packed cell volume [26]. Figure 18.1 presents
an example of a bolus fed-batch glucose profile as a function of time.
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Fig. 18.1 Predicted glucose content as a function of growth time. The red triangles correspond to
off-line measurements
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Partial least-squares models have routinely been employed to develop the models
discussed above, but other quantitative approaches and variable selection methods
have been utilized to improve method performance. An example of fermentation
monitoring that employed variable selectionwas demonstratedwith improved perfor-
mance over full-scale/ selected-region models through the use of interval PLS [27].
Interval PLS approaches divide the full spectra in sub-regions and find which combi-
nation of variables give the best results. Models with the full spectra or selected
regions were also developed, but with higher errors than the interval PLS [27].

All the examples provided above show how NIRS has be used during a bioreactor
run. But a large amount of information can be obtained from retrospective analyzes to
compare batch-to-batch variability. A principal component analysis (PCA) applied
onNIR spectra collected in real-time during five batches allowed the characterization
of the batches based on cell densities (scores on the first principal component) and
batch-to-batch variations (scores on the second principal component) [28].

But despite the reported work, a review of on-line monitoring and control tools
for mammalian cell cultures challenged the applicability of NIR for bioprocesses
[29]: “[…], the molar absorptivity in the NIR range is typically quite small; thus,
the method is not ideal for diluted or minor components. This can be a limiting
factor for the application to mammalian cell cultures, since a key process control
objective during fed-batch operation is to keep glucose and glutamine at very low
concentrations to prevent the accumulation of the toxic by-products ammonia and
lactate. Furthermore, the overlapping signals seen in the NIR range results in very
broad peaks, leading to complex spectra and hindering the assignment of specific
features to individual compounds. These characteristics require a chemometric data-
mining step to relate spectral information with the target compounds”. For these
reasons, NIRS remains underutilized when compared with Raman for themonitoring
of pharmaceutical bioprocesses. But, innovation in sensitivity and chemometrics will
help support the technology in the long term.

18.3.2 Lyophilization

Another area of application ofNIRS in bioprocesses is lyophilization. The removal of
water from the final drug product (after purification of the growthmedium containing
themolecule of interest) is necessary to ensure that themonoclonal antibodies remain
stable and can be stored and shipped without affecting their therapeutic effects.
Lyophilization, or freeze drying, can be used to achieve that. Since water has a strong
molecular absorptivity in the NIR region, it is a tool of choice for the monitoring and
control of these processes. Publications have shown the suitability of the technique
for the analysis of water content through the container during water removal [30,
31]. The spatial distribution of moisture within vials was also investigated with NIR
chemical imaging [32].

To ensure that the proteins will maintain their therapeutic effect after water
removal, it is necessary to understand whether the water removal process affects the
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protein structures by creating aggregates or irreversiblemodifications. Several studies
have looked at the protein conformation during lyophilization and the interactions
with the lyoprotectant compounds [33].

18.3.3 Summary

While biological processes usewater as amedium andwater has a strongNIR absorp-
tivity, a large body of work has been established, demonstrating the suitability of the
technique. Simplification of the modeling and sensitivity enhancement could help
NIRS support the development of robust processes and, when relevant, be employed
to monitor or control processes during manufacturing operations.

18.4 Small Molecules

Engineered to generate a particular therapeutic response, small molecules have been
the workhorse of the pharmaceutical industry.While more andmore biological prod-
ucts are being brought to market, small molecules will remain a significant part of
the portfolio of pharmaceutical companies for the foreseeable future.

There are usually two main manufacturing steps in bringing a synthetic active
pharmaceutical ingredient to patients: the first consists in producing the small
molecule in large quantity with the desired properties; the second will take the API
and transform it in a form that can be supplied to the patients (tablets, capsules,
transdermals, creams) or used by medical professionals (injectables). The remainder
of the chapter will discuss how NIRS has been used in the support of these activities.

18.4.1 Drug Substance Manufacturing

The synthesis routes leading to the discovery of APIs are usually not optimized
for purity and manufacturing efficiency. Process chemists and engineers will often
develop a simplified and robust process while ensuring that the molecule retains
its safety, efficacy, and physico-chemical characteristics. The synthetic route must
ensure that all the raw material properties and unit operations that lead to the forma-
tion of the final drug substance are understood so that properties such as API particle
size and shape, form, impurity level, and yield are controlled during production.

A synthetic synthesis will involve combining raw materials, reactions with the
formation of intermediates, isolation of intermediates, and final product isolation.
For each step, the impact of temperature, pressure, steering rate (amongst other
parameters) on the solubility, and reaction kinetics will need to be carefully studied to
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design a process that maximizes the yield while minimizing impurities and ensuring
the targeted bioavailability for the API.

Process analytical technologies have been used in the development of these routes
to ensure that the chemists and engineers can identify and optimize critical parameters
to develop robust processes [3, 34, 35]. In this section, examples of the use of NIR
spectroscopy for reaction and purification monitoring and control are presented.

18.4.1.1 Reaction Monitoring and Control

Gaining understanding of the reaction under consideration is the primary value
proposition that NIRS provides to the development of drug substancemanufacturing.
Chemists and engineers want to develop the most robust processes and will often
sample the reaction for analysis by HPLC or NMR, which can take several hours and
potentially be affected by sampling and quenching. Having the ability to track the
reactions in-line and in real-time can provide additional insights into the state of the
reaction in the vessel, its dynamics, and end-point. This is particularly relevant for
the monitoring of intermediates and final product in the early phases of development
or when sampling is difficult (such as for hydrogenation reactions performed at high
temperature and pressure). When relevant, NIRS may be used for reaction control,
making decisions on the process to ensure the quality of the product for the patient.

An example of reaction monitoring was published by Blanco et al. [36] Authors
followed the esterification of myristic acid by isopropanol using multivariate curve
resolution. Figure 18.2 shows the relative trends of the component parameters. In
simple reactions like this, PCAmay also be used but when intermediates are formed,
the variance described by the principal components may be distorted by the appear-
ance and disappearance of species. This could affect the score trends and impair the
ability of PCA to adequately track the reaction. Multivariate curve resolution, with
its constraints for specificity can allow a better understanding of the reaction [37].

An example of the deployment of NIRS to reduce the safety risks to operators
was published by Wiss et al. [38]. The authors used NIRS with a transmittance
immersion probe to monitor and control a highly exothermic reaction during the
formation of a Grignard reagent. After building calibration models, the system was
used to quantitatively track the reagents as a function of reaction time. Figure 18.3
shows the evolution of the reaction components. The authors subsequently used
NIRS to automatically control the feed rate of a reagent and limit the safety risks
associated with the highly reactive process.

A very similar example was described for the monitoring and control of a distil-
lation process [4]. The authors built quantitative models for the API concentration
and the solvent composition and fed-back that information to the distillation system
controlling the temperature and reflux ratio of the column when product of a variable
extraction was continuously fed for distillation. The results showed far better control
of the process when the distillation was optimized to account for the variability of
the incoming material. Figure 18.4 shows the process variability of API %w/w, with
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Fig. 18.2 Predicted concentration profiles. (� � �) myristic acid; (- -) isopropyl myristate; (—)
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with permission from [4])

and without temperature control. Other examples of solvent composition monitoring
and control were described [3].

The enhanced understanding of a drying reaction was demonstrated by tracking
the OH- absorption band as a function of drying and rehydration time [3]. Form
monitoring during drying was also demonstrated using a reflectance probe. The
monitoring allowed in real-time determination of the conversion efficiency, allowing
processing of the batch once the conversion to the desired form was achieved.

18.4.1.2 Purification

To remove impurities and control their form, APIs are usually crystalized by using
temperature and solubility to precipitate the molecules out of solution. NIRS has
been used to monitor the yield (howmuch API is removed from the solution) and the
form of the resulting crystals. As the instrumentation evolved, form analysis moved
from at-line [39] to in-line [40]. A study of crystallization kinetics as a function
of processing parameters (temperature, habit, size of seeds, and solvent) allowed
the optimization of the process [40]. The scale up of a crystallization from pilot to
industrial scale was aided by a quantitative NIR model for the prediction of the form
composition. Probe fouling was mitigated through the use of a nitrogen purge in
front of the sapphire window [41].
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18.4.2 Drug Product Manufacturing

Once a drug substance has been manufactured in sufficient quantity, the optimization
of the process that manufactures the drug product delivered to patients can start. The
form of the drug product can vary significantly based on the intended use and the
desired pharmaco-kinetic profile. Medicines for delivery to patients by health-care
providers will often be manufactured in the form of sterile products for intravenous
delivery. However, other means of drug delivery are necessary for patients to take
at home. Tablets are the most commonly used oral solid dosage forms because of
their convenience (which improve treatment compliance) and ability to change their
delivery profiles (immediate release or sustained release). But a visit to the pharmacy
will highlight the variety of delivery forms available, from creams and ointments to
inhalers, capsules, and transdermal patches to name a few.

Active pharmaceutical ingredients are often poorly flowing materials and so
merely pouring them directly in a capsule filling machine or tablet press would
result in variable dosage forms (not providing the patient with the right dose for the
intended therapeutic effect). To ensure the final drug product has the characteris-
tics advertised on the label, the API is usually combined with inactive ingredients
(excipients) that will result in a better flowing material that can be processed at
high speed with the desired product attributes. When no other processing step than
mixing is necessary to ensure homogeneity and weight consistency, the process is
called direct compression. However, when the API is present in large quantity in
the formulation or has poor flowing properties, it may be necessary to granulate the
material (through physical means (dry granulation or extrusion) or using a solvent
and binder (wet granulation)) to obtain a free-flowing powder that can be processed
at high speed on a tablet press or encapsulator.

Because of the difficulty of working with powders and their ability to aggregate
or segregate, particular attention has to be given to the intermediate and final quality
attributes of the drug product. Near-infrared spectroscopy has been a tool of choice
for use in the manufacturing of oral solid dosage forms. Near-infrared light pene-
trates deeper than UV, Raman, or infrared light and rugged equipment is available
to measure the drug content during the manufacturing process. In addition, with the
transition of the pharmaceutical industry from batch to continuous manufacturing,
NIRS has become a tool of choice for in-line and in real-time measurements and
control of the manufacturing of drug products. In this section, examples of the use of
NIRS for the main unit operations involved in manufacturing tablets are provided.

18.4.2.1 Powder Homogeneity

This particular unit operation consists in mixing active and inactive pharmaceutical
ingredients to obtain a homogeneous mix that can be used for tablet/capsule manu-
facturing or for input to a granulation operation. The most important parameters
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associated with blend quality are homogeneity and stability. Blending is used in all
drug product manufacturing operations and has thus been the subject of extensive
research.

Batch blending

The traditional approach to batch blend quality evaluation relies on powder sampling
at various locations of the blender bin after a given time of mixing and analysis by
HPLC for the API content. It is a discrete operation that provides an evaluation of
an entire bin at a particular time point. But because it requires manual sampling, it
has been shown that it can induce errors [42]. Alternatively, a wireless NIR unit can
be mounted on a blender. While the amount of powder analyzed at each rotation is
usually lower than what would be considered by manual sampling (between 10 and
50mg based on the collection optics and powder density), it allows the understanding
of blend kinetics for not only the active ingredient but also the major excipients, the
comparison of blend trends across batches without having to manually sample, and
the possibility to determine a blend end-point.

Blend analysis by NIRS has been performed off or at-line on sampled powders by
single point spectrometer [43] or imaging [44] but most of the work has been done
on-line with qualitative and quantitative methodologies. Hailey et al. and Sekulic
et al. first reported the use of on-line NIR with qualitative approaches to eval-
uate the end-point [45]. They used a moving block standard deviation to determine
when the blend was done evolving. In that approach, the pooled standard devia-
tion across the variables is calculated for a set block of spectra and compared with
previous and subsequent blocks. Figure 18.5 shows the application of the moving
block standard deviation approach with a block size of 25 spectra onto NIR spectral
data collected on-line for blend comprised of acetaminophen (34.5%w/w), lactose
(34.7%/w), microcrystalline cellulose (24.8%/w), croscarmellose sodium (5.5%/w),
andmagnesium stearate (0.5%/w) [46]. The spectrawere preprocessedwith Standard
Normal Variate to reduce the effects of physical properties. The approach determined
that the blend reaches a plateau of variability after about 40 rotations with no long-
term trend. A threshold could be set using historical information to identify when
a blend has reached homogeneity. However, this approach requires historical infor-
mation of what should be considered homogeneous. To address this limitation, an
F-Test-based method was proposed [47]. The spectral variance of two sequential
blocks is calculated and compared with an F-critical value calculated based on the
size of the blocks and the confidence limit. This approach avoids having to set a value
of standard deviation corresponding to blend stability but rather uses the block-to-
block information to determine when the two populations have a similar variance,
indicating that the blend is no longer changing given the confidence limit considered.

These two methods use the spectral variance in the form of a spectrum standard
deviation. It could be envisioned that for a same resulting standard deviation, different
regions of the spectra could be changing; thus, indicating different phenomena taking
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Fig. 18.5 Moving block standard deviation with a block of 25 spectra applied to on-line NIR
spectra of an acetaminophen blend
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place in the blend. Principal component analysis has been used to help with the
analysis of the origin of the variance as well as blend monitoring and end-point.
Soft Independent Modeling of Class Analogy (SIMCA) was employed to identify
when a spectrum belonged to the class corresponding to homogeneous spectra [48].
Figure 18.6 shows the PCA scores and loadings plots for the blend discussed above.

The loading plot allows the understanding of the origin of the change in the
spectral data as a function of mixing while the scores provide the variance trend as
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Fig. 18.7 Variance ratio trend as a function of blending time compared with the F-critical value

a function of time. Compared to the moving block standard deviation method, the
PCA approach shows that the information described by the first principal component
(PC1) and representing 84% of the available variance would describe the blend to
reach stability after approximately 75 rotations. This was not a piece of information
available by looking only at the pooled spectral standard deviation.However, this type
of analysis is rather difficult to use to determine an end-point as historical knowledge
would be necessary.

A hybrid approach called the caterpillar, that performs a variance comparison on
blocks of spectra after local PCA analyses, was proposed [49]. An F-test is calculated
to compare the variance in each block and an F-critical can be calculated to determine
when the variance across blocks is no longer significantly different. In addition, the
shape of the components for each local model can be compared, providing specificity
to the components of interest. Figure 18.7 shows an example of a caterpillar output
with the calculated F-value trend as a function of the number of rotations.

Themethods discussed above provide an idea of the blend kinetics, but not directly
blend content. It could be inferred however with a PCA model. If a PCA model is
built on spectra proven to correspond to homogeneous powders (through sampling
and HPLC analysis), new spectra could be projected onto that model and diagnostics
(Hotelling’s T2 and Q-residuals) could be used to determine whether they present the
same variability (thus the same content) [46]. Other authors have used PLS regression
[50]. The development of these methods is however very resource intensive with
samples needed at various concentration levels to build the model.

When a process is scaled up from laboratory to plant or manufacturing scale,
differences can be observed in the spectra due to changes in powder density against
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the sensor’s window, resulting in the need for data collection at large scale which
can be expensive and time consuming.

Continuous blending

In situations where the blend is manufactured continuously, approaches have been
developed to monitor the homogeneity as a function of time. However, a few addi-
tional considerations need to be taken into account when discussing continuous
blending. First, the scale of scrutiny (or the amount of sample analyzed at a given
time) becomes more important. In batch blend monitoring, the same powder will
be analyzed rotation after rotation until the entirety of the powder becomes homo-
geneous and stable. In continuous blending, the powder may never be re-analyzed
and so the sampling must be representative of the mass of powder that patients will
take. Thus, spectra representing at least one-unit dosage form should be collected so
a relevant determination of homogeneity can be achieved. A discussion of scale of
scrutiny and spectral collection geometry on model performance showed the interde-
pendence between process design and sampling representativity [51]. Probe fouling
can also be a significant issue in continuous blending. While in batch, it would be as
simple as stopping the bin, wiping the window, and restarting the batch if coating on
the window is detected, it is not possible to do that often in continuous blending as
manufacturing time dictates the quantity produced. When sufficient shear is present,
and the window self-cleans, little to no control may be necessary. This may be the
case in a tablet press feed-frame for instance. But where the shear is low or the
material sticky, it may be necessary to have an active control that will wipe or clean
the probe at set frequencies. Commercial solutions are available to perform these
frequent probe cleanings.

Themonitoring of blend homogeneity in a continuous process has been reported at
the exit of a blender or in the feed-frame of a tablet press. Similarly to batch blending,
continuous blend monitoring can utilize qualitative or quantitative approaches,
depending on the intended purpose of the method. A qualitative approach based
on the F-test was proposed by Fonteyne et al. using the same principles of the block
F-test discussed above for themonitoring of blends [52]. A number of articles discuss
the prediction of blend uniformity for continuous systems. A triangle interface was
used by Vargas et al. to monitor the homogeneity of powder at the discharge of a
blender [53]. Quantitative models were developed for the active ingredient after a
spectral quality evaluation ensured that the powder bedwas representative and did not
contain air pockets potentially formed as the blend travels from the blender to down-
stream unit operations. Other articles report the monitoring of powder uniformity in
feed-tube to a tablet press and other powder interfaces [54].

A significant amount of work has been performed on the analysis of powder
in the feed-frame. Initially presented by Liu and Blackwood [55], an example of
method development and validation was published by De Leersnyder [11]. Authors
investigated the relationship between press parameters (turret speed, paddle speed
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and the distance between the paddle and the sensing window) and the quality of
spectral signal.

18.4.2.2 Granulation and Drying

When a powder flows poorly and is not amenable to high speed processing, powder
consolidation can be used to improve its flow characteristics using a solvent and
binder, compaction, or heat to create granules. In wet granulation, a solvent (usually
water) and binder (in solid or liquid form) are added to the powder alongwith shear to
create aggregates. The solvent is then removed through drying. A granulation process
will result in particles of much larger sizes and density than the initial powders. NIRS
has been used to monitor the particle growth, homogeneity, and solvent level after
drying.

High-shear wet granulators and fluid bed dryers are the most common types of
batch granulator and dryers. Since NIR has a very strong water signal, it has been
used to monitor the water level of the granules during granulation and drying. Frake
et al. used the technology to monitor the granulation end-point in a fluid bed dryer
[56]. Another study looked at how the NIR signal could be used to monitor granule
growth in a fluid bed dryer [57]. Corresponding work in a high-shear wet granulator
was performed using the change in slope of the NIR spectra as a function of physical
differences during the process [58].

The removal of the granulation solvent can also be monitored and potentially
controlled byNIRS. Fluid bed drying ismost commonly used. An example ofmethod
development and validation for the monitoring of water was published [59]. Alcalà
et al. showed the suitability of NIRS for the prediction of granule bulk density [60].

Figure 18.8 shows an example of fluid bed granulation and drying process trajec-
tory. After a brief phase of mixing without solvent (dry mixing), the water is added
and then removed. The first two principal components clearly show a combination of
water and particle size information with the water content increasing and decreasing
to a similar level, but with a powder physical property shifting significantly.

Twin-screw granulation is a continuous wet granulation method used in contin-
uous manufacturing lines. Granule quality and the impact of processing parameters
such as liquid feed rate, moisture content, and screw configuration were investigated
by NIR chemical imaging [61]. Authors showed that the visualization capability of
the technology allowed the characterization of the unit operation as the entirety of
the produced materials can be analyzed in-line and in real time, accelerating process
development and improving understanding.

Dry compression does not use a solvent but physical force to consolidate powder
into granules of larger particle size. The density of the ribbons and particle size
distribution of the resulting granules are parameters that have been investigated by
NIRS [62].

Hot melt extrusion uses heat and shear to embed the API with polymers creating
an extrudate with high homogeneity and increased bioavailability for API with low
solubility. A probe can be attached to the die of the extruder to monitor the properties
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Fig. 18.8 PCA score trends for a fluid bed granulation and drying process. (Reproduced with
permission from [60])

of the extrudate [63]. Drug and polymer concentrations as well as the solid state of
the API have been studied.

18.4.2.3 Dosage Form Analysis

Since analyzing a tablet or capsule by NIR takes only a few seconds with no sample
preparation, numerous companies and academic groups have investigated the suit-
ability of the technology. Some deployments have been proposed to replace final
product testing as an alternative release method. A well-documented example was
published by Goodwin et al. [64] In their work, authors proposed a control strategy
for a product based on compaction force weight control, periodic at-line weight
measurements, and NIRS analysis of individual tablet content. The authors devel-
oped a NIR spectroscopic method with a validation error of 1.12% of label claim and
demonstrated its equivalencywith the reference HPLCmethod using a two one-sided
t-Test.

A demonstration of high-speed tablet analysis was published by Boiret et al. [65]
The authors used a reflectance measurement based on a spatially resolved spectro-
scopic probe to investigate (using a conveyor belt and acquisition times as low as
1 ms) the homogeneity and distribution of API in tablets.

However, while much work has been done to show that intact dosage forms can
be successfully analyzed, the industry appears to be moving toward in-line and in
real-time measurements of content.
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18.4.3 Summary

The variety of applications in drug substance and drug product manufacturing
shows the versatility and usefulness of the technology for the development of robust
processes to deliver patients with safe and efficacious medicines. It also shows the
breadth and depth that a PAT scientist must have to successfully deliver a NIRS
analytical method.

18.5 Raw Material Identification

Rawmaterial identification has beenmade possible by the flexibility of the hardware,
particularly the handheld systems. In essence, developing a raw material identifica-
tion method relies on the creation of a relevant spectral library and the determination
of a set of criteria that can determine the class of a new sample. A comprehensive
review on the topic is available [66].

The development of a spectral library is not a simple task. Similar to developing
a quantitative method, the spectral library must include spectra representative of the
variability that will be encountered during the use of themethod. If future samples are
expected to vary in physical properties or have a range of chemical properties, they
should be included in the library. Failure to do so will falsely identify valid samples
as not belonging to the expected population, thus requiring the need for investigation
and updating the library andmodel.While it is never possible to foresee all the sources
of variability that will be encountered, it is recommended to consider various lots
and chemical/physical property ranges to define each class as precisely as possible.

Once a representative library is created, an algorithm is used to discriminate
between classes. A large variety of methods is available [67].

Control over the raw material characteristics has also been investigated for
biopharmaceutical products. The performance of basal powders on process perfor-
mance and product quality was used to identify classes amongst spectra [68]. The
grouping of the samples was attributed to the blend uniformity, impurities, and heat
sensitivity during the milling process.

18.6 Summary

From the first usage of NIRS in the field to its now prominent position for process
monitoring and control, near-infrared spectroscopy has come a longway in hardware,
software, and modeling. The pharmaceutical industry is now able to rely on the
technology to release medicine to patients without having to sample for off-line
analyses. The sensitivity of NIR light to the matrix, which makes it a tool of choice
for raw material identification and counterfeit detection [69], can be an issue for
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quantitative and qualitative methods as much of the variance has to be captured by
themodel prior to validation to avoid repeatedmethod updates.Other techniques (i.e.,
Raman and Infrared spectroscopy) are also complementing and sometimes replacing
NIRS when better suited. Nevertheless, its flexibility of implementation, hardware
ruggedness, and wide range of applicability make it a tool of choice for process
understanding, monitoring, and control.
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Chapter 19
Bio-applications of NIR Spectroscopy

Christian W. Huck

Abstract Near-infrared (NIR) spectroscopy occupies a distinct spot as an investiga-
tion tool in bioscience. It gained an ultimate value in several areas of application, e.g.,
in characterization of plant material, examination of body fluids, exploration of the
structure and properties of water and biomolecules in aqueous environment. On the
other hand, certain limitations of this technique have been apparent and its full poten-
tial seems yet to be unveiled. In recent years, key advancements in technology and
methods have pushed the frontier of NIR spectroscopy in bio-applications. Trend-
setting studies demonstrated the capacity of NIR spectroscopy to excel in previously
unattainable scenarios such as in vivo examination of entire organisms. The advent
of miniaturized instrumentation enabled a new spectrum of applications in plant-
related research. Advancements in data analytical methods decisively pushed the
limit in interpretability of NIR spectra, enabling better understanding of NIR spectral
features of biomolecules. These advancements were accompanied by a continuous
refinement of established approaches. This chapter discussed the established appli-
cations, current developments and future prospects of NIR spectroscopy in broadly
understood bio-applications.

Keywords Bio-applications · NIR biospectroscopy · Plant analysis · Biomolecules

19.1 Introduction

Near-infrared (NIR) spectroscopy occupies a particular spot across the field of
bioscience. On the one hand, it has become the tool-of-choice in various appli-
cations concerning the assessment of bio-related samples, e.g., in medicinal plant
analysis or quality control of natural products. On the other hand, in several fields
such as in-laboratory bioanalytical research and biomedical diagnosis, it steadily
gains in importance and challenges the related techniques such as IR or Raman spec-
troscopies that are well-established tools therein. Because of several reasons, in the
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past decades, a relatively modest attention has been paid to the potential that NIR
spectroscopy is able to bring to the latter field. Recent years have demonstrated that
NIR spectroscopy may be used in a number of similar applications concurrently
with IR or Raman spectroscopy. To better present the strengths and limitations of
the eponymous method, it is useful to briefly summarize the essential similarities
and differences existing between these approaches. The chemical specificity of IR
or Raman spectra is relatively superior to that of NIR spectra, and they are more
straightforward in a direct interpretation. The observed bands are broader because of
strong overlapping, reducing the potential for linking the spectra with the structural
information. This becomes particularly significant in the case of chemically complex
samples of biological origin. However, recent years have witnessed rapid progress in
our ability to understand NIR spectra of such samples, with combined use of spectral
imaging, novel chemometrics or theoretical methods of spectra calculation [1, 2].
Relevant examples will be discussed in this chapter that demonstrate the progress
recently achieved at this direction.

IR and NIR spectroscopy differ significantly in the typical sampling depth, or in
other words, the information on the sample is collected from distinctively different
sample volumes. This fact has a notable influence, as it is common in bioscience to
investigate highly inhomogeneous, often micro-structured samples, such as cells and
tissues of either plant or animal origin. For example, the consequences of that differ-
ence iswell exemplified inmedical application, inwhich theoptimal sample thickness
for IR transmission measurements conveniently matches the typical configuration of
microtomed tissue specimen used in conventional medical diagnosis. However, the
absorptivity of organic matter is up to two orders of magnitude lower in NIR than
in IR region. Consequently, no useful NIR signal can be obtained from such spec-
imen. On the other hand, this permits NIR radiation to reach deeper and measure
the spectrum of the sample beneath its surface. This enables, for instance, sensing
the information from beneath human skin or examining entire organisms such as
fish embryo. Deep tissue sampling is a key advantage for bioanalytical applica-
tions. Moreover, for the same reason, a larger sample volume is permissible in NIR
spectroscopy, making it better suited for the analysis of bulk materials essential for
bio-related studies (e.g., natural products). Moreover, NIR spectroscopy is relatively
better suited for examination of samples with high water content. Measurements in
transmission or diffuse reflectionmode without sample preparation are more feasible
than in IR spectroscopy, which requires attenuated total reflection (ATR) approach is
such cases. Compared with Raman, which is suitable for examining moist samples,
NIR technique is applicable to specimen with high content of fluorophores; those
most typically encountered in bioscience are, e.g., chlorophyll or proteins. Because
of that, NIR spectroscopy is easily applicable for examination of plants and plant-
related materials, as well as protein-rich samples. Better suitability of the principal
features of NIR instrumentation in certain applications may be mentioned. Avail-
ability of fiber probes makes in vivo diagnosis easier. Miniaturized instrumentation
is readily available for NIR spectroscopy. In contrast, such IR sensors are practically
limited to ATR, and their application faces difficulties, e.g., because of the stability
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of sampling conditions. Worth mentioning is a relatively well-established functional
NIR spectroscopy in medical diagnosis, where it serves the purpose of functional
neuroimaging.

19.2 Medicinal Plant Analysis

Most often, the therapeutic and medicinal properties of herbs and plants are related
to individual bio-active compounds, and their content affects the general usefulness
of a given natural product. The chemical composition and the concentration of the
bio-active compounds can be analyzed by NIR spectroscopy. The worldwide trend
in using medicinal plant products is permanently increasing. In 2018, the turnover
with freely available products from pharmacies wasmore than 1 billion Euro and that
from other sources including online business more than another 1 billion Euro. This
trend creates high demand for high throughput, in situ analytical methods capable
of fast, non-invasive, simultaneous analysis of chemical and physical parameters in
order to ensure quality of the natural medicine. Analytical methodologies based on
portable, miniaturized NIR instrumentation are essentially favored for this purpose,
as direct assessment and optimization of the cultivation conditions and parameters
become possible, e.g., the harvest time. However, this application field remains quite
new, and the applicability and performance profiles of handheld NIR devices remain
continuously investigated.

Kirchler et al. described in their comprehensive examination the capability of NIR
spectroscopy supported with various tools to determine the antioxidative potential
and related properties of plant medicine. This trend-setting study proposed a new
analytical strategy [3]. The performances of one benchtop and two different types of
miniaturized NIR spectrometers were tested and compared for the first time by the
determination of the rosmarinic acid (RA) content of dried and powderedRosmarinus
officinalis, folium (i.e., Rosmarini folium). The recordedNIR spectra (Fig. 19.1)were
utilized in hyphenation with multivariate data analysis (MVA) to calculate partial
least squares regression (PLSR) models (Table 19.1). Quality parameters obtained
from cross-validation (CV) revealed that the benchtop spectrometer achieved the
best result with a R2 of 0.91 and a RPD of 3.27. Miniaturized NIR spectrometer
MicroNIR 2200 showed a satisfying calibration value R2 of 0.84 and a RPD of 2.46.
The analysis performed byminiaturized microPHAZIR, with a R2 of 0.73 and a RPD
of 1.88, was less precise and revealed room for improvements. All recorded spectra
of the different devices were additionally studied by two-dimensional correlation
spectroscopy (2D-COS; details on this technique are available in Chapter 6 Two-
dimensional correlation spectroscopy) analysis; in order to support the performed
PLS regressionmodels (Fig. 19.2). Differences in the sensitivity of the spectrometers
were visualized by 2D hetero-correlation plots as well. These approaches were found
to be helpful to identify discrepancies between microPHAZIR and MicroNIR 2200
compared to the benchtop instrument. With the aim to obtain a better understanding
of the factors which determine the analyzed PLS regression models, in this study,

https://doi.org/10.1007/978-981-15-8648-4_6
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Fig. 19.1 NIR spectra of 60 Rosmarini folium samples measured on benchtop (NIRFlex N-500)
and two handheld (microPHAZIR and MicroNIR 2200) NIR spectrometers. Reproduced from Ref.
[3] with permission from The Royal Society of Chemistry

Table 19.1 Results of all PLSR models for the quantification of rosmarinic acid in Rosmarinus
officinalis, folium

Spectrometer NIRFlex N-500 microPHAZIR MicroNIR 2200

Samples 60 60 60

Outliers 6 8 4

C (w/w) range/% 1.138–2.425 1.138–2.425 1.138–2.425

Validation method CV TSV CV TSV CV TSV

R2 0.91 0.91 0.73 0.73 0.84 0.85

SECV/% SEP/% 0.072 0.069 0.12 0.11 0.091 0.11

SECV/SEC SEP/SEC 1.46 1.43 1.28 1.24 1.55 2.09

Factors 8 8 5 5 11 12

RPD 3.27 3.41 1.88 2.06 2.46 2.14

quantum chemical calculation of NIR spectrum of RAwas carried out. In the process,
this approach enabled us to understand, interpret and attribute the main influences in
the regression coefficients plots; further information on spectra calculation is given in
Sect. 10.8 and in a recent review article [1]. The study by Kirchler et al. demonstrated
that the performance of NIR spectroscopy with benchtop and miniaturized devices
as a fast and non-invasive technique is able to replace time- and resource-consuming
analytical tools [3].

Pezzei et al. compared the suitability of benchtop and portable NIR spectrometers
for predicting the optimum harvest time of Verbena officinalis [4]. In this project,
NIR analyses were performed non-invasively on the fresh plant material based on



19 Bio-applications of NIR Spectroscopy 417

Fig. 19.2 Application of 2D correlation spectroscopy (2D-COS) for the visual assessment and
comparison of the sensitivity profiles between different NIR spectrometers; reference benchtop
Büchi NIRFlex N-500 vs. handheld Thermo Fisher Scientific microPHAZIR. The comparison of
sensitivity: microPHAZIR shows an autopeak located at ca. 4000–5000 cm−1 (not observed on the
benchtop instrument); this highlights an additional source of spectral variability due to working
characteristics of the handheld spectrometer (instrumental nature)

the quantification of the key secondarymetabolite ingredients verbenalin and verbas-
coside. NIR spectroscopic measurements were performed applying a conventional
NIR benchtop device as well as a laboratory independent portable NIR spectrom-
eter. A high performance liquid chromatography (HPLC) method served as the
reference method. For both instruments, PLSR models were established performing
cross-validations (CV) and test-set validations (TSV). Quality parameters obtained
for the benchtop device revealed that the newly established NIR method allows
sufficient quantifications of the main bio-active compounds of the medicinal plant,
verbenalin and verbascoside. Results obtained with the miniaturized NIR spectrom-
eter confirmed that accurate quantitative calibration models could be developed
for verbascoside achieving a comparable prediction power to the benchtop instru-
ment. PLS models for verbenalin were less precise suggesting that the application
of portable devices may be limited by its spectral range, resolution and sensitivity
(Fig. 19.3). Finally, this work demonstrated the suitability of NIR vibrational spec-
troscopy performing direct measurements on pharmaceutically relevant fresh plant
material enabling a quick and easy determination of the ideal harvest time.
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Fig. 19.3 On-site application of portableNIR spectrometer (microPHAZIR) for the optimization of
harvest time of medicinal plant Verbena officinalis. This is accomplished through PLSR prediction
of the content of bio-active compound, verbenalin

Delueg et al. described the online monitoring of the extraction process of
Rosmarini folium by an analytical combination of wet chemical assays, UHPLC
analysis and a newly developed NIR spectroscopic analysis method [5]. In the stage
of experimental design, three different specimen-taking/sampling planswere chosen.
At first, monitoring was carried out using three common analytical methods: (a)
total hydroxycinnamic derivatives according to the European Pharmacopoeia, (b)
total phenolic content according to Folin–Ciocalteu and (c) RA content measured
by UHPLC-UV analysis. The combination of the recorded NIR spectra and the
previously obtained analytical reference values in conjunction with multivariate data
analysis enabled the successful establishment of PLSRmodels. Coefficients of deter-
mination (R2) were: (a) 0.94, (b) 0.96 and (c) 0.93 (obtained by test-set validation),
respectively. Since Pearson correlation analysis revealed that the reference analyses
correlated with each other, just one of the PSLR models was required. Therefore, it
was suggested that PLSR model (b) be used for monitoring the extraction process
of Rosmarini folium. This example demonstrated the potential of NIR spectroscopy
in providing a fast and non-invasive alternative analysis method, which can subse-
quently be implemented for on- or in-line process control in phytopharmaceutical
industry.

NIR spectroscopy is a potent tool in qualitative analysis of plants and related
samples. For example, the classification, discrimination or authentication of different
natural products by the use of NIR spectroscopy is feasible. In particular, classifying
the origin of natural products, detecting of adulteration and verifying authenticity of
natural products are commonly performed. A considerable utilization this technique
has found on the market of traditional Chinese medicines (TCMs). As an example
of the applied methodology and achieved accuracy and applicability, Huck-Pezzei
et al. established a procedure to discriminate between pharmaceutical formulations
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prepared from either Hypericum perforatum or Hypericium hirsutum originating
fromChina [6]. It has been demonstrated thatNIR spectroscopy is capable of discrim-
inating between different plant species, varieties as well as cultivars, plant grown in
different conditions or locations. For example, a rapid and accurate discrimination
of Chrysanthemum varieties using NIR hyperspectral imaging technique (for further
details of this technique, reader is referred to the chapter discussingNIRhyperspectral
imaging) operating in 11,442–5767 cm−1 region (874–1734 nm) was demonstrated
by Wu et al. [7]. The examination of the spectral images obtained from 11,038
samples was carried out by means of deep convolutional neural network (DCNN).
The study indicated that NIR hyperspectral imaging combined with DCNN is a
potent tool for rapid and accurate discrimination of plant varieties. These accom-
plishments may advance the qualitative analysis useful for producers, consumers
and market regulators. Analysis of chemical compositions and various other prop-
erties of plants is often the main aim of various applications in agro-food sector.
For further information, reader is referred to the chapters focused on this field of
application.

19.3 Cell Analysis

IR and Raman spectroscopy have become greatly matured techniques in medical
diagnosis of tissues, with prime importance for carcinoma diagnosis. In this field,
NIR spectroscopy is still under development, with recent few years marking its
significant progress in these applications. For example, its applicability to charac-
terizing breast cancer cells was studied. The behavior of gold nanorods (AuNRs) in
metastatic breast cancer cells was investigated by Zhang et al. [8]. The study used
absorption spectroscopy in a broad ultraviolet–visible-NIR (UV-Vis-NIR) region
(25,000–10,000 cm−1; 400–1000 nm). That case serves an interesting example of
how electronic absorption bands that extend to NIR region can be investigated in
practical bio-applications (Fig. 19.4). UV-Vis-NIR absorption spectroscopy was
employed in combination with inductively coupled plasma mass spectrometry (ICP-
MS), transmission electron microscopy (TEM) and dark-field microscopic observa-
tion as reference methodologies for examination of the positively charged AuNRs in
the highlymetastatic tumor cell lineMDA-MB-231. Absorption spectra of AuNRs in
the living cells were acquired in that study; Fig. 19.4b presents the effects of serum on
absorption spectra of AuNRs dispersed in SCM. It was described that characteristic
surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectro-
scopic method with living cells that have taken up the nanorods. The peak area of
transverse SPR band was shown to be proportionally related to the amount of AuNRs
in the cells determined with ICP-MS. The established spectroscopic analysis method
can be used to monitor the behaviors of AuNR. Zhang et al. have demonstrated how
successful monitoring the behaviors of AuNRs in the cells can be accomplished
through an easy-tu-use UV-Vis-NIR absorption spectroscopic method [8].
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Fig. 19.4 Characterization of AuNRs dispersed in water and culture media. a The UV-Vis-NIR
absorption spectrum of AuNRs dispersed in water. The inserted SEM image shows the morphology
of AuNRs deposited from the aqueous solution. bAbsorption spectra of AuNRs dispersed in serum
containing media (SCM) with 0, 2.5, 5, 10, 20 and 30% of fetal bovine serum (FBS) as a function
of incubation time. Concentration of AuNRs in the media was 120 pM. The corresponding ratios of
total serum proteins (TSP) to AuNRs (TSP/AuNRs) were 0, 31.25, 62.5, 125, 250 and 375. c The
absorption spectra of AuNRs dispersed in basic media containing different content of only bovine
serum albumin (BSA) for 30 min. The ratios of BSA to AuNRs (BSA/AuNRs) were 1250, 125,
12.5, 1.25 and 0.125. Reproduced in compliance with CC-BY 4.0 license, Ref. [8]

Other examples include similar approaches to prostate cancer cells. In correspon-
dence to carcinoma markers, NIR calibration models for the analysis of glucose,
lactate, glutamine and ammonia were established by Rhiel et al., respectively [9].
For the calibration, an adaptive procedurewas developed aimed at selective removing
metabolism-induced covariance between these analytes arising in the cultivar of PC3-
human prostate cancer cells. PLSR models were generated from single-beam NIR
spectra recorded between 4800 and 4200 cm−1. Calibration models were in the first
attempt developed with both the full spectral range and also with selected opti-
mized spectral ranges. The lowest standard errors of prediction were 0.82, 0.94, 0.55
and 0.76 mM, respectively, for glucose, lactate, glutamine and ammonia. It was
demonstrated that NIR spectroscopy can be used effectively in the off-line anal-
ysis of glucose and glutamine, as the important nutrients, and lactate and ammonia,
as the byproducts, present in a serum-based cell culture medium. Two years later
in 2004, the same authors reported about the online monitoring of human prostate
cancer cells in a perfusion rotatingwall vessel byNIRS [10]. In that study, a perfusion
vessel volume, equipped with a silicone membrane oxygenator, peristaltic pump and
liquid handlingmanifold, was installed. For retaining the cells, a 100-μmpolypropy-
lene filter was used and separation of cells from other parts was achieved by rotation.
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Recording of spectra and establishment of calibration and validation procedures was
carried out in the same manner as in the previous contribution published by the same
authors [9].

Interestingly, the problem of biological cells appearance in the sample was inves-
tigated as a factor potentially influencing the performance of NIR spectroscopy in
food analytical applications. For example, Tsenkova et al. examined the influence
of high somatic cell count (SCC) in non-homogenized cow milk on the accuracy of
NIR spectroscopic determination of fat, protein and lactose content [11]. Transmit-
tance spectra of 258 milk samples were analyzed in SW-NIR, 14,285–9090 cm−1

(700–1100 nm) region. The most accurate calibrations, evaluated through analyzing
the standard error of prediction and the correlation coefficient, were obtained for
the samples with low SCC. The accuracy decreased notably in the scenario, where
calibration models constructed on the basis of low SCC milk were used to predict
the content of the examined components in samples with high SCC, and vice versa.
Therefore, SCC factor ismeaningful and highly influences the accuracy of fat, protein
and lactose determination. This dependence strongly affects robustness of analysis
and needs to be taken into consideration during the determination of milk chemical
composition by NIR spectroscopy.

19.4 Serum Analysis

Nioka et al. employed NIR spectroscopy in their approach to test breast tumor-
bearing patientswho are undergoing a biopsy [12]. The aimwas to see if angiogenesis
and hypoxia can be used as meaningful factors in detecting cancer. In that attempt,
continuous short-waveNIR (SW-NIR) spectroscopywas employed tomeasure blood
hemoglobin concentration and to obtain blood volume. This would allow answering
the question, whether the correlated parameters, the total hemoglobin content and
oxygen saturation, can serve as the biomarkers for the angiogenesis and hypoxia.
Throughmonitoring these two parameters, high total hemoglobin and hypoxia score,
the sensitivity and specificity of cancer detection could be achieved at 60.3% and
85.3% levels, respectively. It was concluded that smaller-size tumors prove to be
more challenging for detection by NIR spectroscopy, whereas ductal carcinoma
in situ (DCIS) can be detected using configuration assumed in the discussed study.
It was noted that in larger-size tumors, there is significantly higher deoxygenation in
invasive and ductal carcinoma in situ DCIS than in that of benign tumors [12].

Blood-oxygen-level-dependent contrast functional magnetic resonance
imaging (BOLD-fMRI) is a favored tool for detection of brain cancer. However,
this technique faces some limitations. The BOLD-fMRI diagnosis in brain disorders
such as stroke and brain had been shown in the previous studies to be prone
to yield incorrect image activation areas correctly in such cases. Sakatani et al.
performed an investigation upon the application of NIR spectroscopy for this
purpose [13]. To clarify the characteristics of the cerebral blood oxygenation (CBO)
changes occurring in stroke and brain tumors, the authors have been comparing
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NIR spectroscopy and BOLD-fMRI recording during functional brain activation in
patients. Noteworthy, NIR spectroscopy delivered good diagnostic performances
in the cases, in which BOLD-fMRI performed poorly. It was, therefore, concluded
that a combined use of both techniques could lead to a higher level of accuracy in
the functional imaging of diseased brains [13].

Kasemsumran et al. performed a series of investigations of the analytical capa-
bility ofNIR spectroscopy in the analysis of human serumalbumin (HSA),γ -globulin
and glucose for the needs of biomedical purposes. These studies demonstrated the
potential for simultaneous determination of HSA, γ -globulin, and glucose by NIR
spectroscopy in a model phosphate buffer solution and in a control serum solution
that represents a complicated biological fluid [14, 15]. In the study using phosphate
buffer solution, five levels of full factorial design were used to prepare a sample set
consisting of 125 samples of three component mixtures with various concentrations
and examined at 37 °C. The spectral dataset was analyzed using moving-window
partial least squares regression (MW-PLSR), which determined the spectral ranges
of 4648–4323, 4647–4255 and 4912–4304 cm−1 as the most informative and corre-
lated with the content of the targeted molecules (Fig. 19.5) [14]. Subsequently, the
analysis of HSA, γ -globulin and glucose in a more complex matrix, the control
serum solution, was attempted using an evolutionary chemometricmethod, searching
combination moving window partial least squares (SCMW-PLS). In that study, the
control serum IIB (CS IIB) solutions with various concentrations were prepared,
and NIR spectroscopy supported by SCMW-PLS was able to successfully determine
simultaneously the concentrations of HSA, γ -globulin and glucose in a complex
biological fluid [14].

19.5 Saliva Analysis

A diagnostic method based on NIR spectroscopy has been proposed by
Murayama et al. for oral cancer detection from one drop of saliva without any
specific diagnosis marker [16]. In that study, the NIR spectra of one drop of saliva
were measured using a capillary tube method. Principal component analysis with
the second and third factors calculatedwith the second-derivative NIR spectra clearly
discriminated between the two groups.

ApplicationofNIRspectroscopy tomeasurement of hemodynamic signals accom-
panying stimulated saliva secretion was demonstrated by Sato et al. [17]. That study
aimed to explore the feasibility of indirect measurement of human saliva secretion
in response to taste stimuli for potential application to organoleptic testing. NIR
spectroscopy was used to monitor extracranial hemodynamics, through Hb signals
around the temples, of healthy participants upon application of taste stimuli. Func-
tional magnetic resonance imaging (fMRI) was used to provide reference. Statistical
analysis indicated that the Hb response and saliva volume are greater upon giving
sucrose solution than distilled water to the test group. It was concluded that NIR
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Fig. 19.5 Regression coefficients for the PLS model predicting the analytes concentrations in the
study reported by Kasemsumran et al. [Ref. 14]. a Factor 1 and factor 2 of HSA in the 5907–
5663 cm−1 region; b factor 1 and factor 2 of γ -globulin in the 6080–5700 cm−1 region and c factor
1 and factor 2 of glucose in the 6665–5325 cm−1; d factor 1, factor 2 and factor 3 of HSA in the
4648–4323 cm−1 region; e factor 1, factor 2 and factor 3 of γ -globulin in the 4647–4255 cm−1

region; f factor 1, factor 2 and factor 3 of glucose in the 4912–4304 cm−1 region. Reproduced from
Ref. [14] with permission from The Royal Chemical Society
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spectroscopy is effective in assessing hemodynamic signals accompanying stimu-
lated saliva secretion [17]. NIR spectroscopy appears to be a promising tool for
investigation of saliva and processes accompanying swallowing, as this research
lane is continuously explored. For instance, recently, Kober andWood compared the
hemodynamic response observed during swallowing of water or saliva using NIR
spectroscopy [18]. Relative concentration changes were evidenced in oxygenated
and deoxygenated hemoglobin during swallowing. NIR spectroscopy demonstrated
high sensitivity to topographical distribution and time course of the hemodynamic
response betweendistinct swallowing tasks. The authors concluded that this approach
shows potential for application in diagnostic practice and in supporting therapy for
swallowing difficulties [18]. Further examples of the potential that NIR spectroscopy
bears in analysis of body fluids are provided in the chapter discussing medicinal
applications.

19.6 Tissue Analysis

Tissue analysis is one of the major applications fields of spectroscopy in biomed-
ical sciences. This topic is exhaustively discussed in another chapter of this book
that discusses medicinal applications; therefore, only basic information is presented
here. For tissue analysis, NIR spectroscopy should be partitioned according to short-
wave (SW; 750–1100 nm) and long-wave (LW; 1100–2500 nm) NIR wavelength
intervals. At short NIR wavelengths, the hem proteins (hemoglobin, myoglobin and
oxy-derivatives) and cytochrome of the tissue dominate the spectra and provide infor-
mation concerning tissue blood flow, oxygen saturation and consumption, and the
redox status of the enzymes. In the LW-NIR region, the observed absorptions are
caused by combinations and overtones of vibrations involving hydrogen-containing
molecular substructures. Valuable information concerning the chemical composition
of the tissue with its main components of lipids, proteins, carbohydrates and water
can be gathered from LW-NIR region.

Most of the NIR investigations dealing with human tissues were on breast cancer.
Quantitative chemical information from breast tissue based on oxy-hemoglobin and
deoxy-hemoglobin, water and lipids has been reported [19]. From these parame-
ters, total hemoglobin concentration and tissue hemoglobin oxygen saturation were
calculated and are expected to provide information on tumor angiogenesis and
hyper-metabolism.

19.7 Hemodialysis Analysis

Henn et al. described how hemodialysis monitoring can be performed usingMIR and
NIR spectroscopy with PLSR as the data analytical algorithm [20]. The study aimed
to evaluate the feasibility of both techniques and compares their performances. Blood
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constituents such as urea, glucose, lactate, phosphate and creatinine are important
for monitoring the process of detoxification, especially in ambulant dialysis treat-
ment. Henn et al. compared these two different vibrational spectroscopic techniques
to determine the targeted molecules quantitatively in artificial dialysate solutions.
The goal of the study was to compare the definitive suitability of NIR and MIR
spectroscopy for this purpose. These methods were compared directly by means
of statistical errors determined in PLSR analysis, while using the same sample set.
Interestingly, Henn et al. presented a detailed analysis of the structure of the PLSR
vector developed for quantification of the target analytes in the sample on the basis
of MIR and NIR spectra (Fig. 19.6). This comparison demonstrates that relatively

Fig. 19.6 NIR (Panel I) and
MIR (Panel II) spectra of the
calibration samples used by
Henn et al. [Ref. 20]. In
Panel I are presented: raw
NIR absorbance spectra (A);
regression vector intensity in
percent referenced to the
maximum for glucose (B)
and urea (C). In Panel II are
presented: raw difference
MIR spectra (A); the
regression vectors in %
intensities for urea (B),
glucose (C), lactate (D),
phosphate (E) and creatinine
(F). Reproduced in
compliance with CC-BY 4.0
license, Ref. [20]
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few NIR wavenumbers meaningful for regression of glucose and urea concentration
in artificial dialysate solutions are found, and these wavenumbers are located in the
regions free from a strong absorption of water (Fig. 19.6-I). Multilevel/multifactor
design was employed to cover the relevant concentration variations during dial-
ysis. The results demonstrated that MIR spectroscopy is better suited to analyze the
molecules of interest. When employed in a multi-reflection ATR mode, it enables
reliable prediction of all target analytes. In contrast, the NIR spectroscopic method
did not give access to all five components but only to urea and glucose. However,
it offered advantages of practical nature, such as easy sampling. For both methods,
coefficients of determination R2 are greater or equal to 0.86, as elaborated in the
test-set validation process for urea and glucose. The method applied to the anal-
ysis of lactate, phosphate and creatinine performed well in the MIR with R2 ≥ 0.95
using test-set validation (Table 19.2). This study indicates that there exists room for
improvement in the performance levels of NIR spectroscopy applied to hemodialysis
analysis (Table 19.2).

19.8 Examination of Entire Organisms

As mentioned, the underlying physical principles of NIR spectroscopy make it rela-
tively more suitable for interrogation of high-volume samples such as entire biolog-
ical organisms. As a good example, the properties of fish embryo have recently been
comprehensively examined in vivo at the molecular level by Ishigaki et al. [21]. The
authors usedNIR spectroscopy and imaging formonitoring of the growth of fertilized
eggs of Japanese medaka fish. This approach enabled non-destructive examination
of the inner components such as proteins, lipids and water, over the 6200–4000 cm–1

region. Changes in chemical structure of oil droplets and egg yolk over the time
period from the first day after fertilization to the day before hatching were monitored
(Fig. 19.7). The study demonstrated that NIR spectroscopy can decipher signs of
hatching and metabolic changes in the egg non-invasively. It was revealed that the
percentage of strongly hydrogen-bonded water in the oil droplets is larger than in
other parts and that yolk has quite different water environments from those found
in embryo parts. Furthermore, insights into secondary structure of proteins were
obtained. From characteristic bands at 5756 and 4530 cm–1 appearance of membrane
structures was concluded.

19.9 NIR Studies of the Structure, Properties
and Interactions of Biomolecules

Exhaustive presentation of NIR spectroscopy in elucidating information on the
molecular structure, properties and interactions is included inChapter 13Overviewof

https://doi.org/10.1007/978-981-15-8648-4_13
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Fig. 19.7 a PC-1 and PC-2 PCA scores plot of all NIR spectra of yolk measured over the period
from the first day after fertilization until the day before hatching. � indicates data from the first to
the tenth day and� denotes data from the day before hatching. b Loading plot of PC-1. Reproduced
from Ref. [21] in compliance with CC-BY 4.0 license.

application ofNIR spectroscopy to physical chemistry; therefore, only brief overview
of this field in the context of selected biomolecules is discussed here. Biomolecules
are typically complex molecules and they tend to interact with their chemical
neighborhood which further complicated their NIR spectra. However, by applying
sophisticated methodology, one can obtain valuable information on the behavior
of biomolecules. For example, Watanabe et al. employed perturbation-correlation
moving-window two-dimensional correlation analysis (PCMW2D) method to
monitor the temperature-dependent structural changes in hydrogen bonds occurring
in microcrystalline cellulose (MCC) [22]. This approach allowed deducting from
NIR and IR spectra that in the temperature range of 25–130 °C, structural changes
occur gradually in the strong hydrogen bonds in MCC; the extent of these changes
becomes greater above 130 °C. It was concluded that intermediate strength and weak
hydrogen bonds arise from the structural changes between 40–90 °C, whereas the
appearance of very weak hydrogen bonds becomes dominant above 90 °C. Addition-
ally, PCMW2D correlation analysis enabled band assignments for the first overtone
region, and OH groups of MCC exemplifying different hydrogen bonding strength
could have been identified. The results of that study enabled further investigations
into water adsorption onto MCC [23]. NIR spectroscopy combined with PCMW2D
and PCA methods was applied to interrogate a sample set of MCC with the mois-
ture content ranging in 0.2–13.4 wt%. The chosen data analytical methods helped
to distinguish OH stretching bands, which heavily overlap in the NIR region due
to contributions from MCC and water. Nonetheless, it could have been concluded
that a decrease in the free or weakly hydrogen-bonded and an increase in the strong
hydrogen-bonded OH groups of MCC occur, with the increase of moisture content.
At the same time, an increase of the water adsorbed on MCC was observed. These
results suggest that the inter- and intrachain hydrogen bonds of MCC are formed
by monomeric water molecule adsorption. The study revealed that ca. 3–7 wt% of
adsorbed water is responsible for the stabilization of the hydrogen-bond network in
MCC at the cellulose–water surface [23].
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NIR spectroscopy is a potent tool in exploring the complex properties of proteins.
Protein research by NIR spectroscopy includes several significant contributions, e.g.,
analysis of the secondary structure [24]. Furthermore, this technique finds unique
usefulness in investigating hydration process of proteins. Monitoring changes that
occur in hydration as well as that in the protein secondary structure at the same time is
possible by NIR spectroscopy; in contrast, IR and Raman spectroscopies can hardly
investigate these properties simultaneously. The potential of NIR spectroscopy to
investigate proteins in aqueous environment and the appropriate methodology can
be presented on the example from literature [25, 26].Murayama et al. [25] performed
a comprehensive comparison of the methods for analyzing NIR spectra that are suit-
able for investigating proteins in aqueous solution. Conventional spectral analysis
methods, chemometrics (PCA) and 2D-COS spectroscopy were evaluated in that
case. The study was based on the NIR spectra of human serum albumin (HSA) in
aqueous solutions within the concentration range of 0.5–5.0 wt%. It was concluded
that basic conventionalmethods of spectra pretreatment and analysis, such as second-
derivative and difference spectra, remain critically important for analysis of protein
in relatively low concentration in water. For example, the difference spectra unveiled
that various species of water are responsible for the observed gradual concentration-
dependent changes in the broad feature in the 7100–6500 cm−1. PCA is more resis-
tant against spectral noise; however, 2D-COS is more informative on the correlations
between individual bands and also elucidates sequences of spectral changes. There-
fore, the best approach is to combine various methods, as this yields highest potential
for interpretation of spectral variability.

With a similar aim, this study has been continued by Yuan et al. who compared
different methods for treating NIR spectra of bovine serum albumin (BSA) [26].
However, this time the source of spectral variability was the temperature perturbation
(45–85 °C), while concentration of protein was constant at 5.0 wt% and the pH
of the sample was 6.8. The evaluated methods were extended by the addition of
chemometric algorithm of evolving factor analysis (EFA). That study confirmed
the previous conclusions about the usefulness of conventional methods of spectral
analysis and the significance of combined use of various approaches. Namely, the
difference spectra were essential in finding the change in protein hydration that
occurs in the temperature range of 61–65 °C. However, this finding was supported by
analyzing the temperature profile through three-factor EFA in the 7400–6400 cm−1

region. The investigation has also revealed that the structural variation of BSA in the
aqueous solution just precedes the change in the protein hydration, indicating that the
change in the hydration is initiated by the structuralmodifications in the protein itself.
For yielding these deeper insights from NIR spectra, application of EFA combined
together with the other methods was essential. Note, the spectral variability observed
in NIR region upon concentration change of HSA protein in water differs from the
one observed upon temperature change in aqueous solution of BSA.

NIR spectral bands of proteins can be used to follow complex biological processes
in vivo, such as embryonic development, [27] for example. The current state of the
art of protein research byNIR spectroscopy is exhaustively covered in a book chapter
by Ishigaki and Ozaki [28]. As mentioned in introduction and in the chapter referred
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above, NIR bands can deliver unique information on the properties of suchmolecules
in their native environment. The above examples demonstrate that interpretability of
NIR spectra of complex molecules such as biomolecules remains a challenge, and
often, only speculative NIR band assignments are available, with selected ones being
resolved, e.g., the intense and strongly affected by intermolecular interaction OH
stretching bands. Recent advances in quantum chemical calculation of NIR spectra
of biomolecules should be highlighted, [1, 29–32] which bring significant progress
in the interpretability of their NIR absorption, as well as the insight into how it is
influenced by intermolecular interactions. Rapid development of the applicability of
these new methods for improving our understanding of NIR spectra of biomolecules
should be expected in the near future [1].

19.10 Selected Other Applications

The attributes of NIR spectroscopy have been recognized in ecology and environ-
mental studies. Most often, in such applications, samples of biological origin are
investigated. Moreover, spectroscopic analysis is in its essence chemical reagent-
free, and as such, spectroscopy itself is environmental friendly. A focused review
of the role of NIR spectroscopy in modern research in the field of ecology and
environment is available in the recent literature [33].

Over the last few years, entirely, new possibilities have emerged as the result
of the progress in unmanned aerial vehicle (UAV, i.e., airborne drones) technology.
Such accomplishment becamepossible on the basis of breakthroughsmade in the past
decade,with sensorminiaturization, new low-power technology andprogress in spec-
tral data processing. There appears an enormous potential from deploying spectro-
scopic sensors mounted on drones. Applications of airborne NIR sensors installed on
UAV are recently strongly advancing in agriculture and environmental studies. Such
configuration enables unparalleled high-throughput capability and remote sensing of
large Earth surface areas. The current evolution trends are aiming toward real-time
monitoring and imaging by using airborne NIR spectrometers. A comprehensive
overview of the current state-of-the-art airborne spectroscopy, including NIR, is
available in the recent literature [34].

It is worthwhile to mention a narrow field of bio-significant research at which NIR
spectroscopy has remarkable accomplishments; investigation of water structure and
properties. While not an organic matter, water is an essential biological environment
and its properties as well as interactions with other molecules, and biomolecules in
particular, are critical for our understanding of biological processes. At this direction,
NIR spectroscopy delivered unique insights. Noteworthy is the pioneering research
by Segtnan et al. on the structure of water (Fig. 19.8), [35] and combined studies
of NIR and IR spectra have also been carried out [36]. Notably, water absorption is
comparatively weaker in NIR region than IR region, and simultaneous observation of
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Fig. 19.8 Effect of
temperature perturbation of
water observed in the NIR
spectra by Segtnan et al.
[35]. Thirty-eight NIR
spectra of water measured
over a temperature range of
6–80 °C at 2 °C increments:
a untreated spectra; b mean
normalized spectra;
c selected second-derivative
spectra derived from B.
Adopted with permission
from Ref. [35]. Copyright
(2001) American Chemical
Society
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the characteristic bands of the solvent and soluted molecules is possible. A compre-
hensive review of the NIR research on water structure and properties is available in
the recent literature [37].

A novel way of interpretation of the complex NIR spectra of biomolecules is
available through quantum chemical calculation [1]. A comprehensive presentation
of this topic is available in Chapter 5 of this book, Introduction to Quantum Vibra-
tional Spectroscopy; therefore, accomplishments essential to further development of
bio-applications of NIR spectroscopy are highlighted here. Recently, NIR spectra of
several biomolecules such as short-, [29] medium-, [30] and long-chain [31] fatty
acids, as well as nucleic acid bases, [32] were successfully reproduced with these
methods and their absorption bands could have been comprehensively explained
by Beć, Grabska and co-workers [1, 29–32]. This approach was also helpful in
interpreting the meaningful wavenumbers in PLSR model of bio-active compounds
in plant medicines. Few important bio-active constituents of medicinal plants and
natural products have been examined by this approach, e.g., thymol [38] and RA [3].
The studies of thymol supported by spectra simulation yielded fundamental findings
about the relationship between the specific vibrational modes and the features of
PLS regression coefficients vector [38]. This approach is essential for improving the
inherently inferior chemical specificity, which is one of the few properties of NIR
spectroscopy at which it exemplifies a great room for improvements in comparison
with IR or Raman spectroscopy.

19.11 Conclusions

NIR spectroscopy in the bio-fields offers a huge potential in various applications
following its advantages: wide applicability to variety of samples, capability of
examining moist samples, flexible instrumentation including miniaturized sensors.
Accompanied by advanced chemometric data analytical tools, NIR spectroscopy has
been proved to be of great value in various bio-scientific investigations. On the other
hand, in certain other fields, it is still a developing discipline, with room for improve-
ment as compared with other techniques. For example, in bioanalytical research and
medical diagnosis, it still faces strong competition from IR and Raman spectroscopy.
However, the recent literature indicates that NIR spectroscopy steadily conquers this
demanding field of application. In the near future, additional support might come
by quantum chemical simulation of spectra. New achievements accomplished at this
field enable improving the interpretability ofNIR spectra; shortening the gap between
this technique and highly chemical specific IR or Raman spectroscopy. Novel hand-
held NIR spectrometers are indispensable in on-site examination of medicinal plants
with aim to optimize the cultivation conditions and ensure highest quality of natural
drugs. Progress in the instrumentation enabled engineering remote NIR sensors as
well. Airborne, UAV-mounted NIR spectrometers become increasingly important in
environmental monitoring, where, e.g., large amount of data on is collected on flora

https://doi.org/10.1007/978-981-15-8648-4_5
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and fauna from wide areas. In summary, bio-applications of NIR spectroscopy can
be expected to thrive in the forthcoming decade, with continuation of those strongly
advancing lanes of research and possibly an appearance of entirely new ones.
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Chapter 20
Medical Applications of NIR
Spectroscopy

Herbert Michael Heise

Abstract In recent years, near-infrared (NIR) spectroscopy has seen much progress
in instrumentation and measurement techniques. It has been used for monitoring in
manyfields of analytical spectroscopy. Examples are the characterization ofmaterials
from processes of the chemical and pharmaceutical industry in addition to the broad
field of food industrial and biotechnological applications. Another important field for
NIR spectroscopy is found within the medical sciences with topics such as clinical
chemistry, sensing and monitoring of changes of homeostasis of the body, with
biofluids and tissues from many organs involved. Here, in vitro laboratory work
and in vivo monitoring must be mentioned. Regarding instrumentation, laboratory
analyzers are kept firmly in our view, but point-of-care (POC) applications need also
to be taken into account. Sensing devices for non-invasive measurements on special
parameters such as blood glucose and hemoglobin or information on the redox status
of tissues is another broad area with oxygenation of hemoglobin and myoglobin as
most important parameters. Absorption measurements are most often carried out
with transmission and reflection techniques, but due to the synthesis of new marker
substances, also fluorescence measurements in the NIR spectral range become more
advanced, especially for imaging and immunoassay developments.

Keywords Near-infrared spectroscopy ·Medical applications · Clinical
chemistry · Spectral histopathology · Oximetry ·Monitoring of physiological
processes · Optical tomography

20.1 Introduction

Near-infrared spectroscopy has been established as a versatile analytical method
for characterizing liquid and solid chemicals as available in various fields, which
include for example the food and forage industry, petrochemistry, polymer chemistry
and biotechnology. Analytical spectroscopy can provide important information on
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composition and properties of materials and products such as polymers, pharmaceu-
tical, agricultural products or beverages to list a few. The use of optical spectroscopy
within the near-infrared regime in particular is widespread in analytical chemistry,
and chemical process monitoring has received much attention in the past for the
aim of optimization and quality control in the aforementioned application fields,
especially in industrial processes.

Vibrational spectroscopy is based on molecular vibrations, which are localized
in molecular substructures or larger molecular entities. The quantized energies for
exciting vibrationswithinmolecules startwith longestwavelengths in the far-infrared
range, with wavelengths of up to 1000 μm, and reach down to the short-wave NIR
(SW-NIR) with aminimumwavelength of 780 nm by definition. NIR spectroscopy is
mostly restricted to the study of substances with OH, NH and CH group absorptions,
providing spectral patterns with much band overlap, but multivariate chemometric
techniques render these best suited for quantitative and qualitative analysis as for
raw material identification. The NIR bands arise from combination and overtone
vibrations and for reaching reasonable absorbances in transmission measurements
or for –log (reflectance) values of powders and tissues, the optical path in samples
can be millimeters or with higher overtones even centimeters.

This part of NIR spectroscopy was for a long time considered a “sleeping giant”
before its rapid implementation in applications for the forage and food industry, for
petrochemicals, polymers and pharmaceuticals took place especially for quantita-
tive assays. In the last few years, process analytical chemistry, also called process
analytical technology (PAT), has been implemented with robust process NIR spec-
trometers, especially when online data were made available for reaction controlling
and product quality monitoring. Other areas and applications within life sciences
have also been dealt with in earlier chapters of this handbook.

Similarly, clinical chemistry applications also evolved for the analysis of blood
and other body fluid constituents. The late emergence of near-infrared spectroscopy
into the clinical chemistry field is mainly due to the complexity of the body fluids
under investigation. These contain many analytes of rather low concentrations in the
per mille and even lower range apart from total protein or albumin quantification
with lower percentage values. Advantageously has been the high reproducibility for
the recording of spectra and their high signal-to-noise ratios, which could be accom-
plishedwith sensitive photodetectorswithin Fourier transformor excellent dispersive
spectrometers. Early clinical chemistry applications focused on the analysis of blood
and blood plasma with blood glucose as the most promising analyte. This was also
due to expectations that this technique could finally be used for non-invasive blood
glucose monitoring.

Tissue spectroscopy for skin cancer detection or wound healing has also been
investigated using the so-called combination band region, showing most spectral
information for discrimination and identification. With shorter wavelengths band,
half-widths become broader and with less structure, so that the selectivity for analyt-
ical assays is usually reduced compared to the combination band region. Within
the short-wave near-infrared (SW-NIR) regime, also other phenomena give rise to
absorptions: these are biological molecules such as hemoglobin, myoglobin and
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cytochromes to mention a few compounds of great interest especially for medical
practice. Some applications have been established in form of valuable sensors for
patient monitoring with the pulse oximeter, representing the most prominent device
for measuring arterial oxygen saturation through oxy and deoxyhemoglobin quan-
tification. Further in vivo medical spectroscopy was initiated by Frans Jöbsis in
the 1970ies, who reported on the high transparency of brain tissue in the optical
window to be used for non-invasive measurements on vital physiological parameters
[1]. The groups around David Delpy and Brittan Chance had brought much progress
into the field of analyte quantification in near-infrared tissue spectroscopy, exploiting
different spectral signatures of redox-active substances for brain andmuscle oximetry
[2, 3]. Finally, different techniques were developed for functional imaging used in
monitoring brain activities.

All aforementioned near-infrared spectroscopic applications are based on absorp-
tion measurements. Quite different are applications with fluorescence spectroscopy,
which is findingmore interest in biomedical applications such as for sensitive analyte
detection using immunoassays with according fluorescent labels and for bio-imaging
by achieving better contrast.

The importance of this chapter is to provide an overview of the different areas
with applications of NIR spectroscopy in the medical sciences, including clinical
chemistry with its aim for diagnostics using mainly bodyfluids, non-invasive sensing
for monitoring dynamic physiological states, and processes and imaging of organs
such as skin, brain, heart and others.

20.2 Applications in Clinical Chemistry

Early clinical chemistry applications using near-infrared spectroscopy have followed
research work from several groups worldwide, who had started with mid-infrared
(MIR) spectroscopy. Due to the high information content especially of the fingerprint
region, biofluid analysis could be achieved for analytes of “high” concentrations as
mentioned above. The fascination about the spectroscopic methods came from the
fact that these worked fast and without reagents and could be exploited for multi-
analyte applications. Therefore, it had attracted also companies involved in medical
diagnostics and sensing, mainly for the development of analyzer instrumentation.

The rationale behind medical diagnosis by spectroscopy is based on the fact that
diseases are accompanied by changes in the biochemistry of the cells and tissues
within the organs in our body. Deviations from homeostasis can thus be monitored
by analytical spectroscopy of body fluids with physiological parameters usually fluc-
tuating for the healthy state around a normal range. Since spectroscopic methods,
in particular vibrational spectroscopy with infrared, near-infrared and Raman, can
provide information on biologicalmolecules like proteins and peptides, nucleic acids,
carbohydrates, lipids and others, it is a useful tool for medical diagnostics. There are
some restrictions for the near-infrared, as mid-infrared and Raman spectroscopy
make use of fingerprint region information, which cover many low-wavenumber
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fundamental and combination bands from molecular entities, which are not visible
in the near-infrared spectral range. Despite this, the quantification of individual
compounds is still possible and the first step in information gathering for medical
diagnosis.

Another goal for disease diagnostics was not only based on blood analyte concen-
trations but exploiting the information from whole spectrum analysis aiming at “dis-
ease pattern recognition.” A straightforward classification of a bodyfluid sample with
linking to a disease statewas thenmade possible by usingmultivariate chemometrics.
However, thus applications have mostly been observed for mid-infrared and Raman
spectroscopy.

20.2.1 Analysis of Blood and Other Bodyfluids

The most analyzed body fluid is certainly whole blood of which several fluids can
be derived from such as plasma and serum. This is easily accessible by punctua-
tion or the use of syringes. An important problem with the analysis of biofluids is
certainly associated with the strong absorptions of water and its temperature and
solute dependency due to the hydrogen bonded network. In Fig. 20.1, absorbance
spectra of water are presented for a transmission cell of 1 mm pathlength, showing
also the temperature sensitivity in the shorter NIR wavelength region. For the long-
wave region with combination bands, usually cell pathlengths around 0.5 mm are
used,whereas for the short-waveNIR range even 10mmare required to reach optimal

Fig. 20.1 NIR spectra of water for a layer thickness of 1 mm (calculated from data available at
http://www.ualberta.ca/~jbertie/JBDownload.htm [4]); the subplot shows the SW-NIR region with
a difference spectrum illustrating the temperature sensitivity of the water spectrum

http://www.ualberta.ca/%7ejbertie/JBDownload.htm
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Fig. 20.2 NIR spectrum of muscle tissue as measured in diffuse reflection with band assign-
ments including a spectrum of lecithin as model compound for lipids, whereas the subplot provides
absorbance values for water at different layer thicknesses

absorbances for quantitative analysis. For the analysis of soft tissues, e.g., from biop-
sies or in vivo measurements, the same statement for water as the main constituent
is valid, although such spectra, when recorded with diffuse reflection techniques,
also show significant impact from tissue scattering. In Fig. 20.2, a model tissue spec-
trum is shown, elucidating also the different intervals with overtone and combination
bands frommolecular sub-groups of the main substance classes, i.e., proteins, lipids,
carbohydrates and genetic materials, but also glycoproteins and lipoproteins and
many others, as found in biomaterials.

One important parameter is certainly blood glucose, since this parameter is one of
themost frequentlymeasured analyteswithin the clinical chemistry laboratory.Water
is the major constituent of biomedical samples, and in particular of biofluids, while
dry-film preparations have not been popular as seen in mid-infrared spectroscopy,
for which often only microliter samples have been prepared by water evaporation.
With larger bodyfluid volumes, evaporation needs much more time.

The information content of different spectral regions for clinical chemistry appli-
cations has been the subject of many investigations, and one early study was under-
taken by the research group ofHenryMantsch. They studied serumdry films prepared
on simple glass slides for multi-analyte quantifications, restricting the analysis to
absorption bands above 2000 cm−1, thus avoiding fingerprint information. It was
shown that several blood parameters such as albumin, cholesterol, glucose, total
protein, triglycerides and urea could be analyzed with standard errors allowing even
routine clinical analysis. Practical aspects of such an approach were also discussed
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[5]. In Fig. 20.3, the drying process of a blood sample is illustrated, for which as
substrate gold-coated abrasive paper had been used allowing for a diffuse reflection
measurement. Whereas in the beginning of the drying process the spectral features
are dominated by the water spectrum, absorption features of blood proteins with
albumin and hemoglobin as important representatives, become evident after some
time lapses. The similarity of NIR spectra of different proteins will be discussed
later.

However, another aspect of NIR spectroscopy of different substances is presented
by showing some model compound spectra. In Fig. 20.4, several carbohydrates of
special medical importance are shown. As examples of sugars, the monosaccharide
glucose and the disaccharide sucrose are shown, all measured as crystalline powders.
In addition, two polysaccharides, i.e., cellulose and starch, are also presented. While
the crystalline substances show much fine structure due to the crystalline state, the
other two have rather broad absorption band signatures.With Fig. 20.5, even quantita-
tive data are provided for glucose asmeasured in aqueous solution and in a glassy state
from preparations starting from high-concentrated syrup samples, showing similar
band structures as the polysaccharides with glucose as structural subunits. Starch, for
example, consists of two types of polysaccharides, which are the linear and helical
amylose and branched amylopectin. Glycogen, as the glucose store of humans, is
a more highly branched amylopectin, but with a similar spectrum. In addition to
glucose, also a fructose spectrum from a glassy state preparation is shown, illustrating
the spectral differences within the combination band region above 4000 cm−1, which
is sufficient for quantitative discrimination. This aspect will later be discussed again

Fig. 20.3 Diffuse reflection spectra of blood during dry-film preparation by water evaporation.
Blood samples had been placed on diffusely reflecting substrates (gold-coated abrasive paper) and
were measured after different time lapses
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Fig. 20.4 Diffuse reflection spectra of crystalline sugars and two polysaccharides with glucose as
structural subunits

Fig. 20.5 Absorptivities of glucose and fructose obtained from measurements of aqueous solu-
tions and of glassy monosaccharides from syrup after water evaporation (scaled to aqueous phase
absorptivities)

for further clinical applications. Such quantitative data for glucose, alanine, ascor-
bate, lactate, triacetin and urea have been used for evaluating the selectivity of NIR
spectroscopic clinical assays, using the combination band (5000–4000 cm−1) and
first overtone region (6450–5400 cm−1) or for the development of non-invasive blood
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glucose assays with different measurement techniques based on skin spectroscopy
[6, 7].

Some more information is allowed that the aqueous glucose spectrum was
obtained with scaled water absorbance subtraction, which leads to an incomplete
compensation due to the disturbance of the water hydrogen-bonding network by the
sugar molecules, evident from the spectral dips. Interestingly, the spectral features
of glassy sugars, as obtained from syrup samples after careful water evaporation,
show the same wavelength dependencies as the aqueous phase spectrum. Using this
technique, the otherwise opaque spectral intervals with strong water absorption are
now accessible, despite of some still existing uncompensated water absorptions in
the regions of the strong water bands. A spectrum of fructose is also displayed, which
may be relevant for diabetics in non-invasive glucose measurement after consump-
tion of the other sugar, illustrating discrimination limitations based on the spectral
interval used.

For many years, our group has been involved in the development of in vitro
reagent-free multi-analyte systems for blood analysis based on vibrational spec-
troscopy and two selected papers, shedding light on the potential of near-infrared
spectroscopy for clinical chemistry, need to be discussed [8, 9]. In this context, also
various important chemometric aspects such as spectral variable selection or different
validation strategies for multivariate calibration modeling have been investigated. In
nearly all studies, partial least squares (PLS) calibration has been utilized, but also
science-based calibration (SBC) modeling was successfully tested for in vitro anal-
ysis. The latter approach uses explicitly the quantitative analyte spectral signatures,
while other spectral contributions are estimated statistically. For more details, the
reader is referred to our book chapter [9].

The usual strategy, applied by many research groups, has been used to demon-
strate the spectroscopic assay capability for in vitro analysis by having aqueous
mixtures of a few compounds such as albumin, glucose, lactate and others. It is
certainly advantageous that an elaborate experimental design can be followed to
cover an adequate physiological composition with a reasonable spread of differing
concentrations, which can be most accurately prepared, for example, by gravimetry.
Samples from patients are more complex in composition and with a distribution of
analyte concentrations that is usually defined by the natural spread. Such specimens
can be selected, for example, from a population of healthy and/or diabetic subjects
if blood glucose assays have to be tested and the assay will focus on such kinds
of subjects. In some cases, also spiking of samples has been taken into account for
increasing the concentration levels or the distribution of concentration values. The
assays for obtaining reference concentrations are often limited in precision and accu-
racy, unless very special effort is undertaken for improved clinical analytics. Usually,
such testing scenarios are carried out under special experimental conditions with a
tightly thermostated sample cell of constant thickness, which is important especially
for near-infrared spectroscopy of aqueous biofluids because of the hydrogen-bonding
network of the water molecules that is very sensitive to temperature changes (see
again Fig. 20.1).
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Table 20.1 Analytical cross-validation results for blood plasma compounds obtained from PLS
calibration models based on different spectral ranges and logarithmized single beam data (same
plasma sample population from 124 patients) [8]

Analyte Standard error of prediction

SW-NIRa NIRb MIRc Units

Total protein 1.08 1.07 0.90 g l−1

Total cholesterol 15.4 7.7 8.2 mg dl−1

Triglycerides 23.4 12.1 10.3 mg dl−1

Glucose 47.3 16.2 9.8 mg dl−1

Urea – 4.7 2.6 mg dl−1

aSpectral calibration interval for all substrates 11,015–7620 cm−1; transmission cell of 10 mm
pathlength
bSpectral range for protein 6000–5510 cm−1, for cholesterol and triglycerides with additional
interval of 4520–4212 cm−1, for glucose and urea 6790–5460 and 4735–4210 cm−1; transmission
cell of 1 mm pathlength
cSpectral range for protein 1700–1350 cm−1, for cholesterol 3000–2800, 1800–1700 and 1500–
1100 cm−1, for triglycerides same intervals except the upper one, for glucose 1200–950 cm−1, and
urea 1800–1130 cm−1; ATR micro-circle cell

As a result of a project performed with the German Diabetes Research Insti-
tute, a large population of blood plasma samples had been analyzed by mid-infrared
spectroscopy using the attenuated total reflection technique, by near-infrared spec-
troscopy using a 1 mm transmission quartz cell and by short-wave near-infrared
spectroscopy using a 10 mm cell. Reference analyses had been carried out in trip-
licate using well-calibrated clinical analyzers as appropriate for selected individual
parameters. In our publication [8], we summarized the performances of the different
spectroscopic assays and results are reported in Table 20.1.

In principle, results from these studies were milestones for the development of
clinical spectroscopic assays. Taking into account mean analyte concentrations of
the studied plasma sample population, variation coefficients were usually lower than
5%, which is acceptable for clinical routine work. Our analytical results have often
been challenged in recent years, but the same picture has been obtained by other
groups; see, for example, the review by Perez-Guaita et al. [10]. One can state that
lipidic parameters such as total cholesterol, triglycerides, high-density lipoprotein
(HDL) and low-density lipoprotein (LDL) can be analyzed with similar accuracy
[11]; a similar statement is valid for total protein, even with application of SW-NIR
spectral data. On the other side, parameters such as glucose and urea, which also
suffer from lower concentrations in blood derived fluids, will see deterioration in
analytical performance compared to mid-infrared spectroscopy. Another extensive
study on the use of NIR spectroscopy for serum analysis had been carried out for
total protein, albumin, cholesterol, triglycerides, urea and lactic acid by Hazen et al.,
who studied a total of 242 serum samples with spectra recorded within the interval
of 5000–4000 cm−1. However, their results had been worse compared with our study
apart from SEP values for urea [12].
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There have been studies by other groups by comparing the performance of NIR
versus Raman spectroscopy assays by using solutions of glucose, lactate and urea in
aqueous phosphate buffer. Surprisingly, the NIR-assay outperformed that by using
Raman spectroscopy. Standard errors of predictionwere 0.24, 0.11 and 0.14mmol l−1

for glucose, lactate and urea, respectively, from near-IR spectra, while SEP values
of 0.40, 0.42 and 0.36 mmol l−1 were achieved with Raman calibration modeling
for glucose, lactate and urea, respectively. Differences between instrumental signal-
to-noise ratios were responsible for the better performance of the near-IR spectrom-
eter. It is certainly an advantage that NIR spectra can be measured by transmis-
sion cells with quartz or glass windows or inside glass vials or less often by total
reflectance using NIR spectrometers that is more affordable than MIR or Raman
instrumentation [13].

Assay selectivity has been and is still in the focus of many analytical spectro-
scopists, and one valuable approach has been developed by using the net analyte
signal for investigating the non-overlapping spectral features of individual analytes.
Arnold et al. [14] investigated the selectivity of near-infrared spectroscopy for the
independent measurement of glucose, glucose-6-phosphate and pyruvate in ternary
mixtures under physiological pH conditions. Spectral data from multiple measure-
ments within the combination band region had been collected and multivariate cali-
bration modeling was carried out using the PLS method. Despite the high simi-
larity of the individual spectra, the principal conclusion was that selective analytical
measurements were possible for the three analytes, based on high quality long-wave
near-infrared transmission spectra.

Another important analyte in clinical chemistry is hemoglobin, whose concentra-
tion is commonly used in clinical medicine to diagnose anemia, identify bleeding,
and for managing red blood cell transfusions. Automated hematology analyzers are
usually applied for quantitative analysis. Usual reference methods for hemoglobin
are not reagent-free in contrast to an NIR spectroscopic assay. Besides the use of
traditional laboratory equipment, anemia diagnosis can also be accomplished by
quantifying the hemoglobin (Hb) concentration with point-of-care testing (POCT)
devices such as the HemoCue test systems (Ängelholm, Sweden) [15]. In the past,
several papers have been published on hemoglobin quantification with NIR spec-
trometry; see for example [16]. Here, the combination band region was considered
also for wavelength variable selection using multiple linear regression (MLR) with
linear summation equations based on three and four characteristic wavelengths. The
cross-validated standard error of prediction (SEP) for hemoglobin was 1.25 g dl−1

with a four termmodel over the concentration range from 5.9 to 20 g dl−1. A recently
presented development is based on using a laptop-controlled NIR spectrometer (via
USB interface, spectral range 900–1700 nm [11,100–5900 cm−1]). The device had
been connected to a supercontinuum broadband white light laser source by using
an optical fiber bundle. Transmission cuvettes were of 5 mm optical pathlength.
Prediction errors from a validation sample population were around 0.44 g dl−1,
either with full spectrum use or with different variable selection methods, using
three or two wavelengths only. An informative literature overview on past in vitro
and non-invasive approaches is also given [17].
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An extension to the last-mentioned approaches was presented by Han et al.,
describing a novel near-infrared-spectroscopy-based quantification method for
glycated hemoglobin (HbA1c), which is an important clinical diagnosis indicator
of diabetes. The analytical method was developed on the basis of simultaneous
determination of hemoglobin (Hb) and the absolute HbA1c content in human
hemolysate samples [18]. Several wavelength selection algorithms were tested for a
search range covered by spectral intervals not saturated by water absorption (780–
1880 nm [12,800–5320 cm−1], 2090–2330 nm [4785 – 4290 cm−1]). For Hb and
total HbA1c, only 6 and 14 wavelengths were selected with equidistant combina-
tion partial least squares (EC-PLS), respectively. The so-called competitive adaptive
reweighted sampling PLS (CARS-PLS) and a Monte Carlo uninformative variable
elimination PLS (MC-UVE-PLS) required 23 and 30wavelengths, as well as 100 and
120 wavelengths, respectively. For details, the reader is referred to the publication.

Another area as mentioned above deals with disease diagnosis based on multi-
variate spectral classification algorithms, which has been more related to the
domain of mid-infrared and Raman spectroscopy. Recently, also blood analysis for
Alzheimer’s disease (AD) diagnosis has been presented, using multivariate classi-
fiers based on NIR spectral signatures [19]. Robust and early diagnosis may be a
first step toward tackling this disease of mainly elderly people by allowing timely
intervention with novel synthesized pharmaceuticals. In the presented study, blood
plasma samples were analyzed with NIR spectroscopy as a minimally invasive
method to distinguish patients with AD from non-demented volunteers. Dry-film
spectra were recorded from 50 μL samples of blood plasma on IR-reflective glass
slides after overnight drying. Spectra were truncated to the biochemical fingerprint
region (1850–2150 nm [5400–4650 cm−1]). By means of a multivariate classifier
(principal component analysis with quadratic discriminant analysis – PCA-QDA),
AD individuals were correctly identified with 93% accuracy, 87.5% sensitivity and
96% specificity. The results show the potential of NIR spectroscopy as a simple and
cost-effective diagnostic tool for AD.

Another bodyfluid is urine, which also contains valuable biomarkers for disease
diagnosis. Concerning urine analysis, not many publications are available. There is
a paper from the Mantsch group who analyzed protein, creatinine and urea in urine
[20], but other notable work has been carried out by the group around Mark Arnold
who investigated the use of NIR spectrometers for monitoring the dialysate during
hemodialysis of patients with renal failure, which is the pathway of a number of
kidney diseases [21]. The treatment choices for patients with impaired renal func-
tion are dialysis (hemo- or peritoneal dialysis) or renal transplantation. Accumula-
tion of toxic end products of the nitrogen metabolism such as urea, creatinine and
uric acid in blood and tissue, a disturbed homeostasis of water and different salt
minerals are the complications resulting from renal failure. Whereas for their feasi-
bility studies, an FT-NIR spectrometer had been used; they used a spectrometer with
a temperature-controlled acousto optical tunable filter (AOFT) in conjunction with a
thermoelectrically cooled extended wavelength Indium Gallium Arsenide (InGaAs)
photodetector, providing spectral measurements with a 20 cm−1 resolution over the
combination band region (4000–5000 cm−1) of the near-infrared spectrum. Their
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best PLS calibration models led to SEP values between 0.30 and 0.52 mmol/l for the
removal of urea during hemodialysis sessions [21].

Just recently, an interesting studywas published on urine analysis using ameasure-
ment system based on light-emitting diodes (LEDs) by considering future transition
to LED light sources. In their study, LEDs with ten standard wavelengths (1400–
2300 nm, in 100 nm increments [7150–4350 cm-1]) were employed. The aim was
to estimate multiple components such as urea and creatinine in spot urine samples
[22]. A multiple regression analysis using all combinations of 10 wavelengths was
performed. NIR spectra from glucose-spiked urine samples from 10 healthy adults
were used for an appropriate wavelength selection. For estimating urinary urea and
creatinine levels, they obtained SEP values of 42 mg/dl and 7.34 mg/dl, respectively,
using four wavelengths for urea and five wavelengths for creatinine. This optical,
reagent-free method is suitable for practical determination of the urea-to-creatinine
ratio,which allows assessing protein intake in chronic kidney disease (CKD) patients.

A forensic application of NIR imaging is also presented, for which the iden-
tification and location of body fluid stains was investigated. For this application,
the potential of near-infrared hyperspectral imaging (NIR-HSI) was investigated
[23]. The authors used a hyperspectral camera (Specim, Oulu, Finland), which was
equipped with a mercury cadmium telluride (MCT) cryogenically cooled detector,
providing access to the spectral range from 1000–2500 nm [10,000–4000 cm−1].
With the combination of the NIR-HSI data and simple chemometric techniques such
as principal component analysis (PCA) and classical least squares (CLS) regression,
the evidence and location of semen, vaginal fluid and urine in bodily fluid stained
fabrics could be revealed.

Another clinical application with an intended purpose for diabetes screening has
recently been reported. This indication is accessible due to the analysis of glycated
hemoglobin, especially of the HbA1c fraction, which is usually quantified by HPLC
methodology. An interesting review on optical methods for studying glycation of
proteins including hemoglobin, also with a focus on Raman spectroscopy, has been
given by Pandey et al. [24]. The HbA1c fraction is usually reported as percentage
against total hemoglobin (for healthy people < 6.0%). In Fig. 20.6, NIR spectra of
several proteins are given, which have been considered for glycation testing as there
are albumin, collagen, keratin and hemoglobin. Without blood testing, another assay
for a non-invasive assay for assessing the glycation rate in people with diabetes has
been suggested based on glycated keratin as available from finger nail clippings [25].
For testing their hypothesis, the researchers used artificial non-enzymatic glycation
of keratin in aqueous glucose solution. For the in vitro glycation samples, spectral
changes versus the spectra of untreated keratin were observed in the range between
4300 and 7500 cm−1. Spectral classification based on people with diabetes mellitus
versus healthy subjects was performed using partial least square discriminant anal-
ysis (PLS-DA). Using standard normal variate normalization and Savitzky-Golay
smoothing with first derivative preprocessing, a prediction rate with 100% correct
assignmentswas achieved for a test set. This result is seenwith some skepticismbased
on our study of stratum corneumwith spectra measured non-invasively by attenuated
total reflection mid-infrared spectroscopy. The data base included healthy subjects
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Fig. 20.6 Diffuse reflection spectra of different proteins considered for glycation measurements
in diabetes screening and therapy monitoring (measured as powders); normal glycation levels for
hemoglobin as for healthy people are HbA1c values < 6%; increased pathological glycation levels
of HbA1c are around 14%. The horny layer from heel was from a thick stratum corneum layer
consisting of keratin and water

and people with diabetes, including patients experiencing poor insulin therapy. The
correlation based on multivariate PLS calibration with a regression against HbA1c
values was rather poor (R= 0.303, standard deviation for a linear regression of cross-
validated predictions versus HbA1c reference values was 0.49%) [26]. Non-invasive
diabetes screening by diffuse reflection NIR skin spectroscopy has also been evalu-
ated by my group with linear discriminant analysis (LDA) using the optimal spectral
interval of 9780–4500 cm−1 (accuracy of 87.8% with leave-5-out cross-validation)
and with spectral variable selection of eight wavelengths within the same interval,
providing a prediction accuracy of 85.4% [27].

20.3 Applications of Non-invasive Technology in Clinical
Chemistry

Non-invasive transcutaneous measurements for blood analysis have been the dream
of our generation, and with today’s multitude of body-sensing equipment for heart
rate, blood pressure, activity measurement and others, certainly an important vital
parameter such as blood glucose is high on the list. Other prominent analytes are
blood ethanol and hemoglobin, for which some developments have been reported.
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20.3.1 Non-invasive Technology for Glucose Monitoring

The benefits of tight glycemic control in people with diabetes have been repeat-
edly well described in the past. Previous studies had indicated that intensive insulin
therapy in diabetic patients can dramatically delay the onset of serious micro- and
macrovascular complications affecting eye sight, kidney, perfusion of the extremities
and others. Most diabetic patients are using blood glucose self-monitoring (SMBG)
devices for monitoring their glucose levels and adjustments of their insulin dosage
to achieve normoglycemia. When undergoing intensive insulin therapy, current
glucose monitoring requires people with diabetes to prick their fingers for blood
sampling several times a day. Besides that also needle-type wearable sensors based
on enzyme-mediated electrochemistry are nowadays available for continuous moni-
toring of interstitial glucose within the subcutaneous skin tissue (see also our recent
review [28]), but suffer from systematic deviations from the capillary or arterial
blood glucose level as gold standard for treatment with insulin. A non-invasive
measurement device certainly eliminates the inconvenience and pain of frequent
finger pricking or, as in the case of continuously sensing systems, avoids the inva-
siveness of needle-type sensors, allowing also a much higher frequency of readings
than using SMBG invasive techniques.

Awide rangeof optical techniques, such asfluorescence andpolarizationmeasure-
ments, Raman spectroscopy and optical coherence tomography (OCT) and others,
has been designed for the development of robust non-invasive methods for glucose
sensing; see, for example, [28]; see alsoFig. 20.7with anoverviewonopticalmethods
with most promising methods highlighted. NIR spectroscopy of the skin in combi-
nation with diffuse reflection techniques also seemed to be a valid candidate for
achieving such goal, as transmission spectroscopy needs rather thin web-like skin
sections. Figure 20.8 provides information about different measuring techniques

Fig. 20.7 Overview on optical methods suggested for non-invasive blood glucose measurements;
highlighted methods are currently most promising. Fluorescence-based sensors are implants or use
implantedmodified substrates to be interrogated by ex-vivo optical devices (with some invasiveness)
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Fig. 20.8 NIR spectra of body tissues at different thicknesses as measured in transmission
and reflection mode, illustrating the opportunities and limitations for non-invasive whole skin
measurements

involved in skin spectroscopy, which is mainly based on diffuse reflection measure-
ments. Themost useful spectral intervals, containing important fingerprint signatures
of the analyte, include the aforementioned combination and overtone NIR-regions.
The successful implementation of NIR spectroscopic glucose assays using serum,
blood plasma or whole blood samples, as described in the previous section, raised
hope for the realization of non-invasive assays based on skin spectroscopy. A state-
ment is allowed that shorter wavelengths, as chosen for experiments within the SW-
NIR, will suffer from reduced selectivity due to broader absorption bands at the
same tissue complexity; for a discussion on such assays, see our recent review [28].
Due to the small spectral signatures of the glucose, hidden among a largely variable
background, multivariate calibration techniques based on wide spectral intervals are
required to provide the selectivity and precision for quantification of blood glucose
as outlined above.

Important is certainly the optical accessory for obtaining optimal signal-to-noise
ratios. Fiber-optics, as used for infraredwaveguiding, illumination andphoton collec-
tion, are suffering from the small acceptance angle of backscattered photons due to
the numerical aperture of the optical fibers. Amuch larger solid angle can be realized
by using mirror-based optics for collecting backscattered NIR radiation. Figure 20.9
provides details on different optical set-ups used for diffuse reflection measurements
of skin. Another improving feature is the so-called optical clearing by applying a non-
absorbing and skin-friendly fluid to the skin surface for reducing the scattering from
the stratum corneum, which can be used especially for optics allowing a larger solid
angle for photon collection. Other designs for fiber arrangements for illumination and
detection have been published; important is certainly the distance between emitting
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Fig. 20.9 Diffuse reflection accessories used for skin measurements: fiber-optic probes with
different fiber arrangements for illumination and photon detection (a) and a rotational ellipsoidal
mirror-based device (b), providing tissue spectra with different probing depths; reprinted from [27]
with permission of SPIE - The International Society for Optics and Photonics

and detecting fibers for reaching different penetration depths within skin tissue. The
optical accessory is significantly shaping the experimental diffuse reflection spectra
and some examples for different skin sites are given with Fig. 20.10.

The non-invasive sensing of glucose is limited due to high background absorp-
tion of water, spectral baseline shifts, instrumental drift, lack of analyte sensitivity,
analytical overfitting, poor precision and incorporation of spuriously correlated spec-
tral variance into a calibration model. Noteworthy are the impressive experiments
by Olesberg and coworkers, using a rat animal model and transmission measure-
ments through a skin fold [29], as well as a recent publication from the group around
K. Maruo in Japan, using a fiber-optic probe for diffuse reflection measurements
in human subjects [30], for which the scattering optical parameters of skin are of
importance.

Multivariate calibrations, i.e., exploiting broad spectral intervals with many spec-
tral wavelengths to reach the required selectivity for glucose concentration deter-
mination, should have their footing on real wavelength-dependent absorption by
glucose. This has been requested by using the net analyte signal as the chemometric
approach for proving the spectrometric model. In the past, several papers claimed the
realization of non-invasive assays, but the spectroscopic basis for the non-invasive
determination of glucose and the development of appropriate calibration models,
separating the glucose signal from the complex biological matrix spectral variance,
needs to be proven; see also our review [28]. Spectroscopic assay pitfalls owing
to overfitting, when calibration is based on too many variables and unsound model
validation, have been illustrated earlier by us [9].

The success of the traditional approach using statistical PLS calibrations, even
with sophisticated data pretreatment, is rather limited, but alternative calibration
methods apart from artificial neural network (ANN) approaches had not been avail-
able [31]. For improving the model robustness, spectral variable selection on the
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Fig. 20.10 Skin spectra obtained with different accessories (fiber-optic and optical mirror-based
devices) illustrating the shape and intensities affected by their different solid angles for backscattered
photon collection. Water band intensities allow for an estimate of the average photon pathlength
within the tissue. Most protein signatures are from the stratum corneum layer; however, with larger
penetration depth also subcutaneous fatty tissue can be probed

basis of the PLS regression vector weights and more strict validation with day-to-
day testing had been taken into account instead of cross-validation based on different
validation package sizes. Another approach, the so-called science-based calibration
method, has been developed by us, which combines a priori information such as the
spectral absorptivities of the component searched for with statistical estimates of the
variance of the population of steady state samples with negligible glucose concen-
tration dynamics [9]. This method has been successfully tested with transmission
NIR spectra of plasma samples, which can be compared with results from previous
PLS calibration models [8]. The situation with transcutaneous skin spectra, obtained
by diffuse reflection, is more difficult because of the wavelength-dependent photon
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penetration depths, which requires a scaling of the aqueous glucose absorptivity
spectrum (“response spectrum”).

The problems with the repeatability of in vivo spectroscopic measurements are
described by various aspects as follows. Glucose in different compartments, e.g.,
interstitial and vascular space, blood flow and blood volume, skin temperature
gradients, comparability of reference venous or capillary blood glucose concen-
tration with tissue probed concentration and others must be taken into account and
experiments have to be carefully planned for reliable results. For the complexity of
in vivo measurements, several extensive investigations have been carried out with
results published earlier, but the challenge of achieving reliable non-invasive skin
measurement repeatability is still in the focus of researchers; for particular challenges
observed for the developments, see for example [31, 32].

Some information on the variability of tissue spectra can be gained from
Fig. 20.11, which provides spectra as measured at different temperatures. For a
tissue without blood perfusion, the temperature dependency of water as the main
constituent is readily observable; for in vivo measurements of skin at different
temperatures, also other effects come into play due to the response of the vascu-
lature. Thus, increasing temperature causes changing perfusion, blood volume and
also diminishing arterial-venous concentration differences due to higher blood flow.

Another more advanced approach arises from the opportunities, which exist in
photoplethysmography (PPG) [33]. This measurement technique enables the sensing
of information from the arterial vascular compartment. It can detect the periodic
blood volume changes due to the systolic and diastolic blood pressures from the
beating heart throughout the cardiac cycle based on NIRspectra, which has been
routinely implemented in pulse oximetry. A difference to the latter is that broad
spectral intervals need to be analyzed for determining the arterial blood glucose
concentration. This strategy was followed by Yamakoshi and coworkers, starting
with spectra between 900 and 1700 nm and coining their measurement technique as
“pulse glucometry.” After several improvements, an advanced set-up was designed
for side-scatteredfinger photoplethysmography thatwas presented in 2017 [34]. First,
PPG signals with three wavelengths: 808 nm, 1160 nm and 1600 nm (coinciding with
nearly peak glucose and strong water absorptions) were compared, while the source-
detector spacing was successively increased circumferentially around the fingertip.
A second experiment was performed with six wavelengths from 1550 to 1749 nm
for accessing glucose absorption bands. The pulsatile signal-to-noise ratios were
claimed to be measured around 15 dB, giving hope for its potential for realizing a
practical measurement of arterial blood constituents including glucose, but awaiting
further developments.

It is interesting to take a look at early experiments performed by Nahm and
Gehring, who studied the pulsatile spectrum from time-resolved near-infrared spec-
troscopic experiments with an injected bolus of indocyanine green (ICG) during
transillumination of a fingertip [35]. Their results showed that the pulsatile compo-
nent was by a factor up to 300 smaller than that of the static vasculature component,
underlining the challenges of pulse glucometry versus integral tissue measurements.
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Fig. 20.11 Temperature dependency of in vivo skin diffuse reflectionNIR spectrameasured by a tip-
thermostated fiber-optic probe of type I (a) and for a tissue phantomwithout bloodmicro-circulation
effects, showing clearly the temperature dependency of the water constituent (b); reproduced in part
from [27] with permission of SPIE—The International Society for Optics and Photonics

For further information on these developments using photoplethysmography with
regard to blood glucose sensing, the reader is referred to our recent review [28].

20.3.2 NIR Spectroscopy of Skin–Optical Data for Photon
Migration Modeling

The diffuse radiation transport in biological tissues can bemodeled by using different
mathematical tools providing an understanding, e.g., of the probed tissue volume
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and photon penetration depths. An interesting tutorial has recently been published
to which the readers are referred [36]. The mean optical pathlength for radiation
within mucosa tissue, as given for diffuse reflectance accessories, is wavenumber
dependent as illustrated above (see Fig. 20.10). Tissue optical properties are the
absorption and the scattering coefficients,μa andμs (in units of mm−1), respectively,
and the anisotropy of scattering g (dimensionless). From the latter two parameters,
the reduced scattering coefficient μs’= μs (1 – g) can be calculated. From diffusion
theory for photon transport in tissues, an optical penetration depth can be estimated
based on these optical constants with δ = (3 μa (μa + μs’))−1/2 [36].

In Fig. 20.12, experimentally derived optical constants from the upper skin layers
are shown, i.e., absorption and scattering coefficients; the inset in panel B shows also

Fig. 20.12 Optical constants of dermis and epidermis in the NIR spectral range including uncer-
tainties (μa absorption coefficient, μs’ reduced scattering coefficient with μs’ = (1 – g) μs, which
is a property incorporating the scattering coefficient μs and the anisotropy g; all data were from
Refs. [37–39]; note the significant differences in the scattering coefficients for the NIR region
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Fig. 20.13 Average
wavelength-dependent
photon tissue penetration
from calculations based on
optical constants and optics
geometry [39]

the anisotropy factor g, which describes the mainly forward scattering characteristics
of NIR photons. The optical constants were compiled from three publications [37–
39]. The optical data for epidermis and dermis (including standard deviations—
dashed curves- available down to 6250 cm−1) fromSalomatina et al. [38] are different
from the other compilations, which is certainly understandable for the thin epidermis
layer.

From the optical constants for skin, also the mean optical penetration depth can
be calculated, which was done by Roggan et al. [39], using the above mentioned
equation as derived from photon diffusion theory. Other methods include Monte
Carlo simulations of the “photon random walk” in scattering tissue, which are based
on optical constants for absorption and scattering. In Fig. 20.13, the wavelength-
dependent penetration depth estimates are provided for the SW-NIR spectral range
as published in [39]. From such calculations, also information on anatomical side
conditions can be derived, for example, for transillumination feasibility of a fingertip
or for estimating the fraction of photons reaching the skin dermis. For underlining
the success of theoretical simulations, an early published study by Qu and Wilson
[40] must be mentioned. The authors used extensive Monte Carlo modeling calcu-
lations for evaluating the effect of physiological factors and other analytes on the
in vivo determination of glucose concentrations by near-infrared optical absorp-
tion and scattering measurements. By this, much valuable insight can be obtained
for the minimum requirements of the experimental set-up with spectrometers and
accessories for the detection of minute glucose signatures within a varying complex
spectral background.

The quantification of glucose in complex multi-component systems requires a
unique absorption pattern and a significant contribution to the spectrum from this
component above the existing spectral noise level. As the NIR-assay mainly relies
on the absorption effects of glucose inside the aqueous intravascular and intersti-
tial compartments in the skin tissue, glucose absorptivities obtained from aqueous
solution measurements have been already presented in Fig. 20.5, providing also
quantitative data on another monosaccharide of fructose and information on the
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spectral quality. As already discussed, best discrimination between both monosac-
charides can be obtained by using spectral data from the combination band region,
whereas in higher wavenumber, regions absorptivities are nearly indistinguishable.
For in vivo diffuse reflection measurements, the photon penetration depth in tissue
is wavenumber dependent, much different from in - vitro measurements in cuvettes,
which must be taken into account. A classical least squares (CLS) approach had been
chosen byMaruo and Yamada [41] by evaluating diffuse reflection spectra of human
forearm skin between 1350 and 1850 nm [7400 – 5400 cm−1]. It is based on a modi-
fied Beer’s law, assuming that absorbance difference spectra, as measured versus
a first series spectrum, can be modeled by a linear combination of water, protein,
glucose and fat spectra, as well as a baseline for scattering equivalent absorption.
Another approach is SBC calibration modeling [9], which requires data input such
as quantitative analyte absorptivity, as well as estimates of the instrumental noise.
Based on the analyte spectral signals and of those tissue constituents showing cross-
sensitivities in combination with radiation penetration depth, valuable analytical
method parameters such as limit of detection and method selectivity can be derived
also for diffuse reflection measurement scenarios. Due to known penetration depths,
wavenumber-dependent scaling of the component spectral signatures can thus be
realized.

20.3.3 Non-invasive Technology for Hemoglobin and Blood
Ethanol Monitoring

The importance of hemoglobin (Hb) measurements has already been highlighted
when presenting in vitro assays. However, there are scenarios, where it is desirable to
monitor hemoglobin continuously as during transfusion, for patients under intensive
care or with a postoperative follow-up. In principle, the time-resolved signals from
photoplethysmography are evaluated with the observed alternating current (AC) and
direct current (DC) signals measured. The selected radiation is found within the
visible and SW-NIR spectral range with wavelengths between 600 and 1000 nm,
realized, e.g., by a light-emitting diode (LED) array with center wavelengths of 569,
660, 805, 940 and 975 nm (selected wavelengths represent two isosbestic points
and three for compensation of tissue scattering). For example, different physical
models were considered, and with a “finger model,” the ratio of AC and DC signals
at different wavelengths (at least two) is taken into account. A more sophisticated
model considers also the scattering of the arterial blood arising from the red blood
cells. In principle, one parameter can be established and linked with a wavelength-
dependent variable thickness due to scattering. Multiple linear regression analysis
was applied for the prediction of total hemoglobin concentration of 129 different
patients. The relative percentage error and standard deviation of the prediction set
were 8.5% and 1.14 g/dl, respectively [42]. Further improvements were achieved by
designing a special finger probe with optimizations of the detector area, the emission
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area of a light source and the distance between the light source and the detector. Such
an optimally designed finger probe provided a correlation coefficient of 0.869 and a
standard deviation of 0.81 g/dl in predicting total hemoglobin [43].

Another development of a non-invasive hemoglobin analyzer is presented in [44].
The instrument uses eight laser diodes with wavelengths between 600 nm to 1100 nm
for a synchronous recording of photoplethysmographic signals. For a simplification
of the optical assembly, the light sources were modulated with orthogonal square
waves, and together with the design of a corresponding demodulation algorithm,
a beam-splitting system could be avoided. A newly designed algorithm improved
the accuracy of the dynamic spectrum extraction. A population of 220 subjects was
involved in the clinical testing. A machine learning calibration model, regressing the
plethysmographic data, deriving from the arterial pulse cycle, versus the hemoglobin
concentration, was developed. The correlation coefficient and SEP values were
0.8645 and 0.85 g/dl, respectively. The results indicated that the hemoglobin concen-
tration values could be obtained with acceptable precision and accuracy to allow
future clinical translation [44].

A different wavelength regime is again exploited for non-invasive blood ethanol
quantification, which is similar to the development of glucose NIR-sensors based
on the spectral interval of 8000–4000 cm−1. The spectral signatures of ethanol are
even more pronounced as those of glucose, but the concentration interval of interest
is quite similar, i.e., in the per mille range. Standard methods for blood alcohol
determinations include the analysis of breath from subjects by using electrochemical
sensors. More accurate are gas chromatographic methods with head-space analysis,
requiring the sampling of blood by a syringe for laboratory analysis. A non-invasive
in vivo spectroscopic method certainly offers a promising alternative to the other
established assays.

Several companies were interested in the development of fast and reagent-free
analyzers, and a few reports on progress have been published nearly a decade ago.
With the last published paper, an impressive device with appropriate spectral data,
as taken from measurements within the NIR combination band region, had been
presented [45]. Using data from Monte Carlo simulations of the photon transport
and experiments, it could be shown that the tissue fiber-optic probe design had an
expected substantial impact on the effective photon random pathlength through the
skin and the signal-to-noise ratio of the spectroscopic measurements. Spectral data
were recorded within 8000–4000 cm−1.

The so-called alternate-site phenomenon is known from blood glucose sensors,
and several clinical studies have shown that interstitial finger and forearm glucose
concentrations can exhibit significant concentration differences over time, with
concentrations in fingers much less delayed compared to blood glucose values.
A similar behavior was observed for non-invasive blood ethanol when finger and
forearm tissues were tested. Results of a 26-subject clinical study with controlled
drinking were reported that were designed to evaluate the spectroscopic technique
preferentially at finger measurement sites in comparison to spectroscopic readings of
alternate volar forearm venous blood, and breath measurements. Comparisons with
results from breath, blood and tissue assays demonstrated significant differences in
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ethanol concentration, attributable to both assay accuracy and pharmacokinetics in
the elimination phase of alcohol. With error analysis, a significant fraction of the
concentration variance could be explained by alcohol pharmacokinetics using a first
order kinetic model. It is interesting to note that the PLS calibration models gave
different prediction errors when using either data from the entire monitoring session,
or data from the alcohol elimination phase only; minimum SEP values were for
regressions of finger tissue spectra versus venous blood concentration with a value
of 6.6 mg/dl. As summary, the statement is valid that their work provided a first
investigation of the relationships between breath alcohol, venous blood alcohol and
interstitial tissue alcohol concentration, as measured at multiple skin sites [45].

20.4 NIR Spectroscopy for Tissue Analysis

20.4.1 Applications for Spectral Histopathology

A few tissue NIR spectra have already been presented in previous sections, in partic-
ular when skin spectroscopy for non-invasive assays is involved. Here, different skin
areas have been studied such as oral mucosa of the inner lip, finger and forearm skin
sites and most spectra, apart from a few transmission measurements, were presented
as measured with fiber-optic andmirror-based accessories in diffuse reflectionmode.
Muscle and fatty tissue spectra have also been introduced and it is shown for all that
water features are dominating the spectra. NIR microscopic studies are rare; see,
for example, Ref. [32], where the authors were studying the heterogeneity of skin
with its impact on non-invasive glucose measurements by skin spectroscopy. The
histopathology of biopsy tissues on themicroscopic level is a domain of mid-infrared
and Raman spectroscopy, where imaging applications are supporting the pathologist
on tissue assessment after, for example, a colonoscopy or bronchoscopy using endo-
scopic techniques. However, at the end of this section, such a NIR spectroscopic
application with an inverted microscope is discussed. Larger tissue volumes can be
easily accessed by fiber-optic probes attached to FT-NIR or dispersive spectrome-
ters as described in one of the previous subchapters. For spectroscopy, the tissues or
organs must be accessible, although also endoscopic techniques have been described
in the past with more sophisticated instrumentation.

There have been different tissues studied for cancer, which comprise breast
tumors, cervical dysplasia and cancer, glioma, human melanoma xenografts, head
and neck tumors or cancerous bronchial mucosa; for the literature collection, see our
review on NIR spectroscopy in cancer diagnosis and therapy [46]. Further studies
have been performed earlier on pancreatic and colorectal tissues by my group, which
has also been covered by our review. For dermatological studies on different skin
cancers, the paper by McIntosh et al. should be consulted [47]. When looking at the
physiological relevance of NIR spectroscopy for cancer studies, one has to look at
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marker substances that are providing differences in absorption and scattering char-
acteristics. Hemoglobin concentrations and its redox status, described by oxy- and
deoxygenated forms for providing oxygenation saturation, water and lipid content
have been listed for discrimination from healthy tissue. Tumor tissues were found
with significantly high levels of water and of hemoglobin because of higher vascu-
larization, but also with less lipids and lower oxygen saturation due to cell hyperme-
tabolism. Commonly, in tumorous tissue of breast cancer, abnormal proliferation of
cells will result in an angiogenesis with an increased number of blood vessels, even-
tually increasing the local blood Hb concentration. A recent breast cancer study has
been reported by Mehnati et al., who differentiated between normal and tumorous
breast tissue by local hemoglobin concentrations [48].

Cancerous tissues from pancreatic and colorectal tumors have been classified by
studying, in particular, first and second overtone bands of the lipid CH2 stretching
vibrations, which could be intensified by first spectral derivative calculations; for
the characteristic wavenumber intervals and band assignments, see also Fig. 20.2.
Besides diagnosis, also margin location of cancerous tissue, especially intraoperative
malign tumor margin assessment is important for supporting the surgeon’s decisions
during operations. Furthermore, NIR spectroscopy is useful for therapeutics moni-
toring, especially after chemotherapy, radiation treatment, neoadjuvant and photo-
dynamic therapy. For more details, the reader is again referred to our review [46]. A
recent instrumental development of an LED-basedNIR sensor for kidney tumor diag-
nostics has also been published [49]. Four LEDs with emission band maxima at 940,
1170, 1300 and 1440 nmwere used in combination with a fiber-optic reflection probe
for an improved sensor prototype as compared with the established application of a
tungsten halogen lamp. A dispersive monochromator-based spectrometer equipped
with an InGaAs linear array detector was employed. Spectra of renal biopsies with
diameters of one to two cmwere investigated, applying principle component analysis
(PCA) and partial least squares discriminant analysis (PLS-DA) for kidney tumor
detection.

Novel imaging instrumentation has been developed, e.g., on the basis of a broad-
band NIR source such as a tungsten halogen lamp and a liquid-crystal tunable filter
(LCTF) for wavelength dispersion, realizing bandpass filtering without mechanical
movement. A recent review on NIR imaging for biological tissues, including chemo-
metric tools for spectral data analysis, has been published by Ozaki et al. [50], so
that the reader is referred to that chapter for more information.

A very recent application dealing with multispectral imaging has been reported
for the histopathology of skin biopsies. This technique combines spectral resolu-
tion of spectroscopy with spatial resolution of imaging to show several merits for
biomedical applications. As mentioned above, infrared and Raman microscopy have
been employed for spectral histopathology, also in combination with conventional
tissue staining for tumor diagnostics. The biofingerprint interval within the low-
wavenumber region has beenmentioned already, but instrumentation for imagingwill
require different photonics allowing only shorter wavelengths. Spreinat et al. [51]
described an imaging set-up using aXenon lamp forNIR radiation, amonochromator
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for wavelength dispersion, optics for homogenous wide-field transmission illumina-
tion, an inverted microscope and further detection by a thermoelectrically cooled
InGaAs camera for wavelengths between 900 and 1500 nm. Abnormal skin samples
including melanoma, nodular basal-cell carcinoma and squamous-cell carcinoma
were acquired from dermatology and studied to distinguish healthy from diseased
tissue regions, illustrating the potential for cancer diagnostics.

There are also developments dealing with molecular beacons (dyes), which
have been suggested as endogenous chromophores for providing more contrast in
NIR imaging applications. Such substances have recently received much attention
and actual developments are described in the last section on NIR-fluorescence in
biomedicine.

20.4.2 Monitoring of Blood-Tissue Oxygenation
and Cytochrome Redox Status

Within the NIR region, the wavelength interval of 650–1100 nm, also called “optical
window” in tissue, is rather transparent for NIR radiation in scattering soft tissues.
When discussing the photon penetration depth for non-invasive blood glucose moni-
toring (see also Fig. 20.13), this information is clearly displayed. The penetration
depth was calculated by using optical absorption and scattering parameters of skin.
Besides the determination of blood glucose, there are further special biomolecules
of great interest for monitoring deviations from homeostasis in the body. Natural
pigments such as hemoglobin as major component in the red blood cells, myoglobin
in muscle, as well as cytochromes generally found in tissues, have characteristic
absorbance spectra within the visible and the SW-NIR spectral range. Their spectra
are dependent on the degree of oxygenation of the hemoproteins and the redox state of
the cytochromes. Therefore, spectroscopy can provide information about the in vivo
state of tissue oxygen supply.

In Fig. 20.14, absorptivities of hemoglobin in its oxy- and deoxygenated state
are shown, illustrating the possibilities for quantitative spectroscopy within several
spectral ranges from the visible up to the SW-NIR regime. Figure 20.15 provides a
blow-up of the SW-NIR region with a linear scale and different oxygenation degrees
of hemoglobin with a spectral isosbestic point around 805 nm. In particular, non-
invasive continuous measuring techniques are of special interest. Many applications
are found in cerebral monitoring with its successful advent in special clinics for
neonatal intensive care or for monitoring during labor. In the past, great interest had
also been in muscle oxygenation studies.

NIR spectroscopy of skin has been subject of many investigations, e.g., in skin
transplantation as in plastic and reconstructive surgery or burn injury treatment and
wound healing [52, 53]. Regional and temporal variations in skin tissue oxygenation
are of special interest and can be assessed continuously using NIR spectroscopy.
Especially, the research group around Michael Sowa has a long-time engagement
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Fig. 20.14 Fundamental optical data for oxygenated and deoxygenated hemoglobins as blood
constituents in the visible and short-wave near-infrared spectral range (downloaded from https://
omlc.org/spectra/)

Fig. 20.15 Measurement scenario with different hemoglobin oxygenation using the so-called isos-
bestic wavelength with same absorption for both species, i.e., oxy- and deoxyhemoglobin, and
neighboring wavelengths for species quantification. At the isosbestic wavelength at 800 cm−1, the
total absorbance of a sample does not change upon differences in oxygenation

https://omlc.org/spectra/
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in developing technology for skin viability testing, using also instrumentation with
liquid-crystal tunable filters for spectroscopic imaging in the visible and near-IR
spectral range.

Some delicate wound healing processes need intensive management, so that
people have to consult hospitals with experienced dermatologists. This may be the
case, for example, for people with insufficiently treated diabetes mellitus or for
some elderly immunocompromised patients. Such treatment can be challenging and
costly as the healing process may require longer times. Phases of wound healing are
described in the review by Sowa et al. [53], providing an overview on NIR spec-
troscopic methods including alternative technology. Among the applied methods
so far, including laser speckle contrast imaging, NIR imaging is still one of the
most promising technologies, but the established indocyanine green fluorescence
angiography method is competing for a successful objective wound assessment
during the entire healing process. The evaluation of the pulsatile signals from NIR
tissue oximetry, as described above for photoplethysmography, can provide further
information, for example, by assessing arterial sufficiency.

Oximetry in the visible spectral range had found many applications and a study
on the evaluation of reflection spectra from hemoglobin-free perfused heart tissue is
given as an example of such investigations [54]. Visible spectra of myoglobin (oxy-
and deoxygenated form) and several cytochromes with their different redox states
can be found in the latter publication. Another study, focusing on the development of
instrumentation for breast cancer screening based on hemoglobin spectroscopy, has
been carried out by us, using two or three specially selected laser wavelengths mainly
within the SW-NIR range for optical mammography [55]. In a recently published
study, the method of opto-acoustic imaging of relative blood oxygen saturation and
total hemoglobin has been applied for breast cancer diagnosis. Here, the measure-
ments were done at a wavelength of 757 nm and 1064 nm, respectively, with prepared
phantoms that were mimicking breast tissue for mapping oxygen saturation differ-
ences in vessels with a depth reaching down to about 50 mm [56]. A more complex
assessment of tissue compounds was performed by Chen et al., who studied an NIR
tomographic imaging system with several wavelengths between 633 and 980 nm in
continuous wave mode for a quantification of four analytes, i.e., oxy- and deoxyhe-
moglobin, water and lipids, in addition to a scattering factor [57]. They came up with
an optimum of seven wavelengths, which were adapted to chromophore concentra-
tions as found for breast tissues of young and elderly women; the recommended laser
diodes had wavelengths of 650, 690, 705, 730, 870/880, 915 and 937 nm.

As pointed out in the previous sections, NIR spectroscopy (NIRS) is able to
measure oxygenation in human tissues, but statements can be found that it suffers
lack of quantification.Methods had been developed formeasuring optical pathlengths
in tissue, initially enabling the detection of changes in concentrations to be quanti-
fied, and subsequently, methods for absolute quantification of HbO2 and Hb were
developed; for details, see also Ref. [58]. Commercially available monitors such as
the NIRO 200 NX, which is used in clinics, can measure the following parame-
ters: Tissue oxygenation index TOI (%), normalized tissue hemoglobin index nTHI
(absolute value in arbitrary unit), oxygenated hemoglobin change,�HbO2 (μmol/l),
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deoxygenated hemoglobin change�Hb (μmol/l) and total hemoglobin change�cHb
(μmol/l). For this device, three LEDs (735 nm, 810 nm, 850 nm: nominal values) are
used. As spectral evaluation methods, the so-called SRS method (spatially resolved
spectroscopy) and MBL method (modified Beer-Lambert) are applied; for details,
see NIRO 200 NX brochure (Hamamatsu, Japan). A wide range of applications has
been reported, reaching from the management of brain oxygenation status during
surgery, over clinical studies related tomuscle function [59], kidney transplant perfu-
sion [60], and in particular to brain function and metabolism [61]. The latter review
provides a comprehensive and actual overviewondifferent opticalmethods employed
in brain monitoring, with special focus on functional near-infrared spectroscopy
(fNIRS), diffuse correlation spectroscopy (DCS), photoacoustic imaging (PAI) and
optical coherence tomography (OCT). In addition, also wearable devices have been
discussed. For details on the individual measurement techniques, the reader must be
referred to the review with its extensive literature list, as otherwise this would go
beyond the scope of this chapter.

Nevertheless, a few special applications will be mentioned. Non-invasive moni-
toring in preterm infants in intensive care units is another important activity in
hospital care. Meanwhile, there is undeniably significant progress, although much
work remains mostly on an experimental level due to lack of standardization and
use of various algorithms for the spectral assessment. The state of the art and an
overview of past studies concerning NIRS in preterm infants were presented by
Korček et al. [62].

Human functional brainmapping applications have gained a new dimensionwhen
looking back at the latest developments of functional near-infrared spectroscopy
(fNIRS). This technology usually refers to a pointmeasurement of the hemodynamics
that is providing information on the tissue perfusion via blood flow as well as blood
volume changes, and oxygenation changes, marking oxygen supply. Schematics for
the instrumentation and basic principle of fNIRS are presented with Fig. 20.16. In
contrast, measurements can also be performed simultaneously at different locations
for imaging purposes of the probed area. Other descriptors such as optical topog-
raphy, near-infrared imaging and diffuse optical imaging have also been in use. Its
aim is to detect simultaneous changes in the optical properties of the brain from
multiple measurement sites with according results displayed as a map or image of
the monitored area. In case of depth-resolved processing of the spectral information,
one speaks of NIR tomography, also known as diffuse optical imaging (DOI) or NIR
optical tomography.

The history and developments of fNIRS using continuous wave (CW) measure-
ments, as well as time and frequency resolved instrumentation, have been presented
several times, but a review on the state of the art and recent advances in hardware and
signal processing fromYücel et al. [63] is worth to be mentioned. CW-based devices,
which take the great advantage of being simple and more cost-efficient, compared
with time and frequency domain instrumentation, have been applied formeasurement
of brain activation induced hemoglobin concentration changes that was reviewed by
Scholkmann et al. [64]. Details on the different involved technologies, their advan-
tages and disadvantages, cannot be given here, so that the reader is referred to the
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Fig. 20.16 Instrumentation and basic principle of functional NIR spectroscopy (fNIRS), for which
the penetration depth is dependent on the distance between emitting and detecting fibers (from:
Optics based label-free techniques and applications in brain monitoring 2020 [61]); licensed under
CC-BY (http://creativecommons.org/licenses/by/4.0/)

original publications listed in the above mentioned reviews. Application areas can
be listed as for neuro-development in newborns, infants and children, perception and
cognition, motor control psychiatric disorders, neurology and anesthesia and further
topics, which are made possible with wearable instrumentation [63].

In this context, another substance of great interest is the cytochrome-c-oxidase
(COX) enzyme, which is present in all cellular mitochondria and is involved in more
than 95% of oxygen consumption. There is much interest in monitoring COX in the
brain, as it is a metabolic marker, especially for detecting brain injuries. Sudakou
and coworkers looked at time-resolved near-infrared spectroscopy for estimating the
uncertainty in the determination of cytochrome-c-oxidase concentration changes by
Monte Carlo simulations with depth-resolved assessment [65].

http://creativecommons.org/licenses/by/4.0/
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20.4.3 Non-invasive Pulsatile NIR Spectroscopy

In most presented applications of short-wave near-IR biospectroscopy so far, the
focus was on integral tissue probing apart from glucose assays using photoplethis-
mography, allowing the probing of the intravascular space through dynamic moni-
toring of tissue absorption based on subsecond measurements. This technique can
be employed for a spectroscopic measurement of the cardio-vascular pulse wave
that is correlated to periodic changes in blood volume, since the blood is maximally
diffused through the vascular system during the heart systole, whereas at the diastole
blood pressure is minimal.

The major clinical application with exploitation of the cardiac blood volume
modulation is in pulse oximetry providing values of the arterial hemoglobin oxygen
saturation. Meanwhile, it is incorporated into the generally accepted standard of
care and fundamental in the support of critical-care medicine, applied for adult and
neonatal monitoring. An early review on theory and applications of this technique
including practical limitations was published years ago by Mendelson [66]. Two
different wavelengths had been used to measure the actual difference in the absorp-
tion spectra of oxygenated and deoxygenated hemoglobins, i.e., for example, at
660 nm (red light) and 940 nm in the SW-NIR, using the ratio of the pulsatile (AC)
to the non-pulsatile (DC) signals at each wavelength for further calculations. This
effective scaling process results in a normalized red/near-infrared ratio that is largely
independent from the incident intensities. Problems at that time were concerned with
low peripheral vascular perfusion, motion artifacts and systematic errors induced by
different hemoglobin variants and derivatives (e.g., HbCO). Over the intervening
years, many patents have been published on advanced pulse oximetry sensors with
the consequence that problems attributed to motion artifacts or straylight have been
diminished.

The commonly used fingertip-type pulse oximeter is taking measurements in
transmission, thus limiting its application to the fingertip or earlobe to provide
physiological parameters. However, their inconvenience for long-term monitoring
in daily life has some shortcomings so that other types of wearable pulse oximeters,
measuring in reflection mode, had been envisaged. For the purpose of developing
reflection pulse oximetry, the light propagation in tissue was simulated to estimate
the measured intensities of reflected light using analytical and numerical solutions
of the diffusion approximation equation for photon migration in the visible and near-
infrared region [67]. A comparison between reflection and transmission modes was
investigated with experimental data and the research results showed that it is possible
to model a reflectance pulse oximeter by simulating the random walk of photons by
diffusion theory.
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20.5 Applications of NIR-Fluorescence in Biomedicine

Near-infrared fluorescence probes (NIFPs) have often been used in immunoassays,
bio-imaging and medical diagnosis. These fluorescent compounds have a character-
istic molecular structure with highly conjugated polyene systems for enabling long
emission wavelengths between 650 nm up to 900 nm. In this region, lower tissue
autofluorescence exists with deep tissue penetration and minimal background inter-
ference. Its high sensitivity and selectivity is remarkable with the consequence of
fluorescence spectroscopy, finding a broad range of applications also in bioanalytical
chemistry and, in particular, for imaging applications [68]. As most biomolecules
show no or only weak fluorescence, their detection sensitivity is rather low. For
improvement, fluorescent labeling has been used in the past, and near-infrared (NIR)
fluorescence detection shows obvious advantages in biologicalmaterial analysis. The
potential of cancer NIR imaging can certainly be realized with NIR dyes in conju-
gation with tumor specific ligands [69]. A recent review on near-infrared fluorescent
dyes and their classification, providing a fine overview on the current state of the
art with applications, has been published [70]. Besides several organic fluorescent
dyes such as cyanine dyes, rhodamine, thiazine and oxazine dyes from past devel-
opments (indocyanine green must especially be noticed for measurements with the
vascular system involved), also the synthesis of new classes has been introduced
such as fluorescent quantum dots or rare earth complexes and even single-walled
nanotubes (SWNT) must be mentioned. One wide area is the use within immunoas-
says, where these dyes are used as marker molecules in medical diagnostics. For
further details, the reader is referred to the recent review [69]. Several studies have
been carried out for indocyanine green enhanced near-infrared optical imaging of
acutely damaged muscle, for which often animal models have been applied. For
imaging applications, nanofluorophores have also been presented that are applicable
within the so-called second near-infrared window (1000–1700 nm), thus providing
high spatial resolution, low background and deep tissue penetration. There are further
recent studies, e.g., for tumor imaging, which could be achieved by using a hypoxia-
triggered singlemolecule probe for background-free NIR II fluorescent imagingwith
deep tissue penetration at the centimeter level, providing in addition possibilities in
photothermal therapy for curative tumor treatment [71].

20.6 Concluding Remarks

There are many interdisciplinary research activities worldwide, searching for new
and more efficient analytical methods and techniques for expanding the field of
medical diagnostics. Upgraded technology for clinical chemistry should be based
on reagent-free and automation-capable NIR spectroscopy and the recent advent
of hand-held instrumentation will be widening the application range. For example,
personalmeasurements on cholesterol and triglycerides in blood have been suggested
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for screening in pharmacies, as life style management will create a corresponding
demand. Such portable NIR spectrometers could have an enormous potential in
the area of medical technology for performing routine diagnostic testing. Clinical
chemistry will certainly profit from less expensive miniaturized spectrometers that
hover just over the horizon.

Non-invasive monitoring technologies of blood glucose and blood ethanol are
candidates for another market, but there are also competing optical methods such
as Raman and MIR spectroscopy. Spectral histopathology is another area, but the
medical community is sometimes skeptical and quite slow in accepting novel devel-
opments. However, interdisciplinary collaboration will advance the introduction into
clinics. Another promising area is optical tomography for breast cancer screening
despite the image blurring owing to photon scattering in tissue. Functional NIR
spectroscopy seems to be unchallenged so far, but will need further standardization.
There is still a plethora of conventional or classical assays to be replaced by faster and
more accurate spectroscopic methodology. Furthermore, direct and fast diagnostics
and classification of diseases may be derived from the spectroscopic fingerprints of
biomedical samples.
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Chapter 21
Applications of NIR Techniques
in Polymer Coatings and Synthetic
Textiles

Tom Scherzer

Abstract This chapter provides a survey on the current state of the art of in-line anal-
ysis by various NIR techniques for process control of two very specialized categories
of polymer materials: polymer coatings and textiles from synthetic fibers. In case of
coatings, monitoring of the conversion of radiation-curable monomers such as acry-
lates, methacrylates, cycloaliphatic epoxies and vinyl ethers that is achieved during
irradiation is primarily discussed, since the conversion strongly determines applica-
tion and processing properties of such coatings. Moreover, in-line measurement of
the coating thickness (from only a few up to several hundreds of micrometers), the
spatial distribution of various parameters of interest across the coatings as well as
the characterization of thin printed layers in the printing press are further subjects of
the first part. The second part deals with the application of NIR methods for process
monitoring and quality control in textile converting. Technical textiles are often
subject of special treatment and finishing steps such as impregnation, coating, lami-
nation etc. which have to be controlled in order to ensure adequate processing. NIR
techniques have been shown to be an appropriate tool for this problem. In particular,
hyperspectral imaging can help to retain the required homogeneity of textile webs
or laminates after finishing, e.g., with respect to the application weight of functional
finishes or adhesive layers. Furthermore, NIR spectroscopy is used for identification
and sorting of textiles with the objective of recycling of the materials. Hence, an
overview of the current status of the use of NIR spectroscopic techniques in textile
technology is given.
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21.1 Introduction

Polymers have become one of the most important classes of materials today, which
is mainly due to the amazingly broad range of properties that may be achieved
with this kind of materials. Accordingly, there is almost no range in our daily life,
which goes without polymers. A multitude of different polymer materials has been
developed so far and is commercially available. The widespread use and commer-
cial importance of polymers makes also great demands on the analytics of such
materials. With respect to the production of polymers, their converting, finishing,
recovery or disposal, powerful and versatile analytical methods are required for char-
acterization, identification, process and quality control etc. In particular, techniques
used for sorting and control applications have to comply with special requirements
such as robustness, reliability, durability, safety, significance of the data etc. [1–3].
Furthermore, in most cases they should be able to record data in a non-contact mode.

Near-infrared spectroscopy satisfies these specifications to a great extend. More-
over, due to its specific measurement principle NIR spectroscopy has high sensitivity
to typical molecular structures in organic chemistry that are relevant for synthetic
polymers.Consequently,NIR spectroscopy is particularlywell suited for applications
in polymer production and processing and related areas [4–9].

Apart from the underlying measurement principle, the great potential of NIR
spectroscopy for its use in science and technology is mainly related to

(i) The high transmission of quartz and several glasses for radiation in this spectral
range, which allows the use of conventional windows, lenses, prisms and last
but not least optical fibers in experimental setups, which provides easy access
to the region of interest,

(ii) The possibility to measure in reflection or transflection mode, which is
advantageous in case of intransparent materials and

(iii) The rather lowextinction coefficients ofmost organicmatter in the near-infrared
in comparison to other spectral ranges used in analytics such as mid-infrared
or UV, which allows transmission measurements on samples with rather high
thickness or optical path lengths in the range of several millimeters or even
more without the need of dilution, cutting, pressing or other special sample
preparation steps.

A quite recent application of NIR spectroscopy in polymer technology is the
in-line analysis of polymer coatings. In particular, the conversion in coatings of
radiation-curable monomers and oligomers such as acrylates, methacrylates, vinyl
esters, thiol-ene systems, cycloaliphatic epoxies and vinyl ethers that is achieved
after UV or electron beam (EB) irradiation is of great interest, since it strongly
determines both the application and processing properties of such coatings. However,
in-line analysis of rather thin coatings with thicknesses between a few up to several
hundreds of micrometers is a considerable challenge for several reasons such as
the required sensitivity and time resolution. Consequently, only very few attempts
have been made in the past to monitor technical coating and curing processes by
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analytical methods. NIR spectroscopy does not appear to be an obvious method for
in-line analysis of thin coatings due to the rather low extinction coefficients in this
spectral range. Nevertheless, it has been shown during the last two decades that NIR
spectroscopy has great potential for monitoring of the conversion, the thickness and
other properties of polymer coatings if spectroscopic equipment with high sensitivity
is combined with powerful chemometric approaches. Furthermore, the distribution
of the parameters of interest across the coatings may be monitored as well by means
of hyperspectral imaging.

An even greater challenge are printed layers since their thickness is even lower
than those of most coatings. UV-curable printing inks applied for example by offset
printing have typical thicknesses in the range between 0.5 and 3 g/m2 (which very
roughly corresponds to their thickness in micrometers). Moreover, printing speeds
are at least one order of magnitude higher than in coating technology, which further
increases the specific requirements. Despite these difficulties it has been demon-
strated that the conversion in printed layers aswell as their thicknessmay be predicted
with surprisingly high precision from the NIR spectra. The first part of this chapter
will provide a survey on the current state of the art of in-line monitoring of the
properties of polymer coatings and printed layers by NIR spectroscopy.

Synthetic fibers and textiles play an important role in our daily life. They are
widely used not only for clothes, but also for interior design of living rooms, offices,
cars and other means of transportation as well as in numerous technical applications.
Nevertheless, despite their widespread use, the diversified production and processing
technologies and the high quality requirements, synthetic textiles have been rarely the
subject of specific spectroscopic investigations dealing with their characterization or
themonitoring of production andfinishing processes. Themajority of analytic studies
is dealing with textiles made of natural fibers such as cotton, wool, flax, silk etc.
However, technical textiles, which make particularly high demands on quality and
compliance with the specification, are mostly based on fibers and textiles of synthetic
polymers such as polyethylene terephthalate (PET), polyamide (PA), polypropylene
(PP) or more special materials such as poly(p-phenylene terephthalamide) (para-
aramid). Moreover, they are often subject of special treatment and finishing steps
such as impregnation, coating, lamination etc. which have to be controlled in order
to ensure adequate processing. Recently, NIR spectroscopy has been discovered as
an appropriate tool for process monitoring and quality control in textile technology.
Moreover, sorting of textiles with the objective of recycling the materials becomes a
more and more established practice, and NIR spectroscopy is used for identification.
The second part of this chapter will give an overview of the current status of the use
of NIR spectroscopy in textile technology for the characterization of materials and
in-line control of production and converting processes.
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21.2 Polymer Coatings and Printed Layers

21.2.1 Specific Challenges of the Analysis of Coatings
and Other Thin Layers by NIR Spectroscopy

21.2.1.1 Spectroscopic Characterization of Polymer Coatings

Polymer coatings are present everywhere in our daily life. They are applied to
numerous materials for an extremely broad spectrum of functions ranging from
decorative purposes only via protection against various external influences up to
highly specialized coatings that provide the material with certain functional proper-
ties. Coatings can bemade fromamultitude of polymers, and also themethods of their
application show a wide variety. Except for spray coating with solvent-containing
varnishes or polymer dispersions one of the most widespread methods for the prepa-
ration of coatings is the application of resinous materials such as viscous monomer
or oligomer formulations, which may be cross-linked by thermosetting (e.g., epoxy
resins), UV photopolymerization (e.g., acrylates/methacrylates) or as reactive two-
component system (e.g., PUR varnishes, polyester resins). Such coatings resulting
from cross-linking reactions are characterized by high durability, excellent resistance
to various impacts (mechanical, chemical, moisture, weathering, etc.), good adhesion
and many other beneficial properties. However, it is obvious that the properties of
such systems strongly depend on the degree of cross-linking that is achieved during
curing. In particular, this applies for many protective and functional properties. If
such coatings are applied in continuous processes such as roll coating, insufficient
cross-linking may have fatal consequences because the high production speed will
rapidly lead to large amounts of rejects. Consequently, monitoring the application
process and the actual state of the applied coating would be highly useful for an
efficient process control because it enables rapid intervention in case of serious
deviations from the specification, e.g., the degree of cure.

Surprisingly, only very few attempts have been made so far to control technical
coating and curing processes by analytical methods. Undoubtedly, this is related
to the high experimental requirements. Appropriate measuring methods must have
very high sensitivity since the conversion has to be determined in thin layers with
a thickness in the range of some microns only. They must be able to record data at
high sampling rates because of the usually high web speeds in coating technology.
Moreover, high reproducibility and reliability of the data as well as robustness of
the instrumentation to withstand the conditions in technical environments (dust,
variations in temperature, vibrations, etc.) are required. The experimental method
must not damage the material, hence measurement in a non-contact mode is desired.

The most promising analytical method for in-line monitoring of curing reac-
tions in coating technology is NIR spectroscopy. It is non-destructive and possesses
sufficient time resolution and sensitivity as well as comprehensive analytical poten-
tial for quantitative monitoring of chemical reactions. Measurements can be easily
carried out in reflectance mode, which strongly expands the range of samples that
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are accessible to this technique. However, there is one significant potential obstacle
of NIR-based techniques with respect to the characterization of coatings: the extinc-
tion coefficients in the near-infrared are much lower than in the mid-infrared range.
Whereas this characteristic is useful in most other application areas of NIR spec-
troscopy in process control, where samples are typically rather compact objects with
thicknesses of several millimeters or even more, it is rather unfavorable in case of the
investigation of thin layers with a thickness in the range of some micrometers only.
This constellation makes very high demands on the sensitivity of the spectroscopic
equipment used for in-line monitoring as well as to the efficiency of the chemometric
methods applied for quantitative analysis of the data.

Possibly, it is attributed to these experimental challenges that only very few studies
dealing with the spectroscopic monitoring of coating processes can be found in the
scientific literature. Most papers on the analytics of “coatings” by NIR spectroscopy
are related to coatings on tablets or microspheres in pharmaceutics, which will not
be discussed in this chapter. Studies on NIR-based monitoring of coating and curing
processes with respect to the application of technical coatings are primarily focused
on UV-cured coatings and printed layers. Therefore, this paragraph will mainly give
an outline about the characterization of such coatings and layers.

21.2.1.2 Coatings Made by UV Photopolymerization

UV-curable coatings are advantageous with respect to saving of energy, environ-
mental protection and waste reduction since UV curing consumes less energy than
thermal drying or curing. Furthermore, solvent-free varnishes are widely used in UV
curing technology, which may reduce environmental pollution. Due to the almost
instantaneous cross-linking of the coating during the short irradiation with UV light
(typically some tens of milliseconds), UV curing is a highly efficient coating tech-
nology. Moreover, the wide variety of acrylic and other monomers grants access to
coatings with a broad spectrum of functional properties.

The most important parameter of UV-cured coatings is the conversion, which
determines mechanical properties such as abrasion and scratch resistance or hard-
ness, but also the content of extractables as well as their migration, chemical stability,
weathering resistance, etc. Furthermore, sufficient conversion is also required for
further processing of the coatings. For instance, wipe resistance must be achieved
before stacking or winding. The conversion depends on a large number of chem-
ical and technical parameters. Apart from the chemistry of the specific monomers
(radical or cationic polymerization), the most important factor is the applied irradia-
tion dose, which is given by the line speed and the irradiance of the incident UV light.
Variations in the composition of the reactive formulation or the ambient conditions
(e.g., temperature, humidity, inertization) may affect the conversion as well. Unfor-
tunately, only some of these parameters can be easily controlled under the conditions
of technical UV curing, whereas it is too complex for other influences. Consequently,
monitoring of UV-induced photopolymerization reactions is an important issue.
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In stationary applications of NIR spectroscopy, the conversion may be obtained
from the ratio of a specific bandof the corresponding functional groupbefore and after
irradiation. In case of acrylates, methacrylates, vinyl ethers, etc. the band of the first
overtone of the C-H stretching vibration of the carbon double bond at 1620 nm can
be used for quantification. This band is sufficiently separated from the corresponding
absorptions of other C-H bonds (~1670–1750 nm), which usually allows integration
without complex pretreatments such as band separation. In contrast, no specific band
is available for the epoxide groups in cylcoaliphatic epoxy resins [10]. However,
this approach comes to its limits in most in-line process control applications. For
example, variations of the thickness during the process due to changes of the line
speed [11] or the inherent polymerization shrinkage (e.g., of acrylic coatings [12])
distort the band ratio and prevent a correct determination of the conversion.Moreover,
the precision of the integrationmethod decreases at very high conversions. Therefore,
almost all applications of NIR spectroscopy in process control are based on efficient
chemometric methods.

The preparation of photopolymerized samples with a predefined conversion,
which are required for calibration, is hardly possible. Therefore, the conversion
resulting from the application of different UV doses and/or the use of different
amounts of photoinitiator in the samples has to be characterized independently.
Usually, the preferred reference method for the conversion is FTIR spectroscopy
in the mid-infrared range. In case of (meth)acrylates, quantification is obtained by
band integration of the peak of the = CH2 twisting vibration of the acrylic bond at
810 cm−1. However, infrared spectra obtained by FTIR-ATR spectroscopy reflect
the chemical state close to the surface only due to the limited penetration depth of
IR radiation into the layer, which is typically a few microns if a diamond is used
as ATR crystal (~ 1-3 μm) [13]. However, many coatings in UV curing technology
are much thicker (tens of μm). Moreover, UV-cured coatings often show a strong
gradient of the conversion with increasing depth due to the limited penetration of UV
light. Thus, ATR spectra do not provide precise information about the conversion
across the profile of a coating.

In contrast, it is well known that NIR radiation penetrates to much greater depths
of organic coatings as a consequence of the lower molar absorptivity in this spec-
tral region, in particular in transparent systems. Thus, NIR spectra give an average
response of the whole depth profile of the coating. Therefore, conversion data
obtained from the ratio of band integrals before and after irradiation represent an
average value of the conversion within the coating. Consequently, they are better
suited for the calibration of chemometric models [14].

21.2.1.3 Interference Suppression in the Spectra of Thin Polymer Films

In order to be able to monitor the properties of coatings on both transparent and
intransparent substrates with the same equipment, NIR spectra are taken almost
exclusively in reflection in process control. Due to the low reflectance of transparent
substrates such as thin polymer films, the spectra of coatings on those materials are
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Fig. 21.1 NIR reflection spectra of a 10 g/m2 acrylate coating on20μmPPfilmafterUV irradiation.
a without diffuser plate (left), and b with diffuser plate (right). Moreover, the probe head was tilted
against the surface normal of the polymer film. Reprinted with permission by Wiley-VCH from
Ref. [15]

recorded in transflection mode using a ceramic or metallic reflector that is placed
underneath the coated film. However, in the spectra of thin transparent films of
optically high-grade polymers such as polypropylene (PP), polyester (PET), poly-
carbonate (PC), etc. that have a thickness in the range of or only little higher than the
wavelength of the probe light (i.e., up to ~30 μm) interference fringes may appear,
which result from the superposition of the incident probe light with the light reflected
at the front and back surfaces of the polymer film. Such interference patterns may
completely mask the spectrum and accordingly prevent any analysis of the properties
of the coating, which is applied to the film (see Fig. 21.1a). The removal of the inter-
ferences by mathematical means, i.e., Fourier transformation of the spectrum and
cut-out of the sharp peak resulting from the sine wave, fails due to inevitable vibra-
tions of the film web in the roll coating machine. Moreover, the calculation of the
Fourier transform is too time-consuming for process control applications. Instead,
the interference problem can be overcome by experimental means, i.e., (i) by use of
a diffuser plate, which is mounted between probe head and sample, and (ii) by a tilt
of the optical path of the incident light against the surface normal of the polymer
film [15]. The combination of both approaches suppresses the interferences very
effectively (see Fig. 21.1b) and thus enables quantitative analysis of coatings on thin
transparent polymer films.

21.2.2 Monitoring of the Thickness of Coatings by NIR
Spectroscopy

Although there are several measuring methods and specific sensors for in-line moni-
toring of the thickness of extensive laminarmaterials such as paper, polymer films and
textile webs, there is no established method to monitor the thickness or the surface
weight of UV-cured or other polymer coatings applied to such substrates. Currently,
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control of the thickness of the applied layers in technical coating processes is mostly
carried out off-line by gravimetric determination of the coating weight. However, it
is apparent that this approach is not able to respond to sudden changes of the thick-
ness, and thus it is poorly suited for process control. However, it was shown that
thickness or coating weight can be followed by NIR reflection spectroscopy under
the conditions of technical coating processes [16, 17].

Clear acrylate coatings with thicknesses in the range from 5 to 100 μm were
studied [16]. Although calibration samples were prepared with different thicknesses
for PLS modeling with a set of various Baker applicators with well-defined gaps, the
resulting thickness had to bemeasured after UV curingmainly due to the well-known
shrinkage of acrylate formulations during the cross-linking reaction and spreading of
the applied wet coating. Shrinkage and other effects affecting the thickness may lead
to a decrease of the thickness up to 30%. Instead of direct thickness measurements
(e.g., with a thickness gauge), gravimetry may be used alternatively to provide refer-
ence data. Depending on the range covered by the specific PLS model, prediction
errors were found to be in the order between less than one and about 4 μm [16, 17].
Similar results were also found for white-pigmented coatings containing 10 wt%
titanium dioxide [18]. For example, the thickness of such coatings with a thickness
from 5 to 60 μm was predicted with a precision of about 1 μm.

Moreover, in-line monitoring of the thickness was carried out at a pilot-scale roll
coatingmachine. Quantitative data were recorded at line speeds up to 50m/min. Very
close correlation between data predicted from NIR spectra and reference data deter-
mined off-line after the end of the coating trials was observed. Prediction errors were
found to be very similar to those obtained in the external validation tests although
the experimental conditions at the coating machine were less optimal than in the
lab. In particular, in-line measurements were exposed to disturbing factors such as
vibrations of the coating machine including the mount of the probe head and flutters
of the moving film web. In order to simulate abrupt changes of the thickness during
a real coating process, the nip between the applicator rolls was stepwise reduced
and increased. An example for clear coats is shown in Fig. 21.2 [17]. Similar inves-
tigations were also carried out for pigmented coatings [18]. It was demonstrated
that changes in layer thickness lower than 1 μm can be clearly detected by NIR
spectroscopy.

The thickness of clear and pigmented UV-cured coatings was also monitored at
different line speeds up to 100 m/min [16–18]. A marked increase of the thickness
with increasing speed was observed up to about 50 m/min, which was followed by a
decrease at even higher web speeds. Although this behavior seems to be somewhat
surprising, it is well-known in coating technology [19, 20]. In fact, it is due to a very
complex interaction of several physical and technological parameters of the coating
process. In particular, acrylate formulations are typical non-Newtonian fluids, i.e.,
their viscosity depends on the shear rate. In-line NIR spectroscopy offered for the
first time the unique possibility to monitor the thickness changes upon variation of
the line speed directly during the coating process in a quantitative manner.
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Fig. 21.2 In-line monitoring of the thickness of an acrylate coating on 20μmPP foil upon stepwise
decrease and increase of the nip between the applicator rolls of the coating machine at a line speed
of 40 m/min. Actual values were obtained off-line by a thickness gauge. Reprinted with permission
by Elsevier B. V. from Ref. [17]

The dependence of the applied thickness on the web speed has serious conse-
quences for the in-line measurement of the conversion. Calibration models are typi-
cally based on calibration samples that have different conversions, but the same
thickness of the coating. Variation of the thickness in the process as compared
to the calibration samples may lead to significant mispredictions of the conver-
sion during process control. Approaches to avoid such errors will be discussed
paragraph 21.2.3.3.

Pigmentation of varnishes hampers the penetration of near-infrared radiation into
polymer coatings. At high thicknesses, this may lead to a non-linear relationship
between the thickness of the coating and its reflectance. Therefore, several investiga-
tions were carried to study the effect of increasing thickness on the total absorbance
in the NIR spectrum quantitatively in order to determine the maximum thickness,
up to which the thickness of pigmented coatings can be predicted from NIR spectra
using PLS algorithms. Obviously, this limit depends on the kind and the percentage
of pigmentation as well as on the chemistry of the specific varnish. In case of white-
pigmented acrylate coatings (10 wt% TiO2), linearity was found for thicknesses up
to 300 μm at least [21]. This is possible since titanium dioxide does not significantly
absorb in the near-infrared region. In contrast, investigations on a red pigmented
PUR varnish applied by spray painting to steel sheets clearly showed that the inte-
gral of the absorbance in the region of the first C-H stretching overtones (1650 to
1850 nm) was linear to the thickness up to 180 μm only, which restricts the effective
measurement range of NIR spectroscopy for thickness measurements (Fig. 21.3).
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Fig. 21.3 Integrated intensity of the absorbance in the first overtone region of C-H stretching
vibrations in dependence on the coating thickness of a red pigmented PUR varnish applied to steel
sheets by spray painting

PUR coatings with thicknesses higher than 100 μm may be used for example for
protective coatings against weathering in demanding outdoor applications.

In case of very thin coatings, the sensitivity becomes an issue that has to be consid-
ered with respect to the detection limit of the NIR method, since the low extinction
coefficients in the NIR region pose a considerable challenge. For example, thin
acrylate layers with a thickness of a few microns only can be photopolymerized
without addition of a photoinitiator by irradiation with short-wavelength UV radia-
tion. The initiating mechanism is based on direct excitation of the acrylate molecules
by photons with high energy. An investigation by NIR in-line monitoring at a roll
coating machine [22] demonstrated that a photoinitiator-free acrylate coating with
an application weight of 4 g/m2 can be cured by irradiation at 222 nm under inert
conditions using a KrCl* excimer double lamp system (175 mW/cm2). Adequate
conversion was achieved at line speeds up to 30 m/min. Despite the low thickness
of the coating, spectra were found to show sufficient signal-to-noise ratio to provide
significant conversion data.

Ink jet printing is widely used not only in home office applications, but also for
labeling in packaging technology, in electronics, nanotechnology and similar applica-
tions. Inks for such applications are aqueous systems,which poorlywetmost polymer
surfaces. Therefore, very thin hydrophilic ink absorption layers have to be applied
to polymers to make them printable. The typical thickness of such coatings may be
1 g/m2 or less. Jiang et al. [23] applied polyvinyl alcohol layers with nanoscale
titania particles to PET films with thicknesses between 0.25 and 1.25 g/m2. For
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controlling the application process and the quality of the applied layers, they devel-
oped a method based on FT-NIR spectroscopy. Several parameters such as coating
weight, gloss and smoothness were predicted from appropriate PLS models. In case
of the coating weight, reference data were obtained by gravimetry before and after
dissolution of the layers. RMSEP was found to be 0.054 g/m2 with a coefficient of
determination (R2) of 0.98. Convincing results were also obtained for the smooth-
ness, whereas the method was of limited suitability only for the determination of the
gloss. It was demonstrated that all three parameters could be also predicted in-line
during the coatings process.

21.2.3 Conversion of UV-Cured Coatings

21.2.3.1 Acrylic Coatings

The conversion that is achieved during UV irradiation is the most important param-
eter of any UV-cured coating. As outlined above, it determines all functional and
handling properties of the coatings, which are relevant for their application or further
processing. Consequently, continuous monitoring of the conversion during a coating
process would be highly desirable. However, until recently no efficient analytical
method was available, which allowed direct in-line monitoring of this important
parameter. At-line or off-line determination of the conversion is state of the art,
which is often carried out by FTIR spectroscopy. But IR spectroscopy in the mid-
infrared (MIR) region is not suited for in-line control, since non-contact reflection
measurements over a rather largemeasuring distance are difficult or even impossible.

In contrast, vibrational spectroscopy in the near-infrared range offers this possi-
bility,whichprovides anopportunity formonitoring the conversionduring the coating
process. The overtone band of the C-H stretching vibration of the carbon double bond
at 1620 nm is well separated from the corresponding bands of other C-H structures
(methyl, methylene etc.). Hence, it might be used directly for the determination of
the conversion in acrylates and methacrylates using band integration. However, this
requires recording of some spectra of the uncured coating before irradiation, which
is often difficult to realize in complex coating processes. Moreover, this approach
involves considerable dangers resulting fromunintendedbut inevitable changes of the
thickness of the coating as discussed in paragraph 21.2.1.2. For this reason, chemo-
metric modeling is the more time-consuming, but also the more reliable approach.
Depending on the specific varnish (e.g., clear or pigmented), its thickness and other
parameters, MIR (in transmission or using ATR) [15, 24] or NIR spectroscopy (band
integration) [14, 21], Raman spectroscopy or other analytical methods [15] can be
used as reference method for calibration. Even secondary parameters that depend
directly on the conversion (e.g., the hardness of the coating) may be used as refer-
ence data for calibration models. A typical PLS-based calibration model for the
conversion in an acrylic clear coat is shown in Fig. 21.4.
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Fig. 21.4 PLS calibration model for the conversion in an acrylic clear coat. Reprinted with
permission from Ref. [24]. Copyright 2010 American Chemical Society

Typically, the prediction error (RMSEP) of such models is in the order of 2–3%
[14, 21, 24]. In most cases, the corresponding error of the external validation with
independent test samples is only marginally larger.

When the probe head is mounted to a specific coating machine (e.g., a roll coating
machine, conveyor, etc.) for in-linemonitoring of the conversion after UV or electron
beam (EB) irradiation, great care has to be bestowed on the correct alignment of the
probe head with respect to its distance and the tilt angle relative to the film web and,
if applicable, to the reflector behind the foil. It is obvious that an exact match of the
measurement conditions is essential for the successful transfer of chemometric cali-
bration models from the laboratory to process control in technical scale. It has been
found, that even very minor differences between both arrangements substantially
affect the precision of the predicted values.

In order to demonstrate the potential of NIR spectroscopy for monitoring changes
of the conversion due to variations of the irradiation dose, both the power of the
UV lamp (or the beam current of the EB accelerator) and the line speed can be
varied repeatedly. An example is given in Fig. 21.5 [25]. It can be clearly seen that
the conversion increases or decreases according to the applied UV dose. Evidently,
changes of the line speed of the roll coating machine lead to an immediate change
of the conversion. In contrast, changes of the power of the lamp appear after a delay
only, what is due to the rather slow response of the mercury arc lamp, when its power
is switched to a higher or lower level. Similar gradual increases or decreases of the
conversion were also found for changes of the power of the EB accelerator [15, 25].
In contrast, faster response might be expected for UV LED light sources.

Analog results were obtained for acrylic coatings on both various transparent
polymer films or non-transparent substrates such as paper, cardboard, opaque
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Fig. 21.5 In-linemonitoring of the conversion in a 20 gm−2 acrylic clear coat on PET film (36μm)
after UV irradiationwith variable power of themercury arc lamp and at various line speeds of the roll
coating machine. The power of the UV lamp is given in percent of its maximum output. Reprinted
with permission by Elsevier Ltd. from Ref. [25]

polymer films etc. [15, 25, 26]. The only difference is that a diffuse reflector has to
be placed behind the film web in case of transparent materials, whereas paper serves
as a reflector on its own volition. The conversion in white-pigmented varnishes was
monitored in the same way as well [25].

UV curing is widely used in the wood industry, e.g., for furniture and flooring.
Therefore, the conversion in acrylate coatings on rigid substrates such as fiberboard
or wood was monitored. In this case, both the UV lamp and the NIR probe head were
mounted above a conveyor. Since the line speed of a conveyor is usually lower than
that of a roll coating machine for the application of varnishes on web-like materials,
time resolution of the monitoring method is less crucial. Hence, sampling rates of
2–10 spectra/s were used. It has been demonstrated that in-line monitoring by NIR
reflection spectroscopy is well suited for this kind of applications as well [15].

A special type of UV-curable formulations are UV-curable adhesives. High-
molecular weight acrylic copolymers containing photoreactive groups such as
benzophenone in their side chainsmay be used as pressure sensitive adhesives (PSA).
Cross-linking of these hot melt adhesives is required in order to improve their resis-
tance to thermal distortion. However, their adhesive properties (i.e., peel strength
and shear strength) were found to be heavily dependent on the conversion. Even
minor changes of the degree of cure may affect the adhesive properties adversely.
Therefore, a continuous control of the UV curing process is essential for ensuring
optimum adhesive properties. For monitoring the conversion in acrylic hot melts,
the probe head was mounted at a slot die coating machine [27]. The adhesive layers
were applied to OPP film at 90 °C with coating weights between 200 and 500 g/m2

and at rather low line speeds (2 to 5 m/min). After application, they were irradiated
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Fig. 21.6 In-line monitoring of the conversion in a 500 g m−2 coating of an acrylic hot melt
adhesive on PP tape after 308 nm UV irradiation at various line speeds. Reprinted with permission
by Elsevier Ltd. from Ref. [25]

with monochromatic UV light (308 nm) using a XeCl* excimer lamp. In spite of the
very high thickness of the layers, good through cure was achieved due to the low
extinction coefficient of benzophenone at the wavelength of irradiation.

In Fig. 21.6, a record of in-line monitoring of the conversion in an UV-cured
acrylic hot melt after irradiation at different line speeds is shown. Similar data were
also obtained upon variation of the UV intensity [25]. It is evident, that the scattering
of the conversion data is distinctly lower than that of the acrylic coatings in Fig. 21.5.
This is due to the much higher thickness of the adhesive layers (500 versus 20 g/m2),
which resulted in a higher signal-to-noise ratio of the recorded NIR spectra.

21.2.3.2 Epoxy Coatings

Cationic monomers and oligomers form another class of UV-curable systems. In
particular, they involve cycloaliphatic epoxy resins and vinyl ethers, which may
be used as photoreactive monomers and reactive diluents, respectively. Cationic
photoinitiators such as diazonium, diaryliodonium or triarylsulphonium salts form
Brönsted or Lewis acids as initiating species. Typically, the reaction rates of cationic
photopolymerization reactions are lower than those of free-radical reactions. Conse-
quently, the conversion in cationic formulations is mostly still rather low just after
passage through the UV lamp. However, it is well-known that the cationic polymer-
ization once initiated continues for a long time in the absence of light. This post-
curing effect leads to a substantial further increase of the conversion. This time delay
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Fig. 21.7 In-line monitoring of the conversion in a coating made of 85 wt% of a cycloaliphatic
epoxy resin and 15 wt% of a divinyl ether applied to OPP film at a line speed of 3 m/min. Reprinted
with permission by Wiley-VCH from Ref. [10]

between irradiation and ultimate conversion implies significant consequences for in-
line monitoring of such reactions. Usually, the NIR probe head is positioned imme-
diately after the UV lamp. Consequently, the conversion that is found at this position
is still pretty low. Figure 21.7 shows the conversion in a formulation consisting of a
cationic epoxy resin (3,4-epoxycyclohexylmethyl-3’,4’-epoxycyclohexane carboxy-
late; EEC) and a vinyl ether (tetraethyleneglycol divinyl ether; DVE-4) just after UV
irradiationwith a dose of about 2800mJ/cm2,which is only about 65%[10].Although
this is sufficient for winding-up the coated polymer film without blocking, it is far
from the final conversion that determines the application properties of the coating.
Consequently, NIR spectroscopymay provide a rough indication for the current state
of the curing process, but no definite final conversion of the coating.

Evidently, the further development of the conversion during the dark reaction
can be investigated only off-line. Some results are summarized in Fig. 21.8 [10].
It is apparent that most of the increase of the conversion was achieved within one
hour after irradiation. Moreover, the results clearly reveal that both the initial and
the ultimate conversion strongly depended on the applied irradiation dose. Whereas
almost full conversion (98%) was achieved after two hours in coatings exposed to
2100 mJ/cm2, the curing reaction leveled off at lower conversions after irradiation
with lower doses.
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Fig. 21.8 Kinetics of the postcuring reaction of a mixture of a cationic epoxy resin (85 wt% EEC)
and a divinyl ether (15 wt% DVE-4) after irradiation with various UV doses (line speed 10 m/min).
Reprinted with permission by Wiley-VCH from Ref. [10]

21.2.3.3 Simultaneous Measurement of Thickness and Conversion

It was already mentioned above that variations of the coating thickness, which may
be caused by accidental fluctuations or by intentional changes of the web speed,
may considerably impair the quantitative monitoring of the conversion in UV-cured
coatings regardless of the use of either band integration or chemometric methods.
In case of the band integration method, the reference spectra defining the “zero
conversion line” are no longer valid after any thickness change,whereas PLS1models
for the conversion are built up for coatings with a broad range of the conversion, but
with one well-defined thickness only. However, the negative impact of variations
of the thickness on the quantitative determination of the conversion during in-line
monitoring can be overcome for both approaches.

If simple band integration methods are used for quantification, thickness changes
may be included by amore complex analytical instrumentation. Instead of the use of a
singleNIR probe head,which takes spectra of the cured coatings after irradiation, two
probe heads can be installed before and after the UV lamp. Theymay be linked to one
spectrometer if a multiplexer is used to switch between both optical entrance ports.
The conversion is obtained by band integration of the acrylate band at 1620 nm and
calculation of the ratio of the band integrals before and afterUV irradiation. In order to
consider the time delay between the two probe heads, a specific offset that depends on
the line speed has to be included in the evaluation scheme. Obviously, this approach
corresponds to the conventional determination of the conversion in the analytical
laboratory by recording spectra before and after irradiation. The efficiency of this
analytic approach to compensate the effect of thickness changes on the determination
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of the conversion has been demonstrated by in-line monitoring experiments at a roll
coating machine [11].

Alternatively, the variation of the thickness of the coating can be included as an
additional parameter into the chemometric calibration models, which is certainly the
most sophisticated approach. This can be achieved by use of the PLS2 algorithm,
which is able to predict two or even more parameters from the same input data. Of
course, this implies much higher efforts for calibration, since the calibration samples
have to cover the full range of both conversion and thickness that can occur during
process control. On the other hand, the higher complexity of the calibration process
is offset by the fact that simultaneous prediction of both conversion and coating
thickness can be achieved while using one NIR probe head only.

The suitability of this approach was demonstrated during application of clear
and pigmented acrylate varnishes to PP film at a roll coating machine and their
cross-linking by UV irradiation [24]. Reference samples for the setup of the PLS2
model covering a broad spectrum of combinations of conversion and thickness were
characterized by FTIR spectroscopy and a thickness gauge. During roll coating, the
line speedwas increased in incremental steps from 20 to 100m/min, which inevitably
led to changes of the thickness as well as the conversion due to the corresponding
decrease of the irradiation dose. Both parameters were predicted from the recorded
NIR spectra using the PLS2 model. Results of one specific coating experiment are
shown in Fig. 21.9. For quantitative evaluation of the predicted data, reference values
were determined off-line for each step of the line speed after the end of the coating
trial. These values are included in Fig. 21.9 as well. The data clearly prove that the
conversion was predicted with a precision of 2–3% even under the conditions of
changing thickness, whereas the error in the in-line measurement of the thickness
was found to be about 0.5 to 1μm. These error margins correspond to those found in
independent predictions of both parameters by PLS1 models (see paragraphs 21.2.2.
and 21.2.3.1.).

21.2.4 Hyperspectral Imaging of UV-Cured Coatings

In the studies reported so far, the parameters of interest (thickness, coating weight,
conversion etc.) have been monitored by conventional NIR spectroscopy. Since the
spot of most NIR spectrometers has a diameter of a few millimeters only, this means
that these parameters can be determined in a small stripe only during monitoring a
running process. However, for coatings as two-dimensional objects the spatial distri-
bution of the parameter under investigation might be of interest for a comprehensive
process control. For example, UV lamps have rod-like shape, which may lead to a
decay of the intensity at their ends due to aging, pollution etc. In UV LED systems,
single elements may drop out. Both effects lead to a reduced conversion in the corre-
sponding region, which might be possibly insufficient for the intended application.
Also in case of the applicationweight, local deviationsmay occur, e.g., due to running
out of the varnish formulation in the roll gap or the reservoir of the coating machine,
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Fig. 21.9 Simultaneousmonitoring of thickness and conversion of a clear acrylate coating at various
line speeds of a roll coating machine. Quantitative data were predicted with a PLS2 calibration
model. Gray lines represent reference values that were determined off-line by FTIR transmission
spectroscopy or a thickness gauge, respectively, after the end of the coating experiment. Reprinted
with permission from Ref. [24]. Copyright 2010 American Chemical Society

inclination of the web, local variation of the viscosity (e.g., due to temperature gradi-
ents) etc. In order to include the spatial distribution of the parameter of interest in
process control, two-dimensional monitoring of the process is required. This is the
domain of hyperspectral monitoring.

Traditionally, hyperspectral cameras have beenmainly used for three-dimensional
or at least rather thick objects, which resulted in applications in waste sorting, food
monitoring (meat, fish, vegetables, fruits etc.) and the characterizationof other objects
in agriculture (e.g., logs and boards), art conservation etc. However, today’s high-
class hyperspectral cameras have sufficient sensitivity to monitor even thin samples
such as coatings, laminates, finished textiles (see paragraph 21.3.3.), printed conduc-
tive polymer layers, pages in medieval illuminated manuscripts [28] and similar two-
dimensional objects. Therefore, hyperspectral imaging was also used for monitoring
thickness, conversion and other parameters of coatings. With an adequate calibra-
tion, each of these parameters can be predicted quantitatively. However, the main
intention of the use of hyperspectral cameras in coating and lamination technology
is monitoring the spatial distribution of these parameters across the samples as well
as the detection of possible inhomogeneities.
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PUR foam iswidely used for cushioning and sound insulation. For faster and easier
mounting in end-use applications such as automotive engineering, it may be provided
with an adhesive layer forming a semifinished product. Due to the mostly coarse
surface structure of such foamplastics, the adhesive cannot be applied asmeltedmass.
Rather, melt-spun fibrous webs of thermoplastic adhesives such aliphatic polyamide
or polyester are laminated to the surface of the foammat. Higher thicknesses may be
achieved by application of several adhesivewebs. In this way, applications weights of
the adhesive between 20 and 125 g/m2 were achieved. The development of calibration
models for the prediction of the coating weight is significantly impeded by the fact
that calibration samples with well-defined homogeneous thickness can be hardly
prepared due to the numerous open bubbles at the foam surface as well as due to
the fibrous structure of the adhesive webs. Moreover, some of the PUR substrates
are rather dark (e.g., dark gray), which leads to rather low reflectance. In order to
consider a possible non-uniformdistribution of the coatingweight across the samples,
the surface of each sample was divided into 20 rectangular regions by defining a grid
of 5 columns× 4 rows. Spectra from each rectangle (several thousands in each) were
averaged. The averaged spectra were allocated alternatingly, that is, according to a
chessboard pattern, to the calibration and the validation set. This procedure resulted
in RMSEP values of only 1.5–3.5 g/m2 despite the heterogeneity of the adhesive web
and the PUR foam substrates [29, 30].

Using these calibration models, the application weight of adhesive layers was
quantitatively monitored with a hyperspectral camera mounted above a conveyor.
At low coating weights, the adhesive layers shows significant local thickness vari-
ation (i.e., for samples with up to two adhesive webs), whereas it becomes more
homogeneous at higher coating weights [29]. This effect mainly results from surface
structure of the PUR foam. During the melting process of the web, the adhesive
might partly flow into the open bubbles at the surface of the foam leading to an
uneven distribution. For an overall evaluation of the quantitative prediction results,
the individual values predicted from the spectra across the complete surface of each
sample were averaged and compared to gravimetric values. Deviations were found
to be less than 2–3 g/m2 (the fact that some values are lower than RMSEP is related
to the averaging process).

Spectral imaging was also used for the detection of inhomogeneities and coating
errors, whichmay occur during the lamination process. Duringmelting, the adhesives
form continuous glossy transparent layers on the foam substrates, which usually
prevents the detection of coating errors by visual inspection. In contrast, spectral
imaging is able to highlight them. As an example, Fig. 21.10 shows the image of a
coated foam sample, where the corner of one adhesive web was fold over during the
lamination process [30].

Thickness and conversion of UV-cured acrylate coatings were studied by hyper-
spectral imaging as well. In particular, white-pigmented coatings were investigated.
Calibration to the thickness was carried out for coatings with thicknesses up to
200 μm, although linearity between thickness and NIR signal was even found for
much thicker coatings [21]. Calibrations to the conversion resulted in RMSEP values
between 2 and 3% [14, 21]. However, specific calibration models were required for
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Fig. 21.10 Hyperspectral image of an adhesive layer of an aliphatic polyamide laminated on dark
gray PUR foam. The lower right corner of one of the adhesive webs was fold over. Reprinted with
permission by Elsevier B.V. from Ref. [30]

each varnish and each substrate. In order to reduce the considerable efforts required
for the preparation of samples with different conversions, procedures for the transfer
of calibration models to other substrates (e.g., glass, steel, glass fiber reinforced
plastic plates) were developed. It was shown that only a marginal increase of the
prediction error is caused by such transfers.

After the development of calibration models, both thickness and acrylate conver-
sion were monitored with a hyperspectral camera installed above a conveyor belt.
Similar to investigations by conventional NIR spectroscopy, quantitative data were
determined for both parameters. It is well-known that curing of thickwhite coatings is
one of the most difficult tasks in UV curing technology, since the excellent scattering
power of white particles such as titanium dioxide strongly impede the penetration
of UV light into the coating. This leads to strong conversion gradients within the
coating. In fact, a conversion of less than 70% was found for coatings with a thick-
ness of ~ 75 μm, which represents an average across the profile of the coating with
almost complete conversion at the surface and rather low conversion in the depth.
Aging of such samples led to some “self-structuring” of their originally homoge-
neous surface within a few days due to shrinkage and subsequent relaxation of the
internal stress, which finally resulted in some kind of orange peel effect. The local
thickness and conversion differences developed during this self-structuring process
were clearly reflected in hyperspectral images taken from the relaxed samples [21].

Conversion differences within a coated sample can be also intentionally induced
by generation of thickness differences. Although the degree of cure at the surface is
certainly the same across the sample, the averaged conversions differ upon variation
of the thickness due to the conversion gradient. Examples of a uniformly cured
coating and a sample with conversion differences resulting from thickness changes
are shown in Fig. 21.11 [14].
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Fig. 21.11 Hyperspectral image of white-pigmented acrylate coatings: with homogeneous conver-
sion (87%; top) or with inhomogeneous distribution of the conversion due to differences in coating
thickness (bottom). Reprinted with permission by Elsevier B.V. from Ref. [14]

21.2.5 Spectroscopic Techniques in Printing Technology

21.2.5.1 Thickness of Layers in Offset Printing

Beside its application in coating and lamination technology, in dentistry, microelec-
tronics and 3Dmodeling, for adhesives and composites, etc., UVcuring is alsowidely
used in printing technology and graphic arts. UV-curable inks and varnishes comple-
ment conventional oil- andwater-based systems. Generally, they dry almost instantly,
which results in higher printing speeds andhence in higher productivity of the printing
process. Viscous UV inks and varnishes show less penetration into porous materials
such as paper than other ink systems. Moreover, they result in printed layers with a
high-grade optical appearance (e.g., high gloss), which makes them interesting for
demanding printing applications, e.g., for packagings in cosmetics or for advertising
materials.

The thickness of ink layers determines their color intensity as well as the color
shade. Therefore, the exact observance of the specified thickness of the various
colored layers is essential for the quality of the printed product. On the other hand,
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since offset printing is a complex process, numerous factors may influence the
thickness of the layers. Consequently, it is indispensable to control the thickness
continuously during the printing process.

The thickness of colored printed layers can be monitored in-line by use of
reflectance densitometry, which relates the intensity of the reflected light to the color
density. However, this method is limited to standard colors (cyan, magenta, yellow
and black) only. It does not allow measurements of the thickness of layers with other
color shades. Moreover, it is not suited for transparent top coats, which are widely
used for the protection of printed layers, for upgrading their optical appearance,
for achieving special design effects or for finishing the printed layers with special
functional properties. It is obvious that the compliance of the required thickness (or
coating weight) is crucial for those properties. Up to now, the surface weight of clear
coats can be determined only off-line by gravimetry, which is a labor-intensive and
time-consuming procedure. The typical thickness of printed layers is in the order
around 1 g/m2; it might be somewhat higher in case of clear coats. Due to the rather
low extinction coefficients, NIR spectroscopy is certainly not an obvious approach
to characterize such layers. Nevertheless, it was shown that similar methods like
those described above for coatings with thicknesses in the range of about 5–100 μm
(paragraph 21.2.2.) can be also used for process control in printing technology.

For monitoring of the coating weight, the probe head of the NIR spectrometer was
mounted either above the impression cylinder of the coating unit of a sheet-fed offset
printing press or in its delivery system behind the UV lamps. The first position allows
easy access and enough space for mounting, but enables analysis of the wet layers
only. In contrast, in the delivery unit the probe head has to be installed between the
moving elements of the sheet transport system, which strongly limits the available
space and requires special probe heads with reduced size and increased focal length.
However, this position allows monitoring the thickness of cured layers.

Reference data of the coating weight for calibration models were determined by
gravimetry. Test samples with different thickness of the layers were prepared with
a printability tester. Gravimetry was also used for crosschecking the data predicted
in-line. Blank sheets with known weights were numbered before laying them into
the feeding system of the press. After printing, the weights of the printed layers were
determined. The numbering of the sheets did not only enable an exactmeasurement of
the coating weights, but allowed also an unambiguous assignment of coating weight
and spectra to specific sheets.

During in-line monitoring, samples with different surface weights of ink or
varnish were obtained by systematic variation of the operating parameters of the
printing press. Investigations were carried out at printing speeds between 6000 and
12,000 sheets/h corresponding to about 90–180 m/min. NIR spectra were recorded
at a rate of 30 spectra/s. At 12,000 sheets/h, this corresponds to about 3 spectra per
sheet. Synchronization between NIR measurement and printing was achieved by use
of a sensor that detected the front edge of each sheet. The coating weight of printed
layers was checked by gravimetry after the end of the trial. As an example, Fig. 21.12
shows a result of in-line monitoring of the coating weight of printed layers of a clear
varnish [31]. The labelsOpening and Speed refer to specific parameters of the offset
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Fig. 21.12 In-line monitoring of the coating weight of a UV-curable printing varnish on paper in
a sheet-fed offset printing press (printing speed 8000 sheets/h). For comparison, coating weights
determined off-line by gravimetry are shown. Explanation of other labels is given in the text.
Reprinted with permission by SAGE Publications Ltd. from Ref. [31]

printing press that control the amount of ink or varnish on the printing plate. An
increase of these values corresponds to higher coating weights. The results demon-
strate that the applied coating weight can be determined with very high precision.
The prediction error was found to be about 150 mg/m2.

Further studies on both printing inks and clear varnishes were directed toward
the investigation of the influence of different printing speeds [32], the recipe of the
varnish formulation [32], the color of the ink, the use of different paper and cardboard
materials as substrate [33] as well as different gloss levels of the printed layers [34]
on the accuracy of the prediction results. Complex calibration procedures including
multistage and universal calibration models were developed, which were adapted to
the requirements of each specific problem. Despite the rather low thickness of printed
layers, the precision of the predictions from NIR reflection spectra recorded in-line
is rather high: RMSEP values for the determination of the coating weight were found
to be in the order between 120 and 200 mg/m2.

21.2.5.2 Conversion of UV-Cured Printed Layers

Similar to UV-cured coatings, numerous factors in the printing process may influ-
ence the conversion of printed layers. This includes the characteristics of the ink or
varnish (e.g., its composition and viscosity), the ambient conditions (e.g. tempera-
ture, humidity), and technical factors such as UV irradiance, printing speed and the
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specific setting parameters of the printing press. Any change of one of these parame-
ters may lead to a change of the conversion of the printed layers. Generally, printing
is a high-speed process, which rapidly produces large amounts of printed sheets.
Therefore, sufficient conversion must be achieved before stacking in order to avoid
blocking of the sheets. Moreover, adequate wipe resistance is required. It would
be therefore desirable to monitor the conversion continuously during the printing
process in order to ensure high quality and uniformity in this way.

However, monitoring the conversion in a printing machine is extremely difficult.
So far, no in-line method for control of the conversion exists, and also its off-line
determination is usually impossible in a printing plant, since no adequate analytical
equipment for these measurements such as conventional IR spectroscopy is available
at a printing press. Typically, indirect methods such as the determination of the
coefficient of sliding friction with simple test equipment are used. NIR spectroscopy
would open completely new possibilities for direct quantitative (or at least semi-
quantitative) monitoring of the conversion during the printing process.

For developing a calibration model, calibration samples with well-defined thick-
ness have to be prepared. As outlined above for coatings (paragraph 21.2.3.3.), vari-
ations of the thickness seriously disturb measurement of the conversion and may
completely prevent quantitative analysis. Therefore, great care was bestowed on the
preparation of printed layers with constant thickness. For each color, a number of
printed paper stripes were prepared using a printability tester. The application weight
depended on the color of the ink and varied between 0.8 g/m2 (cyan) and 1.2 g/m2

(yellow). Moreover, samples with a clear lacquer were prepared with about 3 g/m2.
Printed layers were irradiated with different UV doses in order to obtain samples
with a broad conversion range. After recording the NIR spectra, discrete calibration
models were developed for each color and the printing varnish. FTIR/ATR spec-
troscopy was used as reference method. As an example, the PLS calibration of a
yellow UV printing ink is shown in Fig. 21.13 [35].

It is apparent that the scattering (and consequently RMSEP) is higher than in case
of coatings with thicknesses, that are at least one order of magnitude higher (para-
graph 21.2.3.1.). Nevertheless, it can be clearly seen that there is a linear correlation
between reference conversion and predicted signal, which clearly proves that the
conversion can be predicted from NIR reflection spectra by adequate chemometric
tools. Generally, RMSEP for all inks is in the order of 3–4.5%. Due to the somewhat
higher thickness of the layers of the printing varnish, RMSEP of the corresponding
model was found to be only 2.3%. External validation tests confirmed the precision
of the predictions [35, 36].

Using the various PLSmodels, the conversion of UV-cured ink and varnish layers
was monitored directly in a sheet-fed offset press. It is obvious that only the position
in the delivery unit behind the UV lamps can be used for mounting the probe head
(see paragraph 21.2.5.1.). Except of the spatial limitations mentioned above, the
probe head is exposed to vibrations, dust (e.g. talcum powder used for oil-based
printing inks handled at the same press), heat, airflows, etc. at this position.Moreover,
the printed sheet, which is fixed by clamps at its front edge only, glides on an air
cushion through the delivery system,whichmay lead to sheet flutter. Variations of the
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Fig. 21.13 PLS calibration model for the conversion in layers of a yellow UV-curable printing ink
printed on 135 g/m2 paper. Reprinted with permission by Elsevier B.V. from Ref. [35]

distance between probe head and paper are expected to strongly disturb quantitative
NIR measurements. After several tests, the probe head was finally installed between
the air nozzles in the middle of the bottom plate in order to minimize the influence
of flutter on the measurement process [36].

Parameters of NIR sampling were the same as those during in-line monitoring
of the thickness. Similar to in-line monitoring tests on coatings, the conversion was
intentionally affected by variations of the applied UV dose, that is, by variation of
either the intensity of the UV lamps or the printing speed. Figure 21.14 shows the
effect of variation of the irradiance on the conversion of a cyan offset printing ink
[36]. Apparently, even at irradiation with half intensity only a moderate decrease
of the conversion is observed, which is due to the very high reactivity of printing
inks. Although the data show somewhat stronger scattering due to the much lower
thickness of the layers as compared to typical coatings, the conversion could be
determined with rather high precision, which was confirmed by subsequent off-line
measurements by FTIR/ATR spectroscopy. Investigations on inkswith various colors
as well as on clear printing varnishes in in-line monitoring tests at the printing press
resulted in typical prediction errors for the conversion of 4–5%, which is only little
higher than the errormargins for coatings with thicknesses of 10μmormore (2–3%).
Only in case of black inks, it was found to be 5.5% due to the low reflectance of such
layers.

The content of extractables in UV-cured coatings, that is, the amount of compo-
nents that are not covalently bound to the cross-linked network, is directly related to
the conversion that is achieved during irradiation. Extractables may lead to migra-
tion if printed materials are in contact e.g. to liquids. For this reason, the amount
of extractables is an important parameter in packaging technology, in particular
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Fig. 21.14 In-line monitoring of the conversion in a cyan printing ink after irradiation with various
UV doses (black). Conversions determined off-line by FTIR spectroscopy are given for comparison
(gray). Reprinted with permission by Elsevier B. V. from Ref. [36]

in food packaging. The relation between conversion and the migration of acrylic
compounds was studied quantitatively in dependence on the UV irradiation dose
[36]. In fact, a linear relationship between the conversion and the acrylate migration
was found. Using this linear relationship, the amount of acrylic extractables was
directly predicted from NIR data during printing at the offset press (see. Fig. 21.15).
For each irradiation dose, some random samples of printed sheets were analyzed
by FTIR/ATR spectroscopy and HPLC measurements for comparison. For both the
conversion and the migration, close correlation with the data predicted in-line was
found. For the acrylate migration, the prediction error was estimated to be 0.03 g/m2.

Certainly, this indirectmethod for the estimation of the content of extractable acry-
late can neither achieve the accuracy of directmeasurements byHPLCnor can replace
such chromatographic analyses of the samples, whichmight be required e.g. for certi-
fication. However, it can provide a rough estimation of the actual state of the printed
materials with respect to the migration behavior in running printing processes in real
time, which allows rapid intervention, if deviations from the requested specifications
occur.
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Fig. 21.15 In-line monitoring of the conversion in printed layers of a cyan printing ink and esti-
mation of the specific acrylate migration from the NIR data. Reference values determined off-line
are given for both the conversion and the migration. Reprinted with permission by Elsevier B. V.
from Ref. [36]

21.3 Synthetic Fibers and Textiles

Despite their important role in daily life, the broad spectrumof differentmaterials and
forms of appearance as well as the multiplicity of production and processing tech-
nologies, textiles have been the subject of comparatively few studies in the scientific
literature only that deal with their characterization or process monitoring by NIR
spectroscopic methods. Moreover, the majority of the studies published so far is
dealing with natural fibers such as cotton, wool, flax, silk etc. and the fabrics made
there from. In the context of the present chapter on NIR investigations on special
polymeric materials, we will limit this review to studies, which are only or at least
mainly focused on synthetic fibers and textiles.

21.3.1 Classification of Textile Fabrics

Similar to polymers, the most important and most widely used application of NIR
spectroscopy in textile technology is the sorting of used textiles. Identification of
different materials (made from natural and synthetic fibers as well as blended fabrics)
is indispensable for subsequent recycling processes, but typically requires exten-
sive complicated and time-consuming analysis due to the endless broad range of
different colors, patterns, specific appearances, pretreatments, construction differ-
ences, manufacturing technologies etc. In particular, the sorting of carpets became
popular because of the rather large quantity of such materials resulting e.g. from
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the redesign of hotels, office buildings etc. [9, 37, 38]. Therefore, several special
NIR-based analyzers for carpet analysis including both stationary and hand-held
fiber-optic instruments are commercially available on the market.

However, identification of fibers and quantitative analysis of the composition
of textiles is also beneficial in process control during production processes or for
inspection purposes, e.g. in import and export of textile materials. A numbers of
studies is dealing withmaterial analysis for such applications [39–42]. Amore recent
application of textile classification is authentication ofmaterials. In particular, in case
of high-value materials the type and the percentage of fibers used in textiles and their
blends becomes more and more important in order to prevent fraudulent supply of
low-grade materials. This does not only apply to certain natural fibers (e.g. wool
versus cashmere), but also to expensive synthetic materials such as aramid fibers
used for example for bulletproof vests [41].

Based on the experienceswith the sorting of polymerwaste, NIR spectroscopy has
been proven to be an extremely powerful tool for the fast and reliable identification
of fibers and textiles, when it is combined with powerful chemometric algorithms
such as principal component analysis (PCA) for the reduction of the dimensions of
the data set and linear discrimination analysis (LDA) for classification. The majority
of studies have been carried out by conventional NIR spectroscopy, but recently
hyperspectral imaging has been used for data acquisition as well [41]. Most studies
dealwith the identification of combined sets of natural and synthetic fibers. Polymers,
which are usually included in such studies, comprise typical fiber materials such as
polyethylene terephthalate (PET), polyamide (PA), polypropylene (PP), polyethylene
(PE), acrylic fibers such as polyacrylonitrile (PAN) [6, 9] and regenerated fibers such
as viscose or tencel, but alsomore exotic materials such as polylactic acid (PLA) [42]
and poly(p-phenylene terephthalamide) (para-aramid) [41]. Due to their different
molecular structures, the differentiation between these fibers is rather easy. However,
fibers with different, but very similar molecular structures of the same polymer such
as PA 6 and PA 6.6 can be classified as well despite the marginal differences in their
spectra [38]. More sophisticated methods such as neural networks are required to
consider further properties of the fiber materials like color/dyeing or pretreatments
such as heat setting.

21.3.2 Quality Control in Fiber and Textile Production

Blending is a common practice in textilemanufacturing in order to combine technical
and economic advantages of two or more fibers in a textile fabric. Therefore, blends
make up a significant part of the textile market. In most cases, natural fibers (e.g.
cotton, wool) are combined with synthetic fibers (usually polyester), but blends of
synthetic fibers (e.g. PET/PA) are common as well. Typically, quality and price of
textile fabrics are closely correlated with the composition of the blend.Monitoring of
the actual composition is a critical issue for the control of conformity with the initial
specifications, but also for process control, since certain properties that are relevant
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e.g. in technical applications (e.g. fire resistance, wear resistance) strongly depend
on the ratio of the components [43]. Conventional analytic standard methods are
time-consuming, labor-intensive and might require harmful chemicals (e.g. H2SO4

solution). NIR spectroscopy has been proven to be a powerful tool for the quantitative
analysis of textile blends [38, 43–46]. The prediction of the content of the individual
materials in such blends is often difficult due to the complex influence of a multi-
plicity of chemical, physical and textile parameters. Therefore, very large sample
sets (e.g. about 200–300 cotton/PET samples [44–46]) are required for calibration
of the models, which span not only the complete range of blend compositions (0–
100% of each component), but also cover the variability of all other parameters. The
immense data volume requires advanced mathematical pretreatment of the spectra
as well genetic algorithms [44, 45] for variable selection in order to reduce the
complexity of the multivariate models. Quantitative analysis itself is often based on
the PLS regression. Moreover, support vector machine models have been tested [46].
In most cases, RMSEP for the determination of the cotton/polyester ratio was found
to be 1–2% (with respect to cotton content) [43–46]. An example of a PLS model
is given in Fig. 21.16 [44]. Apart from the widely studied cotton/polyester blends,
wool/polyester blends were analyzed by NIR spectroscopy as well [43].

Acrylic fibers typically consist of copolymers of polyacrylonitrile (~ 85% w/w)
and another vinyl monomer such as vinyl acetate, methyl methacrylate or methyl
acrylate. Copolymerization is carried out in aqueous dispersion. The resulting
polymer is not soluble in water. So, sodium thiocyanate has to be added to the
suspension do dissolve the copolymer before fiber spinning resulting in a solution

Fig. 21.16 Predicted versus measured reference values for the percentage of cotton in
cotton/polyester blends using a full-spectrum PLS model. Reprinted with permission by SAGE
publications Ltd. from Ref. [44]



504 T. Scherzer

called “dope.” Extrusion of this solution through a spinneret into cold water leads
to precipitation of the copolymer and the formation of fibers, which may be drawn
to the desired thickness. For optimum process conditions, the actual ratio of thio-
cyanate and copolymer in the dope needs to be controlled continuously. NIR reflec-
tion spectroscopy was used for in-line monitoring of this ratio [47]. Difficulties in
PLS modeling resulted from the fact that a variation of the NaSCN concentration
led to a shift of the O-H bands of water, since the electrolyte prevents the formation
of hydrogen bonds. Individual PLS1 models for NaSCN and the copolymer were
developed resulting in RMSEP values of 1.6% (NaSCN) and 2.6% (copolymer),
respectively. Similar results were also obtained with a PLS 2 model for simultaneous
prediction of both concentration values.

Physical parameters of textilesmay be determined aswell. PAflockswith different
degrees of fineness are used for the production of upholstery fabrics, which are
indistinguishable by the human eye. Nevertheless, flocks with different degrees of
fineness lead to different appearances of the final product. NIR spectroscopy was
found to be an efficient tool for their discrimination [39].

Another parameter that influences the properties of textiles is the heat setting
temperature applied during the production process. Heat has a significant effect on
themolecular structure and themorphology of yarns. Heat setting is typically applied
in order to improve textile propertieswith respect to shrinkage, warping, relaxation of
internal stress, dye or finish fixation etc. When applied under tension, it may increase
the tensile strength of fibers or fabrics and improve the behavior of thematerial during
further manufacturing steps. For some applications (e.g. carpet manufacturing), very
low variation and a high spatial homogeneity of the heat set temperature are required
for the intended properties of the final products. NIR spectroscopy has been shown
to be able to reveal the thermal history of the polymers in synthetic fibers [38]. In
case of carpets based on PA, heat treatment is carried out at about 190–220 °C or
occasionally at even higher temperatures depending on the specific method. PLS
models could predict the heat set temperature of PA yarns from their NIR spectra
with a precision (SEP) of about 1–2 °C for greige yarns and 2..3 °C for dyed yarns.
Below 185 °C some deviation from linearity was observed, which was attributed
to the Brill transition. The Brill transition in PA 6.6 occurs at about 160–180 °C
and is due to the gradual transformation of the crystalline state from one triclinic
structure existent at room temperature into a different triclinic structure stable at
higher temperatures.

21.3.3 Finishing of Yarns and Textiles and Subsequent
Drying

It is common practice in textile industry to provide fibers and yarns with special
agents such as sizes (e.g. fatty acid ethoxylates, waxes, polyethylene) or lubricants
(finishing oils) before processing them to textile fabrics in order (1) to make them
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more resistant to mechanical stress during those processes (e.g. weaving, knitting)
by reinforcement and improved filament cohesion and (2) to reduce electrostatic
charging as well as frictional wear and abrasion during passing them over machine
parts such as needles, rolls, guides etc. The specific treatment depends on the fiber
material and the intended use of the product.

Typically, very low amounts of finishing oils are deposited on the fibers (< 1wt%).
In order to achieve maximum quality of the products and optimum manufacturing
conditions, the amount of finishing agents has to be controlled continuously. Conven-
tional quantitative determination of the finishing oils is based on their removal by
chlorinated solvents and analysis of the solutions by FTIR spectroscopy, which is a
time-consuming and laborious procedure. Blanco et al. have shown [48] by inves-
tigations on acrylic fibers made up of a acetonitrile–vinyl acetate copolymer that
quantitative data on the amount of finishing agent can be obtained directly from the
fiber during the spinning process by NIR reflection spectroscopy. The weight content
of the finishing oil varied between 0.22 and 0.62 wt%. These low application weights
require an excellent sensitivity of the spectroscopicmethod.Moreover, the properties
of the acrylic fibers varied with respect to fineness, color, gloss and other possible
sources of variability. The first component of the PLS model accounted for 99.99%
of the spectral variance, which was related to spectral scattering due to variations in
fineness of the fibers used for calibration. Generally, black samples and those dyed
with dark colors were found to result in rather high absolute errors (up to 0.06 wt%).
For all other samples, relative prediction errors (RMSEP) between about 6 and 7%
were obtained, which roughly corresponds to the precision of data from the reference
method. Similar investigations on the quantitative determination of finishing oil on
the surface of PA 6.6 yarns have been reported as well [38]. Using a four-wavelength
multiple linear regression (MLR) model, the amount of oil could be predicted with
a SEP of 0.04 wt% for deposits of about 1 wt%.

After manufacturing of the textile fabric, the processing agents have to be
removed carefully before further processing steps such as finishing with functional
agents, coating, lamination, printing, etc., since the finishing oils and sizes are often
hydrophobic and hence strongly affect wettability and adhesion. In particular, it has
to be made sure that the oil or size is completely removed everywhere across the
surface in order to avoid local wetting or adhesion problems. However, due to the
invisibility of the very thin and colorless layers, the detection of local remains of the
processing agents is hardly possible. Recently, NIR spectral imaging has been shown
to be a powerful tool for this analytical task [49]. A size consisting of hydrocarbons
and fatty acid ethoxylates was applied to polyester fabric with application weights
between 0.4 and 5.5 g/m2 in order to provide samples for calibration of a PLSmodel.
Using this model the amount of size was determined with a precision of about 0.2
wt% by averaging the predicted individual values across the surface of the fabric.
Monitoring of the distribution of the size across the textile web is of no technical
relevance since it is applied to the yarn before weaving. After washing-out of the
size and drying of the textile, the cleanness of the desized fabric was inspected by
spectral imagingwith respect to both quantification of the residual amount of size and
its spatial distribution. The amount of remaining size was found to be at or below the
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prediction error of the external validation, which was sufficient for further processing
such as ink jet printing. Moreover, traces of size applied by arbitrary spraying of a
dilute solution to clean fabrics could be detected and quantified by this method as
well.

Aside from the treatment with such processing agents, which have to be removed
before subsequent processing, textile fabrics may be also finished with finishing
agents in order to provide them permanently with certain functional properties such
as flame retardancy, optical brightening, stiffening, hydrophilicity or hydrophobicity,
water repellence, biocide or stain resistance, anti-static behavior and other features.
Typically, such agents are applied by impregnation in aqueous solutions in a foulard,
which is often followed by heat setting to improve fixation to the textile fibers.
Depending on the special substrate, agent, and intended application finishes are
applied with application weights in the range from less than 1 g/m2 and to several
tens of g/m2. The finishes have to be applied according to the specified value of the
application weight and with exceedingly homogenous spatial distribution across the
textile fabric, which is required for both further processing of the finished textiles as
well as for optimum application properties. However, similar to sizes and finishing
oils most of the finishing agents form colorless layers on the surface of the textile,
which usually prevents in-line detection by optical methods in the visible range.
Rather, quantification is mostly carried out off-line by extraction, gravimetry etc.
Recently, Scherzer et al. [49] have demonstrated the immense potential of hyper-
spectral imaging for both quantitative analysis of the applied amount and monitoring
of the spatial homogeneity of finishing layers on textiles fabrics. For example, it was
shown that the application weight of flame retardant layers (in the order of several
tens of g/m2) applied to polyester fabric can be detected with a prediction error
(RMSEP) of 2.2 g/m2. The corresponding PLS calibration is given in Fig. 21.17.
Figure 21.18 shows spectral images of two finished polyester fabrics. In one of them,
a spot pattern resulting from several drops of finishing solution that were dripping
down to the already dried material, can be seen. The average application weight
obtained by integration over the individual values across the complete surface of
the spectral image of each finished sample proved a very close correlation with the
corresponding reference values obtained by gravimetry (i.e., differences < 2 g/m2).
Moreover, local inhomogeneities of the density thickness were clearly detected. In
particular, the dotted pattern forming a rectangular frame close to the cut edges orig-
inates from pinning the fabric on a tentering frame for drying after impregnation and
squeezing.

Similar investigations were carried out with other textile materials such as PA
fabric and with other finishing systems such as stiffening agents, optical bright-
eners, adhesion promoters and hydrophilic layers. Depending on the specificmaterial
combination, prediction errors were found to be in the order of 1–2 g/m2. However,
there is one exception of finishing layers that cannot be monitored by NIR imaging.
Water-repellent finishes are often based on fluorocarbon compounds, which cannot
be detected by NIR spectroscopy.

The next step in finishing of textiles by impregnation in aqueous solutions is
the drying process. Typically, this is a multistage process consisting of dewatering
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Fig. 21.17 PLS calibration model for the application weight of a flame retardant on pale beige
polyester fabric (200 g/m2). Reprinted with permission by Elsevier B. V. from Ref. [49]

by squeezing, suction by low pressure and thermal drying. Obviously, drying is an
energy-intensive process, which should be carried out up to the technically required
level only. NIR spectroscopy or imaging are predestined for monitoring the state
of the drying process due to the strong absorbance bands of water in this spectral
region (e.g. the strong combination band around 1940 nm and the first overtone at
about 1450 nm). Accordingly, the determination of the water content is probably
the most widely used application of NIR spectroscopic methods, in particular in
agriculture, food processing, pharmaceutics etc. With respect to textile processing,
NIR methods are particularly suited for monitoring the content of remaining mois-
ture at the end of the process. Scherzer et al. [50] determined the residual damp
of finished textiles by NIR hyperspectral imaging using PLS calibration models.
Textile substrates and finishing systems were largely the same as those, which were
studied above with respect to application weight. Figure 21.19 shows NIR spectra of
a PA fabric finished with a flame retardant at different moisture levels. Figure 21.20
shows the corresponding PLS calibration model. Reference data were determined
by gravimetry using a moisture analyzer. The prediction errors (RMSEP) of the
PLS models of all material combinations were found to be around 0.5%, since this
was the lower detection limit of the analyzer. Probably, an improved detection limit
could be achieved with the NIR-based technique if a reference method with higher
sensitivity would be used. Hyperspectral imaging does not only provide quantitative
data on the dampness, but reveals also its spatial distribution, which can help to
evaluate the homogeneity of the drying process. For example, the visualization of
differences between the outer areas on both sides of broad textile webs could assist
with improving the control of the drying oven.
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Fig. 21.18 Hyperspectral images of the distribution of a flame retardant on polyester fabric. In
the upper one, a spot pattern resulting from dried drops of finishing solution can be identified. The
gravimetric application weights of the samples were 13.2 (top) and 43.1 g/m2 (bottom). Reprinted
with permission by Elsevier B. V. from Ref. [49]

The moisture content of synthetic fibers and yarns has been studied by NIR spec-
troscopy as well. Moisture is a critical parameter with respect to both properties
(e.g. morphology, many physical parameters such as glass transition temperature,
tenacity etc.) and processing (e.g. dyeing or lamination) of the textile materials. On
the other hand, the water content of hydrophilic polymers such as PA depends on
the relative humidity of the air or the occurrence of moisture in technical processing
steps. The maximum water content of PA is in the order of 2.5–3.5 wt% depending
on the specific type of PA. The moisture content of spun PA fibers was determined
by NIR spectroscopy with precisions (SEP) between 0.3 and 0.5% [38]. Similar
investigations were reported for PAN and viscose [39].
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21.3.4 Lamination of Textiles

In several technical applications, textiles are used as laminates in order to combine
the properties of different materials. For example, combinations of a fabric as top
layer for the optical appearance and a hidden nonwoven material for sound insu-
lation are widely used for interior design in automotive engineering (e.g. for door
and roof linings or rear panel shelfs) and similar applications. Both textile layers
are bonded to each other by laminating hot-melt adhesives. Such adhesives can be
applied as powder, hot melted mass or melt-spun fibrous webs. During application
of the adhesive and the subsequent lamination of the two webs, several deficiencies
may occur depending on the specific adhesive system such as over/underdosage or
uncoated areas for powders and melts as well as tears, holes or buckle formation in
case of adhesives webs. Generally, lamination defects lead to deficient bond strength
or even delamination, impairment of the visual appearance etc. Therefore, contin-
uous monitoring of the homogeneity of the inside adhesive layer would be essential
for an efficient control of the lamination process. However, visual inspection of the
hidden layers or use of a corresponding camera is prevented by their invisibility and
inaccessibility from outside.

Near-infrared radiation iswell-known to penetrate to a certain degree into polymer
materials, at least for some tens ofmicrometers depending on the specificmaterial, its
color and morphology. Materials for interior design in automotive engineering often
contain a top layer made up of polyester piqué fabrics with weights between about
100 and 200 g/m2. Colors may cover a broad range, but the majority of materials is
beige, gray or black. Due to their weave structure, such fabrics appear to be slightly
translucent. On the other hand, the fibrous structure of the materials may lead to
diffuse scattering of incident radiation. Therefore, investigations were accomplished
in order to clear up if adhesive layers hidden in textile laminates can be visualized and
quantitatively analyzed by hyperspectral imaging. Generally, spectral analysis was
carried out from the top side, since the nonwoven is usually thicker than the fabric and
shows much stronger scattering of the probe light. In fact, it was demonstrated that
the reflection spectra of such three-layer laminates show significant contributions of
the adhesive layers based on aliphatic polyester [30] (see Fig. 21.21). In particular,
a specific absorption was observed around 1410 nm, which is attributed to a C-H
combination band in aliphatic hydrocarbons (2νCH2 and δCH2) [51], as well as in
the range above 1700 nm. Similar results were obtained for laminates containing
PA-based adhesives webs. Even reflection spectra of corresponding black textile
laminates can be recorded in high quality and with explicit effect of the coating
thickness of the adhesive layers [52], although the optical conditions are far from
being ideal for this kind of measurements.

Reflection spectra were found to correlate with the application weight of the hot
melt adhesive. A principal component analysis (PCA) of the NIR spectra of the lami-
nates showed that the scores plot of the first two components (PC1 versus PC2) only
allowed a discrimination between samples with and without adhesive layer, whereas
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Fig. 21.21 NIR spectra of bright three-layer laminates with different numbers of adhesive webs.
Reprinted with permission by Elsevier B. V. from Ref. [30]

the plot of the second and third component (PC2 versus PC 3) also enables a differen-
tiation between adhesive layers with different thicknesses [30]. Consequently, PLS
calibration models were developed. Reference data were obtained from gravimetry
during sample preparation. For each sample (roughly 20 × 30 cm), several tens of
thousands spectra were recorded with a hyperspectral camera. In order to consider a
possible non-uniform distribution of the adhesive coating weight across the samples,
their surfaces were divided into rectangular regions by defining a grid of n columns
x m rows. Spectra from each region were allocated alternatingly, that is according
to a chessboard pattern, to the calibration and the validation set. In case of bright
laminates (beige or light gray top layer), this resulted in RMSEP values around
3.5 g/m2 [30] for adhesive layers between about 25 and 125 g/m2 (see for example
Fig. 21.22), whereas the prediction error was higher (around 6 g/m2) for laminates
made up of black textiles only [52]. Accordingly, the color of the latter laminates
somewhat impairs the precision of the predictions, but by no means it prevents the
quantitative analysis of the thickness of the buried hot melt layers. External vali-
dations confirmed that the application weight of the inside adhesive layers can be
actually predicted within this error limits. Moreover, averaging the predicted indi-
vidual values from all NIR spectra across each sample enabled a direct comparison
with gravimetric reference data. Due to this averaging process, the deviations are
lower than the corresponding RMSEP (up to ~ 2 g/m2 for bright laminates and up
to ~ 5 g/m2 for black laminates). As an example, the spectral image of a three-layer
laminate consisting of black textiles is shown in Fig. 21.23 [52].

Aside from the prediction of quantitative data of the application weight of the
adhesive layers, the main objective of investigations by spectral imaging is moni-
toring of the homogeneity of the layers and the detection of coating errors. In fact,
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Fig. 21.22 PLS calibration model for the coating weight of the adhesive layer in bright polyester-
based three-layer laminates. Reprinted with permission by Elsevier B. V. from Ref. [30]
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Fig. 21.23 Hyperspectral image of the distribution of the adhesive inside a black polyester-based
three-layer laminate. The gravimetric application weight of the adhesive was 80.9 g m−2. Reprinted
with permission by Elsevier Ltd. from Ref. [52]

it was shown that the calibration and validation samples of the textile laminates had
a very high homogeneity. On the other hand, laminates with specific error patterns
(uncoated areas, overdosage, tears, folds, thick adhesive droplets etc.) were prepared.
All defects were clearly detected in the spectral images [30, 52]. In most cases, even
quantitative information about the defects were obtained. Figure 21.24 shows a repre-
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Fig. 21.24 Hyperspectral image of a bright polyester-based three-layer laminate containing an
adhesivewebwith an intentionally prepared defect (see inset).Reprintedwith permission byElsevier
B. V. from Ref. [30]

sentative example of a textile laminate with an intentionally prepared defect in the
adhesive web [30]. The triangular area that was cut out of the web was placed close
to the hole during lamination.

Finally, it was shown that acceptable predictions of the application weight of the
adhesive can be even obtained if the thickness (or theweight per area) of the polyester
top fabric varies, e.g. if laminates with different specifications have to be produced
alternately [52]. The variation was included in the PLSmodel as well, which resulted
in some increase of RMSEP (by ~ 50%), but still allowed predictions with reasonable
precision.

The investigations proved the excellent potential of hyperspectral imaging for
monitoring the homogeneity of hidden hot melt adhesive layers inside textile lami-
nates, even if these laminates consist of black components only. This opens up
new possibilities for continuous large-area quality and process control in technical
lamination processes.

21.4 Conclusion

This chapter demonstrated that NIR spectroscopy cannot only be used for “classical”
applications in polymer science and technology such asmonitoring of polymerization
and curing reactions. Rather, it may be also applied to a broad range of thin layers
such as polymer coatings, printed layers, laminating adhesives, functional layers in
textile finishing etc., although the thickness of such layers is far below that of typical
subjects of investigations byNIR spectroscopy, which broadens the application range
of NIR-based methods for the analysis of polymeric materials considerably. This
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expansion was enabled and pushed by the tremendous performance, in particular the
considerably enhanced sensitivity, of modern NIR instrumentation in combination
with powerful chemometric approaches.
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Chapter 22
NIR Imaging

Daitaro Ishikawa, Mika Ishigaki, and Aoife Ann Gowen

Abstract Visualization of the spatial distribution of surface properties is increas-
ingly desired in many fields. Spectral imaging combines spectroscopy with imaging,
implying images with three dimensions: two spatial and one spectral. NIR spectral
imaging enjoysmanyof the useful features ofNIR spectroscopy such as suitability for
nondestructivemeasurement, in situ analysis and potential for transmissionmeasure-
ments. NIR imaging systems can provide high-speed monitoring and stability. These
features are very attractive not only for laboratory-based studies but also for appli-
cations in a number of practical fields such as pharmaceutical, medical, engineering,
biological and agricultural. NIR imaging technology is still developing by improve-
ment of spectral analysis method; chemometrics and image analysis methods. In this
section, we describe the concept of NIR spectral imaging at first and introduce the
basic design of NIR imaging devices and the features of newly developed devices.
Finally, the potential of NIR imaging for practical situation is demonstrated through
several applications reported at recent years.
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22.1 Introduction

Spectral imaging, known also as chemical or hyperspectral imaging [1], combines
imaging and spectroscopy to obtain spatial and spectral information from a sample.
“Spectral imaging” is a general term covering a wide variety of spectroscopic and
spectrometry techniques (e.g., fluorescence, vibrational, Raman, mass spectrom-
etry), wavelength ranges (e.g., UV, Vis, NIR, MIR) and spatial resolutions (from the
nanoscale to remote-sensing scale). Spectral images typically comprise hundreds of
wavebands for each spatial position in the image. For a given spatial pixel, combining
the intensity values at each waveband into a vector results in a spectrum, containing
information on the interaction between light and the object or objects contained
within that pixel. The resulting spectrum can be used to characterize the compo-
sition of that particular pixel. Another advantage of this technique is the ability to
measuremany samples simultaneously, within the same field of view, and to combine
shape characteristics with spectral features.

NIR or short-wave infrared (SWIR) imaging typically refers to spectral images
obtained in the wavelength region from 750 to 2500 nm. Spectral images can be
arranged as three-dimensional blocks or “cubes” of data, comprising two spatial and
one wavelength dimensions, as shown schematically in Fig. 22.1. The spectral image
allows for the visualization of biochemical constituents of a sample, separated into
particular areas of the image, since regions of a samplewith similar spectral properties
tend to have similar biochemical composition. Within the schematic in Fig. 22.1 is
an NIR spectral image of different packaging materials. Four different materials
are present in the image, identifiable by their shape. For instance, the squares are
high-density polyethylene (HDPE), and the rectangles are polystyrene (PS). The
reflectance spectrum of one pixel of a PS sample is plotted in the lower left-hand
side of Fig. 22.1; it exhibits three main absorption features (i.e., three troughs in the
reflectance spectrum) at 1146, 1209, 1412 nm, related to overtones of CH vibrations
within the polymer. Due to these strong features, PS can be used as a wavelength
referencematerial for NIR imaging. A single slice of the spectral image at 1146 nm is
also shown. In this image, the PS samples appear darker than the other ones because
they absorb more light than the other samples do at this particular wavelength.

An NIR spectral image of four different packaging materials (high-density
polyethylene (HDPE), polystyrene (PS), cardboard and polyethylene-terephthalate
(PET)) is shown. Thematerialswere cut into different shapes to enable visual identifi-
cation: squares (HDPE), rectangles (PS), circles (cardboard) and triangles (PET). The
image was obtained in diffuse reflectance using a pushbroom NIR spectral imaging
instrument, as described in [2]. A single pixel reflectance spectrum of the PS sample
is shown on the lower left-hand side. The largest absorbance peak for PS occurs at
1146 nm. On the lower right-hand side, a single wavelength image at 1146 nm is
displayed. The PS samples (rectangles in the image) appear darker than the other
materials in this image due to their relatively higher absorbance of light at 1146 nm.

As is the case for conventional NIR spectroscopy, NIR spectral images can be
obtained using different modalities, such as transmission, reflectance, transflectance
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Fig. 22.1 Schematic of NIR spectral image structure: x and y represent spatial dimensions, while
λ represents the wavelength dimension

or interactance. The selection of modality is largely sample dependent, and it is
important to consider the optical properties of the sample and penetration depth
of NIR light within. For example, transmission imaging is generally preferable to
reflectance for materials that absorb high quantities of light in the NIR, such as
aqueous or highwater content samples. In order to enable imagingof highly absorbing
samples, it is advisable to work with thin samples and/or work in transmission mode.
If this is not possible, the use of a highly reflective substrate can also improve the
signal-to-noise ratio achievable through transflectance measurements, although the
effectiveness of this approach depends on sample thickness.

The remainder of this chapter is divided into two major sections: NIR imaging
instrumentation and applications, with several illustrative examples provided
throughout.
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22.2 Instrumentation

22.2.1 General Features of NIR Imaging Device

Different instrumental setups exist for the acquisition of NIR images. These can vary
in terms ofmodality (e.g., reflectance, transmission), components (e.g., light sources,
detectors) and in how the spectral image is acquired. Quartz tungsten-halogen (QTH)
light bulbs are often used as light sources in NIR imaging as they are low cost and
cover a broadwavelength range, from 400 to 2500 nm; however, they generate signif-
icant amounts of heat, and this may alter or even burn a sample. To overcome this
issue, fiber-optic lines can be used to transmit the light. The detector employed in an
NIR imaging system is typically selected based on the required wavelength range,
and various options exist. Systems operating in the 400–1000 nm wavelength range
typically use charge-coupled device (CCD) or complementary metal-oxide semi-
conductor (CMOS) sensors. Such detectors are suitable for imaging in the wave-
length range 300–1000 nm. Indium gallium arsenide (InGaAs) or mercury cadmium
telluride (MCT) detectors are more commonly used for NIR imaging in the 1000–
2500 nm range. However, these detectors are more expensive than CCDs and require
cooling. Detectors used in NIR imaging often exhibit noise at extreme edges of the
wavelength range, due to reduced quantum efficiency. An example of this is shown
in Fig. 22.2, which shows single-waveband images extracted from the spectral image
of packing materials (as previously described in Fig. 22.1). The wavelength range of
the InGaAs detector used for obtaining this image is 880–1720 nm. Clearly, noise is
evident in the image plane at peripheral wavebands such as 929 and 1713 nm. Typi-
cally, such noisy wavelength regions are removed from the spectra prior to further
analysis. However, they can provide discriminatory information despite the pres-
ence of noise—for example the 1713 nm image shows good contrast between the
HDPE/PS and other materials. For this reason, it can sometimes be useful to retain
noisywaveband images and reduce the noise through the use ofmultivariate analysis.

Fig. 22.2 Single-waveband images of various packagingmaterials (see Fig. 22.1 caption for further
information on samples)
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22.2.2 Spectral Image Acquisition

Currently, there are four main ways in which spectral images can be obtained: point,
line, plane or snapshot imaging, as shown schematically in Fig. 22.3.

Point scanning can be regarded as an extension of conventional point spectroscopy
where a spectrum is obtained at one spatial position, followed by movement of either
the sample or the spectrometer to an adjacent position for spectral acquisition. This
is continued until an entire image of a sample is acquired.

“Pushbroom” or line scanning refers to acquisition where the spectral image is
acquired by collecting spectra of spatially contiguous lines over a sample. Typically,
light from each spatial position along the line passes through a spectrograph and
is split into its component wavelengths, resulting in a spectrum for each pixel on
the line. The resultant two-dimensional image is captured by an array detector. The
spectral image is built up either through moving the sample underneath the detector
or moving the detector above the sample. “Staredown” or plane scanning spectral
imaging systems acquire the hyperspectral imagewaveband bywaveband by sequen-
tially obtaining single-waveband images. This can be achieved through the use of
a tunable filter to select only light at a specific wavelength or through the use of a
tunable laser light source that only shines light of a specific wavelength on a sample.
More recently, devices have been developed that can acquire an entire spectral image
simultaneously in one acquisition. This so-called snapshot spectral imaging can be
achieved through the use of prisms and waveplates or mirrors to project simul-
taneously different wavelength images of a sample onto a detector array [3] or by
integrating spectral filters on top of detector elements [4]. Some recent developments
in rapid and portable NIR imaging systems are described below.

Fig. 22.3 Schematic showing different techniques for obtaining spectral images
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22.2.3 Development of Instrument

22.2.3.1 High-Speed Portable NIR Imaging System [5]

To meet the demands of diverse application fields such as pharmaceutics and agri-
culture, high speed and portability are essential. “D-NIRs” is a portable NIR spectral
imaging system recently developed by Yokogawa Electrics Co., Ltd. D-NIRs is a
point scanning-based system that enables rapid spectral imaging in the 950–1700 nm
region with a maximum spatial resolution of 0.1 mm. For instance, a spectral image
of a sample tablet (diameter; 8 mm) can be obtained within a few seconds. An
overview and schematic diagram of D-NIRs are shown in Fig. 22.4. D-NIR consists
of an NIR spectrometer (“P-NIRs”), imaging unit and light source unit. P-NIR is
a polychromator-type spectrometer, developed by the group of Prof. Ishikawa for
process monitoring. Although the basic system of this spectrometer is similar to
a typical one, the detector of the spectrometer is more sensitive, consisting of a
newly developed high-density InGaAs photodiode array detector of 640 elements
with 20 μm pitch. The photodiode is sensitive to light in the 900–1700 nm wave-
length range, and this spectrometer can measure spectra with a 1.25 nm interval in
that range. As shown in Fig. 22.4, the diffuse reflection energy from a sample reaches
the imaging unit of D-NIRs. Mapping for two dimensions (x- and y-directions) is
controlled by two galvanomirrors.

22.2.3.2 Wide-Area NIR Imaging Device with High-Speed
Performance [6]

Wide-area investigation of inhomogeneity for components and/or quality with high
speed is important to process control of various samples, for instance, agri-food prod-
ucts. “Compovision” is a wide-area NIR imaging camera developed by Sumitomo
Electric Industries Ltd (Fig. 22.5). This wide-area and high-speedmonitoring system
can measure NIR spectral images of spatial size 150 × 200 mm2 with spatial
resolution of 0.2 mm in less than 5 s. The high speed is achieved by a newly
developed InGaAs detector which consists of InGaAs/GaAsSb type-II quantum
wells (QWs) laminated on an indium phosphide (InP) substrate. This detector also
contributes to the acquisition of high-quality spectral data in a wide NIR spectral
region (1000–2350 nm).

22.3 Applications of NIR Imaging

NIR spectral imaging has in recent years become the topic of intense research in
highly applied and industrially relevant areas such as food, pharmaceutical, polymer
and biological sample analysis. The following sections provide an overview of the
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(a) 
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Fig. 22.4 Photo (a) and schematic diagram (b) of “D-NIRs” NIR spectral imaging system. A: NIR
spectrometer (P-NIRs), B: power source unit, C: imaging unit, and D: sample tablet

range and scope of recent applications. For amore comprehensive description of these
and related applications, several informative reviews have been published describing
advances in spectral imaging for contaminant detection [7], food authentication [8],
food quality control [9, 10], pharmaceutical quality control ([11] Gowen et al. 2008)
and agricultural analysis ([12] Adao et al. 2017).
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Fig. 22.5 a Picture of the “Compovision” NIR spectral imaging system and b schematic of same

22.3.1 Food-Related Applications

While conventional spectroscopic methods are useful for characterizing homoge-
neous products, the lack of spatial resolution often leads to an incomplete assess-
ment of heterogeneous products, such as foods. This is particularly problematic in the
case of surface contamination, where information on the location, extent and distri-
bution of contaminants over a food sample is required. Applications of NIR spectral
imaging for food quality and safety are widespread in the scientific literature. The
heightened interest in this technique is driven mainly by the nondestructive and rapid
nature of the technique, and the potential to replace current subjective, labor- and
time-intensive analytical methods in the production process.

22.3.2 Contaminant Detection in Foods

Since spectral imaging can detect spatial variations in chemical composition, it is
widely regarded as a promising tool for contaminant detection. Major food chain
contaminants that can be detected in the NIR include polymers, paper, insects,
soil, bones, stones and fecal matter. Diffuse reflectance is by far the most common
modality of NIR spectral imaging utilized for this purpose, meaning that primarily
only surface or peripheral contamination can be detected. Of particular concern in
the food industry is the growth of spoilage and pathogenic microorganisms at both
pre-harvest and post-harvest processing stages, since these result in economic losses
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and potentially threaten public health. Vis–NIR spectral imaging has been demon-
strated for pre-harvest detection of symptoms of viral infection and fungal growth
on plants and cereals such as maize and wheat [13].

Many studies have focused on the detection of fecal contamination on a wide
variety of food products, including fresh produce, meat or poultry surfaces. For
example, Vis–NIR imaging (450–851 nm) has been shown to be capable of detecting
fecal contamination on apples using with high accuracy levels, suggesting that just
two NIR wavebands (748 and 851 nm) could be used for detection [14]. Insect infes-
tation is another example of contamination in the food processing chain detectable
by NIR imaging. One of the earliest reported studies in this area showed the possi-
bility of using NIR imaging to detect insects inside wheat kernels [15]. In that study,
the authors demonstrated that subtraction of single wavelength images at 1300 nm
from those at 1202 nm resulted in an image in which infested kernels could be
distinguished from sound ones.

22.3.3 Food Authentication

In order to ensure compliance with labeling, legislation and consumer demand in
an ever expanding and global food supply chain, authentication and traceability
of food ingredients are critical. Due to the sensitivity of vibrational spectroscopy
to molecular structure and the development of advanced multivariate data analysis
techniques such as chemometrics, near- and mid-infrared spectroscopies have been
successfully used in authentication of the purity and geographical origin of many
foodstuffs, including honey, wine, cheese and olive oil. Spectral imaging, having the
added spatial dimension, has been used to analyze nonhomogeneous samples, where
spatial variation could improve information on the authentication or prior processing
of the food product, for example, in the detection of fresh and frozen-thawed meat
or in adulteration of flours [16].

22.3.4 Food Quality Control

NIR spectral imaging has been applied in a wide range of food quality control issues,
such as bruise detection in mushrooms, apples and strawberries and in the prediction
of the distribution of water, protein or fat content in heterogeneous products such
as meat, fish cheese and bread [17]. Typically, when observing the NIR spectrum of
high-moisture foods, the dominant spectral feature is a wide peak, centered at around
1450 nm, corresponding to the overtone and combination vibrations of fundamental -
OH stretching and bending vibrationswithin the foodmatrix. The shape and intensity
of this peak are sensitive to the local environment of the food matrix and can provide
information on changes in the water present in food products. This is useful since
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many deteriorative biochemical processes such as microbial growth and nonenzy-
matic browning rely on the availability of free water in foods. NIR spectral imaging
has also been applied to quality assessment of semi-solid foods, as reviewed in [10].
For instance, the transmittance modality has been used to nondestructively assess the
interior quality of eggs [18, 19], while diffuse reflectance modality has been used to
study the microstructure of yoghurt [20] and milk products [21].

22.4 Pharmaceutical-Related Applications

22.4.1 Blend Process Monitoring [22]

Pharmaceutical processes consist of several steps such as milling of materials,
blending, drying, coating and tableting. The samples under processing should be
monitored by the appropriate method, with measurement speed, wavelength resolu-
tion, probe type and signal-to-noise ratio being adjusted according to the applica-
tion. Various studies have been performed to control pharmaceutical processes by
NIR spectroscopy, such as blending. To determine a more accurate end point of the
blending process, NIR spectra in the 950–1700 nm region were obtained during the
blending process using the experimental setup shown in Fig. 22.6. In addition, an
at-line NIR image of the sample during blending was acquired. Figure 22.7 depicts
the second derivative image and binary image developed during blending period.

Fig. 22.6 Photo of
experimental setup for NIR
spectrometry-based process
monitoring of a blending
process. A P-NIRs for the
in-line blending process
monitor, B vessel-type
blending machine. Copyright
(2015) MDPI
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Fig. 22.7 a Image of themixing sample developed by second derivative at 1458 nm for 15min after
the start of the blending. b A binary image of the sample at 15 min after the start of the blending
obtained by thresholding (a) Note that the mapping was performed under special resolution of
0.1 mm. Threshold was defined by standard deviation of second derivative spectra. Copyright
(2015) MDPI

The estimated concentration of ascorbic acid corresponded to actual concentration,
indicating sufficient blending time, had passed to provide a homogeneous blend.

22.4.2 Water Penetration Monitoring [23]

In this example application, we discuss the potential of NIR spectral imaging for
tablet dissolution monitoring of a tablet. A model tablet was prepared, consisting of
20% ascorbic acid (AsA) and 80% hydroxypropyl methylcellulose (HPMC). NIR
spectral images of the tablet during the process of water penetration were obtained
using the previously described D-NIRs system.

Absorbance and second derivative spectra during the dissolution process are
depicted in Fig. 22.8. It is evident from the figure that a band at 1361 nm (assigned
to the first overtone of an OH stretching vibration of AsA) and a band at 1354 nm
decrease during the dissolutionprocess. Thus,NIR ratio imageswere developedusing
ratio of second derivative at 1361 and 1354 nm (Fig. 22.9). Distribution change of
AsA concentration in the tablet due to water penetration is clearly shown by using
the ratio-based image.
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Fig. 22.8 Time-dependent changes of (a) NIR spectra and (b) their second derivative spectra of
the tablet dissolution process at a point. Copyright (2013) Springer

Fig. 22.9 Changes in the peak-height ratio-based image of tablet dissolution developed by using
the second derivative intensities at 1361 and 1354 nm due to ascorbic acid and water, respectively.
These ratio images were modified by arbitrary threshold to delete the color except the tablet part.
Copyright (2013) Springer



22 NIR Imaging 529

Fig. 22.10 Concentration profiles C of a PTX and b palmitic acid for each tablet ground for 0, 2
and 45min. SMCRwas applied to the NIR spectra over the spectral region of 7600–4500 cm−1, and
concentration profiles c and pure component spectra S were obtained. Copyright (2008) Elsevier

22.4.3 Investigation of Inhomogeneity During the Grinding
Process [24]

In this example, NIR spectral imaging was carried out on pharmaceutical tablets
containing two ingredients, a soluble active ingredient, pentoxifylline (PTX), and an
insoluble excipient, palmitic acid. Figure 22.10 illustrates a series of concentration
profiles C of PTX and palmitic acid, respectively, for the tablets ground for 0, 2 and
45 min. These concentration profiles were obtained by a chemometrics technique
called self-modeling curve resolution (SMCR) of the tablets and can be used to
estimate the distribution of PTX and palmitic acid within them. They reveal that
the homogeneity of the distribution of chemical ingredients in the samples strongly
depends on the grinding time and that this process plays a central role in quantitative
control. Accordingly, this study clearly demonstrates that NIR imaging combined
with SMCRcan be a powerful tool to reveal chemical or physicalmechanism induced
by the manufacturing process of pharmaceutical products.

22.4.4 Identification of Defective Tablets [25]

In this section, we provide amethod for detection of defective tablets usingNIR spec-
tral imaging. Normal tablets and defective tablets were prepared, and NIR spectra in
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Fig. 22.11 NIR images of (a) nondefective tablet and (b), (c) defective tablets of 25 and 50%
Mg-stearate developed by second derivative at 1213 nm. Note that the 25 and 50% indicates the
percentage of defective area in a tablet. Copyright (2019) IM publication

the 950–1700 nm region were measured for each pixel covering the tablet surface by
D-NIRs. In this study, “defective” was defined as irregular distribution of the compo-
nent (in this case, Mg-stearate) in a tablet. Second derivative NIR images at 1213 nm
(related to Magnesium Stearate) were produced from the original spectral images, as
shown in Fig. 22.11 for nondefective and defective tablets. The defective component
can be clearly identified using the standardized image. The skewness of intensity
distribution in defective and nondefective tablets is plotted in Fig. 22.12. The skew-
ness of a normal tablet was approximately 0, and it reached approximately −2.3 in
the defective tablet, which had a 12.5% redundant concentration area. The skew-
ness decreased gradually as the redundant concentration area increased. Therefore,
defective tablets could be identified by the skewness of spectra.

22.5 Polymer-Related Applications

22.5.1 Polymer Crystallinity Evaluation [26]

Shinzawa et al. have revealed crystallinity variation in a polymer due to interactions
with nanocomposites with NIR spectral imaging using a novel method: the band
shift image based on shifting peak positions of the crystalline band of NIR spectra
in 5000–4000 cm−1. The distinctive dark pixels in Fig. 22.13 may be interpreted as
massively aggregated clay particles, probably reflecting inhomogeneous distribution
during the manufacturing process. Shinzawa et al. suggested that the crystallinity
of the polymer was improved by the inclusion of the clay. Further studies of this
group published elsewhere [27, 28] also enhanced the efficiency of NIR imaging to
evaluate physicochemical properties of polymers.



22 NIR Imaging 531

Fig. 22.12 Change in skewness according to the increase of defective area in the tablet. Copyright
(2019) IM publication

22.5.2 Biodegradable Polymer Evaluation [29, 30]

As examples of quantitative analysis of crystallinity of biodegradable polymers,
polylactic acid (PLA) and the effect of its concentration in PLA/poly-(R)-3-
hydroxybutyrate (PHB) blends were investigated using the previously described
Compovision system. PLA samples with different crystallinity and blended sample
of PLA/PHB were prepared, and NIR spectral images in the 1000–2350 nm region
were obtained for a spatial region of 150× 200 mm area (with 0.25 mm spatial reso-
lution). Application of the standard normal variate (SNV) pretreatment to collected
spectra followed by partial least squares regression enabled prediction of crystallinity
and concentration of PLA in the biopolymer blend. Figure 22.14 depicts NIR images
of wide-area crystal evolution of PLA. Note that the PLA plate was subjected to
gradual temperature slope in the range 70–105 °C. A SNV-based prediction image
gave an obvious contrast of the crystallinity around the crystal growth area according
to slight temperature change. Moreover, it clarified the inhomogeneity of crystal
evolution over the sample area.



532 D. Ishikawa et al.

Fig. 22.13 Peak positions of the crystalline band directly calculated from NIR spectra of (a) neat
PLA and (b) the nanocomposite including 15% by weight of clay. Copyright (2012) Elsevier
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(b) (a) 

Sample

Hea ng

(c) 

Fig. 22.14 a Photo of the PLA sample whose crystallinity was developed by the hot stage, b NIR
images for the predicted crystallinity of PLA sample developed by using the SNV pretreatment in
the 1600–2000 nm region. Copyright (2013) SAGE publishin. c Photo of sample (left) subjected to
heating by developed heating stage (right).

The use of NIR spectral imaging for estimation of physical properties modified
due to hydrolysis of PLA has been investigated byMuroga et al. NIR spectral images
were obtained using the Compovision system, andNIR images were developed using
peaks and the result of PLS modeling. Figure 22.15 shows two-dimensional distri-
butions of the estimated response variables: (a) flexural strength, (b) flexural strain,
(c) flexural modulus and (d) crystallinity. The spectra of the regression coefficients
in the PLS models of the flexural strength and the flexural strain had the same
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Fig. 22.15 NIR images of the a flexural strength, b flexural strain, c flexural modulus and d crys-
tallinity of PLA estimated using PLS models. Note that ta and tm indicate annealing time and
melting time, respectively. Copyright (2018) John Wiley & Sons, Ltd.

peaks in the range from 1400 to 1500 nm. The spectra of the regression coefficients
of the flexural strength and the flexural strain largely reflected the change in the
concentration of terminal hydroxyl groups induced by hydrolysis. Thus, this study
successfully demonstrated the potential of NIR imaging technology to evaluate the
flexural properties and crystallinity of PLA products rapidly.
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22.5.3 Monitoring of Biopolymer Photodegradation [31]

Photodegradability of biopolymer is a major concern for industrial applications, such
as packaging. In this study, the visualization of photodegradation is investigated
during photolysis process. The evolution of crystallinity at 1917 nm in the SNV
spectra of the film during photolysis is shown in Fig. 22.16. It can be noted that
the behavior of SNV spectra of PLA in the 1000–2000 nm was investigated prior
to imaging and the intensities of this band nm due to the second overtone of the
C =O stretching vibrations decreased with elapsed time. The crystallinity change in
the 0-min image arises from the temperature gradient of the designed hot stage. The
distribution of crystallinity is visualized: highly crystalline regions at the bottom of
the sample reached to homogeneity by the saturation of crystallinity. The amorphous
region at the top area of images depicted inhomogeneity of crystallinity by photolysis
process, clearly. Finally, this approach successfully demonstrated that the increase in
crystallinity due to photodegradation could bemodeled using a logarithmic equation,
and the degradation speed is slightly promoted by the initial crystallinity of the sample
(Fig. 22.17).

22.6 Bioscience-Related Applications

NIR absorbance bands aremainly due to the functional groups containing a hydrogen
atom such as OH, CH and NH. The major components of biological organisms are
water, proteins, lipids, molecules which contain these functional groups. Therefore,
NIR spectroscopy and imaging can be a useful analytical tool for biological samples
to investigate structural changes of biomolecules. Furthermore, aqueous samples are
easier to handle for NIR spectroscopic analysis because water absorption in the NIR
wavelength region is much weaker than that in infrared (IR) region. Since NIR light

Fig. 22.16 NIR images for
the predicted crystallinity of
a PLA sample developed by
using SNV spectra subjected
to photolysis at 0 and 60 min.
Copyright (2015) Springer
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Fig. 22.17 a Time-series profiles of crystallinity changes in the different areas shown in b the
image at 0 min shown in Fig. 22.16. Copyright (2015) Springer
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can reach much deeper in a sample than IR light, NIR imaging can easily investigate
thick samples than IR imaging without much sample preparation.

22.6.1 Application of Three Types of NIR Imaging System
to Biology

Our recent studies investigate the growth of Japanese medaka fish eggs in vivo [32–
36]. They are aimed at exploring embryogenesis at the molecular level by visualizing
variations of biomolecule distribution and their concentration with the egg develop-
ment. The size of the eggs is about 1.5 mm in a diameter, and they are almost
transparent. They hatch at around two weeks after fertilization under 25 °C water
temperature [37, 38]. Note that eggs on the day before hatching are termed here
as “just before hatching” (JBH). The eggs consist of three parts (yolk, oil droplets,
and embryo) and embryonic body can be clearly observed after the third day after
fertilization (Fig. 22.18). For transmissionNIRmeasurements both in pointmode and
imagingmode, eggswere fixed by two glass slides with spacers to regulate the optical
path length as 0.36 or 0.5 mm. The NIR spectra were obtained using three kinds of
NIR spectrometers. The first was a PerkinElmer SpectrumOne FT-NIR spectrometer
equipped with a HgCdTe (MCT) detector (Spectrum Spotlight 300). In the imaging
mode, the spatial andwavenumber resolutions were set as 25mμ and 4 cm−1, respec-
tively. The measurement time was about 1 min for the point mode and 20 min for the
imaging mode. For comparison, the Compovision system in transmission mode was
employed (Fig. 22.19). This system is equipped with an InGaAs photodiode array
(T2SL SWIR focal plane array, SSW230A, Sumitomo Electric Industries Ltd) as a
detector. The magnification of the objective lens was 5× (LMPLNIR5× , Olympus
Co.). The number of pixels in the 1.5 × 1.5 mm2 area was approximately 50,000,

Fig. 22.18 An optical image of a fertilized medaka egg on a the first day and b the fifth day after
fertilization. Reproduced from Ref. [34] with permission. Copyright (2018) John Wiley & Sons,
Ltd.
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Fig. 22.19 Schematic view of the microscopic near-infrared (NIR) systemwith samples of medaka
fish eggs. Reproduced from Ref. [34] with permission. Copyright (2018) John Wiley & Sons, Ltd.

and the pixel size corresponded to 6.8 mμ. The measurement time was about 2 s in
the imaging mode. The last instrument tested was an imaging-type two-dimensional
Fourier spectroscopy (ITFS) system. During NIR measurements with these three
types of spectral imaging systems, embryos were confirmed to be alive by observing
their blood flow and heart beat, and NIR band positions and intensities due to water
or proteins did not change between the first and the end points of the measurement
in the imaging mode.

22.6.2 NIR Imaging of Fish Egg Embryogenesis

Figure 22.20a and b exhibit NIR absorbance (7500–4000 cm−1) and second deriva-
tive (4900–4200 cm−1) spectra, respectively, obtained from different five parts of the
medaka eggs (body, eye, head, oil droplet and yolk) on the fifth day after fertiliza-
tion using the first device (Spectrum Spotlight 300, PerkinElmer). The broadbands
at around 6950 and 5200 cm−1 are attributed to the combination of the antisym-
metric and symmetric O–H stretching modes and of antisymmetric O–H stretching
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Fig. 22.20 a NIR spectra (7500–4000 cm−1) and b their second derivatives (4900–4000 cm−1)
from the body, eye, head, oil droplets and yolk on the fifth day after fertilization. NIR second
drivative spectra obtained from the body, eye, head, and yolk parts on c the 3rd day and d the day
JBH. Reproduced from Ref. [33] with permission from The Royal Society of Chemistry

and O–H bending modes of water, respectively [39, 40]. In the oil droplet spectra,
two prominent peaks at 4258 and 4342 cm−1 were observed, which were due to the
combination of C–H stretching and bending modes [40, 41]. The second derivative
spectra of the body, eye, head and yolk parts on the 3rd day and the day JBH in the
4900–4200 cm−1 region are shown in Fig. 22.20c and d. Some small peaks due to
proteins were detected at around 4864, 4612 and 4538 cm−1 which are assigned to
the combination modes of N–H stretching vibration and amide II (amide A + II)
[42, 43], the combination modes of amide A and amide III (amide A + III) [44],
and more β-sheet structure [45, 46], respectively. Since embryonic structures were
in the incomplete stage where they were still being formed and they overlap with
yolk parts on the third day, the second derivative spectra showed similar spectral
pattern between body, eye, head and yolk (Fig. 22.20c). On JBH day, on the other
hand, the differences between the yolk and other embryonic parts were made clear by
reflecting the variations of chemical components associated with embryonic forma-
tion (Fig. 22.20d). That is, NIR spectra captured the molecular variations such as
composition, concentration and molecular structure due to embryonic development.



540 D. Ishikawa et al.

Fig. 22.21 Day-dependent variations in the NIR images of fertilized medaka eggs structured using
second derivative intensities at a 4340, b 4616, c 4864 and d 4666 cm−1 on day 1, 3, 5, 7 and JBH
using the PerkinElmer instrument. Reproduced from Ref. [33] with permission from The Royal
Society of Chemistry

In imaging mode, these molecular differentiations with the embryonic devel-
opment were visualized in situ without labeling. Figure 22.21 shows day-dependent
variations in optical andNIR images of the eggs on the day 1, 3, 5, 7 and JBH recorded
using the first device PerkinElmer. NIR images were constructed by plotting the
second derivative intensities at some notable bands in two dimensions. Figure 22.21a
was made by the second derivative intensity at 4340 cm−1 due to the combination
of C–H stretching and bending modes of hydrocarbons and aliphatic compounds
[40, 41], especially highlighting oil droplets and yolk parts. The NIR images in
Fig. 22.21b were structured using second derivative intensity at 4616 cm−1 assigned
as the amide mode. This band is characteristic for α–helix structure of proteins, and
it has higher peak intensity with more α-helix structure [40, 45]. Therefore, proteins
with α–helix structure were revealed to be included in the yolk and egg membrane,
and the concentration increased with the embryonic development. The images in
Fig. 22.21c were obtained from the peak at 4864 cm−1, which are sensitive to the
β-sheet secondary structures of proteins [45, 46]. Even though both Fig. 22.21b, c
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exhibit protein distributions, they showed different variation patterns depending on
the protein secondary structures. The α-helix component in the egg yolk increased
with egg development (Fig. 22.21b), but the protein concentrationwith β-sheet struc-
ture, on the other hand, became higher on day 1 and JBH than during the intermediate
period (Fig. 22.21c).Monroy et al. investigated the pathway of yolk utilization during
egg development using a radioactive element for imaging [47]. They revealed that the
synthesis of embryonic proteins from the yolk and its utilization rate was different
depending on each developmental stage [47]. That is, the yolk has different roles at
each developmental stage, and NIR imaging might capture the metabolic changes
depending on the phases, in situ, without labeling. Figure 22.21d shows the distri-
bution of unsaturated fatty acids constructed by the second derivative intensity at
4666 cm−1 [41]. The highlighting of oil droplets and egg membrane in this image
indicates the existence of the unsaturated fatty acids in these embryonic structures.

22.6.3 High-Speed NIR Imaging of Fish Egg Embryogenesis

For high-speed NIR imaging, the Compovision system was used. Figure 22.22
depicts visible images of the fish eggs in the same day series (a), and NIR images
constructed using second derivative intensities and chemometrics (b)–(f) in the 1460–
1767 nm (6850–5660 cm−1) region. In Fig. 22.22b made by the band at 1767 nm
(5660 cm−1), whichwas assigned to the first overtone of C–H stretchingmode ofCH2

groups in hydrocarbons and aliphatic compounds [40, 48, 49], clearly depicts the egg
membrane and oil droplets. Since cellmembrane generally has a phospholipid bilayer
structure with many CH2 groups, the structure is expected to be visualized. Further-
more, after third day, eye structures were also depicted using the band. The images
of the first overtone of C–H stretching band in CH2 groups at 1716 nm (5828 cm−1)
are shown in Fig. 22.22c [40, 41, 49]. The band position of the first overtone of
C-H stretching in unsaturated fatty acids shifts from 1725 nm (5797 cm−1) to 1709–
1717 nm (5851–5824 cm−1) [41, 50]. Fish eggs contain much polyunsaturated fatty
acids such as docosahexaenoic acid and eicosapentaenoic acid. Therefore, Fig. 22.22c
can be interpreted to exhibit the distribution of unsaturated fatty acids. That is, the
distributions of different fatty acids depending on the degree of unsaturation can be
selectively visualized. The band intensity at 1564 nm (6394 cm−1) due to the first
overtone of N–H stretching mode of amide groups was used to prepare Fig. 22.22d
[40, 45]. The membrane proteins were expected to make clear the egg membrane.
The heterogeneous highlight within oil droplets in Fig. 22.22d overlapped with the
part in Fig. 22.22b. This part may show the lipoprotein distribution in which lipids
present in plasma wrapped by proteins like blood. Fish eyes were also visualized
in Fig. 22.22d. Figure 22.22e was developed by plotting PC1 scores expressing the
weakly hydrogen bonding water species [35]. The embryonic structure, contours of
oil droplets and the boundary of egg membranes were made clear. Especially, it was



542 D. Ishikawa et al.

Fig. 22.22 a Visible images of medaka eggs from the first day after fertilization to the day JBH,
and NIR images of eggs constructed by the second derivative intensities at b 1767 nm (aliphatic
compounds), c 1716 nm (unsaturated fatty acids), d 1564 nm (proteins) and e, f scores calculated by
projecting PC1 loadings onto imaging data to identify the contribution of weakly hydrogen-bonded
water. Reproduced from Ref. [34] with permission. Copyright (2002) John Wiley & Sons, Ltd.

very interesting that the water structure at the interfaces between yolk and oil, and
yolk and membrane were different. The dynamic water distributions with different
structure were revealed to be visualized.

22.6.4 Blood Flow Imaging of Fish Egg Embryos

The last device used for the research was the ITFS system [51]. The characteristic
feature of the system is that it has a partial movable mirror as shown in Fig. 22.23
which was developed by Ishimaru of Kagawa University and AOI ELECTRONICS
Co., Ltd. in Japan. The partial movable mirror gives optical path differences to the
object light and an interferogram can be obtained by continuously changing the
spatial phase difference. Since interference only occurs in the rays that come from
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Fig. 22.23 Schematic view of the imaging-type two-dimensional Fourier spectroscopic system
(ITFS; AOI ELECTRONICS CO., LTD., NT00-T011). Reproduced from Ref. [52] with permission
from ACS Publications

the same point in the system, interference coming from outside the focal plane is
not observed in the alternate current (AC) component but detected only in the direct
current (DC) component. Therefore, the system can obtain confocal 3D imaging data
in principle.

Using the ITFS system, a medaka fish egg was analyzed during the egg devel-
opment [52]. In the reflectance mode for a medaka fish egg on the fifth day after
fertilization (Fig. 22.24a), an interferogram was obtained from the yolk part, (A)
as shown in Fig. 22.24b and from heart part, (B); noise-like background was addi-
tionally observed (Fig. 22.24c) due to interference with the components that had
different optical frequency due to the reflection from moving objects like heart and
blood cells, i.e., the “Doppler effect.” Figure 22.25a and b demonstrates spectro-
scopic light intensity in the 1000–2500 nm and 2000–15,000 nm regions, respec-
tively, that were extracted from the interferogram of Fig. 22.24c. The strongest peak
was observed at 3768 nm, and two prominent peaks at 1884 and 1256 nm were
also observed. The strong peak at 3768 nm (Fig. 22.25b) is due to the fundamental
mode of the heart beat, and the two peaks (1884 and 1256 nm) in Fig. 22.25a corre-
spond to the first and second overtones of the fundamental mode, respectively. Please
refer the detailed discussion about the peak assignment in Ref. [52]. By plotting the
intensities of (a) detected light and (b) absorbance at 1256 and 1884 nm in two dimen-
sions, nonstaining blood flow images were successfully accomplished as shown in
Fig. 22.26.
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Fig. 22.24 a An optical image of an embryonic body of a medaka fish egg on the fifth day after
fertilization. b Interferogram obtained from the yolk part (A) and c from the heart part (B) of (a).
Reproduced from Ref. [52] with permission from ACS Publications

The measurement in transmission mode was also tried. Two peaks due to the heart
beat were detected at 1880 and 2260 nm in FT spectra. In addition, absorbance peaks
due to molecular vibrations were observed at 1940 and 2360 nm originating from the
antisymmetric O–H stretching andO–H bendingmodes of water, and C–H stretching
and bending modes of hydrocarbons and/or aliphatic compounds, respectively [40,
41, 49]. Figure 22.27 depicts NIR images developed by plotting the intensities of
(a) detected light at 2260 nm and absorbance at (b) 1880 nm, (c) 1940 nm and (d)
2360 nm. Figure 22.27a shows the position of the heart and Fig. 22.27b exhibits the
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Fig. 22.24 (continued)

blood vessels spread within embryo in addition to the heart. Figure 22.27c and d
reveal the detailed structure of embryo and yolk, respectively.

In this way, molecular vibration and heart beat signals can be simultaneously
obtained in vivo using optical interference caused by optical path differences and light
frequency shifts. The method can be applied to the detection of the early motion of
cardiogenesis in the stage where the heart structure is yet not clear. For example, iPS
cell differentiation into cardiomyocytes can be monitored in 3D from both pulsation
and molecular composition information.
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Fig. 22.25 Spectroscopic information obtained by Fourier transformation of the data in Fig. 22.24c
in the a 1000–2500 nm and b 2000–15,000 nm regions. Reproduced fromRef. [52] with permission
from ACS Publications
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Fig. 22.26 Blood flow images of a medaka fish egg on the fifth day after fertilization obtained by
plotting intensities of a detected light from the sample and b absorbance at 1260 and 1860 nm.
Reproduced from Ref. [52] with permission from ACS Publications
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Fig. 22.27 NIR images obtained by plotting intensities of a detected light at 2260 nm and
absorbance at b 1880 nm, c 1940 nm, and d 2360 nm. Reproduced from Ref. [52] with permission
from ACS Publications
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Chapter 23
Inline and Online Process Analytical
Technology with an Outlook
for the Petrochemical Industry

Rudolf W. Kessler and Waltraud Kessler

Abstract The concept of process analytical technology (PAT) started around the
1970s with the advent of personal computers in combination with instrumental
analytical chemistry. Over the years, increasingly sophisticated and holistic quality
management concepts such as quality by design (QbD) were developed and strongly
promoted, especially by the American Food and Drug Agency (FDA) around 2002.
Recently, the German initiative for the Fourth Industrial Revolution “Industrie 4.0
(i40)” was introduced, which is similar to the US “Industrial Internet Consortium
(IIC)” concept or the “Industrial Internet of Things (IIoT).” Another initiative in Asia
is the Chinese campaign “Made in China 2025.” The role of PAT in all these concepts
is to develop and integrate context-sensitive intelligent sensors to enable under-
standing of the process at the basic mechanistic (molecular) level in order to achieve
knowledge-based production in the future. This contribution starts with a short intro-
duction into the concept of PAT/QbD and other new concepts for the next generation
of spectroscopic sensors in the manufacturing industry. The fundamental limitations
of spectroscopy in terms of sensitivity and selectivity are discussed, and the need to
increase robustness for industrial applications is described. A critical discussion on
problems and problem solutions are provided when scattering samples are investi-
gated. An outlook on how to use NIR spectroscopywithin the petrochemical industry
and how to manage a PAT project complements this chapter.
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23.1 Process Analytical Technology (PAT): A Systems
Approach

23.1.1 Road Map for PAT

In PAT, complex data (e.g., spectra) are obtained in real time, then processed and
evaluated using the modern techniques of chemometrics, multivariate data anal-
ysis or data mining (see previous chapters in this book). This requires a strongly
interdisciplinary and transdisciplinary approach, because process managers, chemo-
metric data analysts, electronics engineers, process specialists, and chemists with
domain knowledge, e.g., of spectroscopy have to be brought together in a business
environment.

There have been dramatic changes in the manufacturing and processing industry
during the past years. Increasingly sophisticated and holistic quality management
systems like quality by design (QbD) have been developed over the years and strongly
promoted by the US Food and Drug Agency (FDA). However, the present-day
strategy focuses strongly on process optimization and the evaluation of safety risks
in the chemical industry. Much less emphasis is laid on the possibility of producing a
product whichmatches exactly the customer profile and expectations of personalized
products. This process- and product-functionality design allows a precisely defined
manufacture of the widest range of products with minimized costs. When computer-
driven, the inverse model enables the manufacturer to develop new products and
techniques within the defined process limits. Multi-objective optimization can be
quickly, reliably, and cheaply achieved, because the essential steps are known from
the model algorithm and are known as “knowledge-based process management.”
As described in the next chapter, concepts like Industrie 4.0 (i40) or the Indus-
trial Internet of Things (IIoT) are a strategy which describes in detail the holistic
approaches needed to achieve these goals [1–3].

In-process quality and process optimization will only be successful when it is
based on appropriate process understanding, i.e., the analysis of the connection
(cause and effect) between process parameters and the quality characteristics of
the final product with its specifications. PAT within this framework means therefore
understanding the causal relation between measurement and response.

Very often in chemometrics and modeling, only descriptive or statistical knowl-
edge is produced which fits the specific dataset but cannot be used as a general or
global model based on molecular information. Figure 23.1 visualizes the different
levels of knowledge for process understanding [1, 4].

Complex products are usually produced in lines involving several steps.
Depending on the application of the product, each step can be adjusted specifically
for the quality of the incoming material and for the quality of the end product [4].
Furthermore, personalized products and materials are needed to fulfill the customers
demand for smart functionalities. This is the concept of the future production.
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Fig. 23.1 Road map for process understanding for smart and flexible production

23.1.2 Taxonomy of Process Analyzers and Sampling

23.1.2.1 Sampling

Themain concern of sampling is to get access to a representative sample. The sample
set should be divided into a calibration set and a validation set as described in the
European Medicine Agency (EMA) guidance for industry [5]. Each set of samples
should be representative of the intended scope of the NIR spectroscopic procedure
and includes samples covering the full range of potential variation in the sample
population. The intensity of the analyte signal and the complexity of the sample
matrix and/or interference by the matrix of the analyte signal of interest should also
be taken into account. In general, the more complex and the more interference from
the matrix, the more samples will be required.

After establishing a first calibration model, an external validation set of samples
is strongly recommended to check the robustness of the model. This sample set
should be entirely independent of those samples used to build the spectral library
and should include qualitatively positive and negative samples. In principle, the
external validation set should cover the calibration range of the NIR spectroscopic
model, including all variation seen in the commercial process and should include
pilot and production-scale batches, where possible [5].

Sampling is the most important task but presents the most significant problems.
The total sampling error (TSE) will include all sampling and mass reduction error
effects. The total analytical error (TAE) includes thus the total sampling error together
with the handling error as well as the analysis uncertainty estimate. In most cases,
sampling errors show the highest contribution to the TAE rather than the analytical
error of the instrumental analysis [6–8]. Furthermore, any change in the texture and
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morphological structure, e.g., bymilling the sample, will lead to a change in the spec-
tral signature through (Mie-) backscattering and thus will modify the chemometric
model.

23.1.2.2 Taxonomy of Process Analyzers

Offline analysis always exerts significant lag times between recognizing and counter-
acting against irregularities. The advantage of offline analytics is that expert knowl-
edge is available. With atline measurements, the sample is withdrawn from the
process flow and analyzed with analytical equipment that is located in the immediate
environment of the industrial equipment. Hence, the reaction time for countermea-
sures is already significantly reduced. Due to the industrial proximity, it is often
observed that atline analytical equipment is more robust and insensitive towards
process environment but less sensitive or precise than laboratory-only devices [4].

In the case of online measurements, samples are not completely removed from
the process flow but temporarily separated, for example, via a by-pass system which
transports the sample directly through the online measurement device. Thus, the
sample is analyzed in immediate proximity to the industrial machining and is after-
wards either reunited with the process stream or ejected. The major advantage of
this procedure is that the sample can be conditioned, e.g., filtered and measured at a
constant temperature [4].

When inline devices are used, the sensor is directly immersed into the process
flow and prevails in direct contact with the unmodified material flow. Sometimes the
sensors are placed in front of awindow tomeasure non-invasive. Inlinemeasurements
are sometimes also called insitu measurements [4, 9].

Figure 23.2 illustrates various sampling modes realized with inline, online, atline
and offline sampling.

23.2 Future Concepts in the Process and Manufacturing
Industry: Industrie 4.0, Industrial Internet of Things,
and Their Impact on PAT Sensors

23.2.1 Concepts for the Next Generation of Production
Systems

Process analytical technology (PAT) enables the implementation of quality by design
(QbD) in industrial reality [1, 9–13]. The basic idea behind the use of spectroscopic
sensors is to gain process understanding at the molecular level, which together with
continuous process improvement should lead to a possible real-time release (RTL) of
the product. This requires the identification of the critical process parameters (CPP)
together with the critical control points (CCP). In addition, the final products and
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Fig. 23.2 Visualization of the taxonomy of process analyzers

intermediate products must have all critical quality characteristics defined (critical
quality attributes, CQA), including the final process performance qualification (PPQ)
[1, 9, 10].

Digitization as the next step will again significantly change the structures of
future production. Recently, the German initiative for the Fourth Industrial Revo-
lution “Industrie 4.0 (i40)” was presented, which is similar to the US “Industrial
Internet Consortium (IIC)” concept or the “Industrial Internet of Things (IIoT)” [1,
2, 4, 13, 14]. A similar initiative is the Chinese strategy “Made in China 2025.” In
the meantime, there are contracts between all partners in which the same language
and definitions will be used. Common to all concepts is that context-sensitive sensors
will be integrated into the process and manufacturing industry [1, 15].

This shifts the focus from centrally controlled to decentralized controlled produc-
tion processes even down to a lot size of 1. The resulting so-called smart products
know their production history, their current and target state, and actively steer them-
selves through the production process by instructingmachines to perform the required
manufacturing tasks and ordering conveyors for transportation to the next production
step [16].

Stirred-tank reactors are well-established tools in the traditional batch production
with the advantage of high flexibility of the production. Major disadvantages of this
technology are long setup times, difficult heat transfer rates, and inherent inefficiency.
A second established production scheme is the continuous production, especially
applied in the field of high-volume and low-cost materials and manufactured in
highly efficient world-scale plants [16]. From a technology point of view, those plants
contain, e.g., reactors with tube shape geometry which enable heat integration, good
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process control abilities and are highly efficient. But these world-scale plants are
inflexible in the case of variations like raw material changes, reaction systems, or
amount of production capacity [16].

Future production must be decentralized, modularly packed in standardized
compartments, and should enable continuous production even for small- to medium-
scale applications. An example is the so-called F3 factory. The objective of the F3
factory is to demonstrate the economic advantages of modular, small-scale produc-
tion plants compared with multiproduct batch plants [17]. The metal framework
allows for rapid module exchange and replacement as well as stepwise increase of
the plant. An increasing market demand could easily be followed by just numbering
up the containers, or if in cases of volatile markets, the demands decrease, individual
containers could be decoupled from the production stream. No extra time for scaling
up is needed [16–18].

Another core element of the new production concepts is micro- and milli-
structured devices assisting continuous-flow processes due to their superior transport
characteristics and small holdup. Microreactors are characterized by rapid mixing
and excellent heat transfer conditions.

Figure 23.3 shows a typical modular production concept, which was developed
within theEuropeanUnion’s project “CONSENS” [18]. The objectives of the concept
are to develop standardized unit operations plant modules with miniaturized flexible
equipment and local control. The “plug-and-produce” concept need no scaling up as
the plants can produce in parallel according to the demand of the customers.

All these concepts need new multimodal smart sensors for PAT with an extended
connectivity, internal maintenance functions, better traceability, compliance, and the
ability to interact and communicate with its physical environment.

Fig. 23.3 Modular lithiation reaction setup with a multimodal spectroscopic control system (NIR
and NMR) using standardized plant modules “plug and produce.” Source and permission of M.
Maiwald, BAM, Germany



23 Inline and Online Process Analytical Technology with an Outlook … 559

23.2.2 Industrial Internet Reference Architectural Model
of Industrie 4.0: RAMI 4.0

Figure 23.4 shows the “Reference Architecture Model Industry 4.0 (RAMI 4.0),”
which was developed by a trilateral collaboration of working groups of German
Industry 4.0 together with theAlliance Industrie du Futur (France) and Piano Impresa
4.0 (Italy). Harmonization was also achieved with the US Industrial Internet Consor-
tium (IIC) in 2017 [1]. In addition, there is cooperation with China in several working
groups, which led to a report on the harmonization of the Chinese counterpart
IMSA as well as the Japanese counterpart IVRA and the German RAMI 4.0 [1,
2, 4, 19, 20].

In order to harmonize the requirements for digitized industrial production,
common and global standards for communication structures (networks and proto-
cols), rules for cybersecurity and data protection and the common language including
characters, alphabet, vocabulary, syntax, grammar, semantics, pragmatics, and
culture are being developed [21].

The concept consists of a three-dimensional coordinate system that describes all
the key aspects of industry 4.0 or IIoT. In this way, complex relationships can be
broken down into smaller and simpler clusters. A detailed description can be seen as
well as the status of standardization [1, 20–24].

The basic idea of Fig. 23.4 and the objectives behind are summarized below and
detailed in many reviews and articles [1, 2, 19–24].

Fig. 23.4 Reference Architectural Model of Industrie 4.0 (RAMI 4.0, platform Industrie 4.0), the
hierarchical structure of a PAT sensor is also illustrated, details see text below, modified from ref.
[21]. Source and permission of M. Maiwald, BAM, Germany
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The “hierarchy levels” are indicated on the right horizontal axis and are defined
by the international series of standards for enterprise IT and control systems IEC
62264. These hierarchy levels represent the different functionalities within factories
or plants.

The left horizontal axis represents the “Life Cycle & Value Stream” axis, which
describes the life cycle of plants and products, based on IEC 62890 for life cycle
management.

The “Layers” axis is the vertical axis and has six layers. They are used to describe
the properties of a machine layer by layer in a structured way and are thus creating
a virtual image of a machine.

In thisway, RAMI 4.0 offers a common understanding for standards and use cases.
This will significantly change the structure and integration of PAT tools within the
factory.

23.2.3 Communication Between Cyber-Physical PAT
Systems: Connected, Multimodal, Decentralized,
and Secured

OPC Unified Architecture (OPC UA) is a machine-to-machine communication
protocol for industrial automation developed by the OPC Foundation [21–23]. The
next steps to be taken within this framework are summarized in [1, 25]:

• Identification: This is a necessary prerequisite for things to find their own way to
each other within the networked production.

• Semantics: For communication between machines or between machines and
workpieces, a manufacturer-independent data exchange is necessary.

• Quality of Service (QoS) for Industry 4.0 or IIoT components: Critical services
such as time synchronization, real-time capability, and reliability of Industry
4.0/IIoT components must be defined.

• Communication within Industry 4.0/IIoT: There is a multitude of communication
links and protocols. Themost common examples are field buses based on Ethernet
or OPC UA, a protocol for machine-to-machine communication.

The physical Cyber-PAT systems (CPS-PAT) are introduced in three phases [1,
21]. The first generation of CPS includes identification technologies such as RFID
tags, which enable unique identification. Storage and analysis must be provided as a
central service. The second generation of CPS is equipped with sensors and actuators
with a limited range of functions. Third generation CPS can store and analyze data,
are equipped with several sensors and actuators, and are network compatible.

The role of PAT sensors in all these concepts is therefore to develop and integrate
context-sensitive information to promote understanding of the process at the basic
mechanistic (molecular) level, thus enabling knowledge-based production in the
future [1, 15].



23 Inline and Online Process Analytical Technology with an Outlook … 561

The most important aspects with regard to industrial production are summarized
in [1, 21]:

• Personalization: Integration of short-term customer requirements and change
management requirements through digital engineering.

• Flexibilization: reduces lead time and time to market, e.g., through 3D printing
and predictive analysis.

• Decentralization: enables smaller lot sizes down to a lot size of 1.

Powerful algorithms will make it possible to simulate the production route and to
control and optimize the intermediate and final products in real time at all stages of
the manufacturing process. The new PAT sensors are thus a basic technology for the
following processes [1, 4]:

• Rationalization of processes that are not already automated.
• Pro-active process and quality management including predictive maintenance.
• Integration of quality assurance into production while increasing system avail-

ability and system reliability.
• Improved product safety and increased production efficiency.

Figure 23.5 attempts to visualize the basic requirements for a future sensor
concept.

For standard sensor applications and decision systems, level 0 contains the field
devices such as flow and temperature sensors (process value displays, PVR) as
well as actuators (FCE), such as control valves. Level 1 contains the industrialized
input/output modules (I/Omodules) and the associated distributed electronic proces-
sors. Level 2 contains the monitoring computers that collect information from the

Fig. 23.5 Current and future requirements of a cyber-physical sensor system (reproduced and
modified fromNAMUR “Prozesssensoren 4.0” [21]). Source and permission ofM.Maiwald, BAM,
Germany
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processor nodes in the system and provide the operator screens. Level 3 represents the
production control level, which, however, does not directly control the process, but is
concerned with monitoring production and setting targets. Level 4 is the production
planning level. The future sensor levels may well be more decentralized, but the
decision hierarchies will be retained (see also Fig. 23.4) [24].

For the future intelligent process analyzers, the following important goals apply
in addition to miniaturization and cost reduction described in [22, 23, 26] and
summarized in [1]:

• Plug-and-play capability.
• Self-configuration, self-calibration, and self-optimization.
• Higher sensitivity for inline trace analysis.
• Imaging ability.
• Multimodality with “all-in-one” functionality.

New and miniaturized instruments can drastically reduce costs and thus open
up further possibilities for use. The user should also be given the possibility of
“plug-and-play.” Since miniaturization allows the integration of different measure-
ment technologies, multimodal information can be accommodated in a single sensor
[1, 26].

Data fusion, i.e., the combination of different data sources for classification, can
be carried out at different levels. At the low level, the concatenation of data matrices
at the variable level is possible. At the middle level, data matrices are concatenated
using a feature selection, for example, at score level after applying a PCA. And at
the high level, model predictions are combined, e.g., predictions from PLS models
[27–29].

In addition to the already established multivariate data analysis and other chemo-
metric tools in the spectroscopically based control systems, the concepts of machine
learning (ML) and deep learning (DL) are also used in “Industry 4.0” applica-
tions which is described in more detail in [1, 30]. ML and DL algorithms are
used to describe the system behavior instead of the previous physical–technical or
chemometric-basedmodels. This is usually referred to as predictive analytics. It must
be emphasized that feature engineering is included in the ML workflow, whereas it
is not available in DL. DL data acquired from the sensors (“raw measurements”)
can be entered directly into the deep learning algorithms. Thus, ML is more oriented
towards traditional engineering methodology, while DL algorithms are largely based
on artificial neural networks.
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23.3 Robustness in PAT Applications with a Focus on NIR
Spectroscopy: About Sensitivity, Selectivity,
and Signal-to-Noise

23.3.1 General Approach to Optical Spectroscopy in PAT
and Their Advantages

Optical spectroscopy describes the interaction of molecules or matter with photons
[1, 4]. The inelastic interaction leads to the transition of the molecule from a lower to
a higher energy level. This spectral property is called wavelength-dependent absorp-
tion. The elastic interaction, on the other hand, leads to a scattering of the photon in
different directions and is also wavelength-dependent. Optical spectroscopy detects
absorption and scattering simultaneously and thus provides the following information
as summarized in [1]:

• The chemical composition of themolecule ormatter bymeasuring thewavelength-
dependent (inelastic) absorption of light.

• The morphological information (nanoscopic substructure) by measuring the
wavelength-dependent (elastic) scattering of light (e.g., Mie scattering).

• The texture of the heterogeneous system by combining spectroscopy and image
analysis. This is called hyperspectral or chemical imaging.

Optical spectroscopy is currently the workhorse in PAT. Within optical spec-
troscopy, near-infrared spectroscopy is the most commonly used technique [1, 31–
34]. Online and inline NIR optical process spectroscopy is well-established and
widely used. It is also frequently used to characterize materials or to control chem-
ical reactions in industry at the molecular level, e.g., to monitor the concentration
of a chemical component in a mixture. The spectral information is often evaluated
by multivariate data analysis (MVA) and correlated with quality parameters of the
material or finished product [4].

There are three key parameters that are important for the functionality of spec-
troscopic methods in PAT solutions: sensitivity, selectivity, and robustness of the
method [1, 33].

23.3.2 Sensitivity: Definition at Molecular Level
and Classification of NIRS Within the Spectroscopic
Toolbox

23.3.2.1 Definition

Analytical sensitivity is the smallest amount of a substance in a sample that can be
accurately determinedusing a specific technology. In general, this is the concentration
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at which the determined mean measurement signal is just above the noise limits of
the zero signal. Among other things, it is defined by the absorption cross section of
the molecule [1, 2, 10, 33].

The sensitivity of a molecule can be described by the quantum mechanical cross
sections [1, 33, 34]. These are the effective areas that determine the probability of
an event with a molecule, such as elastic scattering or absorption or emission of
a photon at a certain wavelength. From a quantum mechanical point of view, the
absorption cross section σ a is usually given in cm2/molecule and depends on the
individual molecular structure of the compound and quantum mechanical selection
rules. The term cross section is used in physics to quantify the probability of a certain
interaction, e.g., scattering or electromagnetic absorption. For example, in the NIR
range the cross section probabilities change over several orders of magnitude for the
combination bands between the first and second or third overtone.

It is also important to note that in turbidmedia or solids the scattering cross section
can be several orders of magnitude more sensitive than the absorption cross section.

Table 23.1 shows the quantum mechanical absorption cross section σ a [cm2]
and the scattering cross sections σ s [cm2] including their interaction probability for
selected spectroscopic methods.

The data shown here are representative of a large number of different components.
The numbers are given as −log σ a [cm2/molecule]; therefore, low numbers show
high sensitivity. For comparison, Rayleigh scattering figures are also shown, which is
due to molecular scattering and Mie scattering, where Mie scattering is more related
to particle size.

The total cross section is related to the absorption according to Lambert–Beer’s
law and is proportional to the concentration of the species and the path length [34].
The absorbance or absorption is given as the logarithm of the reciprocal of the
transmittance.

Table 23.1 Absorption and
scattering cross sections of
selected spectroscopic
technologies

Technology Cross section Extinction

Absorption – log σ a
[cm2/molecule]

ε [1/(Mol cm)]

UV–Vis/Fluorescence 23–16 app. 10+4

Mid-Infrared 25–18 app. 10+1

Near-Infrared 28–22 app. 10–3

combinations 23–22

1st overtone 25–24

2nd overtone 27–26

3rd overtone 28–27

Raman 35–28 app. 10–9

Scatter –log σ s[cm2/molecule
or particle]

Rayleigh scatter 33–29–24 per molecule

Mie scatter 20–16–10 per particle
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23.3.2.2 NIR Spectroscopic Sensitivity

Near-infrared spectroscopy (NIR) is less sensitive than MIR spectroscopy due to
smaller absorption cross sections of the oscillation transitions of the higher orders.
Therefore, NIR spectroscopy is not a very sensitive method and the detection limit
is much lower than with MIR spectroscopy and also UV–Vis spectroscopy. It must
also be emphasized that scattering of particles can significantly alter the spectral
fingerprints due to the high sensitivity of the scattering cross section (see Table 23.1).
Changes in morphology, e.g., during sample preparation, are often misinterpreted as
changes in chemical composition. An example is the measurement of groundwood
chips used for calibration for the inline measurement of macroscopic wood chips
[1, 4, 13, 33].

Figure 23.6 shows as an example the absorption spectra of liquid water at room
temperature in the NIR ranges measured with cuvettes of different path lengths.
One can see the decrease in absorption from longer to shorter wavelengths due to
the decrease in the quantum mechanical cross sections of the overtone oscillation
transitions (see Table 23.1).

In general, the fundamental stretching vibrational mode in the mid-infrared range
is at least 1 order of magnitude more sensitive than the combination bands in the
NIR. This also applies to the transition from the 1st to the 2nd overtone and so on.
From a technical point of view, the lower absorption in solution can be compensated
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Fig. 23.6 Absorption spectra (900–2500 nm) of water for several path lengths. This illustrates the
decrease of the quantum mechanical cross sections, and therefore, the decrease in absorbance from
the combination bands down to higher overtone vibrational transitions at lower wavelength ranges.
(details see text)
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by a longer path length. This is also shown in Fig. 23.6. The figures in mm are the
path lengths of the cuvettes used.

The assignment of the liquid water bands has been discussed for a long time.
Usually, the peaks are assigned to the symmetric (νs) stretchingmode in combination
with the asymmetric (νa) stretching mode and often also together with the bending
mode (δ) of the OH groups in water [30–33]. For example, the significant water
peaks with maxima at around 970 nm (10300 cm−1) are assigned to (2νs + νa), at
1200 nm (8310 cm−1) to (νs + νa + δ), and at 1450 nm (6900 cm−1) to (νs + νa). The
dominating strong peak at 1940 nm (5150 cm−1) is suggested to be a combination of
the asymmetric stretch and bending (νa + δ) mode of the OH-group. The absorbance
of D2O (heavy water) is lower and can be used as a standard reference material for
water in solutions. There are smaller additionally peaks at approximately 770 nm
(13000 cm−1) and at 850 nm (11800 cm−1) (both not shown in Fig. 23.6) as well
as at 1780 nm (5620 cm−1) which are difficult to assign correctly. The water peaks
with maxima near 970, 1200, and 1450 nm shift with increasing temperature towards
lower wavelengths (higher wavenumbers) and also show an isosbestic point of the
optical unresolved pair of peaks [35–39].

Due to the high dipole moment change of the vibrational transitions in water, NIR
and MIR spectroscopic investigations are highly sensitive to water absorption which
makes spectroscopy in aqueous systems, e.g., biotechnology, quite challenging. On
the other hand, water in food can easily be quantified even at very low concentrations
[38, 39].

23.3.2.3 Penetration Depth of Photons in the NIR Wavelength Range

As shown in Table 23.1, the analytical sensitivity increases from the 3rd overtone to
the combination bands with several orders of magnitude. The probability of photons
penetrating an absorbing material is dominated by absorption, but scattering also
plays an important role. This means that due to the smaller cross sections in the
NIR range, a higher penetration depth of the photons can be achieved compared to
MIR or UV–Vis spectroscopy. The great advantage of the NIR in PAT applications
is therefore that no sample preparation (e.g., dilution) is required even at higher
concentrations of an analyte. In transparent liquids, the lower sensitivity of the higher
harmonics can be compensated for by longer layer thicknesses for the measurement
setup. However, in solid particle systems this is not possible or difficult to achieve.
On the other hand, the penetration depth in particle systems with lower absorption
increases significantly. This becomes particularly clear, e.g., with the 3rd overtone
[4, 13, 40]. This is an important aspect, e.g., for the quantitative determination of
a pharmaceutical active substance in a tablet or for the measurement of substances,
e.g., through the skin of a vegetable or a fruit. These aspects are discussed in detail
in the literature [1, 32–34] and in the chapter measurement of solids.
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23.3.3 Selectivity: Classification of NIRS Within
the Spectroscopic Toolbox

The selectivity of a method is defined by how the method can determine certain
analytes in a complex mixture without interference from other components. There-
fore, if the signal of the analyte can be separated from signal of the interfering
substance, the sensitivity in complexmixtures increases significantly. Several authors
define a so-called net analyte signal (NAS),which describes the part of a sample spec-
trum that is orthogonal to the spectra of all other components in the sample. This
is also called “the unique spectral signature for the analyte of interest,” i.e., the part
of the instrument signal that is not lost due to spectral overlap. This underlines the
importance of finding peaks of the analyte at wavelengths that are clearly separated
from the residual matrix [1, 33, 41, 42].

Diode array or Fourier transform spectrometers show a fixed optical resolution
over the entire wavelength range. Dispersive scanning spectrometers often compen-
sate the intensity of the illumination (reference) by changing the slit width. This
means that the optical resolution and thus the selectivity changes over the wave-
length and depends very much on the absorption range. It is important to stress that
the optical resolution is not equal to the pixel resolution.

23.3.4 Robustness, Detection Limit (DL),
and Signal-To-Noise Ratio (SNR)

23.3.4.1 Definition of Robustness and SNR

The ICH quality guideline (International Council for Harmonization, ICHQ2) on the
robustness of an analyticalmethod states [10]: “Robustness of an analytical procedure
is a measure of its capacity to remain unaffected by small, but deliberate variations
in method parameters and provides an indication of its reliability during normal
usage.” This statement therefore accepts errors due to fluctuations of the method
parameters, but theymust bewithin given limits of themethodology. Furthermore, the
statement for a system qualification also includes the optical setup, the wavelength-
dependent detectivity of the sensors and the wavelength-dependent illumination,
which determine the overall signal-to-noise ratio [33, 43, 44].

The signal-to-noise ratio (SNR) is defined as

SNR = (S−B)/NSD

With S = average value of the signal, B = average value of the background,
NSD = standard deviation (SD) of the noise amplitude.
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23.3.4.2 Absolute and Relative Measurements: Detection Limits (DL)

The different spectroscopic methods can be divided into two categories: absolute
and relative measurements [33, 43]. In absolute measurements, the signal grows
from zero or the background noise upwards. This means that a single photon can be
detected on a dark background. Absolute technologies include NMR, fluorescence,
and Raman spectroscopy, where the signal is proportional to the concentration of the
analyte. For relative measurements, the measured parameter refers to a reference,
which is defined as a 100% signal at the defined wavelength, as in MIR, NIR, and
UV–Vis spectroscopy.

The detection limit for absolute measurements is defined as the standard deviation
SD of the background noise with an SNR equals to 1:1. For absolute measurements,
the SNR depends on the value of the background noise. This means that reducing
this noise increases the SNR, which can be achieved simply by cooling the detector.
The detection limit of relative measurements is limited by the normalized signal
magnitude and thus also depends on the values that are output, e.g., as counts or as
voltage. This means that all parameters such as light source (intensity, fluctuations),
beamguidance, polarization of the photons, characterization of the spectrometer used
(e.g., scattered light, losses), the detector used (background, sensitivity, dynamic
range), and also the sample or sample chamber must be controlled and kept constant
in order to compare the individual measurements [43].

23.4 Inline Spectroscopy of Liquids: Interfacing
with Probes

23.4.1 Synopsis and Taxonomy of Probes

Generally, probesmaybedivided into two types: immersion probeswhich are directly
integrated into the system (inline), and flow through probes (online), which are
coupled to the system via a bypass. In both these categories, there is a variety of
different configurations.

With the transmission probe, the liquid is illuminated directly and the wavelength-
dependent absorption is measured. Derived from a transmission probe is the trans-
flectance probe. In this case, after light has passed the medium it is reflected back
by a mirror. Thus, the path length is twice the path length of the transmission setup.
Apart from this, the construction of the light source and detector is identical to the
transmission probe. Reflection probes belong to the type of backscattering probes and
detect lightwhich is reflected or scattered back fromparticles or bodies. Fluorescence
probes andRaman probes are special probes for themeasurement of fluorescence and
Raman signals, respectively, and similar to scattering probes and will not be shown
here. A particular type of probe is the attenuated total reflectance (ATR) probe. With
this type of probe, the light undergoes total reflection in the probe surface. The
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Fig. 23.7 Schematic representation of typical spectroscopic probes

evanescent light which interacts with the solution is the signal which is measured.
The evanescence field penetrates only a few hundred nm up to a fewmicrons into the
solution after a single total reflectance. The penetration depth depends on the used
wavelength and the refractive indices of the elements.

Figure 23.7 shows the set-up of selected probes.
According to the Beer–Lambert law, for high absorption coefficients and high

concentrations in the sample, the measurement path length has to be small in order
to get an optimum signal. A consequence of this is that one has to work with very thin
layers when transmission probes are used. This creates many technical and mechan-
ical problems. The ATR technique can be positioned freely, and a layer thickness in
the micrometer range or less is still achieved. ATR technology is common in MIR
but seldom used in NIR spectroscopy due to the lower absorption coefficients in the
NIR wavelength region.

For quantitative examination, the results from transmission cells are directly
usable. The Beer–Lambert law is always valid when the probe is working in the
linear range (concentration not too high or not too low) and no scattering takes place.
This is also the case with the ATR technique as long as the angle of incidence and
detection is reproducible and within a limit. As a rule of thumb, the best working
absorbance range with the lowest error of the measurement is roughly between 0.4
and 1.7 absorbance units depending on the quality (especially stray light) of the
spectrometer unit [44–46].

Depending on the area of application and the wavelengths used, various probe
materials are available: e.g., diamond, Suprasil, Infrasil, quartz, sapphire (synthetic
monocrystalline aluminum oxide), and zirconia, which all are suited for the NIR
wavelength range. Diamond, sapphire, and zirconia are very resistant to harsh
environment [13].
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23.4.2 Retractable Probes for Cleaning in Place (CIP)
and Working with Highly Toxic or Aggressive Media

In food industry and especially in biotechnology, due to probe fouling, there is a
demand for cleaning in place (CIP) which avoids contamination of the bioreactor.
Highly viscous or pulpy process media form often strongly adherend deposits on the
surface of an optical probe which then need aggressive cleaning procedures to re-
establish a reproducible measurement. Furthermore, when working with hazardous
materials, the processing unit must be reliably isolated from the environment during
production even when the sensor is broken. In this case, the entire drive unit must be
separated from the process stream under full process conditions. It is important, that
the functionality of the optical probe is continuously under control and the probe can
have a full view into the process.

Ceramically sealed sensor lock gates can withstand highly aggressive and corro-
sivemedia aswell as high temperatures and pressures when stainless steel, corrosion-
resistant alloys (e.g.,Hastelloy), or titaniumare used as process-wetted housingmate-
rials. Ceramic sealing is extremely resistant to chemical, thermal, and mechanical
influences, guaranteeing maximum availability. Ball valves may not always with-
stand a long time the process pressure. A better, but more costly solution, is to use
two planar ceramic disks that rotate toward each other to perform the sealing function
and simultaneously can separate the calibration chamber from the process.

An example for such a retractable probe system is shown in Fig. 23.8, where all
types of different optical sensors or any other measurement option can be integrated.

Sensor

Ceramic
rotary slide

Pneuma�c
driveStainless steel/-

Plas�c-/ 
Titanium-/ 
Hastelloy- 
housing

a b c
PROCESS
posi�on

SERVICE
posi�on

Sensor 
opening

Ceramic fixed Cavity

Fig. 23.8 Retractable probe for inline spectroscopic process control including cleaning in place
(CIP) possibility (reproduced with permission from Knick GmbH, Berlin, Germany), a schematic
of the housing and system integration of the retractable probe, b sealing and separation of the
service and calibration, respectively, service position using two planar ceramic elements which
rotate toward each other, c ceramic process gate in process position and in cleaning/calibration
position
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The pneumatically operated sensor lock gate allows calibrating or adjusting the
measuring system as well as cleaning the sensor in the running process. The sensor
can be moved into “PROCESS” position where the probe is located in the process
medium. In “SERVICE” position, the probe is located in the calibration chamber. In
this position, the measuring system can be calibrated or can be cleaned and dried,
e.g., using compressed air. The used liquids (for cleaning or calibration) leave the
calibration chamber through an outlet hose; i.e., they are displaced from the cali-
bration chamber by following liquids or by air. The spectrometer software detects
optical window contamination via the measuring signal, and the probe is cleaned as
required or automatically at specific intervals.

23.5 Inline Spectroscopy of Surfaces, Thin Films,
and Particulate Systems

23.5.1 Separation of Specular and Diffuse Reflectance
in PAT Applications Using Polarization Spectroscopy

23.5.1.1 Specular and Diffuse Reflectance

Light scattering is an elastic interaction between the photon and the particle. The
phenomena of reflection and scattering are thus closely related to particle size, angle
of incident of the illuminating light source, angle of detection of the observer, respec-
tively, sensor and the difference between the refractive index of the substance and
that of the embedding medium, respectively, environment. When polarized light is
used for the measurement, specular reflected light preserves its polarization, whereas
diffuse reflected light is depolarized after scatter in all directions. Scatter also changes
the angular distribution of the scattered light. This means, the light no longer has a
preferential direction, but spreads itself in all directions. Specular reflection is always
mirrored at exactly the same angle of the incident light with respect to the surface,
whereas (ideal) diffuse reflected light is scattered in all directions.

For the measurement of diffuse reflection or transmission, ideally an integrating
sphere is used. The sample is illuminated with directed light through an opening
in the sphere. Specular reflection, where the angle of illumination and the angle of
reflection is the same, is lost in a light trap (usually, an angle of around 5° is used)
or measured directly with an additional detector. The diffuse reflected light is spread
over the whole volume of the sphere and can be measured at one spot with a detector
located where specular reflected light is avoided [47–50].
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23.5.1.2 Measurement of the Film Thickness and Defect Sites
by the Combination of Spectral Interference Spectroscopy
and Depolarization of Light

The thickness of thin films on a surface can be measurement using, e.g., the specular
reflectance arrangement where wavelength-dependent interference according to the
Fresnel equations will appear. Due to refraction and reflection of the top and lower
level of a film, a phase shift occurs and this phase shift can be measured by means
of the interference pattern of the spectrum of the specular reflected light. Popular
arrangements for inline control are, e.g., illumination at an angle of 45 degrees and
detection at also 45°, which is labeled as 45R45, whereas diffuse reflected light might
be measured at 0 degree, labeled then 45R0. However, if the macroscopic shapes of
the sample, e.g., a shiny skin of a fruit or microscopic mirrors evenly distributed
within a surface layer of a tablet, the use of polarization filters is recommended (see
outline below).

Figure 23.9 visualizes the optical measurement of the diffuse and specular
reflected light with an integrating sphere and the measurement of the film thickness
by spectral interference spectroscopy (45R45) using Fresnel equations [47, 48]

When a surface is illuminated with parallel polarized light and measured also by a
parallel polarized detector (e.g., 0R0, parallel/parallel), only specular reflected light
will be measured. As diffuse reflected light has lost its polarization, diffuse reflected
light can be separated from specular reflected light by measuring the intensity of the
reflected light with crossed polarizer. In this case, the defect sites can be quantified by

sample

specular reflec�on

diffuse reflec�on
at any spot of the 
integra�ng sphere

specular reflectance 
interference
preserva�on of polarisa�on

thin film

metal surface

ñ1

ñ2

ñ3

measurement: 
45R45 

sca�er and 
depolarisa�on

metal surface

ñ1

ñ2

ñ3

defect site
thin film

measurement: 
45R0 

Fig. 23.9 Left: geometric arrangement for the measurement of diffuse and specular reflection with
an integrating sphere. Right: Principle of the inline measurement for the layer thickness of thin films
(e.g., geometry specular reflectance 45R45) and measuring the depolarization of light by defects or
particles (geometry diffuse reflectance 45R0)
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the decrease of the polarization. The polarization decreases with increasing surface
roughness and/or the number of scattering centers formed by, e.g., defect sites such
as holes or cracks in a surface layer of thin films. The proportion of depolarized light
may then be a measure of the number of defect sites within a thin film caused by
the particle density or roughness of the surface. Thus, besides the film thickness, the
defects sites within this film can be quantified simultaneously [47, 48].

23.5.2 Penetration Depth of Specular and Diffuse Reflected
Light

23.5.2.1 Photon Reflection and Photon Diffusion

Figure 23.10 top shows a sample of a pellet. White microcrystalline cellulose was
mixed 1:1 with a red-dyed microcrystalline cellulose and then pressed to a pellet.
The objective here is to illustrate in the visible range how photons migrate into a
system as analogion to the NIR range.

parallel/parallel
anaglyph in 3D, (viewing 
with 3D glasses red-green)

parallel/crossed

anaglyph in 3D, (viewing 
with 3D glasses red-green)

low lateral 
resolution due 
to photon diffusion

parallel/ 
parallel 

high lateral 
resolution due to
specular
reflectance
only

scratch

parallel/ 
crossed

I0 Δ  n 
sample

Fig. 23.10 Top—picture of the surface of a pellet with a mixture (1:1) of white and red micro-
crystalline cellulose. Illuminated by parallel polarized light. Measured through a parallel polarized
analyzer (left) and a crossed polarized analyzer (right). Bottom—Closer look as an anaglyph in 3D
(best to view with 3D glasses red-green). Details see text
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Photons which are directly (specular) reflected from the surface of the pellet can
hardly uptake the chemical information “red” as no or very little penetration of
the photon takes place, and the probability of absorption (= inelastic interaction) is
therefore low. However, the spatial information is high as the reflected photon carries
more or less the exact spatial information with high resolution. On the other hand,
if the pellet is illuminated, e.g., at 0 angle degree with parallel polarization and the
scattered photon is detected also at 0 degree but measured with a crossed polarizer,
the probability is high to detect only diffuse reflected photons. This means, these
photons have migrated deeply into the system and have thus a high chance to carry
the chemical information “red.” However, due to the photon diffusion into the pellet
and statistical scatter several times, the photon loses its spatial coordinates and thus
a blurred picture is observed from the diffusely scattered photons.

Figure 23.10 left and right side shows the result of the 2 different optical setups.
A more grayish color can be seen in the setup measuring the specular reflectance
(left). And a more reddish color is visible in case of the setup measuring the diffuse
reflectance (right), but this view is a bit blurred. More details of the pellets and the
spectra in the UV–Vis and NIR region are discussed in [51].

Due to a scratch on the surface, the photons are specular reflected off axis
compared to the measurement optical axis. Thus, the intensity of the reflected light,
which is captured by the detector, decreases, and the scratch appears a little bit darker.
When measured with mixed polarization to identify, e.g., the active ingredient of a
tablet, the lower intensitymay then bemisinterpreted as a region of higher absorbance
and therewith an increase in concentration of the API. The bottom images can be
viewed by red-green glasses in three dimensions. The specular reflectance picture
(left) shows clear structures, whereas the diffuse reflectance picture (right) is blurred
and shows the three-dimensional photon diffusion.

Another possibility to exclude the specular reflectance is to illuminate the sample
with a so-called Lambertian illuminator (see discussion below).

23.5.2.2 Multiple Scattering and Penetration Depth

The probability of photons penetrating an absorbing material is dominated by the
absorption and the scattering [1]. The prerequisite for scattering to occur is a differ-
ence in the refractive indices of the material and its surroundings of at least �n =
0.1. In air, this difference is so great that most of the organic and inorganic powders
scatter strongly. In organic media, this is not always the case, as the differences in
the refractive indices become smaller.

The penetration depth depends primarily on the scattering coefficient S and the
absorption coefficientK of the sample [1, 40, 47, 52–54]. The scattering is determined
by the size, packing density, and relative refractive index (i.e., indirectly, e.g., also
by the water content) of the scattering particles. The absorption of visible light is
caused by chromophoric groups, while in the near-infrared, OH and CH harmonics
are mainly responsible for the scattering.
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The penetration depth of the light can be modeled with the radiative transfer
equation. A detailed overview of the axial and radial scattering of photons is given
in [52, 53]. Some more practical applications are described in [1, 55–60].

23.5.3 Robustness of the Inline Measurement Setup
for Solids: Diffuse Illumination

Robustness of the optical setup is a key issue for successful implementation of PAT
into industrial processes. The strongest “enemy” for reliable measurements of solids
and surfaces is specular reflection which accounts for many perturbations. A high
effort is needed especiallywith objectswhich are complex in shape like, e.g., capsules
in the pharmaceutical industry, or natural variable surfaces which are found in apples,
tomatoes (see Fig. 23.11) and other fruits. In hyperspectral, imaging often shades are
measured and need to be excluded, e.g., by chemometric data pre-treatment which
on the other side may reduce the robustness of the model [1, 40].

Ideally, the sample is illuminated by a perfect Lambertian source and the detector
is also integrated into an integrating sphere. A good approximation to a Lambertian
illumination can be realized in PAT as shown in Fig. 23.11. Two practical examples of
an illumination setup are shown which are cheap, robust, and efficient. As material,
industrially produced Teflon can be used as long as the material is easy to clean
and is stable within its industrial environment. The samples with these arrangements
are almost ideally and homogeneously illuminated and no shadow on the surface or
on the background material is present. Furthermore, diffuse illuminated samples are
very tolerant towards flutter in industrial assembly lines [13, 60, 61].

23.6 PAT in the Petrochemical Industry as an Example
for Inline Process Control

23.6.1 Petrochemical Industry

23.6.1.1 Product Portfolio

The petrochemical industry is a branch of industry that produces organic intermedi-
ates such as refined products, natural gas, plastics, rubber, fiber raw materials, and
many other basic chemicals using unit operations to separate and functionalize the
products [62].

Natural gas processing, for example, is a complex industrial process for purifying
raw natural gas, in which impurities such as various non-methane hydrocarbons and
liquids are separated to produce dry natural gas in so-called pipeline quality. The
inline analysis of natural gas consists primarily of methane, but also includes various
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Fig. 23.11 Top: good approximation of a Lambertian illuminator with the advantage to be
used inline on a conveyor belt. Left: Lambertian illuminator using flat illumination of diffusers.
Right: Indirect illumination with a hemisphere. Bottom left: Illumination of tomatoes using 45R0
illumination, right: diffuse illumination similar to top right

hydrocarbons such as ethane, propane, butane, and pentanes as well as hydrogen
sulfide and carbon dioxide. The heavier hydrocarbons are extracted to produce a
purer “dry” methane for consumers. The separated natural gas liquids (NGLs) are
useful as a chemical feedstock for petrochemical plants and are used for heating and
cooking or are blended into automotive fuel.

The structure of an oil refinery is designed to convert crude oil, e.g., into high-
octane motor gasoline (gasoline/petrol), diesel oil, liquefied petroleum gas (LPG),
kerosene, fuel oil, lubricating oil, bitumen, and petroleum coke or asphalt and
possibly sulfur as a by-product. Often the production of some basic chemicals such as
ethylene/propylene/butadiene, aromatic hydrocarbons, hydrogen, and many others
also take place there.
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It would go beyond the scope of this short presentation to describe in detail all
the products that can be produced. In order to understand the challenges of in-line
control using NIR spectroscopy, some characteristic features of the main products
are listed below.

23.6.1.2 Selected Products from a Refinery

This paragraph is just a short summary of the publications of two extended reviews
[62, 63].

Crude oil:

Crude oil is a highly complex mixture of hydrocarbons and heteroatomic organic
compounds with different molecular weights and polarities. Crude oil is converted
into many different products through a combination of physical and chemical
processes, collectively known as refining. The first stage of a refining process is the
fractional distillation of crude oil, in which the crude oil is split into several compo-
nents with different boiling ranges, such as gases, straight-run gasoline, naphtha,
kerosene, gas oil, and atmospheric residue (AR). Straight-run gasoline, naphtha,
kerosene, and gas oil, whose boiling temperatures range from 30 to about 400 °C,
are clear liquids and can be easily measured by NIR spectroscopy. Atmospheric
residue, which has a boiling temperature of about 350 to 800 °C, is used as the main
fuel for power plants, ships, and large heating systems. It is almost black and very
viscous (even solid at room temperature) and is therefore difficult to handle and
measure [62, 63].

Gasoline:

The composition of petrol is a complex mixture of C4 to C9 hydrocarbons with a
boiling range of 30–210 °C. It consists of more than 150 individual components of
hydrocarbons. Petrol is characterized, for example, by octane number, Reid vapor
pressure (RVP), aromatic content, benzene content and the content of oxygenates
(e.g., MTBE, methyl tert-butyl ether) [62, 63].

Diesel:

Diesel is similar to petrol but is a mixed product with longer hydrocarbon chains.
The important properties are cetane number, distillation temperature, pour point, and
cold filter plugging point (CFPP). The main components of diesel are light gas oil
(LGO: C13-C18, boiling point 250–350 °C) and kerosene (C9-C15, boiling point
190–250 °C). These have much higher molecular weights than the components of
petrol. The pour point is controlled by adding a very small amount (100–500 ppm)
of an additive, a so-called cold flow enhancer [62, 63].

Naphtha:

Naphtha is one of the most important materials in the petrochemical industry and
is used as a basic material for the production of ethylene and benzene, toluene,
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xylene (BTX). Typically, ethylene and BTX are produced by thermal cracking or
catalytic reforming of naphtha. Naphtha consists of alkanes, cycloalkanes, or naph-
thenes (C6–C10, boiling point 75–190 °C) and aromatic hydrocarbons present in the
original crude oil. The most important property is paraffins, isoparaffins, aromatics,
naphthenes, olefine (PIANO) compositions based on single carbon chain lengths
with high concentrations and therefore relatively easy to calibrate [62, 63].

Heavy petroleum products, bitumen, and asphaltenes:

These samples are completely dark in color, very viscous, and difficult to handle.
Solid suspensions andparticles in these products also affect the reproducibility ofNIR
measurements. ASTM analysis methods require a long analysis time.Maintenance is
costly and requires a considerable amount of work. The spectral properties of heavy
hydrocarbons are much less sensitive to structural changes due to the longer chain
lengths. A further hurdle for reliable spectroscopic measurement is the presence of
water in crude oil, because crude oil can still contain water dispersed in the mass
even after the separation of water. This changes the scattering and absorption and the
measurement becomes erroneous and can only be corrected with difficulty or not at
all [62, 63].

The combination of many unit operations at the same place together with the
auxiliary facilities forms very large industrial complexes. Each refinery has its own
unique arrangement and combination of their refining processes which are largely
determined by the refinery location and used crude oil, desired products together with
economic considerations. This means that every refinery has its own spectroscopic
fingerprint representing the properties of the used crude oil and the settings of the
unit operations.

23.6.1.3 Complexity of a Refinery: Example OMV Refinery
Burghausen, Germany

OMV is an Austrian-based company and operates a total of three refineries: one in
Schwechat (Austria) and one in Burghausen (South Germany), with both refineries
also producing basic petrochemicals, along with the Refinery Petrobrazi (Romania).
At OMV refineries, crude oil is converted into fuel, heating oil, bitumen, and petro-
chemical products by means of distillation, desulfurization, refining, and mixing.
Special features of the refinery Burghausen, Germany, are [64]:

• Use of especially high-quality and low-sulfur crude oil types.
• Focus on petrochemistry to supply the southeast Bavarian chemical triangle.
• Residue-free crude oil processing through the complete conversion of heavy crude

oil-based components into high-quality products.
• The International Airport Munich which is located approximately 125 km away

is supplied with jet fuel by pipeline.
• Protection of the environment and saving of resources because of energy

circulation with maximized heat recovery.
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• Unique product range through the combination of special systems and procedures.

Figure 23.12 shows the flowchart of the OMV refinery as an example for a
combined refinery for crude oil and simultaneously with a production of basic
chemicals.

23.6.2 Objectives for the Integration of PAT Sensors
in a Refinery and Future Smart Production

Inline near-infrared spectroscopy (NIR) has been increasingly used in refineries to
replace hazardous manual sampling and frequent laboratory analysis. Knowledge
of the current state of the crude oil being used has a major impact on the refining
process design and influences all refinery operations. In addition, the availability of
shale oil and other crude oils causes a greater variability of the rawmaterial.Unknown
variations of feed properties lead to instability, e.g., in the crude distillation unit.

The main objectives of introducing NIR inline measurements in a refinery for
molecular characterization of components are described in detail, e.g., [65–68]. The
bullets summarize the most important findings:

• Better and above all faster reaction to quality fluctuations of the crude oil mixture.
• This is associated with a reduction in the downgrading of transient products such

as gas oil and residues.
• Yield increase of selected streams without affecting the quality, especially the

cloud and freezing point.
• Real-time quality determination of intermediate flows to improve continuity

between short-term planning, scheduling, and optimization systems (e.g., allo-
cation of naphtha to reformers or steam crackers).

• This results in more stable downstream operations, increased profits, and reduced
environmental risks.

The use of near-infrared spectroscopy (NIR) in the petroleum industry has greatly
increased over the last 15 years because NIR allows fast and nondestructive online or
inline multi-component analyses to be performed [62, 67]. Several suppliers of NIR
instruments are now selling state-of-the-art technology for predicting and controlling
important inline parameters in a refinery, as detailed, for example, in [66].

The following properties can be measured online or inline with NIR [66]:

• For research octane number (RON, ASTMD2699), motor octane number (MON,
ASTM D 2700), road octane number (RdON).

• Specific gravity of the diesel, viscosity, flash point, cold filter plugging point
(CFPP), pour point, and cloud point.

• In addition, the volume percent or mole percent of individual components such
as paraffins, isoparaffins, aromatics, naphthenes, and olefin (PIANO) are also
measured during distillation.
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This allows complete control of the mixing process.
Future concepts such as Industry 4.0, Industrial Internet of Things (IIoT) and

the China strategy “Made in China 2025” offer the opportunity not only to use
information and measurements at the molecular level at each local plant site, but also
to integrate this information for a holistic approach to the entire plant, which will
enable intelligent production (see also the chapter on future production systems).

Intelligent production will transform the oil refining and petrochemical sector
into a networked, information-driven environment [68]. Real-time measurement
systems and the networking of all componentswill allow themanufacturing company
to respond quickly to customer requirements and minimize energy and material
consumption,while improving sustainability, productivity, innovation, and economic
competitiveness.

An example of such a platform currently running at Sinopec Jiujiang Company in
China is described in detail in [68] and also addressed in the chapter future production
systems.

23.6.3 NIR Spectroscopy for the Petrochemical Industry

23.6.3.1 Composition of Crudes, Fuels, and Their Key Wavelengths
in the NIR for Monitoring and Control

Interpretation of the Fingerprint Spectra

The CH vibrations are mainly responsible for the NIR spectral signature of the petro-
chemical products. The C–H-fundamental stretching vibration in the mid-infrared
region of the (aliphatic) methyl group (CH3-) is around 2960 cm−1, the methylene
(CH2−) at around 2930 cm−1, methyne (CH−) at 2890 cm−1, and a hydrogen atom
attached to an aromatic hydrocarbon (ArCH) is around 3100 cm−1. The amount
of splitting and intensities between symmetric and asymmetric CH-bond stretching
indicate branching (isomerization) from the linear arrangements of the chemical
backbone [62, 69].

Figure 23.13 top shows the NIR-spectral fingerprint of a gasoline fuel of different
research octane numbers (RON) in the full NIR spectral range. The most significant
wavelength range is the combination band between 2100 and 2500 nm and is shown
in more detail in Fig. 23.13 bottom. Due to the complexity of the mixtures, often
model compounds are used to identify key wavelengths. An example are the spec-
tral differences between aromatic hydrocarbons and aliphatic hydrocarbons or the
spectral differences between linear, cyclic, and isomeric aliphatic hydrocarbons as
overtones and the combination of the fundamental vibrations as shown and described
below. The differences are discussed in detail in the cited literature and shall not be
presented here [62, 69, 70]. Please also refer to the discussion in chapter sensitivity
about quantum mechanical cross sections of the vibrational overtones [33].
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Fig. 23.13 Top: NIR spectra (whole range) of gasolines of different RON collected from four
different locations in Germany in close vicinity to three refineries. A, B, and C represent the location
of the three different refineries, D is a sampling point in between A and B. Bottom: spectra of the
same samples in more detail within the combination band range 1 (details see cited literature and
text below)
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Table 23.2 Key wavelengths
and interpretation of the
fingerprint spectra of fuels

(0) 800–1200 nm 12,500–9090 cm−1 3rd overtone

(1) 1100–1500 nm 9200–7800 cm−1 2nd overtone

(2) 1300–1700 nm 7500–6400 cm−1 Combination 2
(2νCH + δCH)

(3) 1600–2100 nm 6300–5200 cm−1 1st overtone

(4) 2000–2500 nm 4700–4000 cm−1 Combination 1
(νCH + δCH)

N = asymmetrical or symmetrical stretching vibration, � =
bending mode vibration

The full range spectrumcanbedivided intofivedifferentCH-vibrational overtones
(CH3−, CH2−, or CH−) and combinations with approximate wavenumbers and
overlapping features (Table 23.2).

The aromatic ArC–H stretching vibrational bands (1st, 2nd, and 3rd) are at shorter
wavelengths than the aliphatic C–H stretching vibration. The combination 1 bands of
aromatic hydrocarbons are combinations of (νArC–H+ νArC–C) and also at shorter
wavelengths than the aliphatic C–H due to their higher bond strengths.

Tips and Tricks to Follow for Realizing Inline Control in a Refinery

From a practical point of view, the important aspects for the inline measurement of
specific features to assign and control a refinery are summarized as follows [71–73]:

• Overlapping absorption peaks in the NIR together with a mixture of several
hundred components make spectra too complex to interpret qualitatively. Thus,
fingerprint spectra are used for the characterization together withmultivariate data
analysis (MVA). In future applications, artificial intelligence (machine learning,
deep learning, etc.) may also be applied.

• As stated in the chapter sensitivity, NIR spectroscopy is at least 1 orders of magni-
tude lower in sensitivity thanmid-infrared spectroscopy (MIR) of the fundamental
vibrations. It can be even 10 orders of magnitude lower, when the 3rd overtone in
NIR is used.

• Due to the low sensitivity, additives of a concentration of roughly below 1% are
difficult to quantify.

• The advantage of the lower sensitivity of NIR in comparison with MIR is that
the light penetration into the sample is much higher and thus penetration into
dark-colored system is also higher. Furthermore, no sample preparation is needed
before measurement for standard applications.

• As a rule of thumb, optimal path lengths with an absorbance of around 1 are
achieved using at least 10 mm for the 3rd overtone, also around 10 mm for the
2nd overtone (1) and combination (2), 2 mm for the 1st overtone (3) and 0.5 mm
for the combination (4).
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• The difference between cyclic-, aliphatic n-, and i-hydrocarbons is mainly due to
the number of -CH2-, respectively, -CH3 in the molecule and can be differentiated
especially in the combination band range. However, at higher chain lengths, these
differences diminish.

• Aromatic hydrocarbons show the most selective spectral features in the combina-
tion band area. The aromatic bands (centered around 4600 cm−1) clearly increase
with respect to the RON variation, since aromatic compounds usually have higher
RON.

• The most commonly used oxygenates like ethanol, methyl tert-butyl ether
(MTBE), and others can easily be quantified due to their high dipole moment
and show thus higher sensitivity than the hydrocarbons.

• In crude oil, bitumen, and asphaltenes measurements, the design and performance
of the sampling system are more important than the actual spectral collection.
Since these samples are very viscous and dark and have high levels of particulates,
there are high probabilities of sampling problems such as window fouling and line
plugging.

• From a more practical point of view, NIR in combination with fiber optic tech-
nology for remote sensing can be used. In this case, NIR instrumentation can be
located away from hazardous and explosive environments.

• NIR spectroscopy provides a lot faster andmore repeatable data than, e.g., conven-
tional online analysers. Furthermore, the data are based on molecular features
rather than on macroscopic parameters. The improved harmonization of real-time
analysis and process control can reach large economic benefits.

• Once correctly calibrated, NIR spectroscopy requires less maintenance than other
conventional analysers used in refineries

The use of data fusion or nonlinear chemometric tools like support vector
machines together with multiple analytical measurements clearly reduces the error
associated with inferential property models for streams with highly complex compo-
sitions, such as crude oil, its fractions, and petrochemical products. This opens the
door to a wealth of different applications and opportunities in both the laboratory
and process settings [71–73].

23.6.3.2 Example: Key Spectral Features of Gasolines: Brand Name
or Refinery?

In the previous section in Fig. 23.13, the spectral fingerprint of gasoline of different
varieties is shown. The objective of the investigation was to show, whether the differ-
ences of the varieties are due to different brands or due to the refinery structure and
the used raw material.

Figure 23.14 shows the principle component analysis (PCA) of the spectral
features in the wavelength range from 2100 nm up to 2500 nm. The results of the
other wavelength ranges are similar, but less pronounced.
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Fig. 23.14 Principal component analysis of the original spectra (left) and loading plots (right).
Color labeling according to the location of the refinery. Original absorbance data are used

PC1 and PC2 explain about 90% of the variance. The spectra clearly show 3
distinct clusters which can be attributed to the locations of the 3 refineries. The
variation of the brands is much smaller than the variation of the refinery’s spectral
signature. The different brand samples at location D are in line between the refinery
A and B and therefore can be attributed to samples which were produced either in
A or in B. The major distinction from C to the other two is the amount of aromatic
hydrocarbons and to a certain extent also oxygenates which is higher in C than in the
other 2 locations [74, 75]. It is well known, that C is specifically designed to produce
high RON gasoline products.

23.6.3.3 Example Prediction: NIR Inline Measurement of the Research
Octane Number RON

Figure 23.15 shows the results of a PCA and the partial least square regression
(PLS-R) analysis of the samples described in the previous section. Additionally, the
same sampling was repeated during summer and wintertime. The objective of this
investigation was to predict the RON of the samples.

As expected, using NIR spectroscopy, it is possible to predict the RON with an
error of about 0.6 RON using 3 LVs, which is higher than the reference method (0.3
RON). It is remarkable, that the predicted RON values in winter are on average 0.5
RON units lower than in summer. The model with 3 LVs only, as shown here, does
not correct for summer and winter fuels. Using 5 LVs, the winter–summer difference
is compensated by the 2 additional LVs and the error reduces to 0.3 RON comparable
to the reference method. Most probable, different blending or additives to guarantee
functionality during the winter season may be responsible for the clustering. Since
a few years ago, government regulations require that oil companies offer “summer”
and “winter” fuels. The latter can contain oxygenated additives in its blend that
reduce the higher quantity of harmful emissions produced in cold weather. Some oil
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Fig. 23.15 Left: Principal component analysis of gasoline samples of RON 93–100, collected
during the summer and winter season. Wavelength range analyzed: 6300–3700 cm-1 (1600–
2700 nm). Labeling: different RON. Right: Regression plot predicted vs reference for the RON.
RMSEC= 0.61, R-squared= 0.96, labeling winter and summer, model used 3 latent variable (LV).
Original absorbance data are used

companies even brand this type of fuel and add ingredients that help also to prevent
condensation and deposits in the fuel lines. Winter fuel is sold at the pump from fall
to spring. Moreover, the summer gas blend is less volatile, which means it pollutes
less, but costs slightly more to produce than winter fuel.

Selected applications of environmental issues or on adulteration are described in
[76–79].

23.7 How to Run a PAT Project

23.7.1 Concept for a Knowledge-Based Production:
Understanding Your Process on a Molecular Level

The importance of an understanding of the manufacturing process based on first
principles is strongly emphasized. For a successful implementation of a rule-based
production process, the following 3-Step Methodology is recommended [1]:

Step 1: Statistical and multivariate data analysis of historical production data,
selection of the most important critical process parameters (CPPs) which have the
highest impact on critical quality attributes (CQA). Define the low and high settings
of the parameters and run designed experiments.

Step 2: Establish an inline monitoring based on process data and inline optical
spectroscopy, use also possibly spatially resolved information, e.g., hyperspectral
imaging.

Step 3: Extract knowledge from process and spectroscopic data of the designed
experiments using multivariate data analysis (MVA) and machine learning (ML)
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Fig. 23.16 Schematic
presentation for a procedure
to understand your process
on a molecular level (source
and permission from Kessler
ProData GmbH, Germany)
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techniques. Transfer the process models into real live monitoring and control on
industrial level.

Figure 23.16 illustrates the procedure.
First, robust data are the basis for all analytical and black-box model develop-

ments. In many publications, it is recommended to take as many samples as possible
for the creation of chemometric models, or for process optimization to use as many
datasets as possible.Using all available datasets is onlymeaningfulwhen the informa-
tion contained is new and not redundant. For logical reasons, it is best to use samples
which are compiled with the help of a statistical experimental design (DoE).

Second, the associated measurement data of the designed samples are then suit-
able for modeling, which is based on empirical equations which describe the target
figures with adjustable parameters. Using optical spectroscopy, information about
the chemical composition of materials is obtained and in case of solid materials and
particles, information about their morphology is derived simultaneously. This means
information on a molecular level is achieved. If the process data are simultaneously
measured, then soft sensormodelsmay be developed. The samples can also be used to
provide a reliable calibration set for online or inline process analysis. These proce-
dures are complemented by classical methods of instrumental analysis, classical
product characterization, and the traditional mathematical process description.

Third, causality is the key element to transfer data into knowledge and knowledge
into process understanding. In this case, data which provide independent information
should be selected and used often in combinationwith first principles. This procedure
is important to guarantee robust processmodels [1, 4, 15, 35, 80, 81]. Correlated data,
even a lot of them, do not provide new information.
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23.7.2 Final Functionality Test of the PAT Spectroscopic
System for Long-Term Operation

As described before, the concept of robustness is the capacity of a model to remain
stable under small perturbations. Theperturbations canbe spectral in nature, chemical
outliers, temperature shifts due to uncontrolled reactions or any other uncontrolled
variables and data from different instruments where inter-instrument transferability
is limited [33, 43–45, 82, 83].

In summary, before installation, the following sources of perturbations should be
avoided and implemented into the PAT system:

• Reduced noise, especially baseline noise, for best signal-to-noise ratio.
• Selection of the optimum dynamic range of the measurement.
• Selecting the best possible reference.
• Working inside linearity and the highest precision of Lambert–Beer’s law, e.g.,

within the Twyman–Lothian curve.
• Minimum stray light of the optical setup.
• Optimized quality of the optical setup including beam guidance, cell positioning,

no instrumental wavelength variations.

The easiest way to check the system performance over time is to measure the
reference once as a reference and without any change also once as a “sample.” In
this case, a 100% transmission straight line should be observed. This 100% line
should be kept over a long time period [83]. With a suitable scaling, even small
differences at the low and high ends of the usable wavelength range as well as the
noise level can be judged. Running the system over a longer period, baseline drift,
lamp temperature drifts and all other possible perturbation can be quantified.

23.7.3 Conclusion

A key element for a successful implementation into industrial life is the trans- and
interdisciplinary collaboration of processmanagers, chemometric data analysts, elec-
tronics engineers, process specialists, and chemists with domain knowledge of, e.g.,
spectroscopy. It is important to bring them together in a business environment. But
prerequisites of the project are also management support and the conviction of the
staff that the project will indeed be a success. This means a “top-down” strategy of
the employers and “bottom-up” strategy of the employees and a sound knowledge
of the “champions” in the company.
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