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Abstract

Nowadays, malnutrition is one of the major problems, especially for the poor
population of developing countries. The major staple crops are found to be
deficient in some mineral elements, especially the micronutrients that result in
the problem of hidden hunger. There are several promising strategies that are
applied in agricultural fields to solve this problem. They enhance the
bio-available concentrations of micronutrients in edible crops. One of the recent
strategy is biofortification, which can be used to increase the content and/or
bioavailability of vital nutrients in food crops through genetic (genetic transfor-
mation/plant breeding) and agronomic pathways (application of nutrient
fertilizers). These strategies provide more nutritious diets to more people. Along
with the traditional agricultural practices, the “omics” technologies can modify
the crops by genetic transformation that improves the uptake, transport, and
mineral accumulation in hybrid plants. This chapter has detail information
about the nutrient constituents and its uptake in the plants along with a critical
comparison of the several strategies that have been developed to enhance mineral
levels and bioavailability of micronutrients in most of the important food crops.
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The use of biofortified crops should be promoted by educating the farmers by
government agencies, so that they can be included in their diet to solve the
problem of malnutrition up to certain extent.
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8.1 Introduction

Plants require several mineral elements or nutrients available in nature for their
proper growth and development (Watanabe et al. 2007). These mineral elements are
classified in to macro and micronutrients. Macronutrients are used in large concen-
tration and further divide into structural (carbon: C, hydrogen: H, nitrogen: N),
primary (nitrogen: N, phosphorus: P, potassium: K), and secondary nutrients (cal-
cium: Ca, magnesium: Mg, sulfur: S). The micronutrients like boron, chlorine,
manganese, iron, zinc, copper, and molybdenum are required in very less amount.
These elements are naturally present in the soil, and taken up by the roots in ionic
forms only. However, with the frequent uses of fertilizers, over-cropping, and
application of waste water and sewage sludge, the availability of these elements
get disturbed. The practices of waste water irrigation and sewage sludge application
also lead to the accumulation of several toxic metals. They ultimately affect soil
characteristics and availability of different nutrients due to the competition among
heavy metals and mineral elements. The deficiencies of micronutrients not only
affect the production of crops but also contribute malnutrition due to poor nutritional
quality of food crops. It often results into invisible health problems, hence termed as
hidden hunger (de Valenca et al. 2017). Mineral nutrients are mainly absorbed by the
roots from soil system, however many factors have their effect on nutrient attain-
ment. Sometimes, mineral elements are not in their available forms and also soil
properties such as pH, conductivity, bulk density, etc. have their effect on nutrient
uptake (Morgan and Connolly 2013).

To certain extent, to manage the deficiency of the micronutrients and to maintain
the balance among essential elements, the plants try to cope up by themselves.
However, at the time of the severe deficiency of micronutrients, the plants cannot
cope with the condition by themselves only; in that case several other strategies are
applied to deal with the situation. In this direction, biofortification is one of the
processes that can be applied in different ways (agronomic or genetic) to increase the
bioavailability and solubility of essential nutrients (Bouis and Saltzman 2011).
Genetic biofortification can be achieved by genetic engineering or classical plant
breeding (Saltzman et al. 2013), whereas agronomic biofortification can be achieved
through fertilizer application either as a soil solution/foliar spray or through
fertigation. With this process the essential minerals can be added in the common
diets of population by increasing the solubility and availability of nutrients. From an
economic point of view, biofortification is also one time investment because it offers
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a cost-effective, long term, and sustainable approach to manage the hidden hunger.
The basic theme of biofortification should be that all the malnourished and poor
families get all the essential micronutrients through their diet. There are some
organizations like World Health Organization and the counseling Group on Interna-
tional Agricultural Research (CGIAR) have developed several nutritionally
enhanced high-yielding biofortified crops (Jha and Warkentin 2020).

With the above context, the present chapter has detailed information on micronu-
trient uptake and includes different ways to manage deficient level of micronutrients
in food crops. It also consists of discussion on biofortification processes in detail to
show their positive impact on elemental composition of staple crops.

8.2 Uptake and Distribution of Micronutrients in the Plants

Plants naturally absorb different mineral elements from the soil through their root
system. They can only take the element in their available forms, i.e., in ionic forms
(Table 8.1). The availability of nutrients is dependent upon several soil
characteristics like moisture content, bulk density, texture, organic matter content,
pH, cation exchange capacity (CEC), and soil biological properties. The nutrient
uptake is the natural process through which they enter in to the plants either by roots
or by the leaves. For the uptake and distribution of nutrients, several physiological
and molecular processes are involved. Among all the micronutrients, Cl and Mo,
absorbed as anions, “B” is in neutral or anionic form, Mn, Cu, Zn, and Ni are in
divalent cations and Fe can be absorbed as both divalent and trivalent cations
(Lambert et al. 2008). As the cytoplasm of plant cell is negatively charged so the
type and number of charges play important role in the transportation of
micronutrients. The two common pathways include passive and active absorption.
In passive absorption, minerals are absorbed without the direct expenditure of
metabolic energy. If the transported elements carry a net charge, its movement is
influenced by both its concentration gradient and membrane potential. Passive
transport can be occurred either through simple diffusion and facilitated diffusion.

8.2.1 Simple Diffusion

During simple diffusion, a mineral element simply dissolves in phospholipid bilayer,
diffuses across it and no membrane proteins are involved and the direction of
movement determined simply by the relative concentration of molecule inside and
outside of the cell.

8.2.2 Facilitated Diffusion

It involves the movement of mineral solute along the concentration gradient.
Facilitated diffusion either occurs through carrier protein or channel protein. It
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allows polar and charged mineral elements such as carbohydrate, amino acid,
nucleoside, and ion to cross the plasma membrane.

Active absorption of minerals directly utilized metabolic energy and during this
process, minerals are absorbed in ionic forms against the concentration gradient. The
energy required for this process is obtained from the cell’s metabolism either directly
or indirectly.

Table 8.1 The available forms and function of micronutrients

Micronutrients Available form

Transporters
involved for
uptake Function

Boron Absorbed as
BO3

3� or
B4O7

2�

NIPs and BOR1 Boron is required for uptake and
utilization of Ca2+ membrane
functioning, pollen germination,
cell elongation, cell differentiation,
and carbohydrate translocation.

Molybdenum Obtain in the
form of
molybdate ion
(MoO2

2+)

MOT1, MOT2 It is a component of several
enzymes, including nitrogenase
and nitrate reductase both of which
participate in nitrogen metabolism.

Chlorine Absorbed in the
form of chloride
anion (Cl�)

CLC, CCC Along with Na+ and K+. it helps in
determining the solute
concentration and the anion-cation
balance in cells. It is essential for
the water-splitting reaction in
photosynthesis, a reaction that
leads to oxygen evolution.

Manganese Absorbed in the
form of
manganous ion
(Mn2+)

NRAMP,
ZRT/IRT, YSL

It activates many enzymes
involved in photosynthesis,
respiration, and nitrogen
metabolism. The best defined
function of manganese is in the
splitting of water to liberate oxygen
during photosynthesis.

Zinc Obtain zinc as
Zn+2

ZIPs, HMAs,
YSLs MTPs,
FRD3, ZIF1,
NASs

It activates various enzymes,
especially carboxylases. It is also
needed in the synthesis of auxin.

Copper Absorbed as
cupric ion
(Cu2+)

COPT1, COPT2,
COPT3 and
COPT4, ZIP2 and
ZIP4

It is essential for the overall
metabolism in plants. Like iron, it
is associated with certain enzymes
involved in redox reactions.

Iron Plant obtains
iron in the form
of ferric ion
(F2+, Fe3+)

ZIPs, NRAMPs,
YS1 and YSLs

It is an important constituent of
proteins involved in the transfer of
electrons like ferredoxin and
cytochromes. It is reversibly
oxidized from Fe2+ to Fe3+ during
electron transfer. It activates
catalase enzyme, and is essential
for the formation of chlorophyll.
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The micronutrients are present in very low concentration and available in the
charged form so they cannot move across cell membranes with passive absorption
only. They can also enter into the roots actively with the help of ATP as energy
source in presence of specific proteins (transport ATPase, ABC transporter, etc.).
They are present in the plasma membranes of endodermal cells that control the entry
of mineral ions into the xylem cell based upon their type and quantity. The trans-
porter proteins involved in the uptake and distribution pattern of some specific
micronutrients are discussed below:

1. Boron (B)

Plant absorbed boron (B) as BO3
3� or B4O7

2�When boron is present in sufficient
amount then it is absorbed by simple passive diffusion but under B deficient
condition, it is absorbed by the plant with the help of transporters. The molecular
genetic studies revealed that there are two types of B transporters, (nodulin-26-like
intrinsic proteins) NIPs and BOR1 in Arabidopsis thaliana (Takano et al. 2006).
NIP5;1 and a boric acid channel facilitate influx of B in the root cells. It is observed
that NIPs help in the transfer of B from xylem–phloem to young growing tissues
(Tanaka et al. 2008). In Arabidopsis thaliana L. the first B transporter, AtBOR1 was
reported and studied most intensively. In rice (Oryza sativa L), OsBOR1 also helps
in the uptake of B just like AtBOR1 (Nakagawa et al. 2007). Kato et al. (2009)
reported that under B deficient condition the NIP5;1 transporter gets over expressed
and improved elongation of root. With the over-expression of both the transporters
such as BOR1 and NIPs, the Arabidopsis thaliana plants can be able to grow in B
deficient soil.

2. Molybdenum (Mo)

In plants, molybdenum is absorbed as molybdate (MoO4
2�). Due to high degree

of similarity with SO4�2, the uptake and distribution of molybdate (MoO4
2�) are

supported by the transporters involved in sulfate transporters (Dudev and Lim 2004).
The first molybdate-specific transporters (MOT1) were identified in Arabidopsis
thaliana (Tomatsu et al. 2007). MOT1 is a relative of the sulfate transporter
superfamily (Buchner et al. 2004), but does not appear to transport sulfate. The
role of MOT1 in molybdate uptake is still unclear as results suggest MOT1 is
localized to mitochondria (Baxter et al. 2008). Along with this MOT1, another
molybdate transporter MOT2 has also been identified from Arabidopsis that also
belongs to the sulfate family (Gasber et al. 2011). It localizes in the vacuolar
membrane and helps in exporting stored molybdate from the vacuole into the cytosol
and finally into maturing seeds. Another molybdate transporter also denoted as
MOT2 has been reported from Chlamydomonas that does not belong to the sulfate
transporter family (Tejada-Jiménez et al. 2011). Researches to find out the homolog
of this transporter in higher plants are still under process to understand the uptake of
molybdate at the root: soil interface in detail.
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3. Chlorine (Cl)

The chlorine is absorbed as chloride (Cl�) and it is transported via H+/anion
symporters. They help in the Cl� uptake and release it into the xylem cell (Roberts
2006). Putative H+/halide transporters include ATP binding cassette (ABC) protein
super family and chloride channel (CLC) transporter family (Marmagne et al.
2007; Verrier et al. 2008). At the same time, Na:K/Cl symporters also help in the
uptake of Cl� by the cation chloride co-transporter (CCC) gene family
(Colmenero-Flores et al. 2007). Some organic acid transporters also help in the
halide fluxes in the plants (White 2001). The Cl� is mainly accumulated in roots
and leaves and little is redistributed via the phloem to fruits or seeds (Muramatsu
et al. 1995).

4. Manganese (Mn)

Manganese (Mn) is only available in its reduced form (Mn2+) and can be able to
transport from soil to root and then to the shoot. In alkaline soil, availability of Mn is
decreased by converting Mn2+ into insoluble Mn oxides (MnOx) (Stumm and
Morgan 1996). There are several transporters involved in the homeostatic network
of Mn in plants. The Natural Resistance Associated Macrophage Protein (NRAMP)
family, the Zinc-Regulated Transporter/Iron-Regulated Transporter (ZRT/IRT)-
related Protein (ZIP) family, and the Yellow Stripe-Like (YSL) are involved in the
transportation of Mn2+ into the cytosol (Alejandro et al. 2020).

5. Zinc (Zn)

In soil solution, Zn is present in very low amount but has critical importance for
plants. The substantial amount of Zn reaches to the xylem cells of root
apoplastically (Broadley et al. 2007). It can be transported to the plasma membrane
of root cell in the form of Zn2+ or as a complex of Zn with phytosiderophore
(Ismail et al. 2007). The influx of most of the Zn2+into the cytoplasm mediated
by ZIPs (ZIP1, ZIP3, and ZIP4; Palmgren et al. 2008), and the Yellow Stripe-
Like (YSL) family proteins help in uptake of Zn by the formation of
Zn-phytosiderophore complexes (Suzuki et al. 2008). In the xylem cell, the
transportation of Zn occurs in the form of Zn2+, by binding with organic acids
like histidine or nicotianamine (Broadley et al. 2007; Palmgren et al. 2008). In the
leaf and phloem cell, influx of Zn2+ is mediated by the members of the ZIP family
(Ishimaru et al. 2005). In addition, YSL proteins may load Zn into the phloem,
where Zn is transported as a Zn-NA complex, or as a complex with small proteins,
to sink tissues (Waters and Grusak 2008). Although Zn mobility in the phloem is
generally considered to be low, this may not always be the case (Welch 2002;
Haslett 2001). During Zn deficiency, uptake, sequestration, and redistribution of
Zn get increased by the over-expression of genes responsible for Zn uptake in the
plant. These genes encode different proteins such as ZIPs, HMAs, YSLs MTPs,
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FRD3, ZIF1, NASs and it also increases the biosynthesis of phytosiderophores to
enhance the Zn uptake (Milner and Kochian 2008).

6. Copper (Cu)

Copper can be absorbed as Cu+ and Cu2+ with the help of copper transporters
(CTR) such as COPT1, COPT2, COPT3, and COPT4 and by ZIPs (ZIP2 and ZIP4),
respectively (Grotz and Guerinot 2006). Expressions of these transporters get
up-regulated under Cu deficient condition (Wintz et al. 2003). Cu is loaded into
the xylem cell and transported in a Cu2+NA complexed form (vonWiren et al. 1999).
In phloem it is by YSL protein and transported as Cu–NA complex (DiDonato Jr
et al. 2004). This protein helps in the transportation of Cu–NA complexes and Cu2+

and Fe2+ cations in their free form (Wintz et al. 2003).

7. Iron (Fe)

The uptake of iron (Fe) is dependent upon types of plants species. In
non-graminaceous species, the plant’s roots release some organic and phenolic
compounds to acidify the rhizospheric zone that increase the Fe+3 concentrations
in soil solution. Then, with the help of ferric reductases (encoded by members of the
ferric reductase oxidase; FRO, gene family), Fe+3 get reduced to Fe+2 in the
epidermal cell of root (Mukherjee et al. 2006). Next, the members of different
transporter proteins help in the influx of Fe2+ to root cells such as zinc-regulated
transporter (ZRT)-, iron-regulated transporter (IRT)- protein (ZIP) family (AtIRT1
in Arabidopsis) (Ishimaru et al. 2005). In contrast to this, graminaceous spp. release
structural derivatives of mugineic acid, i.e., phytosiderophores that bind with Fe3+

and whole complex is absorbed by root cells (Ishimaru et al. 2005). Again, within the
xylem, Fe is transported as a Fe3 + citrate complex (Abadía et al. 1984; Mukherjee
et al. 2006). In Arabidopsis, it was reported that one of the member of the multidrug
and toxin efflux (MATE) family; FRD3 is present in the root pericycle and help in
the transportation of Fe from root to shoot in the form of citrate complex (Puig et al.
2007) and members of the ZIP family help in the uptake of Fe2+ by shoot cells.
During Fe deficiency, expression of genes ferric reductase oxidase (FROs) get
upregulated that encode proteins responsible for the uptake and redistribution of
Fe. These include genes encoding ZIPs, NRAMPs, YS1, and YSLs (Grotz and
Guerinot 2006; Kramer et al. 1996; Stacey et al. 2008) and enzymes such as
nicotianamine synthase (NAS), and phytosiderophores to synthesize nicotinamide
(NA) and help in more uptake of iron by the plant’s root cell
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8.3 Different Ways of Biofortification to ManageMicronutrient
Deficiency in Plants

For biofortification, there are three main methods used to manage nutrient deficiency
in the plants such as agronomic method, plant breeding method, and transgenic
method (Fig. 8.1). Each one is discussed further in detail.

8.3.1 Agronomic Approach

Agronomic approach includes application of fertilizers that helps in increasing
nutritive values of plants without modifying their genetic setup (Almendros et al.
2015). This technique is able to provide efficient micronutrients concentrations in
edible crops and it is one of the immediate and effective approaches (de Valenca
et al. 2017). Soil deficiency is reflected by the poor nutrients composition of crops.
This problem is aggravated by growing cereal crops on soils potentially deficient in
nutrients. Nutrient deficiency in humans is also seen mainly in those regions where
crops are grown in nutrient deficient soil (Bilski et al. 2012). Intervention of new
agricultural approaches to improve production of micronutrient-rich foods is one of
the main areas of research and competent strategy to supplement the nutrients in food
products (Pandey et al. 2016). The agronomic biofortification of cereal crops appears
to be a rapid and simple solution to manage the deficiency of important elements in
soils and plants. With this approach, one should take care that the over fertilization
can be toxic to the plants. The potential of agronomic fortification is strongly related
with micronutrient bioavailability at three stages: from soil to plants, from plants root
to the edible parts, and from edible parts to humans. Agronomic biofortification has
positive impact on plant characteristics and nutritional status of plants. In

Bio-fortification Processes

Agronomic methods

Soil fertilizer Fertigation Foliar spray Cross-and self-
pollination

Plant breeding
method

Transgenic
method

Insertion of specific genes
with desired traits 

Fig. 8.1 Different ways of biofortification
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combination with NPK, organic fertilizers, the micronutrients fertilization can
improve crop varieties and that particularly highlights the importance of integrated
soil fertility management.

Biofortification through agricultural methods includes application of nutrients
directly in the soil and water that affect the health status of crops and provide quality
food to the human being of plants. Agronomic biofortification is easy and cost-
effective technique but more awareness and detail study is required to understand
about the forms of fertilizer, mode of applications, and impact on other environmen-
tal components.

8.3.1.1 Application of Fertilizer in Soil and Irrigation Water
The simplest way to increase the density of nutrients in the edible crops is by
enhancing their availability through different forms of fertilizers, so that plants can
uptake the nutrient from soil in a more efficient way (Almendros et al. 2015). The
types of nutrients source and soil characteristics have a great influence on agronomic
biofortification and that consequently affect the qualitative and quantitative
characteristics of food crops. Soils show variation in their mineral composition
and phytoavailability of nutrients basically based upon several factors such as pH,
water holding capacity, cation exchange capacity of soil, specific surface area,
surface charge density, as well as cation exchange capacity (Pinto and Ferreira
2015). Based on adsorption–desorption characteristics of soils, the application of
fertilizers leads to enhancement in the concentration of nutrients in the plant’s parts
(Dai et al. 2009). The composition of fertilizers play important role in providing
nutrients as well interactions among them can have positive neutral or even negative
effects on yields and nutrient use efficiencies (Saha et al. 2015; Rietra et al. 2015).

Inorganic and Organic Fertilizers
With rising expectations toward agricultural production, the importance of micronu-
trient fertilization has increased tremendously. Soil nutrients especially the
microelements are insufficient to meet increased crop requirements that affect both
yields and quality of the crops. The standard NPK-based fertilization must often be
supplemented by the deficient micronutrients. There are several inorganic forms of
micronutrients that are applied with NPK fertilizers to support the growth of plants
(Table 8.2a). Within the agronomic biofortification practice, the most common
method to enhance the micronutrient levels in the field soil is by adding fertilizers
in the form of inorganic salts. It brings good results based upon kind of
supplemented micronutrient and the chemical properties of fertilized soil. Zinc
sulfate (ZnSO4�7H2O) and copper sulfate (CuSO4�5H2O) are the most tested
fertilizers, it has been observed that inorganic fertilizers applied after seed sowing
lead to better yield as compared to pre-sowing soil fertilization (Smoleń and Sady
2012). Another interesting approach for the biofortification is the application of
inorganic salt to obtain a new formulation, as in the case of Se-enriched peat.
Although Se is not required by the plants but its certain level is important for the
metabolic activities of human and animals. The peat was enriched by thoroughly
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mixing it with a solution of sodium selenite and then applied during the
pre-transplanting stage (Businelli et al. 2015).

Some plants and peat, in the presence of high level of inorganic Se, can metabo-
lize and accumulate it in the form of organic derivatives. This process is important
for the plant because it reduces the toxicity of the chalcogen and, at the same time,
when the bioaccumulation occurs in edible tissues, it allows enrichment of food with
Se that is good for the humans and animals. Moreover, Se biofortification also
increases secondary metabolites production in human beings when consumed with
the diet. Therefore, biofortification strategies applied to produce Se-enriched foods
could help to overcome Se deficiency and its implications on human health and it
also improve the nutraceutical (substance, which has physiological benefit or
provides protection against chronic disease) value of food.

Similarly, organic fertilizers are also the source of micronutrient for plants.
Earlier during the agricultural practices, it was observed that crop yields could be
enhanced with the addition of animal manure or plant debris to the soil. A new study
reveals that Neolithic farmers when the first developments of farming appeared used
livestock manure to enhance crop yields (Bogaard et al. 2013). This practice is in
continuation with regular additions of organic matter (from different sources), which
is used mainly in organic and integrated farming systems (Kizos et al. 2010).
Organic fertilizers are materials whose basic ingredient is organic matter (Adegoke
et al. 2016). They traditionally derived from animal excreta (livestock manure,
slurry, poultry feces) and vegetable matter (straw, green manures). Naturally occur-
ring organic fertilizers include peat, seaweed, and guano (accumulated excrement of
seabirds and bats). Guano is also an effective fertilizer due to its exceptionally high
content of nutrients (Hazra 2016). Recently, municipal and industrial wastes are
taken into account as organic renewable resources to improve the nutritional status of
plants. The most important organic materials that accumulate in industrial countries
are sewage sludge, bio-compost and by-products from the food and foodstuff
industry provide several nutrients (Table 8.2b). Waste from the food and luxury
item industries can also be applied in agricultural fields as organic waste. These
organic wastes act as an important secondary source of micronutrients and their
availability depend upon soil organisms (Jones and Jacobsen 2009).

Table 8.2a Inorganic
form of nutrients applied in
the soil along with the NPK
fertilizers

Nutrient Salt Form

Zinc (Zn) Zinc sulfate ZnSO4.7H2O

Chelate Zn EDTA

Zinc oxide ZnO

Copper(Cu) Copper sulfate CuSO4

Iron (Fe) Ferrous sulfate FeSO4.7H2O

Manganese (Mn) Manganese sulfate MnSO4.H2O

Chlorine (Cl) Potassium chloride KCl

Source: Modified from Jones and Jacobsen (2009)
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Biofertilizers
Application of biofertilizers is also one of the ways of agronomic biofortification to
raise nutrients content in the plants by increasing the solubilization and mobilization
rate of elements (Almendros et al. 2015). Biofertilizers can be described as diverse
groups of soil-borne microbes, such as root endophytic fungi, mycorrhizal fungi,
plant growth-promoting rhizobacteria, and rhizobia that exert positive effects on
plant yields and survival through direct and plant-mediated mechanisms. They help
in the nitrogen fixation, solubilize the insoluble minerals, produce phytohormones,
and also protect the plants from pathogens (Olivares et al. 2015). Microorganisms
can be used as substitutes for various chemical fertilizers and improve plant nutrition
and health. Usually biofertilizers do not contain a single culture of beneficial
microorganism but a mixture of different microorganisms. Soil particularly the
rhizospheric zone contains some bacterial species that promote growth of the plants
and collectively termed as Plant Growth-Promoting Rhizobacteria (PGPR; Rhizobia
spp. And Frankia spp.). PGPR can facilitate acquisition of resources and modulate
the levels of plant hormones. They are able to provide resistance to the plants against
various pathogenic agents. The PGPR consortium, named “BioPower” consist of
two Azospirillum lipoferum strains, two Pseudomonas sp. strains and one
Agrobacterium sp. strain. It has been found to increase the availability of Zn in
rice crop (Tariq et al. 2007). Rana et al. (2012) have applied three rhizobacterial
strains: Bacillus sp., Providencia sp., and Brevundimonas sp., applied along with
NPK fertilizers. The study showed significant enhancement in Fe, Cu, Zn, and Mn
content in wheat plant. The application of Pantoea dispersaMPJ9 and Pseudomonas
putidaMPJ6 increased the Fe content in mung beans by 3.4 times under Fe deficient
soil by producing Fe chelating agent, i.e., siderophores (Ghosh et al. 2019). Ramesh
et al. (2014) have inoculated two strains of Bacillus aryabhattai (MDSR7 and
MDSR14) in Zn deficient soil that improved the Zn uptake in soybeans and wheat
crops. Gopalakrishnan et al. (2016) have studied effect of seven strains of PGPR and
reported that among all Enterobacter ludwigii and Acinetobacter tandoii SRI-229
strains showed significant enhancement in Fe, Zn, Cu, and Mn concentrations in
chickpeas and pigeon peas. Recently, Singh and Prasanna (2020) have coated
chickpea seeds with Zn solution along with Zn solubilizer PGPR, Enterobacter
sp. MN17 that improved the bioavailability of Zn and consequently the grain yield.

Table 8.2b Micronutrient content of selected organic fertilizers in mg/kg

Organic fertilizers Fe Cu Mn Zn Source

Sewage sludge 2275–
3322

7–
11

100–
287

68–
177

Tennakoon and Bandara
(2003)

Green manure
(Acacia)

870–994 7–9 78–92 54–
610

Tennakoon and Bandara
(2003)

Cattle manure 1075 880 247 44 Uyanoz (2007)

Pig manure 1416 502 367 563 Li et al. (2009)

Rice straw 225 3.73 467 49.6 Li et al. (2009)

Sheep manure
compost

1248.9 4.0 45.6 68.9 Wang et al. (2016)
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Different PGPR strains have differential abilities to fix or solubilize nutrients within
the rhizosphere for promoting growth and yield of the plants (Amaya-Gómez et al.
2020).

The effectiveness of micronutrient fertilizer application on crop biofortification is
influenced not only by the fertilizer type but also by the application method (Mao
et al. 2014; Melash et al. 2016; de Valenca et al. 2017). In crop plants, micronutrients
may be applied to the soil as foliar spray seed treatments, or through fertigation
(Farooq et al. 2012; Singh and Prasad 2014; Smoleń et al. 2016). The decision for the
selection of method depends upon the requirement of specific nutrients and form of
fertilizers (Pankaj and Dewangan 2016). Some of the micronutrients like Fe and Mn
were applied through foliar application and that improved the growth of plants
(Narwal et al. 2012). Organic fertilizers are spread uniformly in the field and
incorporated several days before planting (Piechota et al. 2014). Micronutrient
salts can be applied as a granular material or dissolved in liquid fertilizers (Pagani
et al. 2013).

Another way of fertilizer application is with irrigation water, i.e., Fertigation, it is
made up of two words, i.e., fertilization and irrigation. In this, fertilizer is applied
with the irrigation water trough drip irrigation method (Bell and Dell 2008). Through
this process fertilizer solution is distributed evenly with irrigation water. With this
mode, the availability of nutrients is increased mainly in the rhizospheric zone.
During this process, only liquid fertilizer and the fertilizers soluble in water are used.
Fertigation is practiced extensively in commercial agriculture and horticulture. It is
used to add additional nutrients or to manage nutrient deficiencies detected in plant
tissue. It is usually practiced on the high-value crops such as vegetables, fruit trees,
and cereals for the purpose of biofortification. The nutrient used in fertigation must
be highly soluble in water like monoammonium phosphate (Nitrogen and Phospho-
rus), poly feed (Nitrogen, Phosphorus, and Potassium), Multi K (Nitrogen and
Potassium), Potassium sulfate (Potassium and Sulfur). Some of the nutrients used
in fertigation are as follows:

• Ammonium nitrate
• Ammonium sulfate
• Urea
• Monopotassium phosphate
• Potassium sulfate
• Potassium nitrate
• Potassium chloride
• Diammonium phosphate

Through fertigation, the water and fertilizer are evenly supplied to the crops, so
there is more possibility of getting 25–50% higher yield. It also minimizes the
amount of fertilizers applied and the time, labor, and energy utilized during this
process. It leads to the reduction in soil erosion as here nutrients are applied through
the drip irrigation (Khalid et al. 2015).
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Agronomic Fortification Through Foliar Application
In addition to nutrients being added to the soil as fertilizers, some mineral nutrients
can be sprayed to the leaves and this process is known as foliar application (Mortvedt
1985). Over to soil fertilization, the foliar spray is found to be more beneficial by
enhancing the nutrient uptake and their allocation in the edible plant parts (Lawson
et al. 2015; de Valenca et al. 2017). Other advantages of foliar sprays are: uniform
distribution is easily obtained, response to the applied nutrient is almost immediate;
therefore, deficiencies can be managed easily. Foliar feeding is associated with
higher yields and better quality of fruits. The efficiency of nutrient uptake is
increased by 8–9 times when nutrients are applied as a foliar spray, as compared
to the soil application (de Valenca et al. 2017).

Foliar fertilization has the ability to improve the efficiency and utilization of
nutrients, required by the plant for their maximum growth and yield. The main
advantage of foliar fertilization is the immediate uptake of applied nutrients. The
most important use of foliar application is that only limited amount of micro and
macronutrients are applied, which do not cause any kind of phytotoxicity
(Oosterhuis and Weir 2010).

It also makes available those nutrients like Zn and Fe which are not available to
the plants through root uptake. A foliar application is recommended when environ-
mental conditions limit the uptake of nutrients by roots such as variation in pH,
moisture and nutrient imbalances in soil, etc. The availability of micronutrient is
decreased at high soil pH and under such circumstances the more efficient way to
supply micronutrients to the plant is foliar spray rather than soil application (Adams
1984).

Zhang et al. (2012) have also reported that foliar application of Zn is more
effective than soil application. The study showed that foliar application of 0.4%
ZnSO4.7H2O resulted 58 and 76% increase in Zn concentration, respectively, in
grain and flour of wheat. The foliar Zn application provides an effective way to
enhance dietary Zn in the edible products derived from wheat. Rugeles-Reyes et al.
(2019) have also reported that the application of zinc (1.5 kg ha�1) as foliar spray
leads to 279% enhancement in the supply of Zn from plant to the humans as
compared to the control. So, the foliar applications of the nutrient are found to be
effective in increasing Zn contents in the plant leaf.

8.3.2 Plant Breeding Technology

Biofortified crops can be developed by breeding methods, but it is possible only
when sufficient genetic variation is present in crop populations for the desired traits.
Conventional plant breeding through cross- and self-pollination strategies plays
major role in improving agricultural productivity. During conventional plant breed-
ing, in order to produce desirable agronomic traits, the parent plants having high
nutrients are crossed over several generations with recipient one (Garg et al. 2018).
The most significant, systematic and symbolic program of biofortification through
conventional breeding is “Harvest Plus.” The main goal of Harvest Plus program is
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to develop and promote the production of biofortified food crops that improve the
public health. It basically increased levels of three nutrients (iron, zinc, and
pro-vitamin A) in seven staple crops (beans, cassava, maize, rice, wheat, sweet
potato, and pearl millet) (Nestel et al. 2006). The Harvest Plus programme is funded
principally by grants from foundations, governments, and international agencies,
started in 2003, by the Consultative Group on International Agricultural Research
(CGIAR). The main vision of this program is to provide more nutritious food to
1 billion people by 2030.

The success rate of plant breeding technique to produce fortified crop is depen-
dent upon their acceptance by the farmers as well as absorption rate of
micronutrients in the consumers (Bouis 2003). Only the staple food varieties
whose seeds are micronutrient rich are feasible for plant breeding. The micronutrient
efficient varieties developed by plant breeding can grow deeper in the mineral
deficient soil. The roots of new varieties are more efficient in mobilizing the external
minerals and are able to utilize the moisture and nutrients present in the subsoils.
This will reduce the application rate of fertilizer as well as irrigation. The efficient
uptake of minerals from soil and their loading into the grains lead to higher yield. So,
the farmers can easily accept new varieties with mineral dense seeds and higher yield
(Bouis 2003). There are several studies where Zn and Fe concentrations are
estimated in different varieties of plants to find out the best variety with their highest
concentration of nutrients for breeding program (Velu et al. 2015; Garg et al. 2018;
Jha and Warkentin 2020). Researchers at IRRI have studied six sets of genotypes
(n ¼ 939) and evaluated Fe and Zn concentrations. The Fe concentration ranged
from 7.5–24.4 μg g�1 for Fe, and Zn concentration ranged from 13.5–58.4 μg g�1.
Among all varieties, Jalmagna, Zuchem, and Xua Bue Nuo had highest concentra-
tion of Fe and Zn. The F2-derived populations of these varieties showed that this trait
is not found to be pleiotropic for grain-Fe or-Zn concentrations so can be used for
further breeding program. Over the common rice variety, Jalmagna is the traditional
variety that had nearly 40% more iron concentration. Under Harvest Plus program,
Bangladesh Rice Research Institute has developed world’s first rice varieties
(BRRIdhan 62, BRRIdhan 72, and BRRIdhan 64) with high Zn concentrations
(20–22 ppm). In India and Philippines, by crossing a variety having high yield
(IR72) with Zawa Bonday; a tall variety, an improved line (IR68144-3B-2-2-3) was
developed in order to enhance the level of Fe (21 ppm) in the grain (Palanog et al.
2019).

Similarly, wide range of wheat germplasm is being studied at International Maize
and Wheat Improvement Center (CIMMYT; Spanish acronym) with respect to the
Fe and Zn concentrations in the whole grain. Among all wheat germplasm, Triticum
dicoccum with highest concentrations of Fe and Zn can be used for further study
(Welch and Graham 2002). Through collaboration with Banaras Hindu University
(BHU), Uttar Pradesh (UP), India, in 2014, six varieties of wheat named as BHU
1, BHU 3, BHU 5, BHU 6, BHU 7, and BHU 18 with high concentration of Zn
(4–10 ppm) were released under Harvest Plus program (Velu et al. 2015). One
variety (WB2) with high concentration of Zn and Fe has been developed by Indian
Institute of Wheat and Barley Research, India (Chatrath et al. 2018). Along with this,
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four varieties (NR 419, 42, 421, and Zincol) and one variety (PBW1Zn) of wheat
with high Zn were released by University of Agriculture Faisalabad, Pakistan (Ohly
et al. 2019) and Punjab Agricultural University, India (Bhati et al. 2016), respec-
tively. The degrees of genetic variability for Zn and Fe contents in bean seeds have
been studied by the researchers of the International Center for Tropical Agriculture
(CIAT). More than 1000 varieties of common beans are collected and showed varied
levels of Fe from 34–89 μg g�1 and of Zn from 21–54 μg g�1. Due to presence of
sufficient genetic variability, the Fe and Zn concentration can be increased signifi-
cantly by plant breeding technology (Graham et al. 1999). Several varieties of
common bean with high Fe content have been developed under HarvestPlus in
Rwanda, Eastern Africa Democratic Republic of Congo also released ten biofortified
varieties (CODMLB 001, CODMLB 032, HM 21–7, RWR 2245, PVA 1438, COD
MLV 059, VCB 81013, Nain de Kyondo, Cuarentino, Namulenga) with high Fe
concentration (Andre et al. 2007). With the help of ICARDA, HarvestPlus
biofortification program, some varieties of lentil Barimasur-4, Barimasur-5,
Barimasur-6, Barimasur-7, and Barimasur-8 in Bangladesh and ILL 7723,
Khajurah-1, Khajurah-2, Shital, Sisir Shekhar, Simal in Nepal and L4704, Pusa
Vaibhav in India, Alemaya in Ethiopia and Idlib-2, Idlib-3 in Syria have been
released having high Zn and Fe content (Thavarajah et al. 2008).

Along with the cereals and legumes some vegetables varieties are also developed
as they are the main source of antioxidants in human diet. Some varieties of potato
have been obtained by collecting 1000 genotypes that have more antioxidants and
Cu, Fe, Mn, and Zn concentrations (Andre et al. 2007). With the collaboration of
International potato center (CIP) and HarvestPlus an advanced variety has been
developed by crossing diploid Andean landrace potatoes (high Zn and Fe) with
tetraploid clones (disease resistant). One more variety INIA 321 Kawsay with high
Zn and Fe content in Peru has been developed under National Institute for Agrarian
Innovation’s (INIA) Potato Program (Andre et al. 2007). Cassava and cauliflower
have a wide range of genotype differences particularly for minerals (iron and zinc),
so new varieties can be developed by breeding technique (Chavez et al. 2005).
Through breeding technology, the biofortified edible crops can be produced having
high essential micronutrients (Table 8.3) that will definitely improve the health and
economic conditions of the world’ population.

8.3.3 Application of Transgenic Method

The application of biotechnology in developing nutrient rich transgenic crops has
been started since last 20 years. Genetic engineering is a technique that concerned
with the specific genes with desired traits. Once a gene with specific trait has been
identified and with the help of marker and promoter genes a new plant with improved
nutrient content will be produced by inserting a gene through nonviable virus called
Agrobacterium as a carrier. GE (Genetic engineering) leads to the development of
transgenic crops also known as genetically modified organism (GMOs). When there
is less or no genetic variation in nutrients concentration among plant varieties then
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this transgenic approach can be an applicable option for developing biofortified
crops (Aung et al. 2013). Incorporation of desired traits includes micronutrient
enhancement and bioavailability as well as reduction in the anti-nutrients
concentrations (that bind with the nutrient and make them unavailable). Genetic
modifications particularly affect the redistribution of micronutrients in plant tissues

Table 8.3 Biofortification of food crop through breeding

Plants Nutrients Country/Variety Reference

Rice Iron India, Philippines: IR68144-3B-2-2-3
(improved line) Jalmagna

IRRI Gregorio
et al.(2000)

Zinc Jalmagna Gregorio et al.
(2000)

Zinc, iron Bangladesh: BRRIdhan 62, BRRIdhan
72, BRRIdhan 64

CIAT,
HarvestPlus;
Garg et al.
(2018)

Cassava Iron Africa: Cassava clones Maziya-Dixon
et al. (2000)

Potato Zinc, iron,
copper, and,
manganese

BTD0054-3,
BTD0118-5

Haynes et al.
(2012)

Wheat Zinc India: BHU 1, BHU 3, BHU 5, BHU
6, BHU 17, BHU 18 Pakistan: NR
419, 42, 421, Zincol

Velu et al.
(2015)

Zinc and iron India: WB2 Chatrath et al.
(2018)

Zinc India: PBW1Zn Bhati et al.
(2016)

Sorghum Iron India: ICSR 14001, ICSH 14002 Hybrids:
ICSA 661 � ICSR 196, ICSA 318 � ICSR
94, ICSA 336 � IS 3760

ICAR (2016)

Iron Nigeria: 12KNICSV (Deko)-188
12KNICSV-22 (Zabuwa)

ICRISAT,
HarvestPlus
(2016)

Cow pea Iron India: Pant Lobia-1, Pant Lobia-2, Pant
Lobia-3, Pant Lobia-4

Singh et al.
(2017)

Millets Iron and zinc
(Pearl Millet)

India: Dhanashakti Hybrid ICMH 1201
(Shakti-1201)

Govindaraj
(2019)

Lentils Iron and zinc Bangladesh: Barimasur-4, Barimasur-5,
Barimasur-6, Barimasur-7, Barimasur-8
Nepal: ILL 7723- Khajurah-1, Khajurah-2,
Shital, Sisir, Shekhar and Simal
India: L4704 and Pusa Vaibhav
Ethiopia: Alemaya Syria: Idlib-2 and Idlib-
3

Darai et al.
(2020)

Beans High iron and
zinc

Rwanda: RWR 2245; RWR 2154; MAC
42; MAC 44; CAB 2; RWV 1129; RWV
3006; RWV 3316; RWV 3317; RWV2887

Jha and
Warkentin
(2020)

Source: Modified from Garg et al. (2018)
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and mainly enhance their concentration in edible portions of cash crop. Several
studies were done where crops are genetically modified to improve their micronutri-
ent levels particularly for Fe and Zn as they are found to be more deficient than the
other micronutrients. In rice plant, genetic modification is done by over expressing
iron (II)-nicotianamine transporter OsYSL2 to enhance translocation of Fe in the
endosperm (Masuda et al. 2012). The transgenic rice crop showed 4-times higher
levels of iron than the conventional one. Mugineic acid acts as a ferric ion chelator,
and its production is increased in the transgenic rice crop by the expression of
mugineic acid synthase gene (IDS3). This gene is over expressed by expressing
the soybean ferritin gene (SoyferH2). The transgenic rice crop is found to be tolerant
in iron deficient soil and showed 2.5 times higher concentration of Fe. In Myanmar,
about 70% population is found to be Fe deficient so here Aung et al. (2013) have
produced a transgenic line of rice by over expressing the nicotianamine synthase
gene HvNAS1 (increases the transportation of Fe), the Fe (II)-nicotianamine trans-
porter gene OsYSL2 (enhances transportation of iron in the endosperm), and the Fe
storage protein gene SoyferH2 (increases accumulation of iron in the endosperm).
The milling step during rice crop processing removes the nutrient-rich outer layers of
the embryo that leads to reduction in the concentration of Fe and Zn. In order to solve
this issue, a transgenic cultivar of rice (indica) with high yield has been developed by
expressing SoyferH2 gene. These new line showed enhancement (2.6 times) in the
ferritin level. By using MxIRT1 (iron transporter gene) from apple trees a transgenic
rice crop is produced that exhibited 3 time higher Fe and Zn accumulation (Tan et al.
2015). By over expressing nicotianamine synthase (OsNAS2) and soybean ferritin
(SferH-1) genes, a rice plant can be developed having high Fe and Zn concentration
in the endosperm (Trijatmiko et al. 2016). It was reported that in wheat Gpc-B1
(GRAIN PROTEIN CONTENT B1) is quantitative trait locus responsible for
increasing the translocation of protein to the grain that consequently increased Fe,
Zn, and Mn concentrations in grain (Uauy et al. 2006). Ozturk et al. (2016) have
supported positive correlations between protein content and concentration of Fe, Zn,
and Mn. Through genetic transformation of Gpc-B1 locus from the wild tetraploid
wheat Triticum turgidum ssp. dicoccoides, the concentration of Zn, Fe, Mn, and
protein content can be increased by 10–34% in wheat grain of different recombinant
chromosome substitution lines (Distelfeld et al. 2007). For the uptake and transloca-
tion of Zn, the most predominant cation transporter families are the members of the
ZIP (ZRT, IRT-related protein) and CDF (Cation diffusion facilitator). Some geneti-
cally modified varieties of rice with higher level of Zn and Fe, such as IR64 and
IR69428, have been produced by over expressing rice ferritin and rice nicotianamine
synthase (NAS2) genes at Indian Rice Research Institute (IRRI) from the field trials
(Mallikarjuna Swamy et al. 2016). With this technique, several other important
staple crops can be transformed to produce biofortified crops (Table 8.4) that have
great potential in combating global problem of malnutrition.
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Table 8.4 Biofortification of plants by transgenic approaches

Micronutrients and crops Over expressed genes Plants References

Enhancement of Fe
storage in rice seeds

OsGluB1proSoyferH1b

OsGlb1 proSoyferH1b
Oryza sativa
Japonica
cv. Kitaake

Qu et al.
(2005)

Enhancement of Zn, Mn,
and Fe in wheat

Gpc-B1 locus into different
recombinant chromosome
substitution lines

Triticum turgidum
ssp. dicoccoides

Distelfeld
et al.
(2007)

Enhancement of Fe
uptake

Barley IDS3 genome fragment Oryza sativa
Japonica
cv. Tsukinohikari

Masuda
et al.
(2008)

Enhancement of Fe
translocation

Ubiquitin pro-OsIRT1 Oryza sativa
Japonica
cv. Dongjin

Lee and An
(2009)

Enhancement of Zn and
Fe in rice

over expressing ferritin and
nicotianamine synthase
(NAS2)

IR64 and
IR69428

Zhang et al.
(2010)

Fe translocation
increased

35S pro-OsIRO2 Oryza sativa
Japonica
cv. Tsukinohikari

Ogo et al.
(2011)

Enhancement of Fe
translocation

35S pro- OsNAS1, 2,3 Oryza sativa
Japonica
cv. Nipponbare

Johnson
et al.
(2011)

Fe content in endosperm iron (II)-nicotianamine
transporter OsYSL2

Oryza sativa Masuda
et al.
(2012)

Transportation of Fe Nicotianamine synthase gene
HvNAS1

Oryza sativa Aung et al.
(2013)

Uptake and root-to-shoot
translocation of Zn
increased

ZRT/IRT-like protein barley Tiong et al.
(2015)

Zn, Fe, and Mn content
in wheat grain

Gpc-B1 (GRAIN PROTEIN
CONTENT B1)

Triticum aestivum Trijatmiko
et al.
(2016)

Increased the Fe content AtIRT1 Oryza sativa
Japonica
cv. Taipei 309

Boonyaves
et al.
(2016)

Storage of Fe content
increased in endosperm

OsNAS1, HvHAATb Oryza sativa
L. (cv. EYI 105)

Banakar
et al.
(2017)

Enhancement in Fe
concentration

Os DMAS1 Oryza sativa
Japonica
cv. Dongjin

Bashir et al.
(2017)

Uptake of Fe increased OsYSL9 Oryza sativa
Japonica
cv. Tsukinohikari

Senoura
et al.
(2017)

High accumulation of
iron and zinc

OsHMA7transcript levels Oryza sativa Kappara
et al.
(2018)

(continued)
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8.4 Conclusions and Future Prospective

The biofortified crops are not easily accepted by the poor farmers due to lack in the
awareness about their benefits on human health. Particularly, in developing
countries, malnutrition is one of the inevitable problems due to more population.
Because of this, the food provided to them is not having sufficient level of
micronutrients that not only harms their health but also increases the susceptibility
towards various diseases. Consequently, it leads to considerable loss in Gross
Domestic Product and shows devastating effects on socio-economic condition of
country. To deal with this situation, biofortification of crop varieties is one of the
most sustainable and cost-effective approach. By applying different ways of
biofortification whether agronomic or genetic, different biofortified crops can be
produced that provide nutrients directly to the common people in their natural form.
The biofortified crop varieties act as important sources of nutrients to poor people
and also provide nutritional security. In order to enhance the acceptance rate of these
biofortified crops, the farmers should be participated in the awareness programs that
demonstrate their beneficial roles. The biofortified crops improve the health and
nutritional status of the young generation. This process can adequately supply the
food to those people, who are underprivileged and low-income households. After
developing biofortified crops, there are no further charges, so this strategy can be a
sustainable way to manage the hidden hunger particularly in developing and under-
developed countries.
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Table 8.4 (continued)

Micronutrients and crops Over expressed genes Plants References

Fe content increased OsYSL1 Oryza sativa
Japonica
cv. Zhoghua11

Zhang et al.
(2018)

Fe content increased in
grain

OsNAS2 Triticum aestivum
(cv Bob White)

Beasley
et al.
(2019)

Zn and Fe concentration
increased

IRT1 (iron transporter) and
FER1 (ferritin) genes

Cassava Ghislain
et al.
(2019)
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