
Chapter 13
Production of Superposition of Coherent
States Using Kerr Non Linearity

Shivani A. Kumar, H. Prakash, N. Chandra, and R. Prakash

Abstract The coherent states are often called as Glauber coherent states and were
named after the American Scientist Glauber whowas first to realize the extraordinary
usefulness of these coherent states for explanation and analysis of many optical
phenomena. These states were first introduced by Sudarshan also and are now been
extensively studied and applied to quantum-optical problems. Themost explicit form
of these states are expressed as, | α 〉 = ∑∞

n=0 e
− 1

2 | α |2 αn√
n! | n 〉where, the Fock states

| n 〉 is the eigen state of the number operator N = a†a, i.e., N | n 〉 = n | n 〉 and
α = αr+ iαi is a complex number. TheseGlauber coherent states are the eigen states
of annihilation operator and are well known. They play a very important role in many
applications of quantum information processing including quantum teleportation.
But it has been a long dream for physicists to generate these superposed coherent
states in the most general desired form | ψ 〉 = N

(
cos θ

2 | α 〉 ± sin θ
2 e

i ϕ |−α 〉 )

where, N is the normalization factor. In this paper, we propose a scheme to generate
any such general superposition of coherent states | α 〉 and |−α 〉 usingKerr effect, two
beams in coherent states, a single photon beam and optical devices like polarization
beam splitter andmirrors. In the output, if a single photon is detected in a polarization
state defined by angle θ and ϕ, the desired superposition of coherent states | α 〉 and
|−α 〉 results. If the photon is detected in an orthogonal polarization state (the state
in which the electric field strength at a given point in space is normal to the direction
of propagation), a superposition state different from the desired one results.

13.1 Introduction

The coherent states, often called as Glauber states [1–3] after the American Scientist
who was first to realize their extraordinary usefulness for the description of optical
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phenomena. These states were introduced by Sudarshan [4] also and are now been
extensively studied and applied to quantum-optical problems. The explicit form of
these states are expressed as,

|α〉 =
∞∑

n=0

e− 1
2 |α|2 αn

√
n! |n〉 (1.1)

where, the Fock states [5] |n〉 is the eigen state of the number operator N = a†a, i.e.

N |n〉 = n|n〉 (1.2)

and α = αr + iαi is a complex number. These state are the eigen states of
annihilation operator and are well known. Their coordinate representation is the
minimum-uncertainty packet of harmonic oscillators [6]. Although these states are
non-orthogonal, they do form a complete set of states, i.e., they obey a completeness
relation and hence form a good set of basis states. The overcompleteness of coherent
states allows the expansion of many important field operators as a single integral
over projectors on these states.

It has been a dream for many physicists to generate superposition of coherent
states |±α〉 which are out of phase with each other by a phase difference of 180◦

|ψ〉± = N±( |α〉 + |−α〉) (1.3)

where N± is the normalization factor. But it has now been shown [7–10] that a
coherent state propagating through an optical Kerr medium may evolve into a super-
position of a set of coherent states differing in phases by multiple of some constant.
This superposition of macroscopically distinguishable quantum states is popularly
known as Schroedinger cat states [9, 11]. In practice, the superposition states can
be generated in various non-linear process [7, 8, 12–19], back action evading
measurements [20–22], Jaynes-CummingsModel [23–27], quantum non-demolition
measurements [28], and resonant cavity [29–33].

Several other possibilities also exist to generate the non-classical state of electro-
magnetic field with the help of superposition of two or more states [34–50]. One of
the earlier methods for generating these superposition states was proposed by Yurke
and Stoler who proposed to generate a coherent superposition of the form

|ψ〉 = 1√
2

[|α〉 + eiπ/2|−α〉], (1.4)

using a Kerr nonlinearity.
A scheme of back action evading coupling to correlate the signal and readout

modes was proposed by Song et al. [21]. The calculations done by the authors show
that a superposition of quantum states is generated in the signal mode as evidence
by interference fringes in a homodyne measurement of the quadrature component
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orthogonal to the axis of maximum separation between the superposed states. Yurke
et al. [28] interchanged the parametric amplifier and the back action evader in their
calculations and showed that both devices generated the same Schroedinger cat wave
function provided a suitable choice of gain parameter is made.

In 1993, Tara et al. [51] showed production of Schrodinger macroscopic quantum
superposition states in a Kerr medium. They also proposed a scheme for production
of superposition of squeezed coherent states. Gerry [31] proposed a method for
generation of Schrodinger cat states and entangled coherent states [41, 51] in the
motion of a trapped ion by a dispersive interaction. They showed that these entangled
coherent states may be generated that are a particular form of Schrodinger-cat state
showing strong correlations between the modes.

In 1999, Gerry [52] proposed a method to generate Schroedinger cat states for
optical fields. Their method involved two modes of the field interacting in a Kerr
medium. In 2005, Kim and Paternostro [10] also proposed a scheme to generate
a superposition of coherent states using small Kerr effect and a single photon or
two entangled twin photons. However, the authors of [52] and [53] used cross Kerr
nonlinearity whose evolution operator is given by ÛCK = exp (−iχ n̂a n̂b) which
affects the phase of the system depending on the photon numbers of the two modes
a and b (n̂b is the photon number operator for mode b). If mode a is in a coherent
state of its amplitude α and mode b is in single photon state, then by the action of
cross Kerr nonlinearity,

ÛCK |α〉a|n〉b = ∣
∣αei nbχ t

〉
a
|n〉b (1.5)

i.e. the Fock state |n〉b remains unaffected by the interaction but the coherent state
|α〉a picks up a phase shift directly proportional to the number of photons nb in the
| n 〉b state.

These coherent states have several attractive non-classical properties. [7, 8, 10,
53, 54]. These states lead to squeezing [55, 56], normal second order squeezing,
higher order squeezing [116, 122] and sub-poissonian statistics [55, 57]. These
superposed coherent states also show maximum simultaneous squeezing, maximum
antibunching, and maximum higher order squeezing, higher order sub poissonian
statistics [57, 58].

In this chapter, we propose a scheme to generate any desired superposition of
coherent states |α〉 and |−α〉 using simple Kerr effect and linear optical devices
like polarization beam splitters and mirrors. We show that in the output, if a single
photon is detected in a definite polarization state defined by angle θ and ϕ, the desired
superposition of coherent states |α〉 and |−α〉 results. If the photon is detected in an
orthogonal polarization state, a superposition different from the desired one results.

It may be noted that other authors who studied generation of superposition of
coherent states |α〉 and |−α〉 have taken |∈H | = |∈V | and have not considered the
general case. Also, those who considered use of cross Kerr effect have not taken the
Kerr effect into account. As is obvious, the cross Kerr effect is a dimension of the
Kerr effect only.
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13.2 Generation of Superposed Coherent State Using Kerr
Non-linearity

Figure 13.1 depicts our scheme for generation of superposed coherent states. Each
number, 1–15 represents a set of twomodes having the same direction of propagation
but one having a horizontal linear polarization and the other having a vertical linear
polarization. We refer to the two modes for the number n by nH and nV .

The whole scheme is based mainly on two components, viz, Kerr-cells and
polarizing beam splitters. The Kerr-cells have a non-linearity expressed by the
Hamiltonian

HI = gN 2 = g(NH + NV )2. (2.1)

This gives the time evolution operator

UI = e−iHI t = e−iχN 2
, χ = gt (2.2)

Constant χ represents the interaction time and is proportional to the third order non-
linear susceptibility and the length of the Kerr-cell. If a light beam, initially in modes
I H and I V passes through the Kerr-cell, and emerges in the modes FH and FH ,
the initial and final mode operators are related to each other by,

Fig. 13.1 Schematic diagram showing coherent superposition state generated by an entangled pair
of photons
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aI H,I V = U †aFH,FV U = eiχ(NFH+ NFV )2aFH,FV e
−iχ(NFH+ NFV )2 (2.3)

since, NI H = NFH and NIV = NFV .
For the other element, the polarizing beam splitter connection between the four

input modes and four output modes is obvious if we take into account the fact that
the horizontal polarization is transmitted through the beam splitter but the vertical
polarization is reflected.

Consider the input having a single photon in modes 3H and 3V and two coherent
beams in the state |β〉 in modes 1H and 6V (see Fig. 13.1). The input state can be
written as,

|Ψ 〉1,3,6 = exp[βa†1H − β∗a1H ]
(
∈H a†3H+ ∈V a†3V

)
exp[βa†6V − β∗a6V ]|vac〉

(2.4)

Here, a and a† are annihilation and creator operators for the modes denoted by the
subscripts.

The effect of Kerr-cell KC-I on mode 1H would be given by,

a1H = eiχN 2
2H a2He

−iχN 2
2H . (2.5)

Modes 2H, 3H and 3V pass through the polarizing beam splitter PBS-I for which
we have,

a2H = a5H , a2V = a4V , a3H = a4H , a3V = a5V (2.6)

Using (1.5) and (2.1), we can express the state of light written in earlier (1.4) in
the form,

|Ψ 〉5,4,6 = eiχN 2
5H exp

[
β a†5H − β∗a5H

](
∈H a†4H+ ∈V a†5V

)

× exp
[
βa†6V − β∗a6V

]
e−iχN 2

5H |vac〉 (2.7)

For light mode in 6V passing through the Kerr-cell KC-II, we can write

a6V = eiχN 2
7V a7e

−iχN 2
7V (2.8)

Effect of Polarizing beam splitter PBS-II is given by,

a4H = a8H , a4V = a9V , a7H = a9H , a7V = a8V (2.9)

Also, if the mirror M-I gives

a8H = a10H , a8V = a10V
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(2.2) takes the form,

|Ψ 〉5,10,9 = eiχ (N 2
5H+N 2

10V ) exp
[
βa†5H − β ∗a5H

](
∈H a†10H+ ∈V a†5V

)

× exp
[
βa†10V − β∗a10V

]
e−iχ(N 2

5H+N 2
10V )|vac〉 (2.10)

There are no photons in the modes 9H and 9V and it is therefore left out of
consideration and the subscript 9 on |Ψ 〉 is dropped.

Light beams in modes 5H and 5V and 10H and 10V are now passed through
Kerr-cells KC-III and KC-IV, each of which has interaction time −χ . This can be
obtained by having a nonlinear material in the cells which has a different sign of the
third order nonlinearity.

For these Kerr cells we have,

a5H,5V = e−iχ(N12H+N12V )2a12H,12V eiχ(N12H+N12V )2 (2.11)

and

a10H,10V = e−iχ(N11H+N11V )2a11H,11V eiχ(N11H+N11V )2 (2.12)

Mirror M-II gives,

a12H,V = a13H,V (2.13)

The state of light then can be written as,

|Ψ 〉13,11 = exp
[−iχ{N13H + N13V }2 + {N11H + N11V }2]eiχ(N 2

13H+N 2
13V )

exp
[
βa

†

13H − β∗a13H
](

∈H a†11H+ ∈V a†13V

)
exp

[
βa

†

11V − β∗a11V
]

e−iχ(N 2
13H+N 2

13V ) exp
[
iχ{N13H + N13V }2 + {N11H + N11V }2]|vac〉

= exp
[−iχ

(
N 2
13V + 2N13H N13V + N 2

111H + 2N11H N11V
)]

× exp
[
βa

†

13H − β∗a13H
](

∈H a†11H+ ∈V a†13V

)
exp

[
βa

†

11V − β∗a11V
]
|vac〉
(2.14)

For terms with ∈H , N11H = 1 but N13V = 0 and for terms with ∈V , N11H = 0
but N13V = 1. Hence, we can write (2.14) in the form

|Ψ 〉13,11 = e−iχ
{
∈H a†11H exp

[
βa

†

13H − β∗a13H
]
e−2iχN11V exp[β a

†

11V − β∗a11V

× e2iχN11V + ∈V a†13V e
−2iχN13H exp

[
βa

†

13H − β∗a13H
]
e2iχN13H

× exp
[
βa

†

11V − β∗a11V
]}

|vac〉 (2.15)
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= e−iχ
{
∈H a†11H exp

[
βa†13H − β∗a 13H

]
exp

[
βa†11V − β∗a11V

]

+ ∈V a†13V exp
[
βa†13H − β∗a13H

]
exp

[
βa†11V − β∗a11V

]}
|vac〉 (2.16)

= e−iχ
[
∈H a†11H |β〉13H

∣
∣β ′〉

11V+ ∈V a†13V
∣
∣β ′〉

13H
|β〉11V

]
(2.17)

where

∣
∣β ′〉 = ∣

∣βe−2iχ 〉
. (2.18)

The polarizing beam splitter PBS-IV gives

a11H = a15H , a11V = a14V , a13H = a14H , a13V = a15V (2.19)

and therefore light is in the state

|Ψ 〉14,15 = e−iχ
[
∈H a†15H

∣
∣β, β ′〉

14H,14V+ ∈V a†15V
∣
∣β ′, β

〉
14H,14V

]
(2.20)

Ifwe consider linear polarizations in directions dividing the horizontal and vertical
directions and denote these modes by + and −, defined by,

aH = 1√
2
(a+ + a−), aV = 1√

2
(a+ − a−), (2.21)

we have,

∣
∣β, β ′〉

13H,13V =
∣
∣
∣
∣
1√
2

(
β + β ′),

1√
2

(
β − β ′)

〉

13+,13−
(2.22)

and a similar relation for
∣
∣β ′, β

〉
.

Since β ′ = βe−2iχ ,

1√
2

(
β + β ′) = √

2βe−iχ cosχ

1√
2

(
β − β ′) = √

2iβe−iχ sin χ, (2.23)

If we write

α ≡ √
2iβ e−iχ sin χ

α0 ≡ √
2β e−iχ cosχ = −iα cot χ, (2.24)



124 S. A. Kumar et al.

(2.16) takes the form,

|Ψ 〉14,15 = 1√
2
e−iχ

[
∈H a†15H |α〉14−+ ∈V a†15V |−α〉14−

]
|α0〉14+ (2.25)

If we now define modes 15± using (2.19), we get,

|Ψ 〉14,15 = 1√
2
eiχ

[
a†15+

(∈H |α〉14++ ∈V |−α〉14−
)

+a†15−
(∈H |α〉14+− ∈V |−α〉14−

)]|α0〉14+ (2.26)

This makes it clear that if a photon is detected in mode 15+, radiation in mode
14+ will be in the superposed coherent state,

∈H |α〉14++ ∈V |−α〉14−, (2.27)

while if a photon is detected in 15−, the state

∈H |α〉14+− ∈V |−α〉14− (2.28)

will be generated.
If we write ∈H/∈V = tan

(
1
2θ

)
eiδ, 0 ≤ θ ≤ π, 0 ≤ δ ≤ 2π,

The probabilities of detection of a single photon in the modes 15± are

1

2

[
1 + 2Re

(∈∗
H∈V

)
e−2| α|2

]
= 1

2

[
1 ± sin θ cos δ e−2|α|2

]
. (2.29)

If | α|2 is appreciable, the probabilities are close to 1/2 and hence it may be
expected that the desired superposition state should be producedwithin two attempts.
It may also be noted, that for 0 < δ < π if the probability of success in any one
attempt is >1/2.

13.3 Conclusion

It may be mentioned that one could have chosen χ = π/2 and β = α√
2
, necessitating

the least possible value of |β| for a given |α|. The advantage of having a larger value
of |β| (note that β = −iαeiχ/

√
2 sin χ or |β| = |α|/√2 sin χ ) and a smaller value

of χ is that only a smaller interaction time and therefore a smaller length of the Kerr-
cell is required. In this case, however, the energy going in the mode 14+ is wasted
in the signal in the state |−iα cot χ〉.

Thus, one has to make a compromise between requirements of (i) larger length
of Kerr-cell and (ii) wastage of the energy in the orthogonal mode 14+. It may be
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noted that the states |α〉+|0 〉− and |−α〉−|0 〉− can also be written as
∣
∣
∣ α√

2
, α√

2

〉

H,V

and
∣
∣
∣− α√

2
, − α√

2

〉

H,V
, respectively. Hence, the states ∈H |α〉++ ∈V |−α〉+ is same

as the state ∈H |γ, γ 〉H,V + ∈V |−γ,−γ 〉H,V . Note that such states are entangled
in the modes H and V and have been used extensively in literatures.
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