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Abstract This paper aims to compare the different regression techniques in conven-
tional turning of a cylindrical workpiece of Acetal Homopolymer Delrin and to deter-
mine the most accurate one among them for determining the MRR and SR. Three
different cutting parameters, namely feed (mm/rev), depth of cut (mm) as well as
speed (RPM), are varied, and the corresponding MRR and surface roughness are
represented by a Taguchi L27 orthogonal array. The orthogonal array is divided into
training as well as testing datasets by making use of the train_test_split functionality
in python. The testing data is one-third of the entire dataset with the remaining data
forming the training data. In each case, the mean square error (MSE) is determined by
contrasting obtained values with the output data present in testing dataset. Out of all
the functions formulated, the neural network (NN) gives the least mean square error
of 0.108. Genetic algorithm (GA) is then applied to optimize the input parameter
values. It took 139 generations to achieve the optimum value of 1.735 pm for SR
and 827.473 mm?/min for MRR. This combination of resulting values was obtained
at 299.887 rpm, 0.59 mm/rev feed and 1.49 mm depth of cut.

Keywords Regression - Taguchi - Mean square error - Neural network - Genetic
algorithm

1 Introduction

Delrin is a thermoplastic polymer trademarked by DuPont and commonly known as
polyoxymethylene (POM). It has properties similar to some metals and therefore is
a potential alternative. Regression is applied to the data to determine a continuous
output. It is a supervised learning operation in which the algorithm is trained on
data, where it figures out the correlation among input and output variables and then
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makes predictions for new output values given new input values. In this paper, the
algorithms are fed the rake angle, speed and feed as input and the corresponding
MRR and surface roughness values as output. Higher rake angle usually gives better
surface finish [1]. When graphite and polymer composites are cut orthogonally, it is
found that surface finish is extremely poor when the rake angle is between 0° and 5°.
On increasing the rake angle, the concavities formed on the machine surface decrease
resulting in improved surface finish [2]. The rake angle generally used varies from
about 6° to 20°, and it can even reach up to 30° under certain conditions [3]. We
found the surface roughness to be minimized in this region.

One of the problems with machining is that built-up edge (BUE) is created. If
machining parameters are not selected carefully, then there is a build-up of layer at
the tool edge called BUE and at the tool-rake interface known as built-up layer (BUL)
[4-7]. Especially, when the aluminium undergoes dry machining, the effect of BUE
and BUL is more pronounced. However, the environmental concerns accompanying
the utilization of coolants and their disposal make dry machining an attractive alter-
native. To offset the disadvantage of BUE and BUL, dry machining of aluminium is
accompanied by the use of high rake angles (about 30°) and ultra-hard tool materials
(like diamond and CBN) [8].

Apart from surface finish, MRR is also of tremendous interest to us. Rake angle
does not have as major an effect on MRR as depth of cut (DOC). DOC followed
by speed is more influential in determining the MRR in a machining operation [9].
However, on increasing the rake angle and keeping the other parameters constant,
there is slight decrease in the MRR [10].

Another important machining parameter is the feed rate. Feed has a greater effect
on SR than other machining parameters [11, 12]. Feed is related to surface roughness
by the formula R, = f 2/8r [13], where f = feed rate and R, = peak-to-valley surface
roughness. Thus, feed rate and surface finish share an inverse relationship. On the
other hand, the MRR is directly proportional to feed rate [14].

Speed plays a major role in determining output parameters like MRR and surface
finish. As speed increases, it leads to an increase in MRR as well while reducing the
surface finish [15]. Speed and feed dominate the MRR of the workpiece [15].

There are several regression techniques which were used in predicting the SR and
MRR like:

1.1 Linear Regression

Linear establishes a relationship between independent variables and dependent vari-
ables in an equation [16]. It is one of the most widely used regression analysis
techniques because of its simplicity and the fact that a dataset which varies linearly
is easier to fit than a nonlinear dataset [17, 18]. For n points present in a dataset,
linear regression models assume a linear correlation between x and y. No relation is
perfect, and often there is some error/noise which gets incorporated into the equation
as shown below:
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yi =01+ Blxl+-- -+ Bnxn+ei =x'f+eiwherei =1,...,n

1.2 KNN Regression

It is among the simplest algorithmic techniques in machine learning. In KNN algo-
rithm, the output value is the average of K nearest values. KNN regression technique
is a non-parametric type of regression analysis [19].

1.3 Support Vector Regression (SVR)

SVRs come under the category of supervised learning models that predict a contin-
uous output value for a given input. They come under the category of support vector
machine (SVM) or support vector network [20]. Our goal in SVR regression is to
determine a function that maximizes deviations for all the data points [21]. Errors
less than the threshold value of € are considered negligible, but those greater than
that are unacceptable [22]. Linear support vector regression has a general equation:

y=2X%i=1(ai —a){xi,x)+b

1.4 Bayesian Ridge

Target value is a linear combination of input values. Bayesian regression includes a
regularization parameter. Bayesian ridge regression estimates § using L2-constrained
least squares [23]. Bayesian ridge regression has a greater than quadratic fit time as
the number of samples makes scaling hard. In contrast to the ordinary least squares
(OLS) estimator, the weights are shifted toward zeros, which lends stability. By
maximizing the marginal log-likelihood over a number of iterations, estimation is
achieved. There are several implementation strategies for Bayesian ridge. The imple-
mentation mentioned in this paper is taken from [24]. Moreover, better values of the
regularization parameters inspired from the recommendation in [25].

1.5 Decision Tree Regression

The core algorithm called ID3 involves breaking the dataset into increasingly smaller
subsets represented by a combination of decision as well as leaf nodes [26]. Numerous
connections branch forth from a decision node, each of which represents an attribute
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while leaf nodes represent a decision. Node corresponding to the best predictor is
referred to as the root node.

1.6 Gradient Boosting Regression

It is used to make predictions by using an ensemble of ML models. The various ML
models are generalized by allowing optimizing on an appropriate cost function [27].
Gradient boosting model helps in the optimization of any arbitrary differentiable
loss functions. Training set of the form {(x1, yl), to (xn, yn)} used to determine
approximation F(x) to minimize the loss function

L(y, F(x)) : F =argmin Ex, y[L(y, F(x))].

1.7 Neural Networks

Simulate the neurons in the human brain. Artificial neural networks consist of a
minimum of three layers, viz. the input, output and hidden layer. The connection
between is assigned weights which can be positive, negative or zero [28]. The NN
learns the correlation present in the data through repetition. More the number of
repetitions, better the NN learns. Once it has learned the relationship, it can generalize
to previously unseen data and can thus predict output values for new input data.

1.8 Genetic Algorithm (GA)

GA is an evolutionary algorithm which we have utilized for optimization. In GA,
we start off with an initial population which may be randomly generated. We then
select the fittest members from this initial population based on various criteria and
make them pass their “genes” to the next generation. This step is known selection.
“Offspring” are created by mating the parent population selected in the previous step.
This process keeps on repeating until the point where the offspring produced are not
much different from the parents. This point is known as convergence [29-31].

2 Experimental Investigations

In this paper, three different cutting parameters, namely feed (mm/rev), depth of cut
(mm) as well as speed (RPM), vary, and the corresponding MRR (mm?®/min) and
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surface roughness (micrometres) are represented by a Taguchi L27 orthogonal array.
The train_test_split function of sklearn splits the dataset further into two categories:
training and testing. Testing data represents one-third of the entire dataset, with the
rest being training data.

A homopolymer Delrin rod of diameter 34 mm was selected, and CNC turning
operation was performed on it. Before performing final CNC turning operation,
a roughing operation was performed on it. At the end of the turning operation, the
diameter was reduced from 34 to 33 mm. In the CNC turning operation, three different
depths of cuts were provided: 0.5, 1.0 and 1.5 mm. The entire rod was broken into
three pieces of equal length, and all the operations for a particular depth of cut
were performed on each rod in succession. Various regression techniques were then
applied on the dataset, and the mean square error was calculated to determine the
accuracy of the ML regression models. The scikit-learn library of python was used
for implementing the various regression techniques [32]. In addition to regression
techniques, a neural network has also been implemented to predict the MRR and
surface roughness using the Keras library [33]. Matplotlib library has been utilized
to plot the experimental MRR and SR values along with the predicted MRR and SR
values [33]. MATLAB optimization toolbox is used to implement multi-objective
genetic algorithm to find the optimized values of the input variables [34]. CNC
turning experimental data obtained was arranged in a L.27 orthogonal array (Table

1.

3 Results and Discussion

It was found that the least mean square error while predicting both MRR and SR
was obtained by NN. The mean square error obtained, for each regression technique,
is represented in Table 2. As can be seen from the table, neural net gives the best
overall results, as it has an extremely small MSE.

The above results can be confirmed by visualizing the values obtained using
regression techniques with the true values of both MRR and SR on two different
graphs (the graph for neural network has not been included as the values for NN
have been reshaped and will have to be represented by another scale than shown in
Figs. 1 and 2).

Out of the three regressions, viz. linear, SVR and Bayesian ridge regression,
linear regression has the least error for both MRR and SR. For linear regression, the
equation found is:

y =[[0.0092381 — 1.31666667 — 1.15333333]
[—6.41442733 — 886.39633333 — 65.8162]] * x
+ [1.4800000000000002 3380.573266666667].



44

Table 1 L27 orthogonal array
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Exp. no. | Control factors Speed (s) |Feed (f) | Depthof |Surface MRR

A B |C (rpm) (mm/rev) | cut (d) roughness (mm?/min)

(mm) (Ra) (um)

1 1 1 |1 |150 0.2 0.5 1.04 1083.77
2 1 1 |2 |150 0.2 1.0 2.44 1784.15
3 1 1 |3 |150 0.2 1.5 0.56 1120.99
4 1 2 |1 |150 0.4 0.5 0.90 1665.85
5 1 2 |2 | 150 0.4 1.0 1.42 1568.58
6 1 2 |3 |150 0.4 1.5 0.96 1898.23
7 1 3 |1 |150 0.6 0.5 0.86 1702.32
8 1 3 |2 |150 0.6 1.0 1.14 2505.56
9 1 3 |3 |150 0.6 1.5 1.16 1933.68
10 2 1 |1 250 0.2 0.5 2.62 2140.88
11 2 1 |2 250 0.2 1.0 5.38 2216.46
12 2 1 |3 250 0.2 1.5 0.52 2538.14
13 2 2 |1 250 0.4 0.5 2.32 1811.81
14 2 2 |2 250 0.4 1.0 3.58 2469.70
15 2 2 |3 250 0.4 1.5 0.64 2040.10
16 2 3 |1 250 0.6 0.5 1.92 1410.84
17 2 3 12 |250 0.6 1.0 3.44 1532.72
18 2 3 |3 |250 0.6 1.5 0.94 1579.62
19 3 1 |1 300 0.2 0.5 2.04 1047.48
20 3 1 |2 300 0.2 1.0 4.80 960.00
21 3 1 |3 |300 0.2 1.5 1.00 1085.79
22 3 2 |1 300 0.4 0.5 2.24 251.998
23 3 2 |2 300 0.4 1.0 3.84 461.219
24 3 2 |3 ]300 0.4 1.5 0.80 980.251
25 3 3 |1 |300 0.6 0.5 2.70 143.928
26 3 3 12 300 0.6 1.0 3.76 0.0035
27 3 3 |3 300 0.6 1.5 0.74 0.1408

The equation obtained on application of linear regression was taken, and genetic
algorithm (GA) was applied to it for optimizing the input variables. In order to imple-
ment GA, the optimization toolbox in MATLAB was used. In this experiment, the
MATLAB genetic algorithm was selected in the optimization toolbox. The following
parameters are used during the optimization: An initial population of 50 with feasible
population as the function and tournament type with a crossover of 0.8. We also
selected a single-point crossover and mutation which is adaptive feasible.
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Table 2 Mean square error obtained for MRR and SR, which is calculated using various regressors

Mean square error
Linear regression 0.46
Support vector regression 2.15
KNN regression 0.275
Bayesian ridge 1.981
Decision tree regression 0.647
Gradient boosting regression 0.86
Neural networks 0.108
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Fig. 1 Obtained and true values of surface roughness (plotted using matplotlib library in python)
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Fig. 2 Obtained and true values of material removal rate (MRR) (plotted using matplotlib library
in python)
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3.1 Optimization Using Genetic Algorithm (GA)

As can be seen from Fig. 3, the multi-objective GA iterates for obtaining the best
solution and finds it on the 139th generation. The graph in Fig. 5 plots Objective 2
on the y-axis against Objective 1 on the x-axis giving the Pareto front. Average speed
for each generation is determined in Fig. 7. The score diversity is represented in a
histogram in Fig. 4 while Fig. 6 plots each individual’s rank. These graphs help us
determine the optimized solutions.
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Fig. 5 Pareto front graph

Fig. 6 Rank histogram

Fig. 7 Average Pareto
spread

4 Conclusion
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Prediction of SR and the material removal rate through regression allows us to

conclude the following:

1. Neural networks give the least mean square error of 0.108 and are thus an
improvement over regression.
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In the graph showing comparison of regression techniques, it shows that KNN
regression has the best fit.

On applying genetic algorithm, we find that optimization takes 139 generations
which is quite fast.

The optimum cutting parameters are 150 rpm 0.6 mm/rev feed and 1.49 mm depth
of cut. At this combination, SR is 0.351 wm and MRR is 1788.91 mm?/min.
Increasing feed while keeping other factors constant resulted in a decrease in the
surface finish of the workpiece.
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