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Abstract. Image fusion can extract redundant information of multiple images
into one image, and the goal of image fusion is to better apply to classification
tasks. Convolutional neural networks have proved to be an effective way for
accuracy of classification. However, fusion and classification usually considered
separately. In this paper, we design a ‘fusion-classification networks’, and
introduce image fusion technology and 3D convolutional neural networks (3D
CNNs) into HSI classification. In the proposed method, the fusion process is
guided by the classification result, and the classification accuracy is improved by
the fusion process. Image fusion technology is performed on spectral bands to
exploit the redundancy information of HSI, and 3D CNNs are applied on the
fused image to extract more robust spectral-spatial features. The proposed
method is tested on two datasets. Its outstanding performance is validated in
comparison with other state-of-the-art approaches.
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1 Introduction

Hyperspectral image (HSI) has hundreds of spectral bands for each image pixel. This
rich information can provide useful information for image classification and recogni-
tion [1]. Furthermore, the increasing spatial resolution makes it more vital to analyze
the spatial information. HSI classification has developed a lot in remote sensing image
analysis. How to learn the effective features from the rich spatial and spectral infor-
mation is a challenging task.

The typical feature extraction method is subspace-projection method, such as
principal component analysis (PCA) [2], independent component analysis (ICA) [3],
and linear discriminant analysis [4]. Moreover, wavelet transform has been investigated
into the hyperspectral image classification [5, 6]. The limitation of these methods is that
they can extract the spectral information only. But the spatial information is neglected,
which also plays an important part in HSI classification. Through the combination of
the spatial and spectral information, some spatial-spectral classification methods were
proposed, such as Extended Multi-Attribute Profiles (EMAPs) [7], active learning [8],
decision fusion [9, 10], edge-preserving filtering [11, 12].

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2021
Q. Liu et al. (Eds.): CENet 2020, AISC 1274, pp. 419–428, 2021.
https://doi.org/10.1007/978-981-15-8462-6_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8462-6_47&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8462-6_47&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8462-6_47&amp;domain=pdf
https://doi.org/10.1007/978-981-15-8462-6_47


Recently, deep neural networks are demonstrated a useful tool for image feature
extraction. It can learn more complex features from the image than the traditional
neural networks (less than three layers). Now the commonly used deep neural networks
include stacked autoencoder networks (SAEs) [13], Deep Belief Networks (DBNs)
[14], deep Boltzmann machines (DBMs) [15], and deep convolutional neural networks
(CNNs) [16–18]. In [19, 20], SAEs and DBNs were firstly introduced into the HSI
classification problem, and achieved ideal results. Among all of these networks, CNNs
are the two-dimension (2D) neural networks, which make it more suitable for
exploiting the deep structure information of the image. Because of the superior per-
formance on 2D image, CNNs have been introduced into handwritten characters
recognition [17], document image classification [16, 18], and HSI classification
[21, 22]. In [21], CNNs were introduced into the HSI classification in spectral domain.
The convolutional and subsampling processes were considered as the one-dimension
operator. In [22], the spatial and spectral information was extracted separately to form
some two-dimension (2D) feature maps. And then the CNNs were trained based on
each feature map to get useful high-level features. Due to the high spectral dimension
of HSI, [23] and [24] proposed HSI classification method by combining dimension
reduction method and CNNs.

Traditional CNNs are designed to process the 2D data. So, dealing with the 3D
data, we should convert it to the 2D model firstly. HSI is a 3D cube, the spatial and
spectral information are all useful for classification. And it is believed that the spectral
and spatial information should be considered simultaneously to further improve the
classification accuracy [25]. To capture the effective space features, some 3D feature
learning method was proposed, such as 3D Gabor wavelet [25] and 3D DWT [26]
based HSI classification methods. These methods have proved to obtain higher clas-
sification accuracy, but they have a problem that 3D features extraction method need to
determine the number of features, and it will bring large number features which need to
be selected. The feature extraction process and the feature selection process have great
influence on the classification accuracy. Deep neural networks can adaptively learn the
features of the image, and therefore, some researchers extended the 2D CNNs into 3D
mode and applied on video data, 3-D object recognition, and HSI classification. 3D
convolutional neural networks (3D CNNs) can automatically learn the features from
low-level to high-level, and the feature extraction and the feature selection are fused to
learn the appropriate features. Hence 3D CNNs can learn more discriminative features.

To inherit the advantages of 3D CNNs, we propose 3D convolutional neural net-
works with image fusion (3D CNNs_IF) model for HSI classification in this paper. 3D
CNNs_IF consists of three parts: band fusion, 3D feature extraction, and classification.
Hence, 3D CNNs_IF can be considered as a ‘fusion-classification networks’. 3D CNNs
require high spatial and time complexity, so it is necessary to reduce dimension of the
HSI first. The reduced image affects the performance of the following feature extrac-
tion. Image fusion is to retain the most useful information of multiple images into one
image. According to the idea of image fusion, we design a band fusion layer to reduce
the dimension of the HSI, and maintain the important spectral and spatial information
in the image after dimension reduction. Band fusion layer is to fusion the adjacent
several bands into one, which can remove the noisy pixels and reduce the redundant
information of HSI. We note in [11], the combination of band fusion and recursive
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filtering were proposed for HSI classification. Compared with [11] and other traditional
dimension reduction methods, the band fusion layer is connected with the 3D feature
extraction layer, and the reduced image can not only reduce the computational com-
plexity of 3D CNNs, but also can extract more effective spectral and spatial information
under the guidance of the 3D deep features. Based on the proposed 3D CNNs_IF
model, the proposed HSI classification method can capture more spectral and spatial
features with less loss of information.

The proposed method is tested on two well-known datasets: Pavia University and
Salinas images. Experimental results show that the proposed 3D CNNs_IF method can
improve the classification accuracy obviously. This paper is organized in four sections.
Section 2 describes the structure of 3D convolutional neural networks with image
fusion. Section 3 consists of the experimental results and analysis, and Sect. 4 presents
the concluding remarks.

2 The Structure of 3D Convolutional Neural Networks
with Image Fusion

In this section, we propose 3D convolutional neural networks with band fusion method
for hyperspectral image classification. We first construct the 3D cube sample by taking
a 3D neighborhood window on the HSI, and then feed each 3D sample into 3D
CNNs_BF model for training. The proposed 3D CNNs_BF model consists of three
parts: band fusion, 3D feature extraction, and classification, which is shown in Fig. 1.

Fig. 1. Framework of 3D convolutional neural networks with image fusion.
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2.1 Image Fusion

HSI usually consists hundreds of spectral bands, which contain a lot of redundant
information. In order to effectively use the redundant information and reduce the
complexity of the subsequent feature extraction, we first generate a band fusion layer to
extract valid information.

Firstly, we divided the spectral bands into M groups, and each group contains N
spectral bands ðX1; . . .;XNÞ. The spectral bands of each group are fused into one band
by weighted fusion rule. And then pass the fused band into a nonlinear activation
function.

Fj ¼ sð
XN
i¼1

WijXiÞ j ¼ 1; . . .;M ð1Þ

where Wij is the fusion weight connecting i� th input and j� th output, Fj means the
j� th output band, and sð�Þ is the sigmoid function.

According to Eq. (1), the valid information of multiple bands can be fused into a
band through the fusion process. Different from traditional fusion method, the weight
Wij is not a pre-fixed value, but is updated by the supervised back propagation algo-
rithm. Hence the fused image can be more effective on the extraction of redundant
spectral information.

Through Eq. (1), we can get M fused spectral bands. And then the obtained bands
Fj; j ¼ 1; . . .;M are concentrated into a 3D cube for the following process of feature
extraction.

2.2 3D Feature Extraction

In Sect. 2.1, the spectral dimension of each sample is reduced and these samples are
concentrated into a 3D cube for spectral-spatial feature learning. To extract more
discriminative spectral-spatial feature, 3D convolutional neural networks are applied to
extract the spectral and spatial information simultaneously.

Similar to 2D CNNs, the forward process for 3D CNNs is also a layer-by-layer
based calculation. The features can be obtained according to the feature maps in the
previous layer. The calculation process is described following.

Convolution layer: At the convolution layer, the input 3D feature maps are con-
volved with the 3-D filters and then passed through a nonlinear function to obtain the
3D output feature maps. The process is formulated as Eq. (2).

Fl
j ¼ sð

X
i2M

Fl�1
i �Kl

ij þ bljÞ i ¼ 1; . . .; p; j ¼ 1; . . .; q ð2Þ

where Fl
j means the output 3-D feature map in l layer, q is the number of the output

feature maps. Fl�1
i is the input 3-D feature map in l� 1 layer, and p is the number of

the input feature maps. Kl
ij is a 3-D filter, and blj is the bias for j� th output feature

map.
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Pooling layer: The max-pooling method is adopted in this paper. The purpose of the
pooling layer is to sub-sample the previous feature map and make it size reduced. The
formula is shown in Eq. (3).

Fl
j ¼ sðgðFl�1

i Þþ bljÞ i ¼ 1; . . .; p; j ¼ 1; . . .; q ð3Þ

where gðxÞ represents a 3-D sub-sampling operation. The previous feature map Fl�1
i is

divided into several small 3-D cubes. For each cube, map its maximum value into the
output feature map.

Full connection layer: If each feature map in previse layer is a 3-D cube, it should
be flatted into a vector first. And then each value of the vector is connected to all the
units of full connection layer. The formula is shown in Eq. (4).

f l ¼ sðWlgl�1 þ blÞ ð4Þ

where gl�1 is the flatted vector in the previous layer, and Wl is the connection weight
matrix.

2.3 Classification

Softmax classifier is used for classification in 3-D convolutional neural networks. The
softmax model is shown in Eq. (5).

yL ¼ 1Pnumclass
j¼1 ew

T
j f

l

ew
T
1 f

l

ew
T
2 f

l

..

.

ew
T
numclassf

l

2
6664

3
7775 ð5Þ

where numclass means the class number in the classification problem. The output yL is
a vector for each sample. The value in vector yL represents the probability of all the
classes. The position where it has a maximum value in vector yL is the label for the
sample. The mini-batch gradient descent method is used for training the proposed
model.

3 Experimental Results

3.1 Datasets

Two different datasets: The Pavia University and Salinas images are used in the fol-
lowing experiments to verify the effectiveness of the proposed 3D_CNN_IF method.

The Pavia University image was recorded by Reflective Optics System Imaging
Spectrometer. It has 115 bands with size of 610� 340. Only 103 bands are used for
experiments due to water absorption. Its spectral range is from 0.43 to 0.86 lm.
42776 labeled pixels with 9 classes are contained in the ground truth map.
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The Salinas image was recorded by the AVIRIS sensor over Salinas Valley, CA,
USA. It has 224 bands with size 512� 217. Remove water absorption, 204 bands are
used for the experiments. Its spectral range is from 0.4 to 2.5 lm. 54156 labeled pixels
with 16 classes are from the ground truth map.

In our experiments, the parameter setting for the proposed method is shown as
follows: The spatial size of the input sample is 17� 17, the number of group is set as
20, the first convolution layer has 12 filters with size 4� 4� 5, the second convolution
layer has 36 filter with size 3� 3� 3. Max-pooling is used after the first convolution
layer. The full connection layer has 100 units. And the end of the 3-D CNNs is the
softmax classifier. The iteration number is set as 500 epochs for training, the learning
rate is set as 0.05. 10 independent replications of all the experiments are conducted.
The average values of overall accuracy (OA), average accuracy (AA), and kappa
coefficient are used to evaluate the classification accuracy. For each replication, 10% of
the labeled samples are randomly selected to generate the training set, and the rest
samples for testing. The false color image of two datasets are shown in Fig. 2.

3.2 Comparisons to Other Methods

In this section, PCA, EMAPs [7], 1-D CNNs [21], SAEs [19], and 3D DWT [26] are
used to make a comparison. For EMAPs method, the threshold value of standard
deviation attribute is [2.5%, 5%, 7.5%, 10%], and the threshold value of area attribute
is set as 200, 500, and 1000. For 3D DWT method, haar wavelet is utilized for feature
extraction. The other parameters are set as the fault in their papers.

Figures 3, 4 show the RGB composition map for classification results and
Tables. 1–2 show the classification accuries. PCA and 1D CNNs methods only use the
spectral information for classification, and EMAPs and SAEs are the spectral-spatial
based classification methods. 3D DWT and the proposed method are the 3D based
methods, which can capture the spectral and spatial information simultaneously. We
can observe from Figs. 3 and 4 that PCA method is sensitive to noise, and the clas-
sification maps present the noisy classification results. Although 1D CNNs belong to
the spectral-based classification method, but it can capture the high-level features, and

Fig. 2. Experiment datasets (a) False color image of Pavia University; (b) False color image of
Salinas.
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suppress the noise in classification map. Obviously, the classification results of
spectral-spatial methods are better than the spectral-based method. Some misclassifi-
cations of the mixed spectral pixels are reduced in classification map, especially for
class 3 of Pavia University and class 8 of Salinas. Of all the compared methods, 3D
based methods shows a competitive classification result. Since 3D DWT cannot rep-
resent the image adaptively, which affects its performance. The proposed method can
capture the high-level features of the HSI, and obtains much higher classification
accuracy than other methods do Tables 1 and 2.
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Fig. 3. Classification maps for Pavia University dataset; (a) Ground truth map; (b) PCA;
(c) EMAPs [7]; (d) 1D CNNs [21]; (e) SAEs [19]; (f) 3D DWT [26]; (g) 3D CNNs_IF

Table 1. Classification accuracies of Pavia University.

Classes PCA EMAPs 1D CNNs SAEs 3D DWT 3D CNNs_IF

OA/total 82.06 96.36 93.28 95.18 95.99 97.77
AA 76.31 95.10 90.38 93.18 94.28 97.13
Kappa 74.96 95.17 91.04 93.59 94.67 97.04

Table 2. Classification accuracies of Salinas.

Classes PCA EMAPs 1D CNNs SAEs 3D DWT 3D CNNs_IF

OA/total 96.95 97.45 91.73 92.01 94.25 97.97
AA 70.86 97.52 94.68 96.56 97.54 98.15
Kappa 74.19 97.16 90.77 91.10 93.60 97.75
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4 Conclusions

In this paper, a novel framework for HSI classification via 3D CNNs_IF is proposed.
Image fusion technology is applied on spectral band of HSI to exploit the effective
information, and 3D CNNs are used for exploiting the deep features of HSI. In our
method, the “fusion-classification” networks can obtain more robustness and dis-
crimination features, and the classification accuracy is improved obviously. For
hyperspectral images, reducing spectral redundancy is very important for classification.
In our further work, we will study more effective “fusion-classification” networks to
further improve the classification accuracy.
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