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Abstract. The autoencoder (AE) is based on reconstruction and unsupervised
framework, so its extracted features contain enough components to represent the
input signal. Based on this characteristic, AE can be well applied to hyperspectral
unmixing. However, due to the low precision of traditional AE and the large influ-
ence of noise, in this paper, a deep denoising autoencoder network (DDAE) for
hyperspectral unmixing is proposed to improve the accuracy of abundance estima-
tionwhile realizing the de-noising function. In order to guarantee the abundance to
be sum-to-one and nonnegative, the endmembers satisfy the nonnegative, we limit
the weight of hidden layer and decoding layer to be nonnegative, add the sum-to-
one constraint to the hidden layer, and the L2,1-norm constraint to the objective
function as a regular term, which takes advantage of the multiple sparsity between
adjacent pixels. Experiments with real data and comparison with other algorithms
prove the effectiveness of the DDAE algorithm.
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1 Introduction

In recent years, as deep learning has become more and more widely used in computer
vision, it has gradually been introduced into the fields of image classification, natural
language processing, and remote sensing data. At present, autoencoder (AE), restricted
Boltzmann machine, deep belief network, and convolutional neural network are the
most common deep learning models. The autoencoder is based on reconstruction and
unsupervised framework, such that the extracted features contain enough components
to represent the input signal. Based on this characteristic, the AE can be well applied
to hyperspectral unmixing. Firstly, the main features of the original data are extracted
by encoding. Secondly, the original data is reconstructed by decoding, and the abun-
dance coefficient and the endmember matrix can be, respectively, obtained. Because
the traditional AE has no constraints, it is easy to copy the input to the output directly,
or only make minor changes to produce small reconstruction errors, so that the model
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performance is usually very poor. The denoising autoencoder (DAE) based on the AE
adds random noise to the input and transfers it to the AE to reconstruct the noise-free
input.

In this paper, a deep denoising autoencoder network (DDAE) for hyperspectral
unmixing is proposed. According to the physical meaning of unmixing, the abundance
and endmember must satisfy nonnegativity, and the abundance coefficient should satisfy
the sum-to-one requirement, so when using DAE for hyperspectral unmixing, set the
weight of the hidden layer and the decoding layer to nonnegative, and the hidden layer
satisfies the sum-to-one requirement. If the noise and endmember are estimated incor-
rectly, the performance of unmixing will decrease dramatically [1]. In order to solve this
problem, the L2,1-norm constraint is added to the objective function as a regularization
term, which not only reduces the redundant lines of the encoder but also take advantage
of the multiple sparsity between adjacent pixels, and improves the performance of abun-
dance estimation. In the simulation experiment, compared with other commonly used
unmixing algorithms, the DDAE algorithm is superior to other comparison algorithms
on simulated and real.

2 The Model of Denosing Autoencoder

Traditional AE without any constraint is easy to directly copy the input to the output, or
only make minor changes to produce small reconstruction errors, such that the model
performance is usually very poor. In this context, Vincent et al. proposed the DAE
algorithm [2] based on the traditional AE, by adding noise to the input, and then using
the “corrupted” samples containing noises to reconstruct the “clean” input without noise,
which is the main difference from the traditional AE. At the same time, the training
strategy enables DAE to learn more about the essential characteristics of the input data.
In this paper, add additive Gaussian noise to the data, and change the size of the noise
to conduct experiments separately.

The DAE network includes the following two parts:

1. Encode the input data X with the encoder f (x) to obtain the hidden layer output S
(that is, abundance coefficient):

S = f (x) = σ(WX) (1)

The activation function is represented by σ(x), and the weight of the encoder is
represented by W.

2. Decoder g(x) uses S to reconstruct the data:

X̂ = g(S) = AS (2)
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The decoder weight (i.e., endmember) is represented by A, and X̂ represents the
reconstructed data.

The network uses the minimized average reconstruction error to learn the weights
and hidden layer representation of the reconstructed data defined as follows:

J (W,A) = 1

n

n∑

i=1

1

2

∥∥g(f (xi)) − x̂i
∥∥2
2 (3)

According to the existing formulas, we will further study to solve the unmixing
problem by combining nonnegative constraints and sum-to-one constraints.

3 Deep Denoising Autoencoder Networks for Hyperspectral
Unmixing

In this section, the proposed deep denoising autoencoder is introduced in details. Figure 1
shows the network structure of the proposed DDAE algorithm.

Fig. 1 Network structure of the proposed DDAE

For unmixing problems, the sum-to-one of the abundance coefficient is an important
constraint. In order to satisfy this constraint, the input data X̂ and the weight A are
expanded by a constant vector, and the augmented matrices are denoted by X̄ and Ā,
respectively:

X̄ =
[

X̂

1Tm

]
, Ā =

[
A

1Tl

]
(4)

So 1Tl sj = 1, the column vector of the abundance matrix satisfies the sum-to-one
constraint.

In practical applications, the data is often accompanied by noise, and the presence
of noise and the incorrect estimation of the endmember will cause the unmixing per-
formance to drop sharply. Therefore, regular terms

∥∥WT
∥∥
2,1 are introduced to reduce

the redundant rows of the encoder, but this strategy cannot reflect the multiple sparsity
between adjacent pixels; in this paper, we improved the term to ‖σ(WX)‖2,1, which not
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only reduces the redundant endmember but also introduces multiple sparsity to improve
the performance of abundance estimation. In summary of the above analysis, defining
the objective function of W as:

J (W) = 1

2

∥∥Āσ(WX) − X̄
∥∥2
F + ‖λ(WX)‖2,1 (5)

According to the requirement of linear unmixing, both the encoding function and the
decoding function should be linear mapping functions. At the same time, the activation
function also ensures that the hidden layer (abundance S) is nonnegative. Therefore,
the ReLu function is selected as the activation function, which is defined as follows
σ(x) = max(x, 0). However, the ReLu function has a disadvantage in increasing the
gradient extensively. According to the research, it can be solved by L1-norm or L2-norm
[3]. In the proposed network, we use the L2,1-norm to solve the problems caused by
ReLu [1]. According to the requirements of the unmixing, the weight of decoder also
needs to be nonnegative, that is A ≥ 0. Also, we solve this problem with the ReLu
function, which guarantees the nonnegativity of A during the optimization process.

4 Experimental Results and Analysis

In this part, we conducted simulation experiments through a set of real data to verify the
performance of the algorithm. And compare it with SUnSAL, SUnSAL-TV, and SMP
algorithm.

The experiment used the airborne Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) Cuprite data as the hyperspectral data [4]. The data size is 250 × 191 pixels
and contains 188 spectral bands. The mineral map generated by Tricorder3.3 software
and the reconstructed abundance map of each algorithm are shown in Fig. 2.

In the experiment, the performance of the unmixing algorithm is evaluated by using
sparsity and reconstruction error. Sparsity is the number of non-zero values in the abun-
dancematrix of hyperspectral images. In order to prevent the negligible value from being
counted in the total during calculation, we define the abundance value greater than 0.001
as non-zero abundance [5]. The RMSE is defined as follows [6]:

RSME =
1

n

n∑

i=1

√√√√ 1

m

m∑

j=1

∥∥∥Xij − X̂ij

∥∥∥
2

2
(6)

where X represents the original hyperspectral image, X̂ represents the reconstruction of
the hyperspectral image, n represents the number of bands, andm represents the number
of pixels of the image. The better the quality of the unmixing with the lower the RMSE.

Table 2 shows the sparsity and RMSE of each algorithms. It can be seen that the
sparsity and reconstruction error of the DDAE algorithm are the smallest and far superior
to other algorithms, indicating that the proposed algorithm has high unmixing perfor-
mance for real hyperspectral images. From Fig. 2, it can be seen that the reconstructed
abundance image has fewer noise points, and retains the edge and feature information of
the image, which is closer to the abundant distribution map generated by the software.
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Fig. 2 Abundance images of three different elements and reconstruction abundance images of
different algorithms

Table 1 Sparsity and the reconstruction errors

Algorithms SMP SUnSAL SUnSAL-TV DDAE

Sparsity 15.102 17.5629 20.472 10.0954

RMSE 0.0034 0.0051 0.0038 0.0018

5 Conclusion

In this paper, a deep denoising autoencoder network is proposed to solve the problem of
hyperspectral unmixing. On the basis of DAE, we add the nonnegative and the sum-to-
one constraints to the abundance coefficient, and add L2,1-norm constraint as a regular
term to the objective function, which makes good use of the multiple sparsity between
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adjacent pixels and improves the accuracy of abundance estimation. Experimental data
shows that the DDAE algorithm is superior to other contrast algorithms, especially for
high noise hyperspectral data.
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