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Abstract. A new fault estimation and compensation scheme of fuzzy
systems with sensor faults is addressed in low-frequency domain. A
descriptor observer is proposed to ensure dynamic error’s stability and
H∞ performance for low-frequency range. The faults estimation is
obtained via the observer above. By considering estimation of faults, a
H∞ output feedback controller is shown such that controlled model with
sensor faults considered has certain fault-tolerant function. A simulation
proves this results’ effectiveness.
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1 Introduction

Fuzzy logic has been used to describe complicated nonlinear system, which is
effective. By applying the existing fuzzy approaches, the fuzzy IF-THEN rule
has been firstly used to describe this kind of model [1], namely T-S fuzzy model.
This method can simplify analysis of nonlinear model. By applying T-S fuzzy
methodology, different linear models are described by local dynamics in different
state-space regions. Therefore, membership functions smoothly blend these local
models together so that overall fuzzy model is obtained. The issues [2–6] on fuzzy
systems attracted attention.

Recently, [7] has introduced generalized Kalman–Yakubovich–Popov
(GKYP) lemma which is a very significant development. Frequency domain
property is converted into a LMI for a finite-frequency range. GKYP lemma
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has many practical applications. T-S fuzzy models’ H∞ control [8] was solved.
Fault detection problem [9] was proposed in T-S fuzzy networked models. Fuzzy
filter problem for nonlinear systems [10] was solved. T-S fuzzy fault detection
method was designed in [11].

In past decades, when demands for industrial manufacture are growing, more
and more people pay attention to fault-tolerant control (FTC). For obtain-
ing the same control objective, different design methodologies are used in two
approaches: passive FTC (PFTC) and active FTC (AFTC) in accordance with
how redundancy is used. The system performance lies on the availability of
redundancy and FTC design method. Each method can produce some unique
properties based on the distinctive design approaches used. Passive and active
FTC were considered simultaneously in [12,13]. PFTCs were provided for affine
nonlinear models [14] and stochastic systems [15,16], respectively. At the same
time, there were also many results on AFTC. Fault estimation and AFTC of dis-
crete systems [17] are considered by finite-frequency method. Nonlinear stochas-
tic AFTC system [18] was analyzed by applying fuzzy interpolation approach.
For stochastic systems [19], the descriptor observer was given to solve fault esti-
mation and FTC problem by the sliding mode method. FTC [20] for fuzzy delta
operator models was proposed.

However, there are few papers on fault estimation and compensation for T-S
fuzzy models with sensor faults in low-frequency domain. Therefore, this paper
solves the problem above, whose contributions are that: For this models consid-
ered, in terms of the descriptor system approach, a fuzzy observer is designed so
as to make the stability of dynamic error in low-frequency domain be ensured.
State and fault’s estimations are showed by the observer above, then a H∞
output feedback controller is proposed so as to make controlled systems with
sensor faults have certain fault-tolerant function. A numerical simulation shows
the effectiveness of this designed scheme.

2 Problem Formulation

T-S fuzzy model is shown: Plant Rule i: If θ1k is φi
1, θ2k is φi

2, . . ., θmk is φi
m,

then

xk+1 = A1ixk + B1iuk + D1idk,

yk = A2xk + F2fk, (1)

where i = 1, . . . ,M, M is IF-THEN rules’s number; θ1k, θ2k, . . ., θmk are premise
variables; φi

1, φi
2, . . ., φi

s are fuzzy set; xk ∈ Rg is state, yk ∈ Rgy is output.
dk ∈ Rgd, uk ∈ Rgu and fk ∈ Rgf are disturbance, input and sensor fault,
respectively, which belong to L2[0,∞). A1i, B1i, D1i, A2, and F2 are matrixes.
Hypothesis that (A1i, A2) is observable and F2 has full rank.
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A fuzzy inference and weighted center average defuzzifier is given by consid-
ering a singleton fuzzifier, the form of (1) is

xk+1 =
M∑

i=1

ηiθk
[A1ixk + B1iuk + D1idk],

yk = A2x+F2fk, (2)

where ηiθk
=

∏m
l=1 φi

lθlk∑M
i=1

∏n
l=1 φi

lθlk

,
∑M

i=1 ηi = 1.

Define
[
xT

k fT
k

]T = x̄k, then the dynamic global model is that

Ēx̄k+1 =
M∑

i=1

ηiθk
[Ā1ix̄k + B̄1iuk + D̄1idk],

ȳk = Ā2x̄k, (3)

where Ē =
[

I 0
0 0

]
, Ā1i =

[
A1i 0
0 0

]
, B̄1i =

[
B1i

0

]
, D̄1i =

[
D1i

0

]
, Ā2 =

[
A2 F2

]
.

For the same IF-Then rule, design the fuzzy observer

�k+1 = (Ā1i − L1iĀ2)ˆ̄xk + B̄1iuk + L1iȳk,

ˆ̄xk = (Ē + L2Ā2)−1(�k + L2ȳk),
ˆ̄yk = Ā2 ˆ̄xk, (4)

and the output feedback controller

uk = Kvyk = Kv ȳk, (5)

with x̄k’s estimate is that ˆ̄xk, xk’s estimate is that x̂k =
[
I 0

]
ˆ̄xk, fk’s estimate

is f̂k =
[
0 I

]
ˆ̄xk , and yk’s estimate is ˆ̄y. L1i, L2, Kv are gains to be determined.

Hence, dynamic global model is obtained as follows:

�k+1 =
M∑

i=1

ηiθk
[(Ā1i − L1iĀ2)ˆ̄xk + B̄1iuk + L1iyk],

ˆ̄xk = (Ē + L2Ā2)−1(�k + L2ȳk),
ˆ̄yk = Ā2 ˆ̄xk, (6)

and

uk =
M∑

v=1

ηvθk
Kvyk =

M∑

v=1

ηvθk
Kv ȳk. (7)

Equation (6) becomes

(Ē + L2Ā2)ˆ̄xk+1 =
M∑

i=1

ηiθk
[(A1i − L1iĀ2)ˆ̄xk + B̄1iuk + L1iȳk + L2ȳk+1]. (8)
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Meanwhile, adding L2yk+1 on the two sides of (3), then

(Ē + L2Ā2)x̄k+1 =
M∑

i=1

ηiθk
[(A1i − L1iĀ2)ˆ̄xk + B̄1iuk + L1iȳk + D̄1idk]. (9)

Define ˜̄xk = x̄k − ˆ̄xk, rk = ȳk − ˆ̄yk, then

˜̄xk+1 =
M∑

i=1

ηiθk
[(Ē + L2Ā2)−1(A1i − L1iĀ2)˜̄xk + D̄1idk],

rk = Ā2 ˜̄xk. (10)

3 Main Results

Theorem 1. Considering constant γ > 0, the gain of (4) is addressed so as to
make (10) with H∞ level γ asymptotic stability in |ϑ| ≤ ϑ1 if there is symmetric
matrixes Pi > 0, Pl > 0, Q > 0 and matrixes Xi for all i, l ∈ {1, . . . ,M} so that
(11) and (12) hold:

[
Pl − g2Xi − g2X

T
i g1Xi + g2ξ1

∗ −Pi − g1ξ1 − g1ξ
T
1

]
< 0, (11)

⎡

⎢⎢⎣

−Pl Q + Xi 0 0
∗ ϕ1 −XT

i D̄1i ĀT
2

∗ ∗ −γ2I 0
∗ ∗ ∗ −I

⎤

⎥⎥⎦ < 0, (12)

where ξ1 = XT
i (Ē + L2Ā2)−1Ā1i − YiĀ2, ϕ1 = Pi − 2 cos ϑ1Q − ξT

1 − ξ1, L2 =[
0 I

]T , and g1, g2 are arbitrary fixed scalars satisfying g21σmax(Pi) < g22σmin(Pi).
Then gains of (4) are that L1i = (Ē + L2Ā2)X−T

i Yi.

Proof. Define Vk = ˜̄xT
k [

∑M
i=1 ηiθk

Pi]˜̄xk, differences of Vk along (10) is that
ΔVk = (

∑M
i=1 ηiθk

)2
∑M

l=1 ηlθk+1
˜̄xT

k [
T Pl
−Pi]˜̄xk, where 
 = (Ē+L2Ā2)−1(A1i−
L1iĀ2). Notice that 
T Pl
 − Pi < 0 so ΔVk < 0. Easily, it is obtained that

[


I

]T [
Pl 0
0 −Pi

] [


I

]
< 0. (13)

There exist g1 and g2 such that g21σmax(Pi) < g22σmin(Pi), then
[

g1I
g2I

]T [
Pl 0
0 −Pi

] [
g1I
g2I

]
= g21Pl − g22Pi < 0. (14)

Since that
[
g2I −g1I

]T⊥ =
[
g1I g2I

]
and

[

T I

]
belongs to the null sub-

space of
[−I 


]T , it has
[−I


T

]
Xi

[
g2I

−g1I

]T

+
[

g2I
−g1I

]
XT

i

[−I

T

]T

+
[

Pl 0
0 −Pi

]
< 0. (15)
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Set Yi = XT
i (Ē + L2Ā2)−1L1i, (15) holds after some matrix manipulations.

According to GKYP Lemma [7], then

[
Ā1η D̄η

I 0

]T [−Pη+ Q
Q Pη − 2 cos ϑ1Q

] [
Ā1η D̄η

I 0

]

+
[

Ā2 0
0 I

]T [
I 0
0 −γ2I

] [
Ā2 0
0 I

]
< 0.

Define Pη+ =
∑M

l=1 ηlθ(k)Pl, Pη =
∑M

i=1 ηiθ(k)Pi, then

[
Ā1i D̄i

I 0

]T

Θ1

[
Ā1i D̄i

I 0

]
+

[
Ā2 0
0 I

]T

Θ2

[
Ā2 0
0 I

]
< 0, (16)

where Θ1 =
[−Pl Q

Q Pi − 2 cos ϑ1Q

]
, Θ2 =

[
I 0
0 −γ2I

]
, then (16)’s form is that

Υ⊥T
(

T
1 Θ1
1 + 
T

2 Θ2
2
)
Υ⊥ < 0, (17)

where Υ⊥ =
[

ĀT
1i I 0

D̄T
i 0 I

]
, 
1 =

[
I 0 0
0 I 0

]T

, 
2 =
[

0 Ā2 0
0 0 I

]
.

For Υ⊥, then Υ =
[−I Ā1i D̄i

]
. According to Projection Lemma, then


T
1 Θ1
1 + 
T

2 Θ2
2 < ΥXiR
T + (ΥXiR

T )T . Let RT =
[
0 I 0

]
, then (18) holds:

⎡

⎣
−Pl Q 0
∗ Pi − 2 cos ϑ1Q 0
∗ ∗ −γ2I

⎤

⎦ +

⎡

⎣
0

ĀT
2

0

⎤

⎦

⎡

⎣
0

ĀT
2

0

⎤

⎦
T

−
⎡

⎣
0 −Xi 0
∗ ν XT

i D̄i

∗ ∗ 0

⎤

⎦ < 0. (18)

with ν = ĀT
1iXi+XT

i Ā1i. By matrix manipulations, (18) and (12) are equivalent.
Therefore, (12) satisfies H∞ index γ in |ϑ| ≤ ϑ1 if (16) holds. The proof is
finished.

Secondly, we give the controller in low-frequency domain. This system may
not work normally with sensor faults. This motivates us to consider the fault-
tolerant method, which is shown in the following.

Based on observer technique, fk is designed as f̂k =
[
0 I

]
ˆ̄xk. By subtracting

f̂k from yk, then yck = yk − F2f̂k = A2xk + F2fk − F2f̂k = A2xk + F̄2 ˜̄xk with
F̄2 = F2

[
0 I

]
.

Consider controller (5), and use yck to replace yk, then uck =∑M
v=1 ηv(θk)Kvyck so closed-loop models are that

x(k + 1) =
M∑

i=1

ηiθk

M∑

v=1

ηvθk
[(A1i + B1iKvA2)xk + B1iKvF̄2 ˜̄xk + D1idk],

yck = A2xk + F2

[
0 I

]
˜̄xk.
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Considering system (10), a new system is obtained

Xek =
M∑

i=1

ηiθk

M∑

v=1

ηvθk
[ ¯̄AivXk + ¯̄D1idk],

yck = ¯̄A2Xk, (19)

where Xk =
[

x(k)
˜̄xk

]
, ¯̄D1i =

[
D1i

D̄1i

]
, ¯̄Aiv =

[
Υ11 Υ12

0 Υ22

]
, ¯̄A2 =

[
A2 F̄2

]
, Υ11 =

A1i + B1iKvA2,Υ12 = B1iKvF̄2, Υ22 = (Ē + L2Ā2)−1(Ā1i − L1iĀ2).
It is not difficult to show that equation (19) for this controlled system adopt-

ing the static output feedback control strategy, by applying this proposed tech-
nology, it can reduce sensor fault’s influence on controlled models, so whole
closed-loop ones have a certain fault-tolerant function.

4 Numerical Simulations

A example can prove effectiveness of this proposed method. These systems have
Rule 1 and 2, their membership functions are φ1x1k

= 1
1+exp(−3x1k)

, φ2x1k
=

1 − φ1x1k
, and consider x1k is φ1 and φ2, respectively, and

A11 =
[

0.3 0
0 0.6

]
, B11 =

[
0.1 0
0 −0.1

]
,D11 =

[−0.2
0.5

]
, A12 =

[
0.6 0
0 0.5

]
,

B12 =
[

0.4 0
0 −0.4

]
,D12 =

[
0.8
0.4

]
, A2 =

[
0.1 0
0 0.1

]
, F2 =

[
1.0 0
0 1.0

]
,

let g1 = 1, g2 = 3, in |ϑ1| ≤ 1.7, for γ = 0.15, by (11) and (12), gains of (4) are

L11 =

⎡

⎢⎢⎣

−2.2563 0.8171
1.1779 −1.0420

−0.0744 −0.0817
−0.1178 −0.4958

⎤

⎥⎥⎦ , L12 =

⎡

⎢⎢⎣

−1.6636 −1.0563
−1.4917 −0.3082
−0.4336 0.1056
0.1492 −0.4692

⎤

⎥⎥⎦ , L2 =

⎡

⎢⎢⎣

0 0
0 0
1 0
0 1

⎤

⎥⎥⎦ .

Assumed that dk = 0.1 sink and fk =
[

f1k

f2k

]
with

f1k =
{

0, 0 < k ≤ 30
0.3 sink, 70 ≥ k ≥ 300, k > 70 , f2k =

{
0, 0 < k ≤ 30
0.4 sink, 70 ≥ k ≥ 300, k > 70 .

Considering x0 =
[
xT
1k xT

2k

]T =
[−1 2

]T , Fig. 1 depicts the estimation of fault
fk , where foi is the estimation of fik with i = 1, 2. ŷk’s estimations are shown
in Fig. 2, where yo1 means ŷ1k and yo2 means ŷ2k.



Fault Estimation and Compensation for Fuzzy Systems . . . 805

0 10 20 30 40 50 60 70 80 90 100
Time step k

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

M
ag

ni
tu

de

fo1
fo2

Fig. 1 fk’s estimation
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Fig. 2 Estimate output ŷk

5 Conclusion

The fault estimation and compensation scheme of fuzzy T-S discrete models is
addressed for low-frequency range. A fuzzy observer is given so as to ensure error
model’s stability with H∞ performance for low-frequency range. The fault esti-
mations are obtained via the observer above, then a fuzzy H∞ output feedback
controller is shown so as to ensure certain fault-tolerant function of controlled
model with sensor fault considered. A numerical simulation proves the effective-
ness of this method. The conclusion of this paper can also be expended into
finite middle- and high-frequency domain.
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