
Learning to Rank Intents in Voice
Assistants

Raviteja Anantha, Srinivas Chappidi, and William Dawoodi

Abstract Voice Assistants aim to fulfill user requests by choosing the best intent
from multiple options generated by its Automated Speech Recognition and Natu-
ral Language Understanding sub-systems. However, voice assistants do not always
produce the expected results. This can happen because voice assistants choose from
ambiguous intents—user-specific or domain-specific contextual information reduces
the ambiguity of the user request.Additionally the user information-state canbe lever-
aged to understand how relevant/executable a specific intent is for a user request. In
this work, we propose a novel Energy-based model for the intent ranking task, where
we learn an affinity metric and model the trade-off between extracted meaning from
speech utterances and relevance/executability aspects of the intent. Furthermore we
present a Multisource Denoising Autoencoder based pretraining that is capable of
learning fused representations of data from multiple sources. We empirically show
our approach outperforms existing state of the art methods by reducing the error-rate
by 3.8%, which in turn reduces ambiguity and eliminates undesired dead-ends lead-
ing to better user experience. Finally, we evaluate the robustness of our algorithm on
the intent ranking task and show our algorithm improves the robustness by 33.3%.

1 Introduction

A variety of tasks use Voice Assistants (VA) as their main user interface. VAs must
overcome complex problems and hence they typically are formed of a number of
components: one that transcribes the user speech (Automated Speech Recognition
- ASR), one that understands the transcribed utterances (Natural Language Under-
standing - NLU), one that makes decisions (Decision Making - DM [24]), and one
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Fig. 1 Components of a voice assistant

that produces the output speech (TTS). Many VAs have a pipeline structure similar
to that in Fig. 1.

Our work is mainly focused on the DM sub-system and our primary contri-
butions are: (1) proposing to decouple language understanding from information-
state and modeling an affinity metric between them; (2) the identification of Multi-
source Denoising Autoencoder based pretraining and its application to learn robust
fused representations; (3) quantifying robustness; (4) the introduction of a novel
ranking algorithm using Energy-based models (EBMs). In this work, we limit our
scope to non-conversational utterances, i.e., utterances without followups containing
anaphoric references and leave that for future work. We evaluate our approach on
an internal dataset. Since our algorithm is primarily focused on leveraging inherent
characteristics that are unique to large-scale real-world VAs, the exact algorithmmay
not be directly applicable to open-source Learning to Rank (LTR) datasets. But we
hope our findings will encourage application and exploration of EBMs applied to
LTR in both real-world VAs and other LTR settings.

The remainder of the paper is organized as follows: Sect. 2 discusses the task
descriptionwhile Sect. 3 covers the relatedwork. Section4 then describes the ranking
algorithm, and Sect. 5 discusses the evaluation metrics, datasets, training procedure,
and results.
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Fig. 2 Examples of user requests with same semantics but with different intents. (a) shows a user
request to play a song from an artist, (b) shows a user request to play a specific song from an artist

2 Task Description

The ultimate goal of a VA is to understand user intent. The exact meaning of the
words is often not enough to choose the best intent. In Fig. 1, we show the use
of information-state, and we classify it into three categories. All private-sensitive
information stays on the user’s device.

Personal Information: e.g. user-location, app subscriptions, browsing history,
device-type etc.

User State: Information about the user’s state at the time a query is made. (e.g. user
is driving, etc.)

Context: Dialog context of what the user said in previous queries in the same con-
versation or task (e.g. song requests).

To illustrate how semantically similar user requests can have different user intents
consider the examples in Fig. 2. In Fig. 2a the user meant to play some song from a
specific artist. However in Fig. 2b, although playing some song from the requested
artist is also reasonable, knowing that there is a song named “One” from the artist
leads to better intent selection, as shown.

Ambiguity can still remain even if a sub-system correctly decodes user input. For
example consider Fig. 3: it is not possible to predict the user intended transcription
unless we know there is a contact with that name due to the homophone. Figure3b
is an example where a suboptimal intent was executed although there was a better
intent as shown in Fig. 3c. We term this scenario undesired dead-end since the user’s
intended task hit a dead-end.

The use of information-state is crucial to select the right response, which is also
shown empirically in Sect. 5.4.1. We aim to reduce ambiguity (both ASR and NLU),
and undesired dead-ends to improve the selection of the right intent by ranking alter-
native intents. ASR signals are comprised of speech and language features that gen-
erate speech lattices, model scores, text, etc. NLU signals are comprised of domain
classification features such as domain categories, domain scores, sequence labels of
the user request transcription, etc. An intent is a combination of ASR and NLU sig-
nals. We refer to these signals as understanding signals decoded by ASR and NLU
sub-systems. Every intent is encoded into a vector space and this process is described
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Fig. 3 An example of an undesired dead-end. (a) shows a case where user intended transcription is
not possible to predict unless the voice assistant has the contact information. (b) shows how lack of
contact information leads to a sub-optimal intent execution although there is a better intent shown
in (c)

in Sect. 4.1. Our task is to produce a ranked list of intents using information-state in
addition to understanding signals to choose the best response.

3 Related Work

While our work falls within the broad literature of LTR, we position it in the context
of information-state based reranking, unsupervised pretraining, zero-shot learning,
and EBMs applied to the DM sub-system of a Voice Assistant.

Information-State Based Reranking: Reranking approaches have been used in
VAs to rerank intents to improve accuracy. Response category classification can be
improved by reranking k-best transcriptions from multiple ASR engines [18]. ASR
accuracy can be improved by reranking multiple ASR candidates by using their syn-
tactic properties in Human-Computer Interaction [1]. Reranking domain hypotheses
is shown to improve domain classification accuracy over just using domain classifiers
without reranking [13, 20].

All of the above approaches only focus on ASR candidates or domain hypotheses,
which are strongly biased towards the semantics of the user request. Although [13]
exploits user preferences along with NLU interpretation, they treat both of them as a
single entity (hypothesis). In our work, we explicitly learn an affinity metric between
information-state and predicted meaning from the transcribed utterance to choose
the appropriate response.

Unsupervised Pretraining: DM input consists of multiple diverse sources. For
example, speech lattices, textual information, scores from ASR and NLU models,
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and unstructured contextual information, to name a few. Each data type has dis-
tinct characteristics, and learning representations across data types that capture the
meaning of the user request is important. One approach is to use a deep boltzmann
machine for learning a generative model to encode such multisource features [22].
Few approaches learn initial representations from unlabeled data through pretrain-
ing [1, 20]. Encoding can also be learned by optimizing a neural network classifier
weights by minimizing the combined loss of an autoencoder and a classifier [19].
Both pretraining and classification can be jointly learned from labeled and unlabeled
data, labeled data loss is used to obtain pseudo-labels, and pretraining is done using
the pseudo-loss [17]. Pretraining for initial representations can also be realized by
using a CNN2CRF architecture for slot tagging using labeled data, and learning
dependencies both within and between latent clusters of unseen words [6].

Although these previous works address few aspects of the multisource data prob-
lem, none of them address the robustness of the learned representations. Since DM
consumes the outputs ofmany sub-systems that may change their distributional prop-
erties, for instance through retraining, some degree of robustness is desired to not
drastically affect the response selection.

To address both distinct data characteristics and robustness, we propose using a
Denoising Autoencoder (DAE) [25] with a hierarchical topology that uses separate
encoders for each data type. The average reconstruction loss contains both a sep-
arate term to minimize the error for each encoder, and the fused representations.
This provides an unsupervised method for learning meaningful underlying fused
representations of the multisource input.

Zero-Shot Learning: The ability of DM to predict and select unseen intents is
important. User requests can consist of word sequences that NLU might not be able
to accurately tag by relying only on language features. To illustrate consider the
examples in Fig. 4. The user request in Fig. 4a is tagged correctly, and the NLU sub-
systempredicts the right user intent of playing a song from the correct artist. Figure4b
showcases a scenario where due to external noise the user intended transcription of
“Play ME by Taylor Swift” was mistranscribed by the ASR sub-system as “Play me
Taylor Swift”, and this ASR error propagated to NLU leading to tagME as a pronoun
instead of MusicTitle. With DM, as shown in Fig. 4c, we leverage domain-specific
information and decode the right transcription and intent (playing ME song) from
the affinity metric, although this input combination was never seen before by the
model.

One approach is to use a convolutional deep structured semanticmodel (CDSSM),
which performs zero-shot learning by jointly learning the representations for user
intents and associated utterances [7]. This approach is not scalable since such queries
can have numerous variations, and they follow no semantic pattern. We propose to
complement NLU features with domain-specific information to decode the right
intent in addition to shared semantic signals.

EBM for DM: Traditional approaches to LTR use discriminative methods. Our
approach learns an affinity metric that captures dependencies and correlations
between semantics and information-state of the user request. We accomplish this
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Fig. 4 (a) Shows a scenario where NLU correctly predicts the intent given correct ASR tran-
scription. (b) Shows a scenario where NLU fails to predict the right intent due to incorrect ASR
transcription (missing the word “by”) caused by external noise. (c) Shows a scenario where NLU
fails to predict the right intent, but DM helps in identifying the correct intent using domain-specific
information

learning by associating a scalar energy (a measure of compatibility) to each configu-
ration of the model parameters. This learning framework is known as energy-based
learning and is used in various computer vision applications, such as signature ver-
ification [2], face verification [9], and one-shot image recognition [15]. We apply
EBM for LTR (and DM in voice assistants) for the first time. We propose a novel
energy-based learning ranking loss function.

4 EnergyRank Algorithm

EBMs assign unnormalized energy to all possible configurations of the variables
[16, 23]. The advantage of EBMs over traditional probabilistic models, especially
generative models, is that there is no need for estimating normalized probability
distributions over the input space. This is efficient since we can avoid computing
partition functions. Our algorithm consists of two phases—pretraining and learning
the ranking function, which are described in Sects. 4.1 and 4.2 respectively.

4.1 Multisource Denoising Autoencoder

Since our model consumes input from multiple sub-systems, two aspects are impor-
tant: robustness of features and efficient encoding of multisource input. The concept
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Fig. 5 Encoder architecture of Multisource DAE that models the joint distribution over scores,
text, and categorical features. Light green layer, V ∗, represents the original input; light magenta
layer, V ∗

d , depicts the affine transformations; two layers of dark magenta, h1∗ and h2∗, represents
source-specific latent representation learning; finally, light yellow layer, h(3), represents the fused
representation

of DAE [25] is to be robust to variations of the input. We have three data types in the
input: model scores that are produced by other sub-systems, text generated by ASR
and Language Models (LMs), categorical features generated by NLU models like
sequence labels, verbs etc. Let V s denote amulti-hot vector, which is a concatenation
of 11 IR11 one-hot vectors, where each contains binned real-valued model scores.
Let V t represent the associated text input (padded or trimmed to a maximum of 20
words), which is a concatenation of 20 word-vectors. Each word-vector vt

i ∈ IR50 is
a multi-hot vector of i th word. Similarly let V c represent associated sequence-labels
of those 20 words, which is a concatenation of 20 sequence-label vectors. Each
i th sequence-label vector vc

i ∈ IR50 is a multi-hot vector. For example consider the
utterance “Call Ravi”, the corresponding sequence-labels might be [phoneCallVerb,
contactName].

We start by modeling each data type by adding affine distortions followed by a
separate two-layer projection of the encoder, as shown in Fig. 5. This gives separate
encodings for each data type. Let dae∗ represent an encoding function, W ∗

enc is the
respective weight matrix and P(noise) a uniform noise distribution. The encodings
are given by:

V s
d , V t

d , V
c
d = affine_transform((V s, V t , V c); P(noise)). (1)

Let us denote source-specific hidden representations of real-valued, text and cate-
gorical features by hs, ht , hc derived fromencodermodelswith respective parameters
Ws

enc,W
t
enc,W

c
enc. These latent representations are given by:

h∗ = dae∗(V ∗
d ;W ∗

enc), (2)

and the fused representation is obtained by:
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h = dae((hs, ht , hc);Wenc). (3)

Let idae∗ represent the decoding function, andW ∗
dec denote the respective weight

matrix. The hidden-state reconstructions are given by:

hs
′
, ht

′
, hc

′ = idae(h; (Ws ′
dec,W

t ′
dec,W

c′
dec)). (4)

The original denoised input reconstructions are given by:

V ∗′ = idae∗(h∗′ ;W ∗
dec). (5)

We learn the parameters of theMultisourceDAE jointly byminimizing the average
reconstruction error captured by categorical cross entropy (CCE) of both the hidden
state and the original denoised input decodings captured by the terms of the loss
function. We denote the CCE loss as LCCE .

Lh = LCCE (h∗, h∗′
), (6)

LV = LCCE (V ∗, V ∗′
), (7)

W ∗
enc,Wenc,W

∗
dec = argmin

W ∗
enc,W

∗
dec

1

m

m∑

i=1

(Lh
i + LV

i ). (8)

4.2 Model Description

The ranking function is learned byfinding the parametersW that optimize the suitably
designed ranking loss function evaluated over a validation set. Directly optimizing
the loss averaged over an epoch generally leads to unstable EBM training and would
be unlikely to converge [9]. Therefore, we add a scoring layer after the energy is
computed and impose loss function forms to implicitly ensure energy is large for
intent with bad rank and low otherwise. Details of the energy computation and the
loss function forms are given in Sects. 4.2.1 and 4.2.2 respectively.

4.2.1 Energy Function of EBM

The architecture of our Ranker is shown in Fig. 6. Our ranker consists of two identical
Bidirectional RNN networks, where one network accepts the fused representation,
and the other accepts the information-state. Learning the affinity metric is realized by
training these twin networks with shared weights. This type of architecture is called
a Siamese Network [2]. The major difference between our work and previous works
on siamese networks is that we present the same data-point to the twin networks
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Fig. 6 EBM with siamese architecture

but categorized as two inputs based on if it is information-state or not. All previous
works use two distinct data-points to compute energy. In other words, we compute
intra-energy and previous works focused on inter-energy. We used GRU [8] for the
RNN since it often has the same capacity as an LSTM [11], but with fewer parameters
to train.

To simplify let Xint and Xst denote an intent’s extracted meaning (V s, V t , V c)
and its associated information-state respectively. Both the inputs are transformed
through Multisource DAE and Embeddings Layer respectively to have the same
dimensions IR500. Let W be the shared parameter matrix that is subject to learning,
and let FW (Xint ) and FW (Xst ) be the two points in themetric space that are generated
by mapping Xint and Xst . The parameter matrixW is shared even if the data sources
of Xint and Xst are different since they are related to the same request and the model
must learn the affinity between them. We compute the distance between FW (Xint )

and FW (Xst ) using the L1 norm, then the energy function thatmeasures compatibility
between Xint and Xst is defined as:

EW (Xint , Xst ) = ‖FW (Xint ) − FW (Xst )‖. (9)
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4.2.2 Energy-Based Ranking Loss Function

Traditional ranking loss functions construct the loss using some form of entropy in
a pointwise, pairwise or listwise paradigm. Parameter updates are performed using
either gradients [3] or Lambdas λ [4, 5]. We use gradient based methods to update
parameters. Let x1 and x2 be two intents from same user request. The prediction score
of the ranker is obtained by p = σ(EW ), for convenience we denote p associated
with x1 as p(x1) and f (.) as the learned model function. We construct the loss as a
sequence of weighted energy scores. Pairwise loss is constructed as:

L( f (.), x) =
n−1∑

i=1

n∑

j=i+1

φ(p(xi ), p(x j )), (10)

where φ is a hyperparameter that can be one of logistic function (φ(z) = log(1 +
exp−z)), hinge function (φ(z) = (1 − z)+), exponential function (φ(z) = exp−z),
with z = p(xi ) − p(x j ).

Listwise losses are constructed as:

L(p(.), x, y) =
n−1∑

i=1

(−p(xy(s)) + ln(

n∑

j=i

exp(p(xy(i)))), (11)

where y is a randomly selected permutation from the list of all possible intents that
retains relevance to the user-request.

5 Experiments and Results

5.1 Evaluation Metrics

We evaluated EnergyRank using two metrics.

• Error Rate: The fraction of user requests where the intent selection was incorrect.
• Relative Entropy: We employ Relative Entropy, given in Eq.12, to quantify the
distance between input score distributions p and q. Relative entropy serves as a
measure for the robustness of the model to upstream sub-system changes. We used
whitening to eliminate unbounded values, and 10E−9 as a dampening factor to
give a bounded metric. A value of 0.0 indicates identical distributions, while 1.0
are maximally dissimilar.

rel_entr(p, q) =

⎧
⎪⎨

⎪⎩

p log (p/q) p > 0, q > 0

0 p = 0, q ≥ 0

∞ otherwise.

(12)
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5.2 Datasets

5.2.1 Labeled Dataset

The labeled dataset is used tomeasure the error rate. This dataset contains 24,000 user
requests comprised of seven domains: music, movies, app-launch, phone-call, and
three knowledge-related domains. The ranking labels are produced by human anno-
tators by taking non-private information-state into account. The dataset is divided
into 12,000 user requests for training, 4,000 for validation and 8,000 for the test-set.
The average number of predicted intents per user request is 9 with a maximum of 43.
The extracted meaning of the request is represented by features from ASR and NLU
sub-systems, information-state is represented by 114 categorical attributes. The error
rate with just selecting the top hypothesis is 41%.

5.2.2 Unlabeled Dataset

The unlabeled dataset consists of two unlabeled sub-datasets sampled from two
different input distributions. Each sub-dataset consists of 80,000 user requests. The
data here are not annotated since we are interested in a metric that only needs the
scores of the model’s best intent.

5.3 Training Procedure

We trained EBM using both pairwise and listwise loss functions given in Eqs. 10
and 11 respectively. The objective is combined with backpropagation, where the
gradient is additive across the twin networks due to the shared parameters. We used
a minibatch size of 32 and Adam [14] optimizer with the default parameters. For
regularization, we observed that Batch Normalization [12] provided better results
than Dropout [21].

We used tanh for GRU and ReLU for all units as activation functions. We initial-
ized all network weights from a normal distribution with variance 2.0/n [10], where
n is the number of units in previous layer. Although we use an adaptive optimizer,
employing an exponential decay learning schedule helped improve performance. We
trained EBM for a maximum of 150 epochs.

5.4 Results

We trained three baseline algorithms: Logistic Regression, LambdaMART [4], and
HypRank [13], where Logistic Regression and LambdaMART were trained with
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Table 1 Error-rates on labeled data both with and without information-state.

Method Error rate∗ p-value∗ Error rate∗∗ p-value∗∗

LogisticRegression 41.1% ± 0.5% 0.7E − 04 32.1% ± 1.2% 1.2E − 05

LambdaMART OH 36.5% ± 0.3% 1.4E − 05 22.3% ± 0.1% 1.1E − 05

EnergyRankEF
list — — 20.9% ± 1.3% 0.9E − 05

LambdaMART FH 34.4% ± 0.6% 1.3E − 05 20.2% ± 0.1% 1.1E − 05

HypRank 32.9% ± 0.8% 1.6E − 04 19.6% ± 0.9% 2.3E − 04

EnergyRankHF
pair — — 19.5% ± 0.6% 1.6E − 03

LambdaMART ED 29.7% ± 0.3% 0.9E − 05 18.2% ± 0.1% 1.2E − 05

EnergyRankLFlist — — 17.9% ± 1.1% 2.1E − 03

EnergyRankLFpair — — 17.5% ± 0.8% 1.3E − 05
∗ without information-state
∗∗ with information-state

the pairwise loss function, HypRank with the listwise loss function, and Energy-
Rank with both loss functions. For LambdaMART we used three different encod-
ing schemes: one-hot vectors (OH), feature hashing (FH), and eigen-decomposition
(ED). For HypRank we used LST MC , i.e, concatenating the hypothesis vectors and
the BiLSTM output vectors as input to the feedforward layer since this was the best
performing architecture.

5.4.1 Error Rate

We trained eachmodel ten timeswith different seed andweight initializations, andwe
report the mean error rate. We use a two-sided T-test to compute p-value to establish
statistical significance. Table 1 shows the results on the internal labeled dataset, with
± showing 95% confidence intervals. We empirically show that information-state
improves error-rates. EnergyRank results are not reported in experiments without
information-state since it needs both understanding features and information-state to
compute the affinity metric. The superscript of LambdaMART denotes the encoding
scheme used. EnergyRank superscript denotes φ used: EF for Exponential Function,
HF for Hinge Function, LF for Logistic Function, and subscript for pairwise/listwise
loss paradigm.

5.4.2 Relative Entropy

We run the best performing methods: LambdaMART, HypRank, and EnergyRank
models on two unlabeled datatsets, each of the size 80,000 sampled from dif-
ferent feature distributions. We use the score of the model’s top predicted intent
and group them into 21 buckets ranging from 0.0 to 1.0 with a step-size of 0.05.
The raw counts obtained are normalized and interpolated to obtain a probability



Learning to Rank Intents in Voice Assistants 99

Fig. 7 A visualization of the model’s top intent score distributions as probability density function
(PDF) corresponding to two different input distributions P(X) and Q(X)

Table 2 Relative-entropies
on unlabeled data.

Method Relative entropy

HypRank 0.468

EnergyRankLF−N A
pair 0.319

LambdaMART ED 0.168

EnergyRankLFpair 0.112

density function (PDF) of the scores. Wemeasure the relative entropy to quantify the
robustness of these algorithms to changes in feature distributions. The best perform-
ing EnergyRank model degrades in robustness when no affine-transform is applied
(EnergyRankLF−N A

pair ) with a minimal drop in accuracy.
Figures7a, b, and c show the superimposition of themodel’s top intent output score

PDFs of HypRank, LambdaMART, and EnergyRank respectively. The two output
score PDFs in each superimposition correspond to P(X) andQ(X) input distributions.
Table2 shows the relative-entropy which quantifies the difference between the two
PDFs. EnergyRankwith pairwise loss improves relative-entropy over LambdaMART
with ED (best performing method among SOTAs, see Table1) by 33.3% and over
HypRank by 76.1%.



100 R. Anantha et al.

6 Conclusion

We have presented a novel ranking algorithm based on EBM for learning complex
affinity metrics between extracted meaning from user requests and user information-
state to choose the best response in a voice assistant. We described a Multisource
DAE pretraining approach to obtain robust fused representations of data from dif-
ferent sources. We illustrated how our model is also capable of performing zero-
shot decision making for predicting and selecting intents. We further evaluated our
model against other SOTA methods for robustness and show our approach improves
relative-entropy.
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