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Abstract There have been many studies on human-machine dialogue systems. To
evaluate them accurately and fairly, many resort to human grading of system outputs.
Unfortunately, this is time-consuming and expensive. The study of AM-FM (Ade-
quacyMetric - FluencyMetric) suggests an automatic evaluationmetric, that achieves
good performance in terms of correlation with human judgements. AM-FM frame-
work intends to measure the quality of dialogue generation along two dimensions
with the help of gold references: (1) The semantic closeness of generated response
to the corresponding gold references; (2) The syntactic quality of the sentence con-
struction. However, the original formulation of both adequacy and fluency metrics
face some technical limitations. The latent semantic indexing (LSI) approach to AM
modeling is not scalable to large amount of data. The bag-of-words representation of
sentences fails to capture the contextual information.As for FMmodeling, the n-gram
language model implementation is not able to capture long-term dependency. Many
deep learning approaches, such as the long short-term memory network (LSTM) or
transformer-based architectures, are able to address these issues well by providing
better contextual-aware sentence representations than the LSI approach and achiev-
ing much lower perplexity on benchmarking datasets as compared to the n-gram
language model. In this paper, we propose deep AM-FM, a DNN-based implemen-
tation of the framework and demonstrate that it achieves promising improvements

C. Zhang (B) · H. Li
National University of Singapore (NUS), Singapore, Singapore
e-mail: e0397123@u.nus.edu

H. Li
e-mail: haizhou.li@nus.edu.sg

L. F. D’Haro
Universidad Politécnica de Madrid (UPM), Madrid, Spain
e-mail: luisfernando.dharo@upm.es

R. E. Banchs
Nanyang Technological University (NTU), Singapore, Singapore
e-mail: rbanchs@ntu.edu.sg

T. Friedrichs
Robert Bosch (SEA) Pte Ltd, Singapore, Singapore
e-mail: Thomas.Friedrichs@sg.bosch.com

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2021
L. F. D’Haro et al. (eds.), Conversational Dialogue Systems for the Next Decade, Lecture
Notes in Electrical Engineering 704, https://doi.org/10.1007/978-981-15-8395-7_5

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8395-7_5&domain=pdf
mailto:e0397123@u.nus.edu
mailto:haizhou.li@nus.edu.sg
mailto:luisfernando.dharo@upm.es
mailto:rbanchs@ntu.edu.sg
mailto:Thomas.Friedrichs@sg.bosch.com
https://doi.org/10.1007/978-981-15-8395-7_5


54 C. Zhang et al.

in both Pearson and Spearman correlation w.r.t human evaluation on the bench-
marking DSTC6 End-to-end Conversation Modeling task as compared to its original
implementation and other popular automatic metrics.

1 Introduction

Recently, conversational AI has become a hot research topic. With the proliferation
of human-human dialog data, sophisticated learning strategies and boost in computa-
tional power, training end-to-end conversational dialogue system becomes feasible.
One key step to the development of such systems is the evaluation metric. The eval-
uation of conversational dialogue systems is hard, because conversational dialogue
evaluation is not as straight forward as having a single objective metric to optimize.
What constitute high-quality dialogue is rather complex. Common practice gener-
ally involves human judges to provide ratings to system-generated responses, but it is
neither cost-effective nor time-efficient. Most commonly used automatic evaluation
metrics are shown to correlate poorly with human judgements [13]. The AM-FM
(Adequacy Metric - Fluency Metric) framework, which is originally proposed for
evaluating machine translation systems [1], has been adopted to address this problem
[7].

The original implementation of adequacy metric leveraged latent semantic index-
ing [12], where 10K sentences from the twitter training corpus were randomly
selected for training the singular value decomposition (SVD). Sentences were rep-
resented by bag-of-words features in the term-document matrix. Despite its good
dialogue evaluation capability [7], this technique has serious drawbacks. Firstly, the
bag-of-words representation fails to capture contextual information of words in a
sentence. In addition, the sentences are randomly picked among the training corpus,
this fails to account for the logical continuations between consecutive utterances in a
dialogue. Moreover, when the data size increases, the term-document matrix can be
very large and unable to fit into the memory. As a result, it is infeasible to perform
SVD numerically.

Many studies have been devoted to learn effective word-level and sentence-level
embeddings in the continuous space that are able to capture contextualized informa-
tion from a large amount of text data. Recent advancements in deep learning tech-
niques have brought promising prospects in this area. For example, [20] proposes
the use of long short-term memory (LSTM) network [9] for learning sentence-level
embeddings, which obtains outstanding performance in the web search task. Contex-
tualized word embedding learnt with bidirectional LSTM [21] or transformer-based
architectures [6, 22] greatly helps tackle many of the NLP benchmark tasks, such as
question answering, semantic similarity and natural language inference.

The n-gram language model is used for implementing the fluency metric in the
initial setup. Despite its simplicity, it provides competitive results [15]. But clearly it
faces several inherent limitations. Firstly, it neglects the long distance dependencies.
In the dialogue setting, long-term dependency among the user-system interaction
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is important for understanding the dialogue. In addition, count-based approaches
neglect the ordering of words, which may be essential for understanding the context.
Moreover, this approach has a structural problem since various smoothing techniques
are required to account for the unseen cases. In recent years, the language modeling
research has been filled with different deep learning approaches to address the long-
term dependency issue of n-gram language model. LSTM-based and transformer-
based approaches [5, 15, 22] have been successful in several benchmark datasets,
for example, the One Billion Word dataset [3].

Hence, we are motivated to explore alternative DNN-based implementations to
AM-FM framework and intend to present the initial version of the toolkit based
on these implementations1 in this paper. We compare our implementations with the
original setup to demonstrate that deep-learning techniques are effective and scalable
for modeling both the AM and the FM component. The organization of the paper
are as follow: Section2 discusses the background of AM-FM framework and the
relevance of deep learning approaches. Section3 shares details of implementations
for the adequacy component. Section4 focuses on the fluency component. Section5
discusses the experimental results. The last section concludes this paper and layouts
the future plan for improving the toolkit.

2 Related Work

In this section, we would like to give a brief background of AM-FM framework and
motivate the deep learning approach to AM-FM.

2.1 AM-FM Framework

The AM-FM framework, originally proposed in [1], is used to evaluate machine
translation systems. In a typical evaluation process, we need to assess translated sen-
tences of different systems with respect to multiple human references and provide a
score to each system for ranking purpose. Usually, there are human judges scoring the
systems and the proposed automatic evaluation metric should correlate well with the
human scores. AM-FM framework aims to achieve this by evaluating translations
along two dimensions, the adequacy and the fluency, which are metrics designed
to address independently the semantic and syntactic aspects of the translation. The
semantic aspect serves to assess how much source information is preserved by the
translation whereas the syntactic aspect evaluates the linguistic quality of the transla-
tion. A continuous spacemodel is adopted for assessing adequacywhereas an n-gram
language model is used for evaluating fluency. Both metrics operate at the sentence-
level. For computing the AM score of a system response, a term-document matrix

1https://github.com/e0397123/AM-FM-PM.git.

https://github.com/e0397123/AM-FM-PM.git
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corresponding to the target language is constructed. Sentences are represented with
bag-of-words features and mapped to low-dimensional continuous vectors leverag-
ing singular value decomposition (SVD). The cosine distances between the response
vector and each of the reference vectors are computed. Themaximum cosine distance
is retained as the AM score of the particular system response. For evaluating fluency,
an n-gram language model is implemented with the target language data. Then the
model is used to compute normalized log probabilities of system responses, which
correspond to their respective FM scores. The AM and FM scores of a particular sys-
tem response are then combined to form a final evaluation score based on different
strategies, such as the harmonic mean and the geometric mean.

The dialogue evaluation process is similar to that of machine translation in the
sense that user queries are equivalent to the source sentences and dialogue sys-
tem responses are equivalent to the translation system responses. The quality of
dialogue generation is evaluated by comparing dialogue system responses against
multiple corresponding human-written references. This motivates the extension of
AM-FM framework to the dialogue setting [7]. The same techniques are adopted
for implementing adequacy and fluency metrics with some minor modifications,
such as for the FM modeling, a relative-scale scoring mechanism is introduced:
FMscore = min(probcandidate, probre f erence)

max(probcandidate, probre f erence)
, instead of using the absolute log-probability

score so as to incorporate human references in FM computation. Specifically,
the metric is tested on the evaluation of 20 submitted systems to End-to-End
Conversational Modeling Track of DSTC-6 challenge2 [10]. The test set
contains 2000 dialogue contexts and 11 references per context. System responses are
compared against the references and evaluated by 10 human judges. Rating at the
utterance level is obtained by computing the average of ratings given by the judges
to a particular system response and system-level rating is computed by averaging
utterance-level ratings of all responses to the 2000 dialogue contexts. [7] demon-
strates that AM-FM framework is capable of generating similar system-level ratings
w.r.t the above-mentioned human ratings.

2.2 Relevance of Deep Learning

Despite AM-FM’s good evaluation capability, we would like to address its current
limitations leveraging deep learning, which has revolutionizedmany areas: computer
vision, speech recognition, natural language processing, robotics, etc. We primarily
discuss the application of deep learning techniques in vector-space representations
of word or sentence meanings and language modeling pertaining to the AM-FM
framework in this section.

Word Embedding. [21] proposes ELMo, a deep contextualized word representa-
tion model, which leverages bidirectional language models. Feature representations

2http://workshop.colips.org/dstc6/index.html.

http://workshop.colips.org/dstc6/index.html
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are extracted from both the left-to-right and a right-to-left language models and
concatenate together for other downstream tasks. This approach has achieved signif-
icant improvement in several NLP benchmarking tasks, such as question answering,
name entity recognition and sentiment analysis. [6] marks a departure from tradi-
tional left-to-right or right-to-left language model training by adopting the masked
language model objective for pretraining, where a portion of wordpiece tokenized
input sequence are masked and the model is supposed to predict the masked tokens.
The model is also jointly trained with the next-sentence-prediction (NSP) objective
to identify whether one sentence is a correct continuation of another. It is a deep
bidirectional model with multilayer of transformer encoders [24]. Just like ELMo,
contextualized word embeddings can be extracted from the trained BERT model for
many other NLP tasks.

Sentence Embedding. For sentence-level embedding, [11] proposes the Skip-
Thought Vectors. The main idea is to encode the target sentence with an recurrent
neural network (RNN) encoder and reconstruct the previous and next sentences with
two separate RNN decoders. The final hidden state of the RNN encoder is used as
an embedding for the target sentence. De-noising autoencoder approach is adopted
by [8] whereby the model need to reconstruct the original sentence after it’s getting
some parts changed or deleted. [16] proposes quick-thoughts, an approach to predict
whether a context is correct for a given sentence and a classifier is trained to differ-
entiate context sentences from other contrasting sentences based sentences and their
corresponding labeled contexts.

Language Modeling. Deep learning techniques are also useful for language mod-
eling. [19] proposes the first recurrent neural network language model (RNNLM).
RNNLM performs better than the feed-forward neural network language model and
RNNs are able to processing variable-length sequences. [23] brought LSTM [9] into
language modeling and proposed LSTM-RNNLM to address the issue of capturing
the long-term dependency. [18] proves that attention mechanism is useful for RNN-
based language modeling in the context of coherent dialogue. After the invention of
transformer [24], lots of transformer-based language models [5, 6, 22] have greatly
impacted the NLP field.

3 Adequacy Metric

We explore the use of transfer learning for adequacy metric modeling. Recently,
transfer learning has become prevalent in NLP whereby a general language model
is pretrained on a large amount of text data. It is perceived that the model contains
general-purpose abilities and knowledge that can be transferred to the downstream
tasks. The contextualized embeddings extracted from these models are perceived
to provide meaningful representations of words or sentences, which are key to the
adequacy metric.
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Fig. 1 Twitter dialogue example input to BERT pretraining pipeline

Why BERT. For general language model pretraining, the Bidirectional Encoder
Representation from Transformers (BERT) [6] is chosen. The reason is that BERT
consists of two optimization objectives, one of which is the next sentence
prediction (NSP). This is very similar to the dialogue setting in the sense
that the system response should be a logical continuation to a user query. The NSP
objective ensures that the model is able to capture inter-sentences relationships. For
transfer learning, parameter transfer is adopted as the general model is pretrained on
a different domain as compared to that of the dialogue evaluation task. In order to
adapt to the target domain, we need to continue training the model with the collected
twitter dialogue data. With parameters transferred from the pretrained model as an
initial starting point, we can lead to faster adaptation. Figure1 presents an example
input to the BERT pretraining pipeline.

InputRepresentation. In the context of twitter dialogue,LetUi denote the user query
and Ri denote the response of the customer support. The sentences is tokenized into
wordpiece tokens, Ui = {w j }m( j=1) and Ri = {w j }n( j=1). They form a pair by adding
a [CLS] token in front, a [SEP] token to separate both tokenized sequences and a
[SEP] at the end. The total sequence length is n + m + 3 and it is a hyperparameter
that can be arbitrarily set. Given that twitter sentences are generally short, a total
sequence length of 60 is suitable for the experiments. For each input token, w j , the
input to the network is [Etoken

j + Esegment
j + E position

j ].
Special Tokens. The [CLS] is a special token for classification. During training,
it goes through the transformer encoder layers and the final hidden state is trans-
formed into a 2 × 1 shaped vector with a classification layer. The is-next-sentence
probability is calculated with softmax. The [SEP] token acts as the boundary of
sentences. The special [MASK] token serves the Masked Language Model (MLM)
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training objective. A ratio of the whole input token sequences are masked at ran-
dom and replaced with [MASK] during training. The ratio is kept at 0.15 across all
experiments. Masked tokens are fed into the network together with the rest of the
tokens. The output vectors from the fully-connected layer are multiplied with the
embedding matrix and after softmax computation, a probability distribution across
the entire vocabulary for each token is obtained. The cross entropy loss is adopted
in the training process and the network is supposed to optimize the accuracy of
predicting the correct tokens corresponding to the masked input tokens.

Embedding Extraction. The parameters of the pretrained model, [BERT-Base,
Multilingual Cased], are transferred as an initial starting point and training is
continued with the target domain twitter dialogue data. The details regarding training
BERTmodels can be found in [6]. The trainedmodel is then used as a feature extractor
to get meaningful representations of the sentences. In all the experiments, sentence
embeddings are obtained by applying heuristical operations on the extracted word-
level embeddings. Let Hi, j denotes the hypothesis of system i in response to dialogue
context j and Rk, j denotes the k-th ground-truth reference to dialogue context j . The
same pre-processing steps are performed on both Hi, j and Rk, j and then they are
fed into the trained network. The corresponding activations of the top hidden layer
are extracted. The final sentence-level embeddings, Ei, j of Hi, j are computed by
averaging the embeddings of its corresponding word vectors following Eq.1. Here,
w refers to an individual token while ew represents the extracted embedding of token
w. The sentence embedding of Rk, j is obtained in the same way.

Ei, j =
∑

w∈Hi, j
ew

| ∑w∈Hi, j
ew| (1)

Adequacy Score Computation. Given the sentence embedding mentioned in the
previous paragraph, a final system-level adequacy score can be computed. The sen-
tence embedding of each system submission, Ei, j is compared against that of each
corresponding human references, Ek, j . Equation2 shows the way to compute AMi, j

(the utterance-level adequacy score per system). After measuring the cosine similar-
ity between each system response and all eleven human references, the maximum
score is retained. The final system-level score, AMj , is obtained by averaging all two
thousand utterance-level scores (shown in Eq.3).

AMi, j = maxk∈{1,2,...,11}
ST
i, j · Sk, j

|Si, j ||Sk, j | (2)

AMj =
∑2000

i=1 AMi, j

2000
(3)
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4 Fluency Metric

The key to fluency metric is a good language model (LM), which is able to approxi-
mate the true distribution of text data well. Traditional statistical LMs try to assign
probabilities to a word sequence via the product rule of conditional probability
(Eq.4). The n-gram language model is based on the n-order Markov assumption,
which states that the current word depends only on the previous (n − 1) words.
Smoothing techniques were introduced to counteract the model’s problem of assign-
ing zero probabilities to unseen n-grams.

P(S) = P(w1, w2, ..., wm) = P(w1)P(w2|w1)....P(wm |w1, w2, ..., w(m−1)) (4)

Why LSTM-RNN LM. Though smoothing helps, n-gram models suffer from other
major issues like curse of dimensionality and inability to capture long-term infor-
mation. These problems limit FM’s ability to accurately assess the syntactic quality
of sentences. In order to address these issues, Recurrent neural network language
models (RNN-LM) [19] is explored, especially the use of long short-term memory
cell [9]. The reasons why this family of language models are chosen include: 1.
RNN is inherently suitable for processing variable-length sequence data in terms of
its structure. 2. Especially with the LSTM cell, the network is able to retain long-
term information as LSTM is proposed to address the vanishing gradient problem
of vanilla RNN cell. 3. This family of network has been proven to achieve much
lower perplexity on many benchmarking test sets in the literature as compared to the
n-gram model.

LSTM-RNN LM Implementation. LSTM-RNN LM [23] is similar to RNNLM
[19] except the incorporation of LSTM cell. The objective of a RNN language model
is to predict the next token based on the previous context in a left-to-right manner
whereby the token at the current time step in the target sequence is predicted with a
softmax layer on top of the linear transformation of the current time-step hidden state,
which is dependent on the hidden state of previous time steps and the current input
token. It is assumed that the hidden state of the RNN carries forward the information
of all the previous time steps. The target sequence, which serves as the supervision
to the model during training, is one token ahead of the input sequence. The token can
be a word, a n-gram or a character. The problem can be formulated as Eqs. 5 and 6
where ŷt is the tth prediction distribution across target vocabulary V and wt denotes
the target word at time step t that maximizes the conditional probability.

ŷt = so f tmax(Wsof tmaxht + bsof tmax ) (5)

wt = argmaxwt∈V P(ŷt |V, ŷ1, ..., ŷt−1) (6)
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The recurrent unit, which suffers from the problem of vanishing gradient, is
replaced by a LSTM cell, which contains three gate structures (the input, output
and forget gate) to control the flow of information. The details regarding LSTM
can be found in [9, 23]. Input sequences are preprocessed in the same way as that
used in AM modeling. Sentencepiece tokenization [14] is performed on the input
sequence to handle the out-of-vocabulary problem. The tokenizer is trained on the
full training set with a total vocabulary size of 32000. Tokenized sequences are then
fed into the LSTM-RNN LM for training. Word embedding is pretrained with the
continues-bag-of-words algorithm and then used to initialize weights of the embed-
ding layer. Stochastic gradient descent is chosen to be the optimizer, because in
the literature, SGD has been empirically found to outperform other methods for the
language modeling task [15]. A dropout of 0.2 is chosen to avoid over-fitting.

LSTM-RNNLMForFluencyEstimation.The computations of utterance-level and
system-level FM scores are almost the same as those mentioned in [7] except that
instead of directly computing the normalized log probability of a sentence by sum-
ming up the log probabilities of all tokens and dividing by the number of tokens, the
inverse of sentence-level perplexity is used. Equation7 is the formula for computing
sentence-level normalized log probability. PR denotes the normalized log probability
of a reference sequence, R and n is the number of tokens in R. Equation8 indicates the
relationship between PPR and PR where PPR refers to the sentence-level perplexity
of R and P̂R refers to the un-normalized sentence-level probability of R. Finally,
PPR can be obtained by averaging the sum of cross-entropy loss for predicting each
token and then applying an exponential function on the averaged value.

PR = exp(
log(P(w1, w2, ..., wn))

n
) (7)

PPR = P̂
− 1

n
R => log(

1

PPR
) = 1

n
log(P̂R) => PR = 1

PPR
(8)

After getting the sentence-level normalized probability, the utterance-level flu-
ency score, FMi, j , is obtained firstly by computing the ratio ofmin(PHi, j , PRk, j ) and
max(PHi, j , PRk, j ).

3 Given that there are multiple references per each test case, FMi, j

is then calculated as the difference between the maximum ratio and the minimum
ratio. This way, a small score difference indicates that the system is only able to
generate an averaged response when compared to the eleven gold references; how-
ever, if the difference is large, the system is able to generate a response that is more
closer to one of the valid references. Therefore, the new formulation allows a better
discrimination between the different systems. Lastly, the system-level score, FMj

is computed by averaging sum of all FMi, j .

3R: reference, H: system response, j : system index, i : test case index and k: reference index.
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Table 1 MLM & NSP accuracy across different training data size

Train sizea MLM accuracy NSP accuracy

10K 0.6170 0.8850

20K 0.6364 0.8975

50K 0.6460 0.9012

100K 0.6452 0.9100
a The data size corresponds to the number of dialogues

5 Experimental Results

Experiment Setup. The dialogue dataset is mainly about conversations between
users and companies’ customer support on Twitter. We followed the instructions
provided by the organizer of DSTC6 End-to-End-Conversation-Modeling Track to
collect the official training set and validation set.4 There are around 1.7 million
dialogues in the training set. For AM Modeling, experiments are conducted across
different sizes of training data: 10, 20, 50 and 100K of twitter dialogues. The vali-
dation set contains 52682 dialogues. As mentioned in Sect. 2, the test set contains
2000 dialogues, which are reserved for conducting correlation analysis between deep
AM-FM and the human judgements.

Performance of AM Modeling. Table 1 presents the Masked-Language-Model
(MLM) accuracy as well as Next-Sentence-Prediction (NSP) accuracy on the valida-
tion set after training BERT with different size of twitter training data. Since, BERT
is a form of auto-encoding (AE) language model, a higher MLM accuracy indicates
it has a stronger ability to predict the masked tokens, therefore rendering a better AE
language model. Moreover, a higher NSP accuracy indicates it has a stronger ability
to discriminate relevant responses to the corresponding context from the irrelevant
ones. The optimization of these two objectives depends on the model’s ability to cap-
ture the contextual information in the text. Model with highMLM and NSP accuracy
therefore can better represent the semantics of the words or sentences. Hence, it can
be concluded that better word or sentence embeddings can be learnt with the presence
of more data, because with increasing amount of data, generally higher MLM and
NSP accuracy are achieved. The deep learning implementation enables the leverage
of the power of more data. This is in contrast to the slow computation of singular
value decomposition when the data size is large and the constraint imposed by the
memory size. All experiments are conducted on a single Nvidia GTX 2080-Ti GPU
with the BERT implementation. The training time varies from a few hours to one
day across different training data sizes.

Performance of FMModeling The performance of the LSTM-RNNLM implemen-
tation is compared to different n-gram models (plus Kneser-Ney smoothing) across

4Refer to https://github.com/dialogtekgeek/DSTC6-End-to-End-Conversation-Modeling.git for
the data collection process.

https://github.com/dialogtekgeek/DSTC6-End-to-End-Conversation-Modeling.git
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Table 2 Perplexity for different models on valid setb across different training data size

Train size Uni-gram Bi-gram 3-gram 4-gram 5-gram LSTM-
RNN
LM

10K 597.78 230.72 199.81 201.93 204.61 122.82

20K 635.49 227.50 191.45 193.08 196.00 117.29

50K 666.71 222.77 180.52 180.16 183.05 122.90

100K 682.99 218.59 171.45 170.64 173.32 105.51
b Perplexity is calculated based on the same valid set in Table1

Table 3 AM-SVD vs AM-BERT in terms of system-level correlation w.r.t human judgements

Model Pearson correlation Spearman correlation p-value

AM-SVD 0.8757 0.3970 4.23e − 7∗

BERT-10K 0.6815 0.1233 9.35e − 4∗

BERT-20K 0.8802 0.5429 3.09e − 7∗

BERT-50K 0.7905 0.1443 3.34e − 5∗

BERT-100K 0.7511 0.2511 1.35e − 4∗

p-value with asterisk indicates statistical significance (normally p-value should be < 0.05)

different training data sizes in terms of perplexity. The results are shown in Table 2. It
can be observed that LSTM-RNN LM consistently outperforms the n-gram models
across all training data sizes because for the same amount of training data, LSTM-
RNN LM is able to achieve much lower perplexity than the rest of n-gram LMs on
the validation set. It can be speculated that with even larger amount of training data,
LSTM-RNN LM will perform even much better. Same as the setup in AM imple-
mentation, all experiments are conducted on a single Nvidia GTX 2080-Ti GPU.
The training time varies from a few hours to few days depending on the training
size. Even though when the data size becomes huge, LSTM-RNN LM will take a
long time to finish training. The LSTM cell can be replaced by gate recurrent unit
[4], which performs similar to LSTM, but only with two gates for controlling the
information flow, rendering its training process to be faster.

Correlation Analysis of AM Modeling. BERT models trained on data of various
sizes are compared against the best-performing SVD implementation in terms of both
thePearson andSpearmancorrelationw.r.t the human judgements on the system level.
The results are presented in Table 3. The best model, BERT-20K, outperforms the
best SVD implementation by 0.5% and 36.75% in terms of Pearson and Spearman
correlation respectively. As the training data size increases to 50k and 100k, there is
a drop in the performance. This may be due to the property of test twitter dialogues
as well as the responses generated by the dialogue systems. Almost all the dialogues
are between customer supports and users. In many test cases, the responses are
very standard and lack semantic variation. For example, “you are welcome.” and
“thank you !” are commonly-generated responses. Even human judges found it hard
to rate such responses. In this case, more training data may not help improve the
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Table 4 N-gram vs LSTM-RNN in terms of system-level correlation w.r.t human judgements

Model Pearson correlation Spearman correlation p-value

Uni-gram 0.8128 0.1925 1.33e − 5∗

Bi-gram 0.8596 0.2872 1.20e − 7∗

Tri-gram 0.8272 0.4752 6.83e − 6∗

4-gram 0.8832 0.4331 2.50e − 7∗

5-gram 0.8820 0.3940 2.73e − 7∗

LSTM-RNN (10K) 0.6605 0.5880 1.52e − 3∗

LSTM-RNN (20K) 0.7408 0.6256 1.87e − 4∗

LSTM-RNN (50K) 0.7953 0.5985 2.77e − 5∗

LSTM-RNN (100K) 0.9008 0.5338 6.12e − 8∗

p-value with asterisk indicates statistical significance (normally p-value should be < 0.05)

model’s correlation w.r.t human judgements since the goal of a good adequacymetric
implementation is to better represent the semantics of sentences. However, for the
above-mentioned responses with little semantic variation, the AM model will find
it hard to distinguish them even though there are more data to help improve its
representational capability. Nonetheless, Deep AM-FM mitigates this problem by
providing a more balanced judgement based on both adequacy and fluency and this
is demonstrated in the later part of this section.

Correlation Analysis of FM Modeling. The Pearson and Spearman correlation of
various n-gram LMs (trained with full training data) and LSTM-RNN LMs (trained
with different data sizes) are compared. The experimental results are presented in
Table 4. The best Pearson correlation is achieved by LSTM-RNN trained on 100K
data at 0.9008 with a 2% improvement than the best baseline (4-gram LM). The best
Spearman correlation is achieved by LSTM-RNN trained on 20K data at 0.6256 with
a 31.6% improvement as compared to the best baseline (tri-gram LM). It is observed
that the Pearson correlation progressively increases as the training data increases.
This indicates that the deep learning implementation can address the limits of n-
gram language models to provide more accurate judgement leveraging its ability to
capture long-term contextual information with the aid of more data.

Combining Deep AM-FM. The correlation results of combining deep AM & FM
components are compared against word-overlap metrics such as: BLEU, CiDER
and ROUGE-L, and embedding-based metrics such as: skip-thought and embedding
average aswell as the original bestAM-FMcombination inTable 5. It can be observed
that word-overlap metrics correlate poorly to human judgements in terms of both
the Pearson and Spearman correlation. This is because word-overlap metrics are
based on the assumption that there is significant overlap of words between good
responses and the corresponding golden references. However, conditioning on a
given dialogue context, responses which are diverse in their usage of words and
syntactic structures can be valid. The embedding-based metrics are better than their
word-overlap counterparts in terms of correlation w.r.t human evaluation. However,
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Table 5 Combined deep AM-FM vs other metrics

Automatic metric Pearson correlation Spearman correlation p-value

BLEU-4 −0.5108 −0.1880 2.14e − 2∗

METEOR 0.3628 0.0692 1.16e-1

ROUGE-L 0.1450 0.0541 5.42e-1

CIDEr −0.1827 0.2511 4.41e-1

Skip-Thoughts −0.4608 −0.3549 4.09e − 2∗

Embedding Avg. 0.7747 0.0752 6.07e − 5∗

Vector Extrema 0.2250 0.0571 3.40e-1

Greedy Matching 0.3481 0.0060 1.33e-1

AM-FM Baseline 0.8907 0.4421 1.41e − 7∗

Deep AM-FM
(λ = 0.7)

0.9005 0.5714 6.42e − 8∗

Deep AM-FM
(λ = 0.5)

0.9068 0.5158 3.57e − 8∗

p-value with asterisk indicates statistical significance (normally p-value should be < 0.05)

they only evaluate along one dimension, the semantic closeness of the generated
responses to the respective golden references, i.e. they do not account for the quality
of the response construction.

Following [7], AM and FM scores are linearly combined by using the formula:
AMscore ∗ λ + (1 − λ) ∗ FMscore at system level, where λ is optimized on a devel-
opment set to range between 0 and 1. λ reflects the relative emphasis on the ade-
quacy and fluency dimension. Experimental results suggest that AM-FM framework
exhibits high correlation w.r.t human evaluation, especially the deep learning based
implementation, which achieves the best Pearson correlation of 0.9068when λ = 0.5
and the best Spearman correlation of 0.5714 when λ = 0.7. In the original imple-
mentation, the best λ was empirically found to be 0.8, with a huge emphasis on the
adequacy component. Deep AM-FM shifts the evaluation to a more balanced view
with more or less equal emphasis on both the adequacy and fluency components.
It is observed that as compared to the AM-FM baseline, an 1.8% improvement in
terms of Pearson correlation is achieved when λ = 0.5 and there is a 29.2% gain
when lambda is 0.7. This is especially helpful in the situation where one dimension
of evaluation is insufficient to provide accurate judgement, then the other dimension
will serve as an additional gauge to aid the distinguishing power of the model.

Qualitative Analysis of Deep AM-FM. Two sample dialogue contexts from the
twitter test set are presented in Table6. For each context, three hypotheses are listed:
one with high human rating, one with low human rating and a generic/dull response.
Scores provided by both human and deepAM-FM framework are also listed. It can be
observed that deep AM-FM framework is able to distinguish the low-quality hypoth-
esis from the good ones as demonstrated by the positive correlation between human
ratings and the deep AM-FM scores for the corresponding hypotheses. Individu-
ally, both the deep AM and deep FM component have the distinguishing capability.
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Table 6 Dialogue evaluation samples

Context Hypothesis Avg. Human
Rating

Deep AM
Score

Deep FM
Score

Deep AM-FM
Score

U: gallery of
images taken
using
@getnarrative
during a
recent visit to
the mustang
holding
facility in
burns, oregon

great shot,
<USER>!
thank you for
sharing this
with us

4.2 0.908 0.572 0.740

hi, <USER>,
we ’re sorry to
hear this.
please dm us
your contact
details so we
can look into
this for you.
thanks

2.2 0.723 0.279 0.501

Yes! N.A 0.470 0.274 0.372

U: continues
to point
fingers and
blame instead
of fixing
fridge after
months.
<URL>

we ’re sorry
for the
frustrations.
please dm
your contact
info along
with
mod/serial #.
we can look
further into
this for you

4.2 0.843 0.878 0.861

we know tons
about
refrigerator
repair. have a
look! 20% off
for a limited
time: <URL>

2.5 0.839 0.796 0.818

I don’t know! N.A 0.329 0.141 0.235
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Interestingly, deep FM is able to provide more discriminative scores between the
good and the bad hypotheses. This may be due to that the training of fluency com-
ponent is based on the objective of minimizing perplexity. The model will be more
confident in generating next tokens by minimizing the perplexity. Hence, a good
language model is able to reasonably assess the confidence of different hypotheses
conditioning on the given context and thus, better discriminates different hypotheses.
Recently, it is reported in [25] that the objective of minimizing perplexity has strong
correlation with their proposed sensibleness-specificity metric. This corroborates the
idea of improving the language model in the fluency-metric module helps improve
the effectiveness of the evaluation. It is also mentioned in [25] that measuring along
the dimension of sensibleness alone tend to favor dull responses, such as yes and
I don’t know, which are safe answers, but not specific to the context. We provide
two separate dull responses to the two sample dialogue contexts and their corre-
sponding deep AM-FM scores to examine the framework’s effectiveness in such
situations. It can be observed that deep AM-FM gives low scores to the non-specific
responses. This may be because deep AM-FM provides relative scores instead of
absolute model-generated values. With the presence of gold references, which are
specific to the context, comparisons between different hypotheses and respective
references will help avoid favoring the dull responses.

6 Conclusion and Future Work

In this paper, we propose deep AM-FM, a toolkit for automatic dialogue evaluation
leveraging deep learning techniques. The purpose of the paper is to showcase the
feasibility of applying different methodologies for modeling the adequacy metric
and fluency metric so as to better adapt to the evaluation tasks. We demonstrate deep
learning’s ability to address the problems of the original latent semantic indexing
and n-gram language model implementation and leverage the power of data to pro-
vide better evaluation. Currently, the toolkit is still at its initial version and we aim
to consistently improve deep AM-FM and make it a common platform for evalu-
ating text generation tasks in NLP, such as machine translation, dialogue system
and text summarization. We will conduct more experiments and analyses with var-
ious deep learning techniques on more evaluation datasets. Most importantly, we
aim to incorporate the pragmatics component (PM) into the original formulation of
AM-FM framework to account for other aspects of the evaluation (to mimic human
judgements). For example, in the dialogue setting, aspects like dialogue coherence,
system’s ability to provide consistent dialogue and ability to understand subtle cues
in user’s queries will be considered.
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