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Abstract To provide natural dialogues between spoken dialog systems and users,
backchannel feedback can be used to make the interaction more sophisticated. Many
related studies have combined acoustic and lexical features into a model to achieve
better prediction. However, extracting lexical features leads to a delay caused by
the automatic speech recognition (ASR) process. The systems should respond with
no delay, since delays reduce the naturalness of the conversation and make the user
feel dissatisfied. In this work, we present a prior prediction model for reducing
response delay in backchannel prediction. We first train both acoustic- and lexical-
based backchannel prediction models independently. In the lexical-based model,
prior prediction is necessary to consider the ASR delay. The prior prediction model
is trained with a weighting value that gradually increases when a sequence is closer
to a suitable response timing. The backchannel probability is calculated based on
the outputs from both acoustic- and lexical-based models. Evaluation results show
that the prior prediction model can predict backchannel with an improvement rate
on the F1 score 8% better than the current state-of-the-art algorithm under a 2.0-s
delay condition.
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1 Introduction

Spoken dialog systems (SDS) are increasingly deployed in our daily lives in the form
of smart phones, smart speakers, car navigation systems, and more. These systems
can conduct simple tasks or answer questions. For this type of domain, the systems
generally assume that a user makes one utterance per turn. This assumption is obvi-
ously far from natural, however, as humans often make several utterances in one turn
during a conversation, the listener usually provides feedback, known as a backchan-
nel. In SDS, a backchannel is defined as any kind of feedback a system provides to
a user, including short phrases (‘uh-huh,’ ‘right,’ etc.) and nods. Backchannels can
express sympathy and acknowledge, and they can encourage users to keep talking
and let them know that the system has received the information. Without backchan-
nels, users would be concerned about whether the system is still listening to the
conversation or not. Therefore, if an SDS can predict the backchannel and generate
a backchannel naturally, as humans do, it will be better able to converse with users.

When designing an SDS with backchannel functions, the backchannel models
must accurately detect the backchannel and predict the suitable time to respond. The
inputs of backchannel detection models come from user speech that has been con-
verted into acoustic features such as loudness, pitch, andMFCC. The input could also
include lexical features, e.g., the output of an automatic speech recognition (ASR)
system.According to previouswork, lexical features are themost informative features
and provide better accuracy than acoustic features [11, 18]. However, accurate ASR
needs time for processing, which delays the system responses. In addition,many SDS
applications use cloud-based ASR, and in these cases, the delay of system responses
will be caused not only byASRprocessing but also by the latency of network commu-
nication. Figure 1 shows an example of this delay problem. Response delays of a few
milliseconds might be acceptable as ‘thinking time’; after all, response delays some-
times also occur in human-human conversation, such as during question-answering
or reservation domain tasks. According to an earlier report [19], in human-robot
conversations, the maximum user preference for a system to generate a response is
one second. However, backchannel feedback is different depending on turn response.
Delayed feedback might cause an unsophisticated response, as backchannel is a kind
of a reflex action. If the SDS does not make a backchannel response at an appropriate
time, it will produce unnatural conversation, possibly making the user feel dissat-
isfied. Thus, the SDS must start to give feedback as soon as the user has finished
speaking.

To resolve these issues, we propose a modelling method that can mitigate the
response delay problem in backchannel detection. Our contributions in this work are
summarized as follows.

• We propose a backchannel prior prediction model. Prior prediction means that
the model predicts backchannel events within only the available ASR output,
which consists of the words derived from the beginning of the utterance to the
several seconds before the final ASR outputs occur.



Delay Mitigation for Backchannel Prediction in Spoken Dialog System 131

Utterance

ASR 

She is able to take her baby to work with her

She is able to take her baby to work

End of u erance Time
End of final 
ASR output

Delay

Backchannel
(with prior prediction)

with her

Available words at the end of u erance

Non-available words at the end of u erance

Fig. 1 Response delay caused by ASR in the spoken dialog system. Our proposed prior prediction
mitigates the delay and predicts backchannel earlier than the end of the final ASR output.

• We propose an early loss (EL) function, in which a weighting on the loss value
gradually increases when a word is closer to the final ASR outputs.

• We show that the prior detection model successfully predicts the backchannel
events before the final ASR outputs.

• We show that our proposed prior detection model achieves better performance in
the prediction of suitable backchannel timing than the baseline method in which
the model is trained without the EL function.

• We show it is not necessary to train the model in various delay conditions inde-
pendently, since even under different conditions, our EL-based model delivered
better predictions.

2 Related Work

Prior work on backchannels has used different types of prediction methods and a
variety of input features. These input features include acoustic, lexical, and visual
features such as gaze movement.

Onemain task is to predict backchannel feedback fromuser’s speech.Most related
work has taken a rule-based approach. Ward and Tsukahara [22] proposed a method
with acoustic features to predict a backchannel and reported that a few millisecond
regions of low pitch are a good predictor of backchannel feedback. Truong et al.
[21] developed a rule-based backchannel prediction model using power and pitch
information. Other work has used a classifier to train the model. Morency et al. [14]
proposed a multimodal approach in which acoustic, lexical, and eye gaze data are
used as the features and the model is trained with a hidden Markov model (HMM)
or conditional random fields (CRFs). Training a prediction model in a continuous
manner using the LSTM neural network has also been proposed by [17, 18], who
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evaluated the method with various input features and reported that the performance
with both lexical (e.g., part of speech, word) and acoustic (e.g., power, pitch) features
was significantly better than with just acoustic features. They also proposed a pre-
diction point within a predefined window length and reported that the performance
peaks at 1.5 s of the window. By using a predefined window as a prediction point,
they could also predict backchannels that appear in the middle of an utterance. How-
ever, choosing a predefined area might produce unnatural backchannel feedback,
as the time gap between the detection point and the backchannel timing can vary
significantly.

The other task is to detect speaking acts (including backchannel) [15]. Predicting
different types of backchannel has also been proposed [11]. Skantze [20] proposed a
continuous model to predict upcoming speech activity in a future time window. They
categorized onset prediction into SHORT and LONG, where SHORT utterances can
be considered as backchannel. The prediction of turn-taking with multitask learning
by combining backchannel and filler prediction has also been proposed [7]. A general
study on the correlations or synchrony effect in the prosody of backchannels also
exists [10].

In a practical spoken dialog system, the ASR needs a certain length of process-
ing time to output lexical features from speech data. Many researchers proposed
backchannel prediction methods using the lexical features. However, most of the
researchers did not discuss the influence of ASR processing time to obtain the lexi-
cal features. A few researchers conducted research on backchannel prediction using
lexical features under the assumptions; ASR gives the lexical features with no delay
[17, 18], or ASR takes a constant and short 100ms processing time to output the
lexical features [20].

To predict backchannels using lexical features, the system must wait until ASR
outputs the lexical features. Hence, the timing of backchannel feedbacks is delayed
by the ASR processing time. Moreover, the ASR processing time will be varied
depending on characteristics of input speech signals. To generate backchannels at
an appropriate timing, the backchannel prediction method must take variable ASR
processing time into account.

To the best of our knowledge, our paper is the first to investigate how to accurately
predict backchannel based on lexical features considering the variable delay caused
by ASR. Our work contributes to reducing the delay of the backchannel responses
of the spoken dialog system.

3 Proposed Method

Backchannel prediction is a task that predicts whether the current user’s utterance is
a backchannel point or not. We extract acoustic and lexical features from an input
utterance and feed them to the model to predict the output. The proposed method
introduces prior prediction inwhich the backchannel will be detected several seconds
before the end of an utterance. The model is trained based on LSTM-RNN for the
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Fig. 2 Neural network architecture for backchannel prediction.

sequential information.We feed acoustic and lexical features to the network and train
both models independently. In this section, we explain the overall architecture of the
system for the backchannel prediction. We then explain the early loss (EL) function,
which is the primary contribution of this study.

3.1 Neural Network for Classification

In a real-life scenario, a system receives both audio channel and ASR outputs. How-
ever, the corresponding words come several seconds after the end of an utterance.
This means that the audio and the words do not always correspond to each other, and
the difference between the time at the end of an utterance and the time at the final
ASR output results is a response delay. Let us assume that the acoustic extraction
process is not producing any delay. Therefore, prior prediction is not necessary in
the acoustic case. In the lexical case, prior prediction is necessary to mitigate the
response delay. Because the treatment of the acoustic and lexical cases is different,
we train both models independently.

In this study, we trained the backchannel prediction model using an LSTM-RNN-
based model [8]. The overview of our system is depicted in Fig. 2. In LSTM, a
memory cell is used to store information over time. For lexical features, a token
represents word outputs from ASR (w1, w2, ..., wS), where S is the token number
at the final ASR output. For acoustic features, a token represents a feature vec-
tor of each frame ( f1, f2, ..., fT ), where T is the token number at the end of the
utterance. Standard LSTM takes a sequence of tokens as input and then outputs a



134 A. I. Adiba et al.

sequence of hidden representations (h f,1, h f,2, ..., h f,T ) for the acoustic-basedmodel
and (hw,1, hw,2, ..., hw,S) for the lexical-based model. The input layer consists of the
extracted features for a corresponding utterance. The hidden layer h f,T or hw,s is
used to predict the backchannel probability outputs p̂T or p̂s , respectively, where s
is the latest token number within the words outputted from ASR at the timing of the
end of utterance. In our case, the target output is the probability of backchannel. The
softmax function is used to compute the probability at the i-th utterance. Finally, the
backchannel’s probability (p) is calculated as

p = λ p̂T + (1 − λ) p̂s, (1)

where p̂T is the backchannel probability from the acoustic-based model, p̂s is the
probability from the lexical-based model, and λ ∈ [0, 1] is a hyper-parameter to
control the weight for each model’s output.

The loss is calculated only at the last token with a cross-entropy loss function for
the acoustic-based model. In the other case, for the lexical-based model, the loss is
calculated with an EL function. To clarify the effect of our EL function, we simplify
the network and train the model with unidirectional LSTM for both the acoustic and
lexical models. The label used for training the model is a one-dimensional binary
label, which represents whether the corresponding utterance is a true backchannel
(label = 1) or a false one (label = 0). The output of the model is a probability score
for backchannel within 0 to 1.

3.2 Early Loss (EL) Function for Prior Prediction

Our prior predictionmodel plays twomain roles. The first role is to mitigate delays in
the extraction of input features. Let us consider a case where backchannel prediction
is done using the lexical features, i.e., ASR outputs. After a user says the final word
of an utterance, the ASR outputs this word several seconds after the user has said
it. This “several seconds" is the delay we focus on. If the SDS must generate a
backchannel response to the user as soon as the end-of-utterance has occurred, the
backchannel prediction must be done using only the available input features derived
from the beginning of the utterance to the “several seconds" before the end-of-
utterance occurs. The prior prediction model can accomplish this functionality.

The second role of the prior detection model is to emphasize the end part of a
sequence. We assume the SDSmakes a backchannel only when the user stops speak-
ing, even though in human-human dialogue a backchannel can happen anytime. The
reason for this assumption is that we want to focus on backchannels as a confir-
mation function in which users usually take a brief pause to get confirmation about
whether the system is still listening to the conversation or not. Therefore, we define
the ground truth of a backchannel to be the end of the sequence. A simple way to
predict backchannel using only the available input features is to calculate the loss
for each token in a sequence with the cross-entropy loss function which has uniform
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weighting. However, this method leads to a higher chance of a false positive predic-
tion, since the loss of the first token has an equal weight with a token number in the
final ASR output. Intuitively, failing to predict a backchannel at a token very close to
token number S should receive a higher weight than failing to predict a backchannel
at a token far from token number S. Therefore, our strategy is to adaptively modify
the weight value depending on how early the model predicts the backchannel. To
overcome this challenge, we set the loss at a token very close to token number S to be
higher than the loss at a token far from token number S in a sequence. This weighting
loss idea originally comes from an earlier method for driver activity anticipation [9].
Chan et al. [3] applied the same idea for anticipating accidents in a dashcam video,
which achieved accident anticipation about two seconds before it occurred.

In this work, we consider two types of utterance: those that do not encourage a
backchannel response (non-BC utterance), and those that do (BC utterance). For a
non-BC utterance, the system should not generate a backchannel feedback in which
prior prediction is not necessary. Conversely, for a BC utterance, the system should
generate a backchannel several seconds before the end of the final ASR outputs to
mitigate response delay. Following [9], we use different loss calculation methods
for the BC utterance (positive) and the non-BC utterance (negative). The loss for a
negative utterance is a standard cross-entropy loss. In contrast, to calculate the loss
function of a positive utterance, we multiply a weighting function by the standard
cross-entropy loss; the weighting function gradually increases when a token is closer
to token number S. Finally, the loss function is calculated as follows:

For the positive case:

L p =
S∑

s=1

−e−(S−s) log( p̂s), (2)

For the negative case:

Ln =
S∑

s=1

− log(1 − p̂s), (3)

where p̂s is the backchannel probability at token s.

4 Experiments

4.1 Dataset

We use the Switchboard dataset [6] to model backchannel prediction. This dataset
consists of English conversations between participants who were asked to dis-
cuss a specific topic that was chosen randomly from 70 possibilities. We use
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annotation from the Switchboard Dialog Act Corpus (SwDA),1 as we require dia-
logue act labels (e.g., backchannel, statement) for the annotation.However, theSwDA
corpus only maps the dialogue acts with lexical and turn information; it does not map
dialogue acts to timing information in the original data of the Switchboard dataset.
Because we are interested in delay mitigation, we combine the SwDA corpus with
the NXT Switchboard corpus [2] to obtain utterance timing information. With the
NXT Switchboard corpus, we can access turn, dialogue act, lexical, utterance, and
even word timestamp information within one framework. We exclude utterances in
the dataset that do not have timing information.

Previous works have defined an utterance on the basis of pauses [12] or turn
shift (speaker change) [1, 13]. We follow the work of [13] and represent a con-
versation between two speakers as a sequence of utterances that has been sorted
based on the start-talk time information available in the corpus (u1, u2, · · · , uI ),
where ui is the i-th utterance in the conversation. We also use dialogue act in corpus
(da1, da2, ..., daI ), where dai is the dialogue act for the i-th utterance in the conver-
sation. The backchannel label will be defined as true if the following two conditions
are met:

• dai+1 is a backchannel
• ui and ui+1 have a different speaker

The final dataset that we use contains 114,315 utterances, with 13.62% of them
labelled as true backchannels.

4.2 Features

Following the work in [16], we extract 21 types of acoustic features with 88 dimen-
sions in total using a eGeMAPs [4] configuration with the OpenSmile toolkit [5].
These features include power, pitch, andMFCC. Instead of part-of-speech (POS), we
use words in the manual transcripts as lexical features. Note that this is not the ideal
approach, as the ASR system might provide different outputs than the transcripts.
Lexical features always start from [silb], which is a special word at the beginning
of sentence, followed by the first word. We convert words into word indices, where
each of the index numbers corresponds to an individual word. The word embedding
is then used as input for our model architecture. We found that our dataset in the
fastText model trained with the Common Crawl dataset2 had the smallest number
of unknown words. Thus, the word embedding function was conducted using the
fastText model with 300 dimensions.

1https://github.com/cgpotts/swda.
2https://fasttext.cc/.

https://github.com/cgpotts/swda
https://fasttext.cc/


Delay Mitigation for Backchannel Prediction in Spoken Dialog System 137

Table 1 Simulated example of available words in an utterance for various lengths of delay.

Delay (s) Timestamp for each word

0.16 0.31 0.69 0.85 1.08 1.38 1.57 1.60 1.83 2.02 2.63 2.95

0 we were I was lucky too that I only have one brother

0.5 we were I was lucky too that I only have

1 we were I was lucky too that I only

1.5 we were I was lucky too

2 we were I was

4.3 Experimental Setup

We evaluated the model using 5-fold cross-validation: one fold for the test dataset,
70%of the remaining folds for the training dataset, and 30% for the validation dataset.
Each dialogue conversationwas split to ensure that the same speaker did not appear in
the training, test, and validation sets. For training,we increased the number of positive
utterances up to the same as negative utterances by using random oversampling in
the training set. We optimized the loss function using an Adam optimizer with a
learning rate of 0.0001. At the end of each epoch, we computed the macro F1 score
on the validation set. We ran for a maximum of 100 epochs and stopped training
if there was no improvement in the validation macro F1 scores for five consecutive
epochs. The minibatch size was 10. We took the highest validation performance and
applied it to the test data for evaluation. We trained a one-layer LSTM-RNN model
using the data. The size of hidden layer is 64 units in the acoustic-based model, and
128 units in the lexical-based model. Afterwards, we evaluated the models with a
manipulated utterance for each length of delay. We set λ to 0.5. All parameters were
determined on the basis of the best macro F1 score on the validation dataset.

4.4 Simulation Under Various Delay Condition

In real-time conditions, the available ASR output will differ depending on the length
of delay and on the duration time for eachword in an utterance. For example, theword
‘conversation’ might have a longer duration than ‘yes’. To evaluate the model under
various delay conditions, we manipulated the utterance text in the test dataset. The
timestamp for each word in the i-th utterance in the conversation is (di

1, d
i
2, ..., d

i
S),

where S is the number of words from the beginning of the utterance up to the end
of the final ASR output (see Fig. 1). Given that the ASR delay is α (in seconds),
the available words in the i-th utterance at the end of the utterance are the words in
which the timestamp is lower than or equal to di

S − α. A manipulated utterance for
each length of delay is shown in Table 1 as an example.
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4.5 Baseline Models

For comparison to our proposed model, we use two baselines configuration from
related state-of-the-art studies.

4.5.1 LSTM-RNN Prediction Using Acoustic and POS Combination
Features

We re-implement LSTM-RNN originally proposed by Roddy et al. [16], where they
usedLSTM-RNNfor three prediction tasks: prediction at pauses, prediction at onsets,
and prediction at overlap. Here, we re-implement only prediction at onsets, which
represents a prediction of the length of the next utterance. Roddy et al. stated that
SHORT utterances can be considered as backchannels. They used various features
(e.g., acoustic, word, and part-of-speech (POS)) and then compared the performance
for each feature type. They reported that the best performance was achieved when
they combined acoustic andPOS features to train themodel.Given an input utterance,
we implement their method to predict whether the length of the next utterance will
be SHORT or not. We follow their setup parameters and implement them for our
dataset.

4.5.2 Time-Asynchronous Sequential Networks (TASN)

We re-implement TASN from [12]. In TASN, each feature (word and acoustic) is
individually fed into a sequential network. Afterwards, both final hidden represen-
tations are concatenated and used to directly predict the output. The original task in
their work was for end-of-turn prediction. However, we implement their architecture
for backchannel prediction. In this method, the loss is calculated only at the last token
for each feature with a cross-entropy loss function.

4.5.3 Lexical Without EL Function

In this method, the loss was calculated as follows:
For the positive case:

L p =
S∑

s=1

− log( p̂s), (4)

For the negative case: same as Eq. (3).
We trained the model with the available word data for five lengths of delay (0.0,

0.5, 1.0, 1.5, and 2.0 s). All models were trained independently.
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Table 2 Backchannel prediction performance under different length delay conditions. Results
shown are macro-averaged values across positive and negative classes. All the models were trained
with a 0.0-s delay condition.

(a) Evaluation under 0.0-s delay condition

Features Loss function Precision Recall F1

Acoustic w/o EL 56.36 63.43 49.26

Lexical w/o EL 56.02 57.34 56.01

Lexical with EL 57.19 57.20 57.17

Acoustic + POS w/o EL 62.98 56.50 53.23

TASN w/o EL 56.78 56.55 56.55

Acoustic + lexical w/o EL 57.05 54.94 55.47

Acoustic + lexical with EL 59.58 57.43 58.06

(b) Evaluation under 0.5-s delay condition

Features Loss function Precision Recall F1

Lexical w/o EL 56.77 55.54 55.74

Lexical with EL 56.03 56.76 55.97

Acoustic + POS w/o EL 53.62 54.66 52.10

TASN w/o EL 51.88 53.03 51.19

Acoustic + lexical w/o EL 57.65 53.25 53.42

Acoustic + lexical with EL 57.60 56.93 57.18

(c) Evaluation under 1.0-s delay condition

Features Loss function Precision Recall F1

Lexical w/o EL 56.43 53.98 52.90

Lexical with EL 55.42 55.13 55.26

Acoustic + POS w/o EL 54.40 56.53 51.84

TASN w/o EL 50.43 50.76 48.88

Acoustic + lexical w/o EL 57.95 52.32 51.86

Acoustic + lexical with EL 55.68 56.71 55.96

(d) Evaluation under 1.5-s delay condition

Features Loss function Precision Recall F1

Lexical w/o EL 55.82 53.04 50.66

Lexical with EL 55.25 54.30 54.47

Acoustic + POS w/o EL 54.70 58.93 50.62

TASN w/o EL 50.11 50.17 48.10

Acoustic + lexical w/o EL 58.87 52.72 51.01

Acoustic + lexical with EL 56.29 53.77 52.96

(e) Evaluation under 2.0-s delay condition

Features Loss function Precision Recall F1

Lexical w/o EL 58.04 51.20 49.50

Lexical with EL 56.30 52.79 50.02

Acoustic + POS w/o EL 51.86 54.92 48.08

TASN w/o EL 49.90 49.84 47.46

Acoustic + lexical w/o EL 58.00 52.02 49.41

Acoustic + lexical with EL 56.53 53.47 52.01
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Table 3 Backchannel prediction performance using lexical features without the EL function. Each
model is trained independently under various delay conditions. Results shown are macro-averaged
values across positive and negative classes.

Delay condition
in model training
(sec)

Delay condition
in evaluation
(sec)

Precision Recall F1

0.5 0.5 56.07 59.77 56.16
1.0 1.0 56.20 61.27 55.42

1.5 1.5 55.45 58.86 55.31

2.0 2.0 55.62 58.75 55.77

5 Results and Discussion

The evaluation results are shown in Table2. All the metrics shown in Table2 (i.e.,
precision, recall, and F1) are macro averaged values.3 The best result for each metric
is indicated in bold. Under a 0.0-s delay condition, the combination of acoustic and
lexical features with the EL function outperformed all the baselines, with an F1 score
of 58.06%. The result for the TASNmodelwas basically the same as the lexical-based
model without EL (around 56%). We also evaluated the models for different lengths
of the delay condition. If we assume that the acoustic extraction process does not
produce any delay, the performance of the acoustic-based model should be the same
under all delay conditions, with an F1 score of 49.26%. Our combination of acoustic
and lexical features with the EL function achieved an F1 score of 58.06% under
the 0.0-s and 57.18% under the 0.5-s delay conditions. Afterwards, its performance
dropped to 52.01% under the 2.0-s delay condition, which is still a better result than
the acoustic-based model. Moreover, our method is better than TASN [12] (47.46%)
and the “Acoustic + POS” model [16] (48.08%) under the same delay condition.
It means our method can predict backchannel with an improvement rate on the
F1 score 8% better than these state-of-the-art algorithms. Based on these results,
our prior detection model achieves better performance in the prediction of suitable
backchannel timing than the baseline method in which the model is trained without
the EL function, under all delay conditions.

Next, we compare the acoustic- and lexical-based models independently. Accord-
ing to the F1 score, the lexical features were the most informative features and pro-
vided a better performance than the acoustic features. We also evaluated the models
using simulated test data in which only the available words were fed to the models
(see a simulated example in Table1). As shown in Table2, whether or not the EL
function is applied, F1 scores for the lexical-based model in the 0.5-s delay condition
were almost the same (around 56%). On the other hand, we can see the effect of the

3Each metric (precision, recall, or F1) is calculated for both positive and negative classes. Each
macro-averaged metric is calculated by averaging the corresponding metrics for the positive class
and the negative class.
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EL function when the models are evaluated in longer delay conditions (1.0–1.5 s).
The F1 scores of the lexical-based model trained with the EL function in these delay
conditions were still higher than 54%, while the scores of the models trained without
the EL function dropped significantly. However, even when the EL function was
applied, the F1 scores dropped to 50.02% under the 2.0-s delay condition. This is a
reasonable result, the average utterance duration in the dataset is 1.93 s. Therefore,
under the 2.0-s delay condition, the model was evaluated mostly with a [silb] word
as the input feature. However, it still achieves better performance than the acoustic-
basedmodel. According to these results, our prior detectionmodel could successfully
predict the backchannel events before the final ASR outputs.

Compared to the other combined methods, our combination (acoustic and lexical)
model with the EL function had a better performance even under the 2.0-s delay
condition. A continuous neural network that combines all the features (e.g., the
TASN architecture) works well under zero latency, but if the model is used with an
available input in the delay condition, it will likely fail to predict the backchannel
accurately. This is because, under the delay condition, acoustic and lexical features
do not correspond to each other.Without the EL function, themodel could not predict
backchannel as well as it could under the 0.0-s delay condition.

Another idea to keep the performance high under a longer delay condition is by
training the model with the available words. The results in Table3 show that, even
without the EL function, the model achieved an F1 score higher than 55% for all
delay conditions. However, building a model for each delay condition is difficult
because it depends on the spoken dialog or the ASR system. We therefore suggest
combining the lexical model and acoustic model for a better prediction.

6 Conclusion

In this paper, we have proposed a prior prediction model with an EL function for
backchannel detection that can mitigate the response delay problem caused by ASR.
The model was evaluated under various delay lengths since the delay might differ
depending on the conditions.Results showed that the proposed prior predictionmodel
can successfully predict backchannel even when only the available words are input
as features. In future work, we will implement our proposed model in a robot system
and perform a subjective evaluation.
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