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Abstract 3D reconstruction of plants is a challenging task. It is essential in non-
destructive plant growth monitoring systems and important to reconstruct plant fea-
tures precisely. Two parameters which critically affect quality of the 3D model are
change in the number of input images and the resolution of the images. In this paper,
the effect on 3D models of these parameters is analysed. This analysis enables an
appropriate number of input images and resolution of the images to be determined
for a precise 3D model. To validate the results, the plant stem height and number
of leaves extracted from reconstructed 3D models were compared with ground truth
values. We used descriptive statistics for validation and achieved high correlation
between extracted and ground truth values.

Keywords 3D reconstruction * Structure-from-motion + Feature extraction *
Feature matching - Plant phenotying

1 Introduction

3D models provide information about plant status like plant growth or plant disease
for agricultural management [1]. 3D plant models can be used to estimate plant fea-
tures or parameters to avoid the subjective biases associated with human evaluation
[2]. Plant features such as stem height, number of leaves, leaf area and so on can
be extracted accurately from the 3D model which can be extremely important in
the decision making process. These 3D models can characterize plants with com-
plex architecture, supplying important data to plant breeding plans that is inevitably
essential for altering features related to plant stress, shape or agricultural manage-
ment [3]. 3D modeling makes data, such as plant growth monitoring or treatment,
available to farmers or growers. In addition, 3D models can be helpful to farmers in
yield estimation, disease detection, weed and crop discrimination, and to describe
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plant quality. Even though 3D modeling provides the details of plant structure, it
still requires technological advancements for capturing images and extracting plant
features.

The majority of modeling techniques are based on 2D images, such as hyper-
spectral and thermal imaging [4]. Reconstruction in 3D is rapidly getting attention
and has recently been the focus of much research. Two main classes of 3D mea-
surement are active and passive techniques. LiDAR [5] and structured light [6] are
active sensing methods which use their own source of illumination for sensing. In
comparison, passive sensing methods which use radiation in the scene (illumination
from the sun) include, stereo vision [7] structure-from-motion [8] and many more
[4]. Most passive sensing methods use one or two cameras for sensing which makes
them economical compared to active sensing methods.

LiDAR measures the distance from the sensor to each part of the object by mea-
suring the time it takes for a laser pulse to return to the sensor. Paulus et al. [9]
presented reliability of LiDAR to obtain an accurate 3D point cloud of a plant but
the model gave limited information about surface area because of poor LiDAR res-
olution. Kaminuma et al. [10] successfully reconstructed a plant model in 3D which
represented leaves as a polygonal mesh and used this 3D model for plant feature
extraction. Even though LiDAR has performed well in reconstructing plants in 3D,
it has several disadvantages, such as, high warm-up time, poor resolution, being very
costly and needs numerous captures to handle occlusion [4]. Another method to get
depth information is to use structured light (one example is the Kinect sensor). This
sensor projects a known pattern on the object and deformation of this pattern allows
the vision system to infer surface and depth information of the object [11]. Chéné et
al. [12] used a Kinect sensor for 3D plant reconstruction and achieved good results
but this struggled to perform in an outdoor environment because of poor contrast of
the projected pattern due to bright sunlight. In addition, they did not consider change
in any parameters for reconstruction process such as, the number of input images or
change in image resolution. Baumberg et al. [13] also presented a 3D reconstruction
system for a controlled environment. They used a mesh processing approach for gen-
erating 3D models of cotton plants and did not consider change in the reconstruction
parameters.

In contrast, passive sensing methods use radiation in the scene, which allows this
method to work in outdoor conditions efficiently. Stereo vision has several parameters
which the user has to keep in mind, such as distance between two cameras, distance
between camera and the plant, and the focal length of the cameras [14]. This can
make stereo vision systems difficult to set up and use as the user has to adjust
these parameters. Takizawa et al. [15] used a stereo vision system to generate a 3D
model of plants and extracted plant shape and height data. There’s a still scope for
experimentation in this system by considering a few more plant features like number
of leaves, leaf area, leaf shape. Ivanov et al. [16] extracted plant structure information
using a stereo vision system in outdoor conditions. They captured plant images from
different angles and views. They generated a 3D model by considering all the camera
views for precise reconstruction.
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In structure-from-motion (SfM), set of 2D images are used to create a 3D model of
an object. Unlike stereo vision, SfM uses a single camera. A 3D model is generated
using SfM by capturing a series of images as the camera is moved around the plant.
StM calculates the distance between camera and plant by itself and it does not
require any prior camera calibration, this makes SfM easier to use [4]. Jay et al. [17]
presented a system to generate a 3D model of plants in a row and then extract the
parameters from the 3D model. The camera was translated along the row which gives
limited information about the plant, plant height and leaf area information because
of occlusion of leaves. Quan et al. [18, 19] used SfM to reconstruct a tree in 3D. It
was a semi-automatic system in which user can select which images are used for the
reconstruction. However, the authors did not consider the change in number of input
images for the generating 3D model. In this research, we will be using structure-
from-motion method for reconstruction because of its easier implementation.

1.1 3D Recovery of Plants

Precise reconstruction of an object from multiple images is an on-going problem.
In the past few years advancements to these reconstruction techniques have been
made. However, these techniques have been applied to simpler objects e.g. human
face, vases, buildings or some round objects. Objects with more complex archi-
tecture such as, plants, pose more challenges and issues to precisely reconstruct
in 3D. Complex architectures are subject to significant occlusion, where a leaf is
not visible from current view, and the parallax effect, where plant appearance dif-
fers from view to view, making reconstruction of plants more difficult than convex
objects. Reconstruction of plants is difficult because of high self-occlusion, presence
of many leaves, shiny surfaces, and texture-loss in some camera views making fea-
ture matching more difficult. In addition, plants are very sensitive to changes in the
environment, right from small changes like foliage reorganisation to life long growth
patterns. Consequently, plants have complex architecture which changes over time
which makes it complicated to reconstruct especially by fixed, standard camera phe-
notyping systems. To reduce this complication and to contribute to the solution of this
problem we proposed an easy and cost-effective plant 3D reconstruction system in
our previous work [1]. However, we determined that there are some more parameters
which need attention to reconstruct a precise 3D model such as the number of input
images used for reconstruction and resolution of the images. The speed and quality
of a reconstructed 3D model largely depends on the number of input images and
selection of the views. It is not necessary that every image will contribute equally to
overall quality of a 3D model. It is difficult to select the number of images because
with a limited number of images it is difficult generate an accurate plant model
because fewer images might generate false points in the 3D point cloud. In contrast,
a large number of images will result in processing redundant information which will
inevitably increase computation time [20, 21]. To get appropriate number of images
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for precise 3D reconstruction, prior information or manual measurements of plants
are required to compare to the corresponding measurements from the 3D model.

Clearly, there is a need to consider the number of input images and their resolution
for the reconstruction process. These parameters have not yet been discussed in this
area of plant phenotying. In this work, we investigate these two parameters. Our
contributions are: (1) To reconstruct plant in 3D using a different number of input
images followed by extraction of plant feature, such as stem height and number
leaves in 3D. These extracted 3D values are then compared to manual measurements
of the plant using descriptive statistics to determine an appropriate number of images
for reconstruction. (2) To analyse the effect of image resolution on the quality of the
3D data.

The remainder of the paper is as follows; Sect. 2 discusses the detailed material
and methods used in this paper to analyse the effects of the investigation parameters
on the quality of the 3D model. The experimental results are discussed in Sect. 3.

2 Materials and Method

For this experiment, we considered a chilli plant (Capsicum annum L.) and con-
ducted this experiment on a commercial farm in Palmerston North, New Zealand.
The appropriate permissions from the responsible authorities of the commercial farm
for conducting this experiment were taken. The chilli plant was selected because of
its demand throughout the year and its high value. The stem height of the plant was
15 cm with 11 leaves on it. We aimed at reconstructing a single plant in 3D; hence,
the plants were planted in a row having a distance of approximately 90 cm between
adjacent plants. Therefore, other plants did not interfere in the 3D model and only
one plant is modelled.

2.1 Image Acquisition

The image acquisition process and sample acquired images are shown in Fig. 1.
Images are captured while moving the camera around the plant in an approximately
circular path. We captured the images in six rounds at different views, angles, dis-
tances, and heights. 15 images were acquired in every round [ 1], with images acquired
at approximately 10°-15° intervals. The 90 images from these six rounds had an
overall 90% overlap between images. The distance between camera and plant was
variable. The experiment was performed in outdoor conditions which gave varying
image quality, such as images with shadow, wind, change in sunlight because of
cloud movement. Structure-from-motion calculates the camera intrinsic and extrin-
sic parameters automatically; hence, different positions of the camera do not need
any calibration process.
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2.2 3D Modeling

Once the images,have been acquired, it is necessary to detect common keypoints and
then match these keypoints between other camera view images. Figure 2 shows the
3D modeling pipeline. A scale-invariant feature transform (SIFT) [22] was used to
detect the keypoints.

1.

Scale-space extrema detection: The primary step of SIFT searches over all image
locations and scales using a difference-of-Gaussian function to detect promising
keypoints that are orientation and scale invariant.

. Localisation of keypoints: Keypoints are filtered to remove those with poor

stability. Stability is a measure of the sensitivity of keypoints to changes in position
and scale.

. Orientation assignment to the keypoints: Orientations are allocated to every

keypoint depending on local image gradient directions. These are calculated based
on the detected scale to give scale invariance.

. Keypoint descriptor: Local image gradients are calculated at the chosen scale

in the area around every keypoint. These gradients are then transformed into a
description which allows for considerable levels of change in illumination and
shape distortion.

. Keypoint matching: These keypoints are matched between pairs of images of the

chilli plant acquired from various angles and views. Bundle adjustment is used to
form a sparse 3D point cloud of the plant and retrieve camera positions and intrin-
sic, extrinsic parameters simultaneously. The size, position, and orientation of the
chilli plant are defined related to the coordinate frame of the reconstructed model.
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Once the features are detected and matched from various views, a sparse 3D model
is produced. The sparse model is filtered to remove outliers (erroneous peaks form due
to keypoint mismatching) and unwanted reconstructed part is then removed manually.
Thereafter, the calculated camera intrinsic and extrinsic parameters, positions, and
orientations are used to generate a dense 3D point cloud of the plant. Cross-correlation
matching method is used to match a pixel in one image with the corresponding pixel
in an another image on the epipolar line for an overlapped image pair [23]. The
process is repeated for each image pair.

The generated dense 3D point cloud then processed (cleaned, smoother, and man-
aged) using remenshing and filtering tools in Meshlab [24] to create the final 3D
model.

2.3 Investigation Parameters

This investigation considers two different parameters which have not been discussed
yet in the literature.

1. Change in number of input images for 3D modeling: The 3D modeling method
explained in Sect. 2.2 will be repeated on different subsets of randomly selected
images for a particular set of input images. The size of the subset is varied from 25
images through to 78 images. For each subset size, the experiment is repeated five
times, selecting a different random subset. The quality of the reconstructed 3D
model will be determined by comparing features extracted from the model with
ground truth data (manually measured values of the actual plant). Plant features,
such as stem height and number of leaves will be extracted. By exploring the
correlation of extracted features with ground truth values, the number of images
required to give an accurate reconstruction of chilli plant will be determined.

2. Change in image resolution: Once the appropriate number of images for recon-
struction is determined, the effects of image resolution on the 3D data will be
analysed. This will provide information about the best image resolution for recon-
struction of the chilli plant.

2.4 Measurement of Plant Features from the Reconstructed
3D Model

Two plant features: stem height and number of leaves are extracted manually from the
3D model. The stem height is calculated by calculating the distance between marked
point on the stem tip and bottom in the reconstructed 3D model. These points are
selected visually by the user. Figure 3 shows the marked points on the plant and the
distance between the marked points. Similarly, the number of leaves can be estimated
by zooming and rotating the reconstructed 3D model manually by the user.
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Fig. 3 The approximate calculation of stem height from the reconstructed 3D model

3 Results and Discussion

3.1 3D Modeling

Detailed 3D modeling was performed as described in Sect. 2.2. The experiment on
five different subsets of randomly selected images from the set of input images.

Using from 5 to 20 input images give poor 3D models. A small number of images
do not cover enough plant views to provide sufficient images for an accurate recon-
struction. Quality of the 3D model is directly proportional to the number of views
and images [21]. Figure 4a shows a reconstructed 3D model using all 90 captured
images. This model has replicated the actual plant very well when compared visu-
ally. Figure 4b shows the 3D model derived from 78 images. While there are some
differences with Fig. 4a, these are minor. With fewer images, some of the details start
to get lost, such as leaf stalks Fig. 4c and the stem Fig. 4d.

Consequently, features of the plant derived from the 3D model become less accu-
rate. As leaves become disconnected from the stem, Fig. 4c, the number of leaves
decreases, and as the stem becomes more broken (Fig. 4d—f), the measured stem
height decreases. With fewer images, the number of points detected on the leaf sur-
faces decreases, distorting the shape and size of the leaves.
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(d) 50 images (e) 35 images (f) 25 images

Fig. 4 Example 3D reconstructions of a chilli plant with different numbers of input images

3.2 Investigation Parameters

— Change in number of input images for 3D modeling:

For each subset size, the median, range, and interquartile range are represented by a
box-whisker- plot. This clearly shows the variations from different random selections
(see Fig. 5), and gives a clear idea of the accuracy of the extracted stem height for
different numbers of input images. Similarly, Fig. 6 gives an idea about extracted
number of leaves from 3D model with change in number of input images.

Using fewer images provide less information about plant features as they do not
cover enough plant views. Due to insufficient plant views, the features from one
image are not matched efficiently to another image. This causes feature matching
error, resulting in unwanted outliers and loss of information. Because of the loss of
information, the plant features, such as plant leaves are not reconstructed accurately
and missing part of the leaf. Consequently, the leaf becomes disconnected from
the stem so fewer leaves are counted on the reconstructed plant compared to the
actual plant. Similarly, with fewer input images, the plant stem is not reconstructed
accurately. The stem stem gives an inaccurate stem height from the reconstructed
model.

Consequently, with more input images, the feature matching error and amount
of information loss reduces as the input images cover sufficient plant views. It is
important to use sufficient plant views to reconstruct the plant precisely. When input
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images with sufficient plant views where considered, the error between extracted
values from 3D model and ground truth values reduced. The difference between
extracted values from 3D model and ground truth values varies inversely to number
of input images. The 3D model with 78 input images provided good correlation
between the extracted 3D values and ground truth values. From this experiment, it is
clear that, instead of using all images, we can extract plant features precisely using
fewer images which will inevitably save computation time and memory.

— Change in Image Resolution

The experiment in previous section has provided an approximate minimum number
for accurate 3D reconstruction. In this section, the effect of changing image resolution
will be explored. The original resolution of each image was 2016 x 1512 which gave
143,706 data points on average for the sample plant. These were sufficient to generate
a precise 3D model. However, when the image size is reduced, there is a significant
reduction in the number of 3D points detected, as shown in Fig. 7.

Although these data points are sufficient to reconstruct a 3D model, the quality of
the model is poorer with fewer data points. When the resolution is further reduced,
the number of data points also reduced to 107,313. The reduction in resolution
tends result in inefficient feature detection and matching. Detecting fewer features
leads to feature matching errors which are responsible to create unwanted outliers or
distortions resulting in poor quality 3D model. Thus, the better the resolution of the
images, the more 3D data points are detected.
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4 Conclusion and Future Work

The results of experiments showed that 3D reconstruction of chilli plant and extract-
ing plant features using fewer images is possible. However, the number of input
images required for precise 3D reconstruction is totally depends on plant architec-
ture. If the plant architecture is complex then more number of input images will be
required for 3D reconstruction. Similarly, if plant architecture is simple then fewer
images are sufficient for precise 3D reconstruction.

Our contribution to the knowledge is: (1) Investigation of the effect on 3D model
when there is a change in the number of input images. (2) Guidelines for the selec-
tion of an appropriate number of images for accurate 3D resolution. (3) Successful
extraction of plant features non-destructively from a 3D model non-destructively.
(4) Investigation of the effect on 3D data when there is change in image resolution.
The 3D model reconstructed from fewer images can provide more information about
plant like leaf area, leaf length, leaf width, stem diameter and so on. The future work
can be extended to implement this method on more plants and analyse the required
input images and image resolutions. In addition, it is still needed to analyse, if we
carefully select fewer images manually, is it possible to reduce the number of input
images and still generate a precise 3D model?
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