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Foreword

Selected papers, presented in the 7th International Congress on Computational
Mechanics and Simulation (ICCMS 2019) held under the aegis of Indian Associ-
ation for Computation Mechanics (IndACM), and organized by Indian Institute of
Technology Mandi, are compiled into two book volumes. The advances made in
recent years in mechanics of materials and structures are reported in the first volume.
It gives me immense pleasure to write the foreword for the second volume that
reports the advances in nano-to-macro mechanics and application of computational
techniques in emerging areas.

There are 55 chapters, thematically arranged and subdivided into seven subsec-
tions in the second volume. The first section, having six chapters, is dedicated to
recent advances in nanomechanics. These chapters report new developments in
understanding the behavior of nanoshells and nanotubes. As we gain more clarity on
the behavior of nanoscale materials and elements, their application scope, especially
in medical use, will widen. With use of supercomputer and advanced simulation
techniques, we are progressing toward the use of digital twins of the human body to
monitor and forecast medical conditions. It is, therefore, necessary to understand the
mechanics of various parts of the human body. The second section focuses on the
advancements in biomechanics. The five chapters in this section are dedicated to the
application of computational mechanics and simulation techniques in the modeling
of bone, tissue, veins, etc.

The third section, with nine chapters, deals with the recent developments in solid
mechanics and finite element method (FEM). Studies related to fatigue life estima-
tion of large complex systems, like turbo generators, use of extended finite element
method (XFEM) in creep life estimation and analysis of advanced honeycomb struc-
tures are presented here. The 13 chapters in section four present the advancements
in computational fluid dynamics (CFD) and transport phenomena. From the use of
meshless methods in simulating flow and the transport process to modeling bio-
inspired motions are in the focus of at least five chapters. Another five chapters focus
on the turbulent and non-Newtonian fluid flow and associated areas. The remaining
three chapters discuss different forces on hypersonic blunt body, acoustic analysis
and effect of laser on natural convection.
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vi Foreword

The fifth section presents the recent advancements in modeling and simulation
of multiscale-multiphysics problems. There are six chapters in this section high-
lighting various ranges of applications. This section also stresses upon the simu-
lation of multi-scale systems with advanced materials such as piezoelectric mate-
rials and magneto-rheological materials. The sixth section has seven chapters dedi-
cated to recent advances and new applications of numerical techniques and algo-
rithms. These include solution of Levy-type plates, time integration schemes for
nonlinear problems, algorithms for simulating geomaterial response, solution of
bivariate population balance equation, etc.

The last section, comprises nine chapters and presents the recent applications
of computational mechanics and techniques in emerging areas. Some observations
presented herein on the use of X-ray microtomographic images of concrete for phase
segmentation, design of nonlinear energy harvesting systems, battery module for
electric vehicles and dynamic analysis of launch vehicle structures truly showcase
the wide and futuristic applications of computational mechanics and simulation tech-
niques. There is no doubt that computational mechanics is going to play a driving
role to utilize the true potential of ever-increasing computer capabilities for solving
twenty-first century’s complex real-life problems.

I hope the readers will enjoy reading the book volume and get some high-quality
food for thought leading to future advancements of this field. The editors have done a
commendable job in bringing such a wide range of excellent research articles under
one umbrella. I must congratulate them for their sincere efforts.

Tarun Kant, Ph.D., FNAE, FASc, FNA, FNASc
Professor Emeritus

Department of Civil Engineering
Indian Institute of Technology Bombay

Powai, Mumbai, India



Preface

Indian Institute of Technology Mandi (IIT Mandi) successfully hosted the 7th Inter-
national Congress on Computational Mechanics and Simulation (ICCMS 2019).
This prestigious biennial event was attended by over 250 delegates from all across
the world. This unique congress has exceptional reputation for showcasing the latest
developments in various fronts of computational mechanics—from theories to appli-
cations. In the modern era, the scientific exploration has gained a new height with
the advancements inmathematical and computational methods. Its significant impact
can further be realized through the possibilities of performing engineering analysis
and design tasks which could have not been managed by manual efforts earlier.
Computational Mechanics emphasizes the development of mathematical models
representing physical phenomena and applies modern computingmethods to analyze
these phenomena. Essentially, being interdisciplinary in nature, it thrives on the
fields related to physics, mechanics, mathematics and computer science, and encom-
passes applying numerical methods to various problems in science and engineering.
Recent advances in the field of Computational Mechanics have generated consider-
able interest among researchers and practicing engineers to gain more knowledge
and insight into the various aspects of modeling, analysis and design. The principles
of Computational Mechanics can be effectively applied to rational design of engi-
neering components under various extreme and complex loading conditions. Within
the aforementioned general framework, ComputationalMechanics is currently being
used in a broad range of applications including civil, offshore, aerospace, automotive,
naval, biomechanics and nuclear structures. Keeping such multidisciplinary aspects
in mind, this book volume presents the recent advancements which took place in
the field of Computational Mechanics by compiling selected papers presented in the
ICCMS 2019.

About 215 technical papers were presented during the three days’ congress by
researchers and practitioners from a wide spectrum of research background. In addi-
tion, there were 15 plenary speeches, 10 keynote speeches and four invited talks
delivered by eminent researches in respective areas. All the submitted articles went
through a rigorous three-level review process. The review comments were shared
with the authors to comply and improve. The articles were accepted for presentation
only after receiving positive recommendations from the reviewers. It was indeed
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viii Preface

an enthralling experience to assimilate all the outstanding research papers from the
multidisciplinary domains. However, based on the reviewers’ feedback and recom-
mendations, only 105 papers were selected for compilation as book volumes. We
are delighted that the state-of-the-art technical articles are finally coming up in the
form of two exclusive book volumes by Springer titledRecent Advances in Computa-
tional Mechanics and Simulations. The technical articles are categorically presented
as 105 chapters distributed in two volumes. Volume-I is broadly dedicated to the use
of computational mechanics and simulations at the level of Materials to Structures;
and Volume-II broadly focuses on computational mechanics atNano to Macro levels
and its applications in emerging areas. Nevertheless, there are several chapters that
encompass multiple frontiers of the computational mechanics. Therefore, drawing a
fine boundary while distributing the articles in two volumes was really challenging.

The wholehearted support received from the organizing committee members and
colleagues at IIT Mandi in organizing the ICCMS 2019 is truly appreciated. We are
grateful to Prof. Tarun Kant, Founding President of Indian Association of Compu-
tational Mechanics (IndACM), and Prof. Vasant Matsagar, Executive Secretary of
IndACM, for their mentoring in the overall organization of the congress. We would
like to thank the authors who contributed the exceptional technical articles for the
congress. We express our sincere gratitude to all the reviewers for their valuable time
and painstaking efforts in reviewing the articles. We are indebted to Prof. Tarun Kant
for writing the foreword of this volume. The list of acknowledgements will be incom-
plete without mentioning the passionate efforts put in by our postgraduate students
at various levels of the organization. Without their active support and devotion, it
would not have been possible to organize an event of this stature. We thank Springer
for accepting our proposal andMs. Swati Meherishi, Editorial Director, and her team
for continuous support in successfully bringing out these book volumes.

Mandi, Himachal Pradesh, India
May 2020

Sandip Kumar Saha
Mousumi Mukherjee



7th International Congress on Computational
Mechanics and Simulation (ICCMS 2019)

Under the auspices of the Indian Association for Computational Mechanics
(IndACM), International Congress on Computational Mechanics and Simulation
(ICCMS) is organized biennially. The Association was founded on January 1, 2000,
and has about 200 life members. The previous congresses (ICCMS) were held at
IIT Bombay (2015, 2009), CSIR-SERC Chennai (2014), IIT Hyderabad (2012), IIT
Guwahati (2006) and IIT Kanpur (2004). Computational Mechanics, being an inter-
disciplinary domain of mechanics, involving mathematical models of physical real-
life problems and their solutions, the congress is typically attended by delegates with
background in civil engineering, mechanical engineering, aerospace engineering,
materials engineering/science, physics, mathematics and other disciplines.

The 7th edition of ICCMSwas organized by Indian Institute of TechnologyMandi
(IIT Mandi), during 11–13 December 2019, at the serene Kamand Valley located in
the lap of the Great Himalayas. The congress hosted 15 plenary speakers, 10 keynote
speakers and four invited speakers from, Australia, India, Japan, UK and USA.More
than 215 technical papers were presented by the delegates from across the world in
addition to the plenary, keynote and invited presentations. The technical papers were
invited under 14 different subdomains, such as biomechanics; computational fluid
dynamics and transport phenomena; computational geomechanics and geotechnics;
natural materials; computational structural dynamics; constitutive modeling of mate-
rials; composites andmultifunctionalmaterials; fracture and failuremechanics; inter-
faces, contacts and interactions; multiscale and multiphysics problems, simulation;
numerical methods and algorithms in engineering and science; simulation and anal-
ysis under accidental and extreme loadings; structural health monitoring; vibration
control; structural mechanics, materials and engineering; uncertainty quantification,
reliability analysis; and application of computational techniques in other areas. The
technical presentations were conducted in six parallel sessions during the three days
of the congress.

Alongwith the regular technical sessions, International Society for SoilMechanics
and Geotechnical Engineering (ISSMGE), in association with ICCMS 2019, orga-
nized a day-long Mini-Symposium of ISSMGE’s Technical committee TC-105
on GeoMechanics from Micro to Macro. This comprised seven invited lectures
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and four regular presentations by young researchers. The objective of this mini-
symposiumwas to promote themicromechanics-basedmodeling and researchwithin
the geomechanics community of India.

After seven successful occasions, the 8th edition of ICCMS will be organized by
Indian Institute of Technology Indore in 2021.
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Buckling of Pressurized Nano-Sized
Spherical Shell

Manjur Alam and Sudib Kumar Mishra

1 Introduction

Since the invention of carbon nanotube and a variant of nanostructures, the interest
in nanotechnology has been flourishing rapidly. This has led to arbitrary miniaturiza-
tion of many devices and systems, which are widely acclaimed in a variety of critical
infrastructural applications. Key to the success is the exceptional thermo-electro-
mechanical properties of various nanostructures, that have attracted the attention of
the researchers’ community. Understanding the mechanical responses are important
for economic and reliable design of nanostructures. This requires the evaluation of
stress, strains and their functions. Because of their characteristic dimensions, the
mechanics of nanostructures/nanodevices are significantly dominated by the molec-
ular forces and their interactions, which needs to be adequately incorporated in the
analysis. The Molecular dynamics (MD) simulations [1] are traditionally used for
this. In instances, even the quantum–mechanical description of such interactions is
also included [2]. However, the MD simulation becomes prohibitively exhaustive
to probe length scales of engineering significance to prevent their usage in routine
analysis/design of nanostructures. As an alternative, the theory of continuum solid
mechanics has been extended by Eringen et al. [3, 4] by accommodating the long-
range molecular interactions, referred as nonlocal theory. In these theories, the stress
is not only related to the strains but their gradients as well, described by the Laplacian
of the field variable.

Since the concept of nonlocal elasticity is introduced by Eringen et al. [3, 4],
several aspects of molecular mechanics have been reported in literature using this
theory. Eringen [5] et al. showed that the stress singularity at the crack tip for Griffith
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crack is eliminated in nonlocal media. The solution of the screw dislocation using
nonlocal theory showed good agreement with the experimental observations [6].
The concern of these investigations is material instability. It is important to note that,
with increasingly smaller dimensions of nanostructures, their strength gets higher
[7, 8]. Whereas improved strength permits slender nanostructures, this also increases
their vulnerability to geometric instability, such as buckling. Therefore, geometric
instability of nanostructures attracts considerable attention in recent times.

Peddieson et al. [9] provided a nonlocal formulation of the Euler–Bernoulli beam
theory for its potential application in nanotechnology. Zhang et al. [10] studied buck-
ling of an axially compressed cylindrical shell based on the nonlocal continuum
theory. Wang et al. [11] indicated a resemblance between the effect of transverse
shear deformation and small length scale in reducing the buckling load. Reddy
[12] presented beam theories based on Eringen’s differential constitutive model to
show that the nonlocal effect decreases critical loads. Pradhan et al. [13] studied the
effect of nonlocality on the buckling analysis of bi-axially compressed single-layered
Graphene using nonlocal theory. The effect of shear deformation is also illustrated
[14]. Hashemi et al. [15] investigated buckling of bi-axially loaded nonlocal Mindlin
plates. Zhang et al. [16] calibrated the parameters of nonlocal model from the critical
load.

It is apparent from the review that the nonlocal elasticity theory has been used
most extensively in order to study the buckling and post-buckling behavior of
different nanostructures, such as beams and plates. Shen and co-investigators [17–19]
presented the size dependency of buckling and post-buckling of shear deformable
shellmodel under axial, radial and torsional loading. The buckling instability of cylin-
drical nonlocal shell (such as CNT) has also been recently studied byGhavanloo et al.
[20]. However, otherwise, research works on buckling of spherical shell is scanty and
needs further exploration. In fact, several systems at nanoscale can be modelled as
thin-walled spherical shells. The most common example is that of Fullerene, which
has been approximated as spherical shell by the previous investigators [21, 22]. The
viral capsid is also modelled as spherical shell by Zhang and Ru [23] and Ru [24].
However, these studies do not take the nonlocal interactions into account. Although
due to their characteristic lengths, nonlocal interactions are expected to be signifi-
cant. Therefore, it is important to study the buckling instability of these structures
under external pressures, which remains unexplored. An analysis of nonlocal spher-
ical shell for buckling will be a significant add on to the literature. This article derives
the basic equations governing the buckling of pressurized nano spherical shell. The
shallow shell segment assumptions are made use of, in order to significantly reduce
the complexity of the problem. The equations are formulated using nonlocal differen-
tial constitutive equations in conjunction with the shallow segment shell theory. An
expression for the critical pressure for buckling is derived in close form on solving
these equations. The effect of parametric variations of important parameters is also
demonstrated.
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2 Nonlocal Model for a Spherical Shell

2.1 Nonlocal Elasticity

According to Eringen’s nonlocal elastic field theory [3–6], the stress at a reference
point x is a functional of a strain field at every point x

′
in the body. This observa-

tion accords the atomic theory of lattice dynamics and experimental observations
on phonon dispersion, details of which may be obtained elsewhere [4, 25, 26]. In
a limiting case, as the effect of strains at points other than x is neglected, the classical
local theory of elasticity is reclaimed. For homogeneous, isotropic elastic solid, the
stress–strain relationship is expressed as

σi j (x) = ∫
v
α
(∣∣x − x ′∣∣, τ

)
σ cl
i j

(
x ′)dv

(
x ′) (1)

In which σi j (x) is the nonlocal stress tensor and σ cl
i j (x

′
) is the classical stress

tensor at x
′
which is related to the linear strain tensor εi j (x

′
) at any point x

′
in the

body. The kernel function α
(∣∣x − x

′ ∣∣, τ
)
is the nonlocal modulus with an argument∣

∣x − x
′ ∣∣ as the distance, and τ = ( e0a

l

)
is a constant with

(
a
l

)
as the characteristic

length ratio of the nanostructure and e0 is a material constant, which is determined by
matching the atomic dispersion curve of lattice dynamics with experiments [25]. In
these expressions, a is an internal characteristic length (e.g. lattice parameter, inter-
granular distance) and l is the external characteristic length (e.g. wavelength, crack
length orwidth of localization band). The nonlocalmodulus acquiresmaximumvalue
at x = x′ and attenuates with

∣∣x − x
′ ∣∣. It is observed from the constitutive equation

that in evaluating the stress at a point, the kernel function takes the contribution of
strains from the entire region, overwhich the integration is performed. In general, this
results into a set of integro-partial differential equations which are quite involved. In
order to overcome this difficulty, Eringen [6] proposed a simpler set of constitutive
equations in differential form as

(
1 − e20a

2∇2
)
σi j = Ci jklεkl (2)

In which, σi j and εi j are the nonlocal stress and strain tensor, Ci jkl are the
elastic constants and ∇ is the Laplacian operator. Equation (2) is the equation that
differentiates the nonlocal elasticity theory from the classical (local) theory.

2.2 Nonlocal Shallow Shell Equations

The characteristics wavelength in a sphere due to buckling are small in comparison
to the radius of the shell. With this as the key assumption, the nonlinear equations
of shallow shell are used here for the analysis. This simplification was extensively
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employed byHutchinson [27] andReissner [28, 29] in the analysis of spherical shells.
A segment will be called shallow if the ratio of its height to base diameter becomes
less than (1/8), however, the results obtained based on such theory are also applicable
to shells which are not necessarily shallow but the stresses are effectively restricted
to shallow zones [28]. A complete sphere is shown in Fig. 1, out of which, a shallow
segment (S0) is taken out. The analysis is performed by considering this shallow
section, where the buckled pattern is duplicated many times, thereby adequately
representing the buckled scenario. The Cartesian coordinate system is adopted, in
which the x and y-axis are chosen to be on the base of the section (S0) and the z-axis
align with the direction normal to the base, as illustrated in Fig. 1 a and 1.b. The
sphere has a radius (R) and the thickness (h) as shown in Fig. 1a.

The displacements along x and y are denoted as u and v and the normal displace-
ment along z is denoted as w. Subsequently, the kinematic relation for the shell can
be written as

εx =∂u

∂x
− w

R
+ 1

2

(
∂w

∂x

)2

; εy = ∂v

∂y
− w

R
+ 1

2

(
∂w

∂y

)2

;

γxy = ∂u

∂y
+ ∂v

∂x
+

(
∂w

∂x

)(
∂w

∂y

)
(3)

χx = −∂2w

∂x2
;χy = −∂2w

∂y2
;χxy = − ∂2w

∂x∂y
(4)

The expressions in Eqs. (3–4) are similar to that used in plate bending theory,
except the ones with curvature terms. The von-Karmann nonlinear terms are also
included. This can be justified by the results from buckling of cylindrical shell, in
which, the shell gets subdivided into independent shallow panels in each buckling
modes. The shell is considered to be thin, for which the normal stress (σz), the corre-
sponding normal strain (εz) and the shear stresses

(
σxz, σyz

)
and strains

(
γxz, γyz

)

are considered to be negligibly small.

x

y

z

0S
(a)

(b)

Fig. 1 a A spherical shell with a Shallow section, b the Shallow section illustrated in detail
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The resultant direct and shear stresses are denoted as
(
Nx , Ny, Nxy

)
in the respec-

tive directions, designated by the subscripts. Further, Mx , My and Mxy denotes
the resultant moments in the respective directions. The equations for the forces
are moments can be obtained by integrating Eq. (2), which provides the following
equations.

Nx − e20a
2
(

∂2Nx
∂x2 + ∂2Nx

∂y2

)
= C

(
εx + νεy

)
(5.1)

Ny − e20a
2
(

∂2Ny

∂x2 + ∂2Ny

∂y2

)
= C

(
εy + νεx

)
(5.2)

Nxy − e20a
2
(

∂2Nxy

∂x2 + ∂2Nxy

∂y2

)
= (1−ν)

2 Cγxy (5.3)

The moment–curvature relations can be expressed as

Mx − e20a
2
(

∂2Mx
∂x2 + ∂2Mx

∂y2

)
= −D

(
∂2w
∂x2 + ν ∂2w

∂y2

)
(6.1)

My − e20a
2
(

∂2My

∂x2 + ∂2My

∂y2

)
= −D

(
∂2w
∂y2 + ν ∂2w

∂x2

)
(6.2)

Mxy − e20a
2
(

∂2Mxy

∂x2 + ∂2Mxy

∂y2

)
= −D(1 − ν) ∂2w

∂x∂y (6.3)

where the constants C and D are expressed as

C = Eh
(1−ν2)

; D = Eh3

12(1−ν2)
; (7)

in which the symbols E and ν are respectively the elastic modulus and poisons
ratio for thematerial considered. The system of differential equations for equilibrium
of nonlocal shallow shell takes the form

∂Nx
∂x + ∂Nxy

∂y = 0 (8.1)

∂Nxy

∂x
+ ∂Ny

∂y
= 0 (8.2)

∂Qx
∂x + ∂Qy

∂y + Nx

(
1
R + ∂2w

∂x2

)
+ Ny

(
1
R + ∂2w

∂y2

)
+ 2Nxy

(
∂2w
∂y∂x

)
+ p = 0 (8.3)

Qx − ∂Mx
∂x − ∂Mxy

∂y = 0 (9.1)

Qy − ∂Mxy

∂x
− ∂My

∂y
= 0 (9.2)

These equations of equilibrium can be reduced further into two equations, one
equation of equilibrium and one of compatibility. It may be noted that the theory
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of plate bending is reclaimed by the present formulation, in which, the radius of
curvature R = ∞. The stress functions are defined as

Nx = ∂2 f
∂y2 ; Ny = ∂2 f

∂x2 ; Nxy = − ∂2 f
∂y∂x ; (10)

A differential equation for the stress function f can be obtained by using the
compatibility of deformation using the set of Eq. (3) as

∂2Nx

∂y2
− e20a

2

(
∂4Nx

∂y2∂x2
+ ∂4Nx

∂y4

)
− ν

[
∂2Ny

∂y2
− e20a

2

(
∂4Ny

∂y2∂x2
+ ∂4Ny

∂y4

)]
+ ∂2Ny

∂x2

− e20a
2 ∂4Ny

∂x4
− e20a

2 ∂4Ny

∂y2∂x2
− ν

[
∂2Nx

∂x2
− e20a

2

(
∂4Nx

∂x4
+ ∂4Nx

∂y2∂x2

)]

− (2 + 2ν)

[
∂2Nxy

∂y∂x
− e20a

2

(
∂4Nxy

∂y∂x3
+ ∂4Nxy

∂y3∂x

)]

= Eh

[(
∂2w

∂y∂x

)2

−
(

∂2w

∂x2

)(
∂2w

∂y2

)]

− Eh

R

[(
∂2w

∂x2

)
+

(
∂2w

∂y2

)]
(11)

Combining Eqs. (10) and (11), one obtains

∇4 f − e20a
2∇6 f = Eh

R

[
R
(

∂2w
∂y∂x

)2 − R
(

∂2w
∂x2

)(
∂2w
∂y2

)
−

(
∂2w
∂x2

)
−

(
∂2w
∂y2

)]
(12)

Equation (12) is the first equation for the buckling problem of nonlocal shallow
spherical shell. The other equation is obtained from the equilibrium. Substituting
the moment equilibrium Eqs. (9.1–9.2) into the force equilibrium (8.1, 8.2, 8.3),
one attains

∂2Mx
∂x2 + 2 ∂2Mxy

∂x∂y + ∂2My

∂y2 + Nx

(
1
R + ∂2w

∂x2

)
+ Ny

(
1
R + ∂2w

∂y2

)
+ 2Nxy

∂2w
∂x∂y + p = 0

(13)

On substituting the moment–curvature relation from Eqs. (6.1, 6.2, 6.3) into the
Eq. (13), it appears

−D ∇2w + Nx

(
1

R
+ ∂2w

∂x2

)
+ Ny

(
1

R
+ ∂2w

∂y2

)
− 2Nxy

(
∂2w

∂y∂x

)

+ p − e20a
2
[(

∂2Nx

∂x2

)(
1

R
+ ∂2w

∂x2

)
+ 2

∂Nx

∂x

(
∂3w

∂x3

)
+ Nx

(
∂4w

∂x4

)

+
(

∂2Nx

∂y2

)(
1

R1
+ ∂2w

∂x2

)
+ 2

∂Nx

∂y

(
∂3w

∂y∂x2

)
+ Nx

(
∂4w

∂y2∂x2

)]

− e20a
2
[(

∂2Ny

∂x2

)(
1

R
+ ∂2w

∂y2

)
+ 2

∂Ny

∂x

(
∂3w

∂y2∂x

)
+ Ny

(
∂4w

∂y2∂x2

)
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+
(

∂2Ny

∂y2

)(
1

R
+ ∂2w

∂y2

)
+ 2

(
∂Ny

∂y

)(
∂3w

∂y3

)
+ Ny

(
∂4w

∂y4

)]

− 2e20a
2
[
−

(
∂2Nxy

∂x2

)(
∂2w

∂y∂x

)
+ 2

(
∂Nxy

∂x

)(
∂3w

∂y∂x2

)
+ Nxy

(
∂4w

∂y∂x3

)

+
(

∂2Nxy

∂y2

)(
∂2w

∂y∂x

)
+ 2

(
∂Nxy

∂y2

)(
∂2w

∂y∂x

)
+ 2

(
∂Nxy

∂y

)(
∂3w

∂y2∂x

)

+Nxy

(
∂4w

∂y3∂x

)]
= 0 (14)

Introducing the stress functions (10) into Eq. (14), results in the second equation
governing the buckling

−D ∇2w +
(

∂2 f

∂y2

)(
1

R
+ ∂2w

∂x2

)
+

(
∂2 f

∂x2

)(
1

R
+ ∂2w

∂y2

)
− 2

(
∂2 f

∂y∂x

)(
∂2w

∂y∂x

)

+ p − e20a
2
[(

∂4 f

∂y2∂x2

)(
1

R
+ ∂2w

∂x2

)
+ 2

(
∂3 f

∂y2∂x

)(
∂3w

∂x3

)
+

(
∂2 f

∂y2

)(
∂4w

∂x4

)

+
(

∂4 f

∂y4

)(
1

R
+ ∂2w

∂x2

)
+ 2

(
∂3 f

∂y3

)(
∂3w

∂y∂x2

)
+

(
∂2 f

∂y2

)(
∂4w

∂y2∂x2

)]

− e20a
2
[(

∂4 f

∂x4

)(
1

R
+ ∂2w

∂y2

)
+ 2

(
∂3 f

∂x3

)(
∂3w

∂y2∂x

)
+

(
∂2 f

∂x2

)(
∂4w

∂y2∂x2

)

+
(

∂4 f

∂y2∂x2

)(
1

R
+ ∂2w

∂y2

)
+ 2

(
∂3 f

∂y∂x2

)(
∂3w

∂y3

)
+

(
∂2 f

∂x2

)(
∂4w

∂y4

)]

− 2e20a
2
[
−

(
∂4 f

∂y∂x3

)(
∂2w

∂y∂x

)
− 2

(
∂3 f

∂y∂x2

)(
∂3w

∂y∂x2

)
−

(
∂2 f

∂y∂x

)(
∂4w

∂y∂x3

)

−
(

∂4 f

∂y3∂x

)(
∂2w

∂y∂x

)
− 2

(
∂3 f

∂y2∂x

)(
∂3w

∂y2∂x

)
−

(
∂2 f

∂y∂x

)(
∂4w

∂y3∂x

)]
= 0 (15)

It can be observed from both the Eqs. (11) and (15) equations that, if the nonlocal
parameter e0a is made zero, the equations for the classical shell can be regained.

3 Solution of the Equation Governing Nonlocal Buckling

The equations derived for a shallow spherical shell segment is solved herein. The
spherical shell is subjected to a constant external pressure p and the state of stress
prior to buckling is approximated to be the membrane state of stress, given as.

N 0
x = N 0

y = − pR
2 and N 0

xy = 0(16).
The inward displacement, prior to buckling is given as

w0 = − (1 − ν)pR2

2Eh
(17)
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In the light of pre-buckled state of stress and deformation, the stress function and
the displacement may be written as

f = −
(
pR

4

)(
x2 + y2

) + F (18.1)

w = − (1 − ν)pR2

2Eh
+ W (18.2)

In these expressions F and w are zero prior to buckling. In order to find out
the critical buckling pressure, at which, the bifurcation from the pre-buckling state
occurs, a linear buckling analysis is needed.The equations for linear buckling analysis
can be obtained by substituting Eqs. 18.1 and 18.2 into Eqs. 12 and 15. Subsequent
linearizing with respect to F and W furnishes.

−D∇4W + 1

R
∇2F − pR

2
∇2W − e20a

2

(
1

R
∇4F − pR

2
∇4W

)
= 0 (19)

∇4F − e20a
2∇6F + Eh

R
∇2W = 0 (20)

The problem, therefore, is reduced to a coupled set of homogeneous eigenvalue
problem in F andW. Only for specific values of p, the equations will have non-trivial
solution. A periodic solution can be taken of the following form

W = cos
(

κx x
R

)
cos

( κy y
R

)
(21.1)

F = Bcos
(κx x

R

)
cos

(κy y

R

)
(21.2)

where κx and κy are the wavenumbers in x and y directions respectively. The
buckled modes will have characteristic wavelengths

(
λx , λy

)
, which are assumed to

be much smaller than the characteristic dimension of the shallow shell segment (S0).
Substituting 21.1 and 21.2 into the Eqs. 19 and 20, the critical load for buckling is
found to be

p =
(
2Eh
R

)

{
1 + ( e0a

R

)2(
κ2
x + κ2

y

)}

[
1

(
κ2
x + κ2

y

) +
(
κ2
x + κ2

y

)

q4
0

]

(22)

The respective value of the coefficient (B) is obtained as

B = EhR
{
1 + ( e0a

R

)2(
κ2
x + κ2

y

)}(
κ2
x + κ2

y

) (23)

in which, the parameter (q0) is given as
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q4
0 = 12

(
1 − ν2

)( R

h

)2

(24)

Minimizing p with respect to κx and κy provides the critical load for a nonlocal
shallow spherical shell

pcr = 4EhR
(
e20a

2q2
0 +

√
e40a

4q4
0 + R4

)
q2
0

(25)

which is associated with any combination of wavenumber κx and κy satisfying

κ2
x + κ2

y =

(
e20a

2q2
0 +

√
e40a

4q4
0 + R4

)
q2
0

R2
(26)

Equation (25) gives the expression for critical buckling load of the nano-spherical
shell when subjecting to uniform external pressure. It is clear from the expressions
(22–26) that for vanishing nonlocal scale parametera, the results reduce to classical
solution. However, the solution obtained here is based on a shallow shell represen-
tation, the validity of this assumption is supported by large wavenumbers κx and κy ,
or small wavelengths (λx , λy), in comparison to unity i.e. the buckling wavelengths
should be small compared with the radius (R) of the sphere. It is apparent from
Eq. (26) that κx and κy is of order of q0 and hence adequately large. If either of the
wavenumber κx or κy becomes zero, the shallow shell representation of a complete
sphere is also valid. This case is analogous to the condition of buckling of cylin-
ders under axial pressure, where the shallow shell equations accurately represent the
axially symmetric mode.

4 Numerical Illustration and Discussion

It is obvious from the derivation that the nonlocal scale effect reduces the buckling
load, which is non-conservative, if not adequately taken care of while designing.
In order to illustrate the effect of nonlocality on the critical buckling load, a load
parameter λ is defined as the ratio of classical (local) buckling load to the nonlocal
buckling load of the spherical shell, following the literature [10]. A spherical C60

fullerene structure of thickness h = 0.0665 nm is consideredwith a radius R = 0.355
nm, Poisson’s ratio (ν) 0.2 and an average bond length a = 0.14 nm. Following
Eringen [6], a value of e0 = 0.39 for the nonlocal material constant is adopted for
illustration.

It is well established in the literature that the scale parameter (e0a) affects different
modes of buckling differently, with a more pronounced effect on the higher modes.
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Fig. 2 The contour of the load parameter (λ) for varying combinations of wavenumbers, with the
nonlocal parameter (e0a) as a zero b 0.05 c 0.075 and d 0.10

Contour plots of this load parameter (λ)with varying combinations of the wavenum-
bers

(
κx , κy

)
are shown in Fig. 2a–d, for different values of the nonlocal length scale

parameter. It is clearly observed from these figures (Fig. 2a–d) that for a particular
value of the nonlocal parameter, the load parameter λ increases substantially for
increasingly higher modes. Further, the rate of increase becomes more pronounced
for higher value of the nonlocal length scale. The increase in load parameter λ

essentially indicates the respective fall in the critical loads for increased degree of
nonlocality, dictated by the length scale parameter.

It is also observed that the combination of wave numbers needs to satisfy a critical
relationship (Eq. 26) for being qualified for a legitimate bucklingmode. The relation-
ship is observed to be affected by the nonlocal length scale parameter. By setting this
nonlocal parameter to be zero, Eq. (26) reclaims the one for classical (“local”) shell.
Therefore, the effect of length scale parameter on the wavenumber combination is
shown in Fig. 3. This relation basically forms a circle, as also shown in this figure. It is
seen thatwith increasing length scale parameter (and thus increasing nonlocality), the
radius of the circle increases. This implies that the number of wavenumbers becomes
higher for increasing nonlocality. This also means that the respective wavelengths
become smaller, which further justifies the representation of nonlocal spherical shell
with a mere shallow segment.
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Fig. 3 Wavenumber combinations for minimum buckling load with different length scale
parameters

Another parameter, having a profound influence on the buckling of shell is the ratio
of the shell thickness to its radius

(
h
R

)
. With this in view, the parametric variation of

the decrease in the critical loadwith the nonlocal length scale parameter is also studied
with respect to the varying

(
h
R

)
ratio. This is presented in Fig. 4 . The variation of the

load parameterλ seems to be significantly get affected by the
(
h
R

)
ratio. It is important

to note that for higher values of
(
h
R

)
ratio, the value of load parameter λ reduces, i.e.

the nonlocality induced reduction of critical load, becomes less prominent in thicker
shells. Thus, the effect of nonlocality counteracts the effect of increasing

(
h
R

)
ratio,

i.e. the thickness. On the other hand, the effect of nonlocality on reducing the critical
load magnitude gets amplified for increasingly thinner shell.

5 Conclusion

Buckling of nano-sized spherical shell subjected to external pressure is presented
herein based on the nonlocal theory. A simplified shallow shell model of the spherical
shell is considered to significantly simplify the analysis. The governing equations
and their linearized version are developed. On solving, a closed-form expression
for the critical load is derived. The expression for the critical pressure involves the
nonlocal length scale as a parameter. The salient effects are demonstrated using a
numerical example. It is found that the nonlocality effect reduces the critical buck-
ling load. The influence of nonlocality gets amplified for higher modes of buckling
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Fig. 4 Critical load parameter for varying (h/R) ratio, shown for different length scale parameters

and increasingly thinner shell. The critical relationship that must be satisfied by the
wavenumbers of a buckling mode, is also shown to be modified by nonlocality. With
increasing nonlocality, an increased number of wavenumbers must be accommo-
dated in nonlocal shallow shell segment, which also results in increasingly smaller
wavelengths. This fact provides additional support to the simplifying assumptions
of shallow shell segment in order to study the buckling of nonlocal spherical shell.
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On Flexure of Shear Deformable
Isotropic Rectangular Nanobeams

Kedar S. Pakhare, P. J. Guruprasad, and Rameshchandra P. Shimpi

1 Introduction

Size-dependent effects which are insignificant in case of macroscopic structures
become significant for small-scale structures such as nanobeams and nanoplates.
Classical continuum theories do not take into account such size-dependent effects
(Eltaher et al. [1]). Nonlocal elasticity theory of Eringen (references [2, 3]) has
brought to light the importance of size-dependent effects with regard to small-scale
structures. According to Eringen’s theory, stress at a point in an elastic continuum
depends on strains at that point as well as strains at all other points in continuum;
hence the name nonlocal elasticity.

Effects of transverse shear with regard to beam deformation are insignificant
for slender beams but become prominent for shear deformable beams. In literature,
various first-order shear deformation beam theories (FSDT ) and higher order shear
deformation beam theories (HSDT ) are present which capture these effects of shear
in beam deformation (Ghugal and Shimpi [4]). It should be noted that, assumed
displacement functions ofFSDT result in constant transverse shear strain through the
beam thickness. Whereas, assumed displacement functions of HSDT result in more
realistic non-linear variation of transverse shear strain through the beam thickness.
In comparison with FSDT, HSDT generally have increased number of independent
unknowns and require specification of increased number of boundary conditions at
each beam end.

To accurately predict mechanical behavior of shear deformable nanobeams, it is
essential to take into account not only size-dependent effects but also beam trans-
verse shear deformation effects. In this paper, newly developed single variable new
first-order shear deformation nonlocal beam theory (SVNBT ) of Pakhare et al. [5]
is used for performing flexure of shear deformable isotropic rectangular nanobeams
under the action of sinusoidally distributed transverse load. SVNBT involves only
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one governing differential equation which is obtained by utilizing beam gross equi-
librium equations. Unlike nonlocal Timoshenko beam theory (NTBT ) which involves
two unknown functions (Wang et al. [6]), SVNBT involves only one unknown func-
tion. Effects of nonlocal parameter of Eringen and beam thickness-to-length ratio on
profiles of non-dimensional beam transverse displacement and on maximum non-
dimensional beam transverse displacement for simply supported, clamped, and can-
tilever isotropic rectangular nanobeams under the action of sinusoidally distributed
transverse load by utilizing SVNBT are presented.

2 Theoretical Formulation

Governing differential equation of SVNBT (Pakhare et al. [5]) is as follows:

E I
d4wb

dx4
+ K

d2q

dx2
− q = 0 (1)

In this theory, total beam transverse displacement is given as follows:

w = wb − h2 (1 + μ)

6 κ

d2wb

dx2
(2)

Beam geometry, co-ordinate system, symbols appearing in Eqs. (1) and (2) are
the same as those of Shimpi et al. [7], κ is shear correction factor.

For beam under the action of sinusoidally distributed transverse load:

q = qo sin
(π x

L

)
(3)

where qo is amplitude of applied transverse load.
Substituting Eq. (3) in Eq. (1) and solving the resulting expression, general solu-

tion of wb is obtained which is as follows:

wb = qo (π2 L2 K + L4)

π4 E I
sin

(π x

L

)
+ C1

( x

L

)3

+ C2

( x

L

)2 + C3

( x

L

)
+ C4 (4)

where in Eq. (4); C1, C2, C3 and C4 are arbitrary integration constants whose values
can be found out by utilizing boundary conditions imposed on beam ends.
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Beam Boundary Conditions

Pakhare et al. [5] have also stated physically meaningful beam boundary conditions.
For the problem under consideration, these conditions with regard to one of the beam
ends assumed at x = 0 for illustrative purpose are as follows:

Simply supported boundary conditions:

[
wb − h2 (1 + μ)

6 κ

d2wb

dx2

]

x=0

= 0 (5)

[
d2wb

dx2

]

x=0

= 0 (6)

Clamped boundary conditions:

[
wb − h2 (1 + μ)

6 κ

d2wb

dx2

]

x=0

= 0 (7)

[
dwb

dx

]

x=0

= 0 (8)

Free end boundary conditions:

[
d2wb

dx2

]

x=0

= 0 (9)

[
E I

d3wb

dx3
+ K

dq

dx

]

x=0

= 0 (10)

Boundary conditions are chosen from Eq. (5) through (10) for each beam end in case
of simply supported, clamped, and cantilever nanobeams.

3 Numerical Results and Discussion

Tables1 through 3 presentmaximumnon-dimensional beam transverse displacement
(wmax) for the problem under consideration obtained by utilizing SVNBT along with
corresponding results of NTBT (Wang et al. [6]) for simply supported, clamped
and cantilever nanobeams, respectively, for various values of nonlocal parameter
of Eringen (K ) and beam thickness-to-length ratio (h/L). It should be noted that,
wmax obtained using NTBT is calculated by the present authors by utilizing the work
reported by Wang et al. [6].



20 K. S. Pakhare et al.

Figure 1 through 3 present profiles of non-dimensional beam transverse displace-
ment (w) for the problemunder consideration obtained byutilizingSVNBT for simply
supported, clamped, and cantilever nanobeams, respectively, for various values of K
and h/L .

It should be noted that beam ends x = 0 and x = L are simply supported in the
case of simply supported nanobeam (Table1 and Fig. 1), beam ends x = 0 and x = L
are clamped in the case of clamped nanobeam (Table2 and Fig. 2), beam end x = 0
is clamped and x = L is free in the case of cantilever nanobeam (Table3 and Fig. 3).

Maximum non-dimensional beam transverse displacement (wmax) obtained by
utilizing SVNBT matches exactly with corresponding results obtained by utilizing
NTBT in the case of simply-supported, clamped and cantilever nanobeams (Tables 1
through 3 respectively) with nanobeam under the action of sinusoidally distributed
transverse load for various values of nonlocal parameter of Eringen (K = 0, 1, 2 and
3) and beam thickness-to-length ratio (h/L = 0.01, 0.05, 0.10 and 0.15). It should
also be noted that, SVNBT contains only one unknown function as opposed to NTBT
which contains two unknown functions.

Following points should be noted with regards to profiles of non-dimensional
beam transverse displacement (w) presented in Figs. 1 through 3:

1. For simply-supported and clamped nanobeams under the action of sinusoidally
distributed transverse load (Figs. 1 and 2 respectively), increase in nonlocal
parameter of Eringen as well as beam thickness-to-length ratio cause increase
in w.

Table 1 wmax = (100 wmax E I )/(qo L4) for simply supported nanobeam, μ = 0.3

Theory wmax with K = 0

h/L = 0.01 h/L = 0.05 h/L = 0.10 h/L = 0.15

Present$ 1.02686 1.03318 1.05294 1.08587

NTBT$ [6] 1.02686 1.03318 1.05294 1.08587

wmax with K = 1

Theory h/L = 0.01 h/L = 0.05 h/L = 0.10 h/L = 0.15

Present$ 1.12821 1.13516 1.15686 1.19304

NTBT$ [6] 1.12821 1.13516 1.15686 1.19304

wmax with K = 2

Theory h/L = 0.01 h/L = 0.05 h/L = 0.10 h/L = 0.15

Present$ 1.22956 1.23713 1.26078 1.30021

NTBT$ [6] 1.22956 1.23713 1.26078 1.30021

wmax with K = 3

Theory h/L = 0.01 h/L = 0.05 h/L = 0.10 h/L = 0.15

Present$ 1.33090 1.33910 1.36471 1.40738

NTBT$ [6] 1.33090 1.33910 1.36471 1.40738
$Shear correction factor of 5/6 is utilized
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Table 2 wmax = (100 wmax E I )/(qo L4) for clamped nanobeam, μ = 0.3

Theory wmax with K = 0

h/L = 0.01 h/L = 0.05 h/L = 0.10 h/L = 0.15

Present$ 0.220573 0.226896 0.246653 0.279583

NTBT$ [6] 0.220573 0.226896 0.246653 0.279583

wmax with K = 1

Theory h/L = 0.01 h/L = 0.05 h/L = 0.10 h/L = 0.15

Present$ 0.242343 0.249289 0.270997 0.307176

NTBT$ [6] 0.242343 0.249289 0.270997 0.307176

wmax with K = 2

Theory h/L = 0.01 h/L = 0.05 h/L = 0.10 h/L = 0.15

Present$ 0.264113 0.271683 0.295341 0.334770

NTBT$ [6] 0.264113 0.271683 0.295341 0.334770

wmax with K = 3

Theory h/L = 0.01 h/L = 0.05 h/L = 0.10 h/L = 0.15

Present$ 0.285882 0.294077 0.319685 0.362364

NTBT$ [6] 0.285882 0.294077 0.319685 0.362364
$Shear correction factor of 5/6 is utilized

Table 3 wmax = (100 wmax E I )/(qo L4) for cantilever nanobeam, μ = 0.3

Theory wmax with K = 0

h/L = 0.01 h/L = 0.05 h/L = 0.10 h/L = 0.15

Present$ 7.38600 7.40587 7.46794 7.57139

NTBT$ [6] 7.38600 7.40587 7.46794 7.57139

wmax with K = 1

Theory h/L = 0.01 h/L = 0.05 h/L = 0.10 h/L = 0.15

Present$ 7.06769 7.08756 7.14963 7.25308

NTBT$ [6] 7.06769 7.08756 7.14963 7.25308

wmax with K = 2

Theory h/L = 0.01 h/L = 0.05 h/L = 0.10 h/L = 0.15

Present$ 6.74938 6.76925 6.83132 6.93477

NTBT$ [6] 6.74938 6.76925 6.83132 6.93477

wmax with K = 3

Theory h/L = 0.01 h/L = 0.05 h/L = 0.10 h/L = 0.15

Present$ 6.43107 6.45094 6.51301 6.61646

NTBT$ [6] 6.43107 6.45094 6.51301 6.61646
$Shear correction factor of 5/6 is utilized
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(a) K = 0 (b) K = 1

(c) K = 2 (d) K = 3

Fig. 1 For simply-supported nanobeam, non-dimensional beam transverse displacement (w =
(100 w E I )/(qo L4)) versus non-dimensional beam axial location (x = x/L) for various values
of nonlocal parameter ofEringen (K ) and beam thickness-to-length ratio (h/L); - - - for h/L = 0.01,
· · · for h/L = 0.05, - · - for h/L = 0.10 and - ·· - for h/L = 0.15

2. For cantilever nanobeam under the action of sinusoidally distributed trans-
verse load (Fig. 3); increase in nonlocal parameter of Eringen for a given
beam thickness-to-length ratio causes reduction in w. Whereas, increase in
beam thickness-to-length ratio for a given nonlocal parameter of Eringen causes
increase in w.

4 Concluding Remarks

In this paper, newly-developed single variable new first-order shear deformation non-
local beam theory (SVNBT ) is utilized for performing flexure of shear deformable
isotropic rectangular nanobeams under the action of sinusoidally distributed trans-
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(a) K = 0 (b) K = 1

(c) K = 2 (d) K = 3

Fig. 2 For clamped nanobeam, non-dimensional beam transverse displacement (w =
(100 w E I )/(qo L4)) versus non-dimensional beam axial location (x = x/L) for various values of
nonlocal parameter of Eringen (K ) and beam thickness-to-length ratio (h/L); - - - for h/L = 0.01,
· · · for h/L = 0.05, - · - for h/L = 0.10 and - ·· - for h/L = 0.15

verse load. Effect of nonlocal parameter of Eringen and beam thickness-to-length
ratio on profiles of non-dimensional beam transverse displacement and maximum
non-dimensional beam transverse displacement for thick isotropic nanobeams with
various beam fixity conditions is presented. Obtained results are compared with cor-
responding results of nonlocal Timoshenko beam theory to demonstrate the effec-
tiveness of SVNBT. These results and comparison prove that the flexural analysis
of shear deformable isotropic rectangular nanobeams carried out using easy to use
SVNBT is reliable for a range of beam fixity conditions, nonlocal parameter and
beam thickness-to-length ratio.
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(a) K = 0 (b) K = 1

(c) K = 2 (d) K = 3

Fig. 3 For cantilever nanobeam, non-dimensional beam transverse displacement (w =
(100 w E I )/(qo L4)) versus non-dimensional beam axial location (x = x/L) for various values of
nonlocal parameter of Eringen (K ) and beam thickness-to-length ratio (h/L); - - - for h/L = 0.01,
· · · for h/L = 0.05, - · - for h/L = 0.10 and - ·· - for h/L = 0.15
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Rolling and Sliding Resistance as Carbon
Nanotubes are Driven on a Graphene
Sheet

Avirup Sircar and Puneet Kumar Patra

1 Introduction

Two objects in physical contact with each other display interesting phenomena such
as friction, wear, and adhesion at multiple scales. With the increasing popularity of
nanoscale electro-mechanical devices, understanding the properties of two nanoscale
objects in “contact” with each other is gaining prominence. However, research on
nanoscale devices continues to challenge our knowledge on wear and tribology [1–5]
and is not a mere extension of continuum scale mechanics. This is because as the
length scale of a device decreases from micro to nano, surface forces such as adhe-
sion, friction, and viscous forces that are proportional to area become a thousand
times larger than the body forces, such as inertia, which depend on the volume [5].
Additionally, physical “contact” becomes more prominent, making the objects par-
ticularly vulnerable to adhesion. At nanoscale, atomic interactions such as chemical
bond formation [6, 7] and Van der Waals force across the interfaces [7, 8] play a
crucial role. The interaction between the two objects governs the nature of motion—
whether the objects roll, slip, or roll with slip [2, 9].

One of the most important nanoscale materials to have come up in the last two
decades is Carbon nanotubes (CNTs). Having cylindrical shape [8], they possess
exceptionally high elastic modulus [10, 11], thermal conductivity [12], electrical
conductivity [13], etc., making them suitable for future nanoscale devices [14, 15]
such asmass spectrometers, drug delivery devices, high density data storage systems,
etc. A proper understanding of the workings of these nanoscale devices require a
better knowledge of energy dissipation mechanism. Nanotribology of CNTs and its
applications have been a subject of several research works.

Multi-walled CNTs, put together concentrically to form CNT bearings, have been
studied through experiments [16]. With separately imposed fixed and free bound-
ary conditions on the outer nanotube shell, and rotation on the inner nanotube, the
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frictional characteristics have been studied using molecular dynamics simulations
[17]. It was found that friction forces increase linearly with the rotation speed.
At higher temperatures, thermal vibrations increase, causing frequent “collisions”
between atoms, and hence, more transfer of orderly kinetic energy into disorderly
thermal motion, resulting in enhancement of frictional forces [17]. Conversely, fric-
tion was found to increase with decreasing inter-tube spacing, since the tighter spac-
ing increases the stiffness of the van der Waals interaction between the atoms of
adjacent tubes. The frictional characteristics of capped single-walled CNTs (SWC-
NTs) used as the tip of atomic force microscope have been studied using molecular
dynamics simulations [18]. As the tip moves over a graphitic surface, numerical
investigations of the lateral and normal forces of interactions reveal that the coeffi-
cient of friction varies with the distance between the tip and surface along with the
layers of graphene present in the graphitic surface. The variable frictional character-
istics of the capped SWCNTs may be utilized to replace the standard Silicon-based
tip of atomic force microscopy to perform high resolution surface probing.

However, whether a CNT rolls or slides on the graphitic surface, when pushed, is
yet to be well understood. Using molecular dynamics at constant energy ensemble,
Buldum and Lu [7] suggested that rolling of CNTs is energetically more favorable
than sliding only in certain locking positions under suitable external forcing con-
ditions. Depending on the driving force a CNT may very well exhibit sliding and
a combination of sliding and rolling (rolling with slipping). Experimentally, simi-
lar observations have been made [19, 20] by Falvo et. al. where stick-slip rolling
have been observed for some driving forces. The origin of this stick-slip rolling and
transition from sliding to rolling is yet to be understood. Surface effects also tend
to influence the characteristics of motion. Consider the case, where a CNT lies on
top of a graphitic surface. As the CNT moves, commensuration of the two contacts
determine the nature ofmotion—CNTs tend to get locked to commensurate positions
and, as a result, the motion changes from sliding to stick-rolling while maintaining
commensuration just like a rack and pinion gear arrangement. The effect of com-
mensurate contact on rolling/sliding was further elucidated by Miura et. al [21] in
their experimental study involving multi-walled CNTs (MWCNTs) moving over
graphitic surface. Despite these promising findings, experiments with CNTs rolling
on graphitic surfaces have revealed that the energy dissipation in nanoscale rolling is
often higher than that in sliding motion when the contacting surfaces are incommen-
surate [22–26]. In addition to the geometrical considerations, the relative motion of
CNT-graphitic system depends on the interaction of outermost layer of CNTwith the
graphitic substrate. The interaction energy comprises short-range attraction due to
chemical bonding, very short-range repulsion due to electronic orbital overlap [27]
and attractive longer range Casimir forces [28], all of whichmay bemodeled through
a Lennard-Jones type potential [29].

In this manuscript, we revisit the motion of a CNT on a graphitic substrate to
establish the different regimes of nanotribology—sliding, rolling, and sliding with
rolling—using molecular dynamics simulations with Tersoff potential for C-C inter-
actions of bothCNT and graphene andLennard-Jones potential for cross C-C interac-
tion ofCNTand graphene. The center ofmass (CoM)ofCNT is attached to a fictitious
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spring whose other end is pulled at a constant speed. Defining frictional forces as the
component of interaction force between the CNT and graphene along the direction
of motion, we specifically try to answer the following questions—(i) how do fric-
tional forces evolve, as the rate of doing external work by the pulling agent increases,
(ii) is there a regime where stick-roll behavior is observed regardless of effects of
commensuration, and (iii) does the temperature of the environment has any bearing
on the nature of motion and magnitude of frictional forces? A new dynamics-based
scheme has been proposed to identify the different regimes of motion.

This manuscript is organized as follows: the next section details the simulation
methodology adopted in the study, subsequent to which the important results are
highlighted. Lastly, we conclude this study with several questions that have arisen
from this study.

2 Simulation and Modeling

Usually experiments involving nanotribology have been performed with one of the
three setups: (i) nanoindentation experiments where one surface slides over the other
in order to estimate sliding friction as the atomic structures evolve [30], (ii) experi-
ments where two surfaces move with respect to each other in presence of sandwiched
lubricant molecules for estimating the resistance to the relative motion [31], and (iii)
experiments where a fluid moves around a nanoscale system and the drag force is
measured [32]. Motivated by these experiments, a different computational experi-
ment is used here to understand nanotribology.

A pictorial representation of the problem studied in this manuscript is shown in
Fig. 1. The figure depicts a graphene sheet modeled in 3 dimensions as brown dots,
on top of which an SWCNT, shown in blue dots, is kept. The SWCNT has a chirality
of (10,0) and length of 10 Å, while the graphene sheet is 500 Å×10 Å. The CoM
of SWCNT is attached with a fictitious spring, shown in black dashed line, whose
free end is pulled with a velocity, v in the y direction. The spring constant is taken as

Fig. 1 Pictorial representation of the problem studied: an SWCNT is connected to a fictitious
spring which is pulled with a constant velocity v. The SWCNT moves on top of a graphene sheet
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100 eV/Å2. As the spring is pulled, the atoms of SWCNT experience a force in the y
direction. However, its motion on the graphene sheet (in the y direction) is resisted
due to its interaction with the atoms of the graphene sheet. For the remainder of
this study, the force of resistance along the y direction is treated as the friction force
between the SWCNTand the graphene sheet. In order tomake a uniform comparison,
the results of friction presented later are with respect to lattice units, where the lattice
constant of graphene = 2.456 Åhas been used.

The interaction between the C-C atoms of both SWCNT and graphene sheet have
been modeled using the three-body Tersoff-like potential [33]. Although several
potentials are available for modeling the C-C interactions [34–37], we have chosen
the Tersoff-like potential owing to its wide usage in the molecular dynamics commu-
nity [38]. In fact, the Tersoff potential has been a preferred choice for investigating
nanoscale friction in CNTs by various researchers [39–42]. Further, the Tersoff-like
potential is valid across a wide range of temperature, making possible a meaningful
comparison of nanotribology regimes as the temperature changes. Mathematically,
the Tersoff potential can be expressed as

E =
∑

i

Ei = 1

2

∑

i �= j

∑

j

φ(ri j ),

φ(ri j ) = fc(ri j )[ fR(ri j ) + bi j f A(ri j )], (1)

where E is the total potential energy of the system and Ei is the potential energy of
the i th atom and φ is the potential energy between the i th and j th atoms.

In Eq.1, ri j is the distance between the i th and the j th atoms, bi j is the bond-
order function, fc the cutoff function that ensures nearest-neighbor interaction, fR
the repulsive pair potential, and f A the attractive pair potential. The mathematical
forms of these individual functions are as follows:

fc(ri j ) =
⎧
⎨

⎩

1 ∀ri j < Pi j
1
2 − 1

2 sin(
π
2
ri j−Ri j

Di j
) ∀Pi j < ri j < Qi j

0 ∀ri j > Qi j

here, Pi j = Ri j − Di j , Qi j = Ri j + Di j

The cutoff function is continuous and goes from 1 to 0 smoothly across Ri j from
Pi j to Qi j . Ri j is chosen so as to include only the first-neighbor shell for most
structures of interest.

fR(ri j ) = Ae−λ1ri j , f A(ri j ) = −Be−λ2ri j ,

bi j = (1 + βnζni j )
− 1

2n ,

ζi j =
∑

k �=i, j

fC(rik)g(θi jk)exp[λ3
3(ri j − rik)

3],

g(θi jk) = 1 + c2/d2 − c2/[d2 + (h − cosθi jk)
2)], (2)
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where θi jk represents the angle between the bonds i− j and i−k. Depending upon the
system being simulated, the parameters in the equation take different values. In the
current simulation the parameters are taken according to the paper by Lindsay and
Broido [38]. The simulations by these parameters have been seen to agree with the
experimental results and from first principles, which motivated us to use this [38].

While the Tersoff potential accounts for the interaction within the SWCNT
and graphene sheet, the cross-interaction between the C-C atoms of SWCNT and
graphene sheet is modeled using the two-body Lennard-Jones (LJ) potential. The
12-6 LJ potential:

φL J (ri j ) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

, (3)

has been adopted in the present study owing to its widespread use in modeling the
van der Walls forces between two nanoscale objects [39–42]. Here, ε is the depth of
the potential well and equals 0.002411 eV. σ denotes the distance between any two
atoms such that φL J (ri j ) = 0, and equals 3.4 Å.

All simulations have been performed using the free to use software LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator) [43]. Each simulation
run begins with a conjugate gradient-based potential energy minimization. This step
ensures that the entire system reaches a minimum potential energy state. Meaning-
ful friction results can only be obtained if the system reaches a proper minimized
energy configuration. Subsequent to energy minimization, 500,000 time steps, each
of 1 fs have been run in constant temperature and pressure (NPT) ensemble with
temperature, T = 1K and 300K, and pressure equalling 1 bar. In NPT ensemble,
the simulation box is allowed to change, ensuring that the system does not become
unstable in later stages. Post NPT relaxation, periodic boundary conditions have been
imposed in the system along the x and y directions. A constant force of 0.0001eV/Å
is applied on each atom of the SWCNT in the z direction to mimic normal reactive
force that arise in macroscopic systems. In order to prevent translation of the system
under the external force, the total linear momentum of the graphene sheet is kept
at zero. Under this setup, 10,000,000 time steps, each of 1 fs, have been performed
in the constant volume and temperature (NVT) ensemble. Two different values of
T = 1K and 300K have been imposed for understanding the temperature depen-
dence of frictional forces. Unlike in NPT, we employ a Langevin [44, 45] thermostat
at this step, and not one of the deterministic thermostats [46, 47] for temperature
control. Once the system is thermalized, the free end of the spring is displaced con-
tinuously with a speed v until the CoM of SWCNT reaches a specific location on the
graphene sheet. Three different values of v (in Å/ f s) have been used in the study
for understanding the effect of frictional forces on rate at which work is done by the
spring: v = 0.005, 0.5 and 1.0. All coordinate-based results have been normalized
with respect to a lattice unit, a = 2.456 Å, which essentially represents the lattice
constant of graphene.
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3 Results and Discussion

At continuum scales, distinct regimes of friction can be typically observed as an
object achieves steady-state motion starting from rest—initial regime where there is
resistance tomotion due to static friction force, intermediate regimewhen themotion
initiates but is yet to reach steady state, and lastly the steady-state regime where the
resistance is provided by kinetic friction. Defining the different regimes of friction in
the problem investigated is somewhat tricky, as there is no clear transition. Figure2
shows the variation of frictional forces with different values of v and T . In none of
the different cases of v and T , one can observe distinct regime of static, intermediate,
and kinetic friction.

As the temperature of the SWCNT-graphene system increases, thermal vibration
effects start to become more prominent. The ordered kinetic energy imparted to the
SWCNT by the external work due to the fictitious spring is converted to disordered
thermal energy of both SWCNT and graphene sheet by the Langevin thermostat.
As a result, at times, the atoms of SWCNT and graphene come very close to each
other causing a sudden rise in friction values at higher temperature. A similar reason
may be attributed to the increase in absolute value of the frictional forces at higher
temperature vis-á-vis lower temperature.

Dynamics at low temperatures and low pulling velocities is significantly different
from those at higher velocities and temperatures. A zoomed-in view of the frictional
force profile shown in Fig. 2a is depicted in Fig. 3a. In the steady-state regime, the
frictional force almost linearly decreases to prevent themotion of SWCNT as the free

Fig. 2 Variation of friction force at 1K (top figures) and at 300K (bottom figures) for different
pulling velocities, v. The frictional force is sensitive to both v and T . While one observes stick-
rolling in figure (a), pure rolling in figure (b), thermal effects dominate in figure (d). For figures (c)
and (f), friction occurs due to sliding of SWCNT over graphene
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Fig. 3 (a) Zoomed-in view
of friction versus Y − CoM
at T = 1K showing evidence
of stick-roll motion of
SWCNT at low temperatures
and v = 0.005Å/ f s, and (b)
Variation of potential energy
with Y − CoM (smoothed
average indicated in black
line) depicting that each
sudden change in frictional
force is associated with a
drop in potential energy

end of the spring moves. This is reminiscent of rolling about the bottom-most atom
of SWCNT in contact with the graphene sheet, like a rack and pinion arrangement.
The gradual decrease is followed by a sudden increase in friction force indicating
a slip in the motion—a new atom takes the bottom-most position at this instant.
Thus, the SWCNT undergoes a stick-roll motion. The evolution of potential energy
of SWCNT is indicated in Fig. 3b in green, and the moving average of potential
energy with 150 sample points is depicted in black line. Each slip event is associated
with a sudden dip in potential energy establishing that the SWCNT jumps to a local
potential energy minimum configuration.

To identify the deviation of the dynamics of the SWCNT from pure rolling, a
new methodology has been designed which we detail next. Consider a spherical ring
moving on a flat surface. In pure rolling, the trajectory of a point on the spherical
ring follows a cycloid with the distance between the two peaks and troughs equalling
π × Dcyc. For our cases, where the ring comprises a cross-section of SWCNT, Dcyc

corresponds to the diameter of the SWCNT and equals 3.915 Å. Figure4 shows
the evolution of Z and Y coordinates of a single particle of a SWCNT when v =
0.005Å/ f s: (a) for 1K and (b) for 300K. At finite temperature, the graphene sheet
tends to vibrate causing undulations in the geometry. As a consequence, the SWCNT
tends to also move in the Z direction. In order to negate this behavior, the the Z
coordinate of the particle is plotted with respect to the CoM of the ring whose one of
the constituents is the chosen particle. On top of Y − Z plot, a perfect cycloid motion
is plotted in black dashed line. Notice that the plot at 1K completely coincides with a
normal cycloid which suggests that the SWCNT undergoes pure rolling motion. The
SWCNT remains “stuck” to the graphene through its bottom-most point about which
the remaining atoms of SWCNT rotate. Subsequently, a new atom takes the bottom-
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Fig. 4 Evolution of Y and
relative Z coordinates of a
particle of SWCNT when the
spring is pulled by
v = 0.005Å/ f s for (a) 1K
temperature and (b) 300K
temperature. A perfect
cycloid is indicated in
dashed black line

most position, and similar dynamics occur. Figure4b plots the Y − Z coordinate in
a similar manner at 300K. Notice the difference from the cycloid. The motion is
dominated by thermal vibration of the underlying graphene sheet because of which
stick-roll dynamics is not observed.

In Fig. 5, the steady-state Y − Z plot of a single atom of SWCNT, when pulled
with v = 0.5Å/ f s, is shown at two temperatures: (a) at 1K and (b) at 300K. The
corresponding cycloids are shown in the black dashed line. At 1K there is rollingwith
slippingwhich gradually turns into pure rolling and like in the case of v = 0.005Å/ f s
at T = 1K , the deviation of dynamics from a cycloid is small for Fig. 5a. There is
a subtle difference between the two, however, the friction profile does not indicate
any stick-roll phenomenon, rather, there is a hint of slipping for the bottom-most
particle. At 300K, on the other hand, the dynamics is rolling with slipping. This is
evident from the loops formed by the atom as it reaches bottom-most position. The
competing effects of driving force due to the fictitious spring, thermal vibrations
and frictional force due to graphene cause slipping, and therefore, one observes a
significant deviation from a cycloid.

The dynamics is completely different for v = 1Å/ f s. Friction profile is shown
in Fig. 2c and f indicates that stick-roll or pure roll motion do not occur. In order to
ascertain this, the Y − Z evolution of a single atom of SWCNT is shown in Fig. 6.
At 1K (see Fig. 6a), the green line depicting the motion of the atom is almost a flat
line, indicating that the SWCNT gets simply dragged across the graphene sheet. At
300K (see Fig. 6b), though, there is a hint of rotation as can be judged from the height
difference in the relative Z coordinate of the atom. The SWCNT undergoes a very
interesting motion in this case—at first the nanotube rolls followed by rolling and
sliding.
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Fig. 5 Evolution of Y and
relative Z coordinates of a
particle of SWCNT when the
spring is pulled by
v = 0.5Å/ f s for (a) 1K
temperature and (b) 300K
temperature. A perfect
cycloid is indicated in
dashed black line

Fig. 6 Evolution of Y and
relative Z coordinates of a
particle of SWCNT when the
spring is pulled by
v = 1Å/ f s for (a) 1K
temperature and (b) 300K
temperature. A perfect
cycloid is indicated in dashed
black line. Both figures (a)
and (b) suggest that the
SWCNT gets dragged
(slides) along the graphene
sheet. At 300K, however,
there is a small component of
rotation along with sliding
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Table 1 Work done per unit distance traveled by the CoM along the Y direction, 〈W 〉d , as evaluated
using Eq.4. All velocities, v are in Å/ f s. Notice that stick-rolling motion (v = 0.005Å/ f s, T =
1K ) is associated with the smallest amount of energy dissipation at 1K, suggesting that it is possible
to engineer low-friction regime by appropriately driving the nanotube

T (K) v = 0.005 v = 0.5 v = 1

1 −0.0261 −0.0392 −0.0393

300 0.0067 −0.0069 −0.0027

Let us define the work done per unit distance, 〈W 〉d , by the friction force as

〈W 〉d =
∑

Ff ΔYCoM∑
ΔYCoM

, (4)

As the SWCNT does not travel uniformly for the different cases, the normalization
with respect to distance traveled by the CoM in the Y direction provides a tool for a
meaningful comparison of the energy dissipated by the frictional forces. The results
are indicated in Table 1. Notice that stick-rolling motion (v = 0.005Å/ f s, T = 1K )
is associated with the smallest amount of energy dissipation at 1K, suggesting that
it is possible to engineer low-friction regime by appropriately driving the nanotube.
Surprisingly enough, the case of v = 1Å/ f s, T = 300K also has a very low amount
of energy dissipation. At high T , thermal effects are dominant, and coupledwith large
v, the SWCNT does not get enough time to relax to an energy minimum state, i.e., its
Z coordinate is such that the force due to interaction is small, and as a consequence,
〈W 〉d is also very small.

4 Conclusion

This manuscript studies the tribological characteristics of an SWCNT moving over
a graphene sheet at two different temperatures using molecular dynamics simula-
tions. There are several differences between the tribological characteristics of the
nanoscale problem studied here and an equivalent continuum scale problem. For
example, unlike in the continuum scale where friction always opposes the direction
of motion, at nanoscale, friction may act in the direction of motion. The direction
of friction force is a complex interplay between the position of SWCNT (and as a
consequence its interaction with graphene), the force exerted by the spring and the
effect of thermal vibrations. When the CNT approaches a local minimum potential
energy configuration, the van derWaals forces are directed toward the localminimum
energy configuration, causing the frictional forces to “aid” the motion. On the other
hand, as the nanotube is pulled away from a local minimum energy configuration, the
frictional forces oppose the motion as the van der Waals forces continue to remain
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directed toward the local minimum energy configuration. Further, defining uniquely
the static and kinetic friction forces is not always possible.

The dynamics of SWCNT on graphene is significantly influenced by the con-
trolling temperature, which in turn, influences the temporal and spatial evolution of
frictional forces. At very low temperatures and low pulling velocities, we observe
stick-roll phenomenon in the SWCNT, and as a consequence, the frictional force sud-
denly changes sign from being negative to positive. Such phenomenon is typically
absent at relatively higher temperature and very low pulling velocities. In here, the
thermal vibration of the graphene dominates and determines the motion of SWCNT.
However, one can still experience pure rolling at high temperatures if the velocity
of pulling is increased. At very high pulling velocities, the steady-state motion of
SWCNT is such that it simply gets dragged across the graphene sheet. Typically
pure rolling is associated with lower energy dissipation. Our results suggest that for
every temperature, there is a pulling velocity where the SWCNT experiences pure
(or nearly pure) rolling, corresponding to which the energy dissipation is small. As
a result, one can engineer a regime of superlubricity where frictional losses are very
small by tuning the pulling velocity at each temperature.

However, it must be noted that a more comprehensive study is in order to deter-
mine if it is possible to reach superlubricity regime by controlling the driving mecha-
nism of SWCNT over graphene. Determining the temperature and velocity at which
dynamics changes can help in creating better nanoelectromechanical devices. While
at continuum scale, friction is typically associated with wear and material loss, at
nanoscale such studies are still at a nascent stage, and we hope that our study will
foster research in this domain. Lastly, wewould like to highlight that the present setup
may be extended to calculating Peierls-Nabarro barrier by looking at the temperature
at which the SWCNT moves without any external influence.
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1 Introduction

With growing demands for high energy storage systems, researchers are trying to
replace the traditionally used graphite with silicon as the anodematerial in the widely
used lithium-ion batteries. Although Si has a theoretical specific capacity ten times
higher than that of graphite, it has not been accepted commercially because of its large
volumetric expansion and contraction on lithiation and delithiation, respectively.
This cylic change in volume during charging and discharging of the battery lead
to mechanical failure of the anode particles and eventually capacity fade of the
battery. Using nanostructured Si anode particles helps circumvent these problems
satisfactorily.

For large anode particles (>100nm) the surface to volume ratio is negligible
and the surface stresses are negligible as compared to the bulk stresses. But, as we
reduce the dimension of the particles, surface stresses become significant. Gibbs
[1], Shuttleworth [2], Gurtin and Murdoch [3] among others [4–8], had set up the
mathematical framework to calculate surface stresses originating at solid surfaces.
As an application of these theoretical frameworks in modeling nanostructured anode
particles, pioneering works have been done by Cheng and Verbrugge [9], Yang [10],
Deshpande et al. [11], and Hao et. al. [12]. Subsequent studies [13–15] have fur-
ther investigated the effect of surface stresses on different battery parameters. All
the above studies catering to small deformation cases, fail to determine the surface
stresses involved in the large volumetric expansion of Si particles during lithiation.
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In the presentwork,wemodel a single annular/hollow cylindrical-shaped Si anode
particle in the nano-scale range, undergoing large volumetric expansion during lithi-
ation. The novelty of this work lies in deducing the surface stress expression for the
particle which is consistent with finite deformation.We adopt the chemo-mechanical
model for cylindrical Si anode particle from earlier works [16–21]. We examine how
surface stresses affect the diffusion-induced stresses (DISs) during the period of lithi-
ation/charging. The rest of the paper is organized as follows: Problem Formulation
in Section II, Results and Discussion in Section III, and Conclusion in Section IV.

2 Problem Formulation

2.1 Model Set up

The silicon anode particle is modeled as a hollow circular cylinder of inner radius
Ri , outer radius Ro, and length L0 in the reference configuration. Standard cylin-
drical coordinate system (r, θ, z) is considered. The diffusion of lithium into and
out of the anode particle during lithiation (charging) and delithiation (discharging)
causes deformation of the particle. The DISs caused by the inhomogeneous lithium
concentration, further affects the diffusion process. This coupled phenomenon has
been formulated following a previous work [18] involving cylindrical silicon anode
particles undergoing finite deformation during lithium insertion. The mechanical
properties and parameters used in the model are given in Table1.

2.2 Multiplicative Decomposition of Deformation Gradient

Let the material points in the reference configuration be given by X ⊂ B0 such that,
X = rer + zez , where (er , eθ, ez) are the direction vectors in the radial, circumfer-
ential, and axial displacements, respectively. After deformation, x ⊂ B denotes the
corresponding points in the current configuration, such that x = Φ(X), where Φ

is the deformation map connecting X to x. The displacement field is described as
u(X) = Φ(X) − X such that, u = uer + veθ + wez where (u, v,w) are the displace-
ments in the radial, circumferential, and axial displacements, respectively. Consider-
ing axisymmetric lithium diffusion and axisymmetric deformation, we assume only
radial growth of the particle, which renders v ≡ 0. The total deformationΦ(X) of the
particle as a result of lithium diffusion can be considered as a sequence of stress-free
transformation (represented by F∗) to an intermediate state, followed by an elastic
transformation (Fe) to the final state [17, 26]. Using multiplicative decomposition
of deformation gradient, the total deformation (F) from the initial state to the final
state can be expressed as
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F = FeF∗, F∗ = FSFFp, (1)

whereFSF is the stress-free deformation gradient,Fp is the plastic deformation gradi-
ent andFe is the elastic deformation gradient. Similarly, the total surface deformation
gradient̂F can also be decomposed as

̂F = ̂Fp ·̂Fe ·̂FSF. (2)

2.3 Influence of Surface Stress

According to Gibbs, [1] the variation of excess free energy of the interface on the
area element d A should be equal to the reversible work required to elastically stretch
this pre-existing surface element. Mathematically,

δ(̂J ∗ws)dA0 = (̂T : δ̂E)dA0. (3)

Here, ws is the interface energy in the current configuration per unit area dA∗
of the intermediate state, [17] ̂J ∗ws =: Ws is the interface energy per unit area dA0

Table 1 Mechanical properties and parameters used in the model

Material property or parameter Value

A0, parameter used in activity constant −29549 Jmol−1 [17]

B0, parameter used in activity constant −38618 Jmol−1 [17]

D0, diffusivity of Si 1 × 10−16m2s−1 [22]

ḋ0, characteristic strain rate for plastic flow in Si 1 × 10−3 s−1 [17]

Y0, modulus of elasticity of pure Si 90.13 [23] GPa

m, stress exponent for plastic flow in Si 4 [16]

Rg , universal gas constant 8.314 JK −1 mol−1

T , temperature 300 K

V Si
m , molar volume of Si 1.2052 × 10−5 m3 mol−1 [17]

xmax, maximum concentration of of Li in Si 4.4

α, coefficient of diffusivity 0.18 [24]

η, coefficient of compositional expansion 0.2356 [17]

ηE , rate of change of modulus of elasticity with
concentration

−0.1464 [23]

ν, Poisson’s ratio of Si 0.28 [17]

σ f , initial yield stress of Si 0.49 ± 0.08 GPa [25]

λs, surface Lamé constant 3.5 Nm−1 [6]

μs, surface Lamé constant −6.23 Nm−1 [6]
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in the reference configuration and ̂J ∗ is the ratio between dA∗ (in intermediate
configuration) and dA0 (in reference configuration). The second Piola-Kirchhoff
surface stress ̂T is the stress conjugate of the Green-Lagrange surface strain tensor
̂E. For a linear elastic isotropic material ws is

ws = w0 + 1

2

[

λs(E
e
γγ)

2 + 2μs E
e
αβE

e
βα

]

, (4)

where w0 is the residual surface energy, Ee
αβ denotes elastic part of the Lagrangian

surface strain. The subscripts α,β, γ are indices which can take values of θ and z
only (since cylindrical surface is on the θ − z surface).

In case of finite deformation, the constitutive relation of the interface can be
derived from Eq.3. The first Piola-Kirchoff (PK1) stress for surface can be obtained
by [27]

σ̂0 = ∂(̂J ∗ws)

∂̂F
, (5)

wherêF is the surface deformationgradient.Note thatws is a functionof elastic strains
only. So,ws can be expressed as a function of invariants ̂J e

1 and ̂J e
2 where ̂J e

1 = tr(̂Fe)

(i.e., trace of ̂Fe) and ̂J e
2 = ̂J e = det(̂Fe). Using Eq.4 in Eq.5 and simplifying, we

have the Piola-Kirchoff surface stress in the circumferential direction as

σ̂0
θ = (J c)1/3

[

λz

Fe
θ

ws +
(

λz
∂ws

∂̂J e
1

+ λz F
e
z

∂ws

∂̂J e
2

)]

. (6)

From the analysis of the mechanical equilibrium of a surface,

σ0 · N = ̂Divσ̂0, (7)

where N is the outward unit normal vector to the surface, σ0 denotes continu-
ous extension of second-order stress tensor in the bulk body, to the surface, and
̂Divσ̂0 := Divσ̂0 ·̂I is the surface divergence of σ̂0(̂X) defined on the surface [12]
(̂I = I − N ⊗ N = I − er ⊗ er = refers to the surface unit tensor in both the refer-
ence and current configurations). This generalized equation under the special case
of a cylindrical particle, owing to its axisymmetric properties, simplifies to give

σ0
r er = σ̂0

θ

Ri
er , σ0

r er = − σ̂0
θ

Ro
er (8)

Equation8 actually states the boundary conditions which are described in the next
section.
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2.4 The Chemo-Mechanical Model

The set of partial differential equations governing the coupled phenomenon of
diffusion-induced stress and stress enhanced diffusion is given below

1

V Si
m

∂c

∂t
= −∂ Jr

∂r
− Jr

r
, (9)

∂σ0
r

∂r
+ σ0

r − σ0
θ

r
= 0. (10)

Equation9 governs the diffusion of lithium into the cylindrical silicon particle.
Here c = x/xmax gives the non-dimensional concentration of lithium in silicon parti-
cle [18], and Jr is the flux of Li. Equation10 is the radial component of themechanical
equilibrium equation in the reference configuration in terms of PK1 stresses. Radius
r varies from Ri to Ro. The PK1 stresses are expressed in terms of the Lagrangian
strain components Er , Eθ and Ez as

σ0
r = J c Y (c)

(1 + ν)(1 − 2ν)
[(1 − ν)Ee

r + ν(Ee
θ + Ee

z )]
2Ee

r + 1

1 + ∂u/∂r
, (11a)

σ0
θ = J c Y (c)

(1 + ν)(1 − 2ν)
[(1 − ν)Ee

θ + ν(Ee
r + Ee

z )]
2Ee

θ + 1

1 + u/r
, (11b)

σ0
z = J c Y (c)

(1 + ν)(1 − 2ν)
[(1 − ν)Ee

z + ν(Ee
θ + Ee

r )]
2Ee

z + 1

1 + ∂w/∂z
. (11c)

Here Y (c) = Y0(1 + ηE xmaxc) is the concentration-dependent modulus of elas-
ticity [18]. The radial (u) and axial (w) displacements of the cylindrical particle are
related to the elastic strain components as

Ee = 1

2
[(Fe)T · Fe − I] = diag(Ee

r , E
e
θ, E

e
z ). (12)

The plastic stretches in the radial and circumferential directions evolve as

∂λr,θ

∂t
=

√

3

2
λr,θḋ0

(

σeff

σ f
− 1

)m τr,θ
√

τ 2
r + τ 2

θ + τ 2
z

H

(

σeff

σ f
− 1

)

, (13)

where ḋ0 is the characteristic strain rate, σ f is the yield stress of silicon, and H is
the Heaviside step function. τr , τθ, τz are the non-dimensionalized deviatoric parts
of the Cauchy stress tensor. The effective stress in Eq. 13 is given by

σeff =
√

3

2

√

τ 2
r + τ 2

θ + τ 2
z . (14)
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The flux of Li in Eq.9 is given as

Jr = − D

RgT

c

V Si
m

∂μ

∂r
. (15)

Here D is the diffusivity of Li in Si, Jr is a function of the chemical potential μ
which can be further decomposed into stress-independent and stress-dependent parts
[17]. The initial and boundary conditions corresponding to Eq.9 are

c(r, 0) = 0, Jr (Ri , t) = 0, Jr (Ro, t) = J0(1 − c)
︸ ︷︷ ︸

Charging

or −J0c
︸ ︷︷ ︸

Discharging

. (16)

For Eq. 10, we have two boundary conditions:

σ0
r (Ri ) = σ0

r |Si = σ̂0
θ

Ri
, σ0

r (Ro) = σ0
r |S0 = − σ̂0

θ

Ro
. (17)

For large particles, the reference radius Ro is large and hence σ̂0
θ/Ri,o → 0, which

is same as the conventional free-surface boundary condition, σr = 0.

2.5 Non-dimensionalized Governing Differential Equations

The governing equations as a result of non-dimensionalization [18] are

∂c

∂ t̃
= −∂ J̃r

∂r̃
− J̃r

r̃
, (18a)

∂σ̃0
r

∂r̃
+ σ̃0

r − σ̃0
θ

r̃
= 0, (18b)

∂λr

∂ t̃
=

√

3

2
λr ḋ0

R2
o

D0

(

σ̃eff

σ̃ f
− 1

)m τ̃r
√

τ̃ 2
r + τ̃ 2

θ + τ̃ 2
z

H

(

σ̃eff

σ̃ f
− 1

)

, (18c)

∂λθ

∂ t̃
=

√

3

2
λθḋ0

R2
o

D0

(

σ̃eff

σ̃ f
− 1

)m τ̃θ
√

τ̃ 2
r + τ̃ 2

θ + τ̃ 2
z

H

(

σ̃eff

σ̃ f
− 1

)

. (18d)

The initial and boundary conditions are

c(r̃ , 0) = 0, J̃r

(

Ri

Ro
, t̃

)

= 0, J̃r (1, t̃) = J̃0(1 − c)
︸ ︷︷ ︸

charging

or − J̃0c
︸ ︷︷ ︸

discharging

. (19)
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σ̃0
r

(

Ri

Ro
, t̃

)

= σ̂θ

Ri

w0V Si
m

RgT
, σ̃0

r (1, t̃) = − σ̂θ

Ro

w0V Si
m

RgT
(20)

λr (r̃ , 0) = 1 and λθ(r̃ , 0) = 1. (21)

Equations18(a)–(d) along with initial and boundary conditions 19, 20, and 21 are
solved numerically using COMSOL Multiphysics 5.3a.

Results and Discussions

The results are discussed for an axially unconstrained case where the cylindrical Si
particles are free of any physical constraints in the axial direction, thus

2π
∫ 1

0
σ̃0
z r̃ dr̃ = 0. (22)

Throughout the discussion, we have referred to the State of Charge or SOC of
the electrode particle. We define SOC as the average concentration of lithium within
the Si particle, with respect to its reference configuration. Mathematically, SOC =
(

∫ Ro

0 c2πr dr
)

/
(

∫ Ro

0 2πr dr
)

.

2.6 Effect of Surface Stress on DIS-trends

Figure1 shows the trends of Cauchy stresses σr , σθ, σz versus r̃ with and without
considering surface stresses, at various time instants t̃ for J̃0 = 0.1 and Ro = 50 nm.
It is observed that with surface stresses considered, the plots for the radial stresses
in Fig. 1a shift in the negative direction, but the span or range of stress magnitudes
remain intact. This trend is absent in circumferential and axial stress plots, where the
tensile stress becomes more tensile and compressive stress becomes more compres-
sive in an annular particle. When we compare the σθ trends for an annular particle
with a solid cylindrical particle (Fig. 1d and e), we observe the qualitative differ-
ence. For the solid case, the σθ shifts in the negative direction (Fig. 1d), unlike the
annular case. Here, we define Δσr,θ,z = (σr,θ,z)w/o−SS − (σr,θ,z)w/SS, i.e., difference
in stresses calculated without and with considering surface stresses. In Fig. 1e, we
plot Δσθ along r̃ for solid and hollow cylindrical particles at t̃ = 0.05, to under-
stand how surface stress affects them differently. While in the solid particle Δσθ

is throughout positive denoting a negative shift, the Δσθ for the annular particle is
negative near the inner surface and positive near the outer surface (compare Fig. 1b
and d). This difference stems from the fact that in case of a solid particle, there is no
deformation at the center of the particle, whereas for the annular particle, the inner
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surface is subjected to deformation as well as surface stress. It is important to note
that the axial stresses (Fig. 1c) are negligibly affected by the consideration of surface
stresses. Furthermore, similar to circumferential stresses, the magnitudes of axial
stresses at different time instants in Fig. 1c are higher when compared to the case
without surface stress. The evolution of the stresses are extensively discussed in a
previous work by Chakraborty et. al. [18] With increase in SOC, the inhomogeneity
in lithium concentration within the silicon particle decreases and hence the stresses
(radial, circumferential and axial) die down at higher SOCs.

2.7 Dependence of Surface Stresses on Size of the Particle

The stress trends in Fig. 1 are generated for a particle of initial outer radius Ro=50nm.
As Ro is decreased, keeping the Ri/R0 ratio constant at 0.2, the differences in stress
magnitudes with and without surface stress become significant. These differences
become negligible at higher outer radii (>200nm). To analyze how Ro affects the
surface stress, we plot Δσr , Δσθ, Δσz at outer surface (r̃ = 1) against SOC, for
Ro = 15, 50 and 200nm in Fig. 2, keeping J̃0 fixed at 0.1 for all the silumations. It
is observed that Δσr,θ,z increases as Ro is decreased.

2.8 Dependence of Surface Stress on C-Rate

Surface stress generated at the anode surface is controlled by a number of factors
(Eq.6). It is observed that for a particle of outer radius Ro, if we increase the C-rate,
consequently the rate of influx J̃0 increases. To understand the effect of C-rate on
surface stresses, we plot Δσr , Δσθ, Δσz at surface (r̃ = 1) against SOC (Fig. 3),
for C-rates = 0.3C, 3C, and 30C, keeping Ro fixed at 50nm. At the initial stages of
lithiation, the difference in stresses increaseswith an increase inC-rate.Howeverwith
an increase in SOC, the concentration gradient at the outer surface decreases faster
in case of 30C than for 0.3C. Hence, the surface stress decreases with increasing
C-rate, at higher SOCs.

2.9 Effect of Surface Stresses on Plastic Stretches

Here we analyze the effect of surface stress on plastic stretches (λr , λθ, λz) for a
range of yield stress values [25]. In Fig. 4 we plot (a) λr − 1, (b) λθ − 1 and (c)
λz − 1 with and without surface stress, at r̃ = 1 (outer surface) and SOC = 1, against
σ f . For all the cases, Ro = 50 nm and J̃0 = 0.1. It is observed that the diffrerence
in stretches decreases with increasing σ f . Also, the magnitude of plastic stretches is
higher with surface stresses, than without.
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Fig. 1 Variation of a σr , b σθ , and c σz with r̃ for J̃0 = 0.1, Ro = 50 nm, and Ri/R0 = 0.2 ((–):
no surface stress, (- -): surface stress is present); d variation of σθ with r̃ for solid cylindrical particle
of radius Ro = 50nm, e variation of Δσθ in solid and hollow cylindrical particles at time t̃ = 0.05
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Fig. 2 Difference in stresses (with and without surface stresses) in a radial, b circumferential, and
c axial directions at the surface, plotted against SOC for various Ro values. Influx rate is kept at
J̃0 = 0.1 and the ratio Ri/R0 = 0.2
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Fig. 3 a Δσr , b Δσθ , and c Δσz at r̃ = 1, plotted against SOC for various C-rates. The initial
outer radius is Ro = 50 nm and Ri/R0 = 0.2
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Fig. 4 a λr − 1, b λθ − 1, and c λz − 1 at r̃ = 1, plotted against σ f when SOC = 1. Influx rate
J̃0 = 0.1, initial outer radius Ro = 50 nm and Ri/R0 = 0.2

3 Conclusion

Amathematical framework, consistent with finite deformation is established to study
the effects of surface stresses in nanostructured, hollow cylindrical silicon anode par-
ticle under charging conditions of a lithium-ion battery. We analyze the effects for
an axially unconstrained case. The consideration of surface stresses shifts the radial
diffusion-induced stresses in the negative direction. Also, the magnitude of circum-
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ferential and axial stresses increase when surface stresses are taken into account for
an annular particle, which is in contrast to a solid cylindrical particle that experi-
ences similar shift like the radial stress. The influence of surface stress depends upon
various factors such as initial particle size and the influx rate. It is observed that with
decrease in particle size below Ro = 50 nm, the surface stress becomes most promi-
nent. Again, with an increase in the influx rate or C-rate for a particle of fixed initial
size, the surface stress enhances. Further, the plastic stretches are affected when sur-
face stress is considered. We conclude that while surface stresses are insignificant at
radii of curvature above 100nm and low C-rates of 0.3C, they play a crucial role in
determining how bulk stresses evolve for Ro < 50nm and C-rate > 3C.
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Molecular Dynamics Simulation
of Single-Wall Carbon Nanotube
Aluminum Composite

Pramod Rakt Patel , Sumit Sharma , and S. K. Tiwari

1 Introduction

Carbon Nanotube (CNT) has been used as a reinforcing material for aluminum (Al)
due to its novelmaterial properties [1–13].Al has been used as thematrixmaterial due
to its good mechanical properties. The uniform dispersion of CNTs is the key factor
for the enhanced material properties of CNT–Al composites. Various studies [1–17]
have been conducted on CNT–Al composites experimentally. But there is a need of
more studies at nanoscale for further improving properties of CNT–Al composites.
A few studies have been performed at nanoscale using computational techniques
[18–20]. Ab initio methods and Molecular Dynamics (MD) simulation are the two
nanoscale computational simulation techniques that have been used to predict the
properties ofCNT–Al composites. The ab initiomethod has been used to predict elec-
tron densities, energies, and other properties by solving the electronic Schrodinger
equation based on the quantum chemistry, while theMD simulation method is useful
to understand molecular failure mechanisms and to predict mechanical properties of
composite material [21]. Xiao, Hou, et al. [9] used the domain coupling method to
study the elastic modulus and fracture strength of CNT-based aluminum composites.
In the present study, MD simulations have been used to study the effect of length,
diameter, volume fraction, and type of CNTs on Young’s modulus and stress–strain
behavior of CNT–Al composite.
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2 Materials and Methods

In this study, pure aluminum has been used as the matrix with Young’s modulus
of 69 GPa [2], and SWCNTs have been used as reinforcement, which are formed
by rolling a graphene sheet into a cylinder along a (m, n) lattice vector. The (m, n)
determines the diameter and chirality (degree of twist) of tube. To study the effect
of diameter, volume fraction and the type of SWCNT on Young’s modulus and
ultimate tensile strength of SWCNT–Al composite, armchair (m = n), and zig-zag
(n = 0) CNTs of different diameter were inserted centrally in a periodic aluminum
simulation cell of size 40.495 X 40.495 X 40.495Å3. Further, to study the effect of
the length of CNTs on the mechanical properties, a (6, 6) armchair SWCNT with
different length (29.5, 36.9, 46.7, 54.1, 61.5 Å) was inserted centrally in an Al cell
of cross-sectional area 40.495 X 40.495 Å2. Accordingly, the length of the cell was
decided. Condensed Phase Optimized Molecular Potential for Atomistic Simulation
Studies (COMPASS), a common force field, has been used for describing the inter
and intra-molecular atomic interactions.

2.1 MD Modeling of CNT–Al Composite

Firstly, a structure of pure Al was imported as a 3D atomistic document from the
inbuilt library of Biovia Materials Studio (MS) 2017. Then, an Al super-cell was
generated with a super-cell range of 10 X 10 X 10 and a cell volume of 6405.5
Å3 containing 4631 atoms as shown in Fig. 1. Then a periodic single-walled CNT
was built with a super-cell range of 1 X 1 X 17 for armchair and 1 X 1 X 10
for zig-zag CNT, as shown in Fig. 2a and b, respectively. Further, the CNT was
inserted centrally by removing Al atoms from the specified space in such a way that
the interatomic spacing between CNT and Al didn’t exceed 3.02 Å, as shown in

Fig. 1 Al super-cell of 10 X 10 X 10 range
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Fig. 2 Super-cell of (a) armchair SWCNT (6, 6) and (b) zig-zag (6, 0) SWCNT

Figs. 3, 4, and 5. Generally, there are four steps involved in equilibration process and
mechanical property calculation of the system: (i) energy optimization (ii) geometry
optimization (iii) dynamics (iv)mechanical property. The energy optimization is used
to provide stability to the cell by attaining desired coordinates. In this study, energy

Fig. 3 Al super-cell with central cavity to insert armchair (6, 6) SWCNT
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Fig. 4 Front view of SWCNT reinforced Al composite

Fig. 5 Side view of SWCNT reinforced Al composite

was minimized using the “Smart algorithm” until the change in energy between
subsequent steps was less than 1 × 10–4 kcal/mol. Geometry optimization is used to
obtain the proper density and low residual stresses.

The steps of geometry optimization and dynamics were executed over the file
generated from the previous steps respectively. The parameters for geometry opti-
mization, dynamics, and calculation of mechanical properties have been listed in
Tables 1, 2, and 3.

2.2 MD Simulation for Young’s Modulus

After dynamics run, a trajectory file has been obtained onwhichmechanical property
calculation was performed using a constant strain approach, where a constant strain
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Table 1 Geometry optimization parameters for SWCNT–Al composites [22]

S. No Parameter Value

1 Algorithm Smart

2 Quality convergence tolerance Fine

3 Energy convergence tolerance 10–4 kcal/mol

4 Force convergence tolerance 0.005 kcal/mol/Å

5 Displacement convergence tolerance 5 × 10−5 Å

6 Maximum number of iterations 50,000

Table 2 Dynamics run
parameters for SWCNT–Al
composites [22]

S. No Parameter Value

1 Ensemble NVE

2 Initial velocity Random

3 Temperature 298 K

4 Time step 1 fs

5 Total simulation time 100 ps

6 Number of steps 100,000

7 Frame output every 50,000 steps

8 Collision ratio 1

9 Energy deviation 5 × 1012 kcal/mol

Table 3 Mechanical
properties simulation
parameters for SWCNT–Al
composites [22]

S. No Parameter Value

1 Number of steps for each strain 6

2 Maximum strain 0.001

4 Algorithm Smart

5 Maximum number of iterations 5000

6 Forcefield COMPASS

of 0.001 was applied. The effective elastic moduli can be determined directly from
the Virial theorem, in which the expression of the stress tensor in a microscopic
system is given as the function of atomic coordinates and interatomic forces [23],
which is shown in succeeding text:

σ = − 1

V0

⎡
⎣

(
n∑

i=1

mi
(
vi v

T
i

)) +
⎛
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ri j f
T
i j

⎞
⎠

⎤
⎦ (1)

The relative position of particles changes due to the application of stress and
expressed quantitatively via strain tensor:
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εi j =
⎡
⎣

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎤
⎦ (2)

To calculate the axial Young’s modulus (E11) the atoms are displaced by u1 = ε011.
The average strain and stress are

ε11 = ε011 (3)

σ11 �= 0, anyotherσi j = 0 (4)

Through MD simulation the longitudinal elastic modulus, E11, can be calculated
as

E11 = σ11

ε011
(5)

In other simulation runs, the load was applied either in transverse or shear
direction.

2.3 MD Simulation for Ultimate Tensile Strength

A script has been written using the “Perl Scripting Module” in Biovia Mate-
rials Studio (2017), to obtain the stress–strain behavior of CNT–Al composite for
which trajectory document obtained from dynamics was used as an input file. After
successful execution of the Perl script, a stress–strain data was obtained in a tabulated
form.

3 Results and Discussion

The evaluated Young’s modulus was found to lie between the upper and lower
limits predicted by Choi et al. [20] and George et al. [24] for CNT volume frac-
tion ranging from 1 to 4%. From Fig. 6, it could be observed that the maximum value
of Young’s modulus (130.37 GPa) of CNT–Al composite occurred at the volume
fraction of 11.75% for zig-zag SWCNT. Whereas for armchair SWCNT reinforced
Al composite, the maximum value of Young’s modulus (91.68 GPa) was found at a
volume fraction 8.81%.

Young’s modulus of zig-zag SWCNT–Al composite is higher as compared to
armchair SWCNT–Al composite at the same volume fraction due to the fact that
zig-zag SWCNTpossess slight higherYoung’smodulus than armchair SWCNT [25].
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Fig. 6 Variation of Young’s modulus of CNT–Al composite with SWCNT volume fraction

From Fig. 6, it could be inferred that Young’s modulus for armchair CNT
reinforced Al composite increased with an increase in the volume fraction of CNTs
up to a certain limit (8.81%) and after that it was found to decrease. This may be due
to the reason that at a low volume fraction there is a low chance of agglomeration
of CNT while non-uniform dispersion may occur at higher volume fraction. Also
the simulation has been performed to study the effect of armchair (6, 6) CNT length
at a constant volume fraction on Young’s modulus, and it has been observed that
the effects were insignificant. The fact behind this behavior is that the fiber axial
stress increases with increase in CNT length, hence Young’s modulus remains
approximately the same [22].
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Fig. 8 Stress–strain curve of CNT–Al composite with various lengths of armchair CNTs for a fixed
CNT diameter (d = 8.14 Å)

Figure 7 depicts the stress–strain behavior of various armchair CNT reinforced
Al composite. It could be seen that with an increase in the diameter of the CNTs the
ultimate tensile strength of CNT–Al composite kept on decreasing.

The maximum ultimate tensile strength of 5.81 GPa was achieved by armchair (2,
2) CNT reinforced Al composite. On the other hand, with an increase in diameter of
the CNTs, from armchair (10, 10) to armchair (20, 20) CNT reinforcedAl composite,
a degradation of ultimate tensile strength in comparison to pureAlwas observed [20].
This is due to the fact that fracture is dominated by extrinsic factorsmost likely consist
of defects and atomic vacancies, since the crack length indicates a linear relationship
with diameter of tube which is responsible for fracture/weakening of CNT [26].

Figure 8 shows the stress–strain behavior of CNT–Al composite for different
lengths of armchair (6, 6) CNT. The maximum ultimate tensile strength of 5.81
GPa was observed for the CNT length of 61.5 Å, and the minor reduction has been
observed in ultimate tensile strength with decrease in CNT length. The effect of
CNT’s length is found to be considerably less on ultimate tensile strength, since the
simulation was conducted for the continuous and periodic CNT.

4 Conclusion

In the present study, theMD simulations were conducted to predict Young’s modulus
and ultimate tensile strength of CNT–Al composites. Young’s modulus increased
considerably with increase in CNT reinforcement. This was observed only for a
small volume fraction of the CNT (Vf = 11.75%). For the higher volume fraction of
CNTs, the increase in Young’s modulus was found to be insignificant. The ultimate
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tensile strength ofCNT–Al compositewas found to be higher for CNTs having longer
length and smaller diameter. The tensile strength CNT–Al composite was found to
decrease when CNTs of short length and larger diameter were used as reinforcement.
This could be attributed to the lattice structure change and micro-void nucleation.

The interpretation of this study can be used by the researchers to develop light-
weight Al composites for various automobiles and structural applications. This study
could be extended to predict the mechanical properties of Al composites reinforced
with CNTs of various types such as functionalized, defective, and coated CNTs.
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Low Velocity Impact Behavior of Carbon
Nanotubes Reinforced Aluminum Foams

Y. M. Chordiya and M. D. Goel

1 Introduction

From the previous reports on road accident in India, it is observed that there has been a
tremendous amount of increase in number of accidents over the past years [1]. Hence,
a lot of research is being done in this area, i.e., to increase the crashworthiness of the
vehicles because vehicular occupant safety is the prime concern while designing the
vehicles. The crash boxes are the devices which are filled in with different materials
and are impact tested to get energy absorption response of the differentmaterials. One
of the best suitable materials to be used as energy absorber is foams, and it is because
of their lightweight structure and their impressive compressive properties. The reason
can be attributed to the fact that internal structure of the foam has pores present within
them, so when they are subjected to impact it leads to cellular rearrangement of the
foam which ultimately leads to energy absorption. Also, the stress–strain curve of
the foam (Fig. 1) has a plateau region present which is the region in which maximum
energy absorption of the foam takes place [2]. Further, foams find their use in a wide
range of applications like packaging, automobiles, safety guards, packaging, safety
guards, blast lining materials, and helmets [3–7]. Hence, the material used for in this
investigation is carbon nanotubes reinforced aluminum foam either.

There are many tests available for impact testing but the most widely used test is
drop weight impact hammer machine test. It is used by many researchers in the past
for testing differentmaterials like foams, graphite-fiber-reinforced composite, hybrid
fiber engineered cementitious composite, concrete [8–12]. Further, many variations
in these tests had been suggested by earlier researchers [13–17]. Considering its
simplicity and application, drop weight impact hammer test is test simulated in
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Fig. 1 A Quasi-static
stress–strain curve for
carbon nanotubes reinforced
aluminum foams for density
of 540 kg/m3 [2]
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the present investigation. The commonly used foams include aluminum cenosphere
syntactic foam, polymeric foams, closed-cell aluminum foam, and polymeric foams
[18–23]. However, in this study, carbon nanotubes (CNTs) reinforced aluminum
foam is used. In this foam, CNTs are added to the molten aluminum matrix using
the liquid metallurgy method, and it is observed that CNTs addition improves the
strength of the foam composite [18].

Drop weight impact hammer is an optimum option for conducting impact testing
but it requires a lot of manpower, and it is also evident from the literature review that
use of numerical simulation is very scarce. Hence, numerical model is prepared in
LS-DYNA®for numerical simulation of dropweight impact hammer test.Herein, the
hammer is modeled using bilinear material model and foam is modeled using crush-
able foam material model. In this study, in addition to the effect of drop height and
effect of density of foam, the effect of skin is also investigated. Moreover, a compar-
ative study is done based on the parameters such as reaction force–time history,
displacement–time history, and energy absorption for all the models developed in
this study.

2 Finite Element Modeling and Material Properties

Numerical simulation of drop weight impact hammer test is done by preparing
a model in LS-DYNA®, wherein the dimensions of the hammer are 720.2 mm
length and 155 mm diameter and the dimensions of foam are 100 mm length and
80 mm diameter. The FE model is said to be validated from Fig. 2a and for further
details about validation the author’s earlier investigation can be referred [20, 24].
In this study, hammer and skin around the foam are modeled using MAT_003
(MAT_ PLASTIC_KINEMATIC) material model of LS-DYNA® material library
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Fig. 2 a Variation of
displacement–time history of
foam in comparison with
results reported by
Rajendran et al. [7] and
b Quasi-static stress–strain
curve for carbon nanotubes
reinforced aluminum foams
for three densities [2]
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[25]. Hammer is modeled using the eight noded hexahedral solid elements, whereas
skin is modeled using shell element. The MAT_003 material model card requires
density (ρ), modulus of elasticity (E), Poisson’s ratio (μ), yield stress (σy), and
tangent modulus (Et) to simulate the behavior of material. The corresponding values
for hammer are 7800 kg/m3, 210 GPa, 0.3, 230 MPa, 800 MPa, respectively, and
for the skin, these are 2700 kg/m3, 70 GPa, 0.3, 364 MPa, 700 MPa, respectively.
Foam is modeled using MAT_063 (MAT_ CRUSHABLE_ FOAM) material model
and eight noded hexahedral solid elements of LS-DYNA®material library [25]. The
properties of the foam for all the three densities are reported in Table 1, and stress–
strain curve of the foam is reported in Fig. 2b. The mesh size chosen for hammer
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Table 1 Material properties
of carbon nanotubes
reinforced aluminum foams
[2]

Property Values

Young’s Modulus, E (MPa) 250 900 520

Poisson’s ratio, υ 0.3 0.3 0.3

Damping co-efficient 0.3 0.3 0.3

Tension cutoff, pt 2 2 2

Density, ρ (kg/m3) 540 702 810

is 20 mm, whereas the mesh size chosen for foam and skin is chosen as 10 mm
considering the mesh convergence criteria. The nodes between foam and skin are
merged together because separation between foam and skin is not desirable during
the analysis. The impact velocities for this investigation are 6.26, 7.67, and 8.85 m/s
and these correspond to drop height of 2 m, 3 m, and 4 m, respectively, and can be
derived from Eq. 1.

v = √
2gh (1)

The time chosen for analysis is 0.025 s, and the results are extracted at a time
interval (�t) of 0.00125 s. This time interval is chosen such that it satisfies the relation
�t < l/CL. Here, l is the length of smallest division of sample and CL is speed of
longitudinal wave which travels through the material. In the present simulation,
automatic surface to surface contact criteria is defined between top surface of foam
and bottom surface of hammer and clamped boundary condition is given at the bottom
of foam.

3 Results and Discussions

In this study, a finite element model is prepared in LS-DYNA® and parameters
considered herein are drop height, density of foam, and effect of skin. This study
comprises a total of eighteen models and the comparison is done on the basis of
parameters such as reaction force–time history and displacement–time history. The
deformed shape of the foam at a time 0.015 s is reported in Table 2 for all the models
considered herein. It can be observed from the deformed shape of foam that increase
in drop velocity leads to increase in deformation in the foam and increase in density
leads to reduction in the deformation in the foam. The effect of skin is observed for
foam of all the densities and it leads to reduction in deformation of the foam. It can
also be observed that deformed patterns of the foams for models without skin follow
a buckling type of deformation. Whereas, for model with skin, concertina mode of
deformation is observed for foam with density 540 and 702 kg/m3, but for foam with
density 810 kg/m3 only the top and bottom layer of the foam folds, whereas the other
part bulges out. So, for this foam density model, hammer is imparted a velocity of
12 m/s and the deformation pattern is observed to be concertina, but it is observed
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Table 2 Deformed shape of foam at time t = 0.015 s for different densities

Density 
(kg/m3) 

Deformed Shape 
Velocity = 6.26 m/s Velocity = 7.67 m/s Velocity = 8.85 m/s 

Without 
Skin 

With 
Skin 

Without 
Skin 

With 
Skin 

Without 
Skin 

With 
Skin 

540 

702 

810 

that the model with skin and without skin model gave comparable results, i.e., if the
strain rate is increased then the effect of skin does not matter much. The peak stress
values of model with skin and without skin are compared, and it is observed that
presence of skin reduces stress on foam by 4–30%.

Figure 3a depicts the displacement–time history, and it can be observed that
increase in drop height leads to increase in displacement and increase in density
leads to reduction in displacement. The effect of skin reduces the deformation of
foam and this reduction can be observed for foam of all three densities considered
herein. The peak displacement comparison is done for model with skin and without
skin for velocity of 7.67 m/s, and it is observed that model with skin results in 22.26,
27.71, 16.05% lower peak displacement response in comparison with model without
skin for density 540 kg/m3, 702 kg/m3, and 810 kg/m3, respectively.

Figure 3b depicts the reaction force–time history, and it can be observed that
increase in drop height and density leads to increase in reaction force. The presence
of skin leads to significant amount of increase in the reaction force for all the three
densities of foam considered in this investigation. Eventually, up to time duration of
0.01 s, the model with skin gives higher reaction force in comparison with model
without skin. Whereas, in some cases model without skin showed more reaction
force in comparison with model with skin with all other parameters being same.

The peak reaction force comparison is done for model with skin and without skin
for velocity of 7.67 m/s, and it is observed that model with skin results in 7.65,
17.3, 13.04% higher peak reaction force response in comparison with model without
skin for density 540 kg/m3, 702 kg/m3, and 810 kg/m3, respectively. It is interesting
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Fig. 3 a Reaction force–time history under different drop velocities for foam with density (i)
540 kg/m3 (ii) 702 kg/m3 (iii) 810 kg/m3 and b Displacement–time history under different drop
velocities for foam with density (i) 540 kg/m3 (ii) 702 kg/m3 (iii) 810 kg/m3

to note that there is a plateau region present in almost all the reaction force–time
histories and the displacement corresponding for that particular time duration goes
on increasing. This means that in this region there is almost constant force for an
increase in displacement which is the basic principle of energy absorption. Hence,
these foams are good energy absorbers.

The area under the force–displacement curve gives us the energy absorbed by the
foam and it is calculated by Eq. 2.

E =
u∫

0

Fdu (2)

Figure 4 shows force–displacement variation for foam of all the densities consid-
ered herein, and it observed that the curve increases up to a certain point and then
it retraces back. For a particular foam density and the skin configuration the trajec-
tory followed is same. Based on Eq. 2, energy absorption is calculated and reported
in Table 3. It can be observed from the table that increase in drop velocity leads to
increased energy absorption, increase in density leads to increase in energy absorption
and presence of skin accounts an appreciable increase in energy absorption for foam
models with skin in comparison withmodel without skin. The comparison for energy
absorption is done for model with skin and without skin for velocity of 7.67 m/s,
and it is observed that model with skin results in 14.57, 13.42 17.97% more energy
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Fig. 4 Variation of force
with displacement under
different drop velocities for
foam with density (i)
540 kg/m3 (ii) 702 kg/m3

(iii) 810 kg/m3
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Table 3 Energy absorbed by foam of different densities under different impact velocities

Properties Energy absorption (J)

Density (kg/m3) Provision of skin Velocity =
6.26 m/s

Velocity =
7.67 m/s

Velocity =
8.85 m/s

540 No 2006.24 3023.84 4013.79

Yes 2651.83 3464.58 4785.43

702 No 2050.64 3104.62 4150.07

Yes 2706.4 3521.35 4826.84

810 No 2080.81 3150.6 4218.62

Yes 2807.4 3176.8 5000.45

absorption in comparison withmodel without skin for density 540 kg/m3, 702 kg/m3,
and 810 kg/m3, respectively.

4 Conclusions

The basic aim of this study was to investigate the effect of drop height, density of
foam, and effect of skin on energy absorption characteristics of foam. The material
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chosen for testing here is carbon nanotubes reinforced aluminum foams. For this,
a FE model is prepared in LS-DYNA®, wherein bilinear material model is used to
model the hammer, skin, and crushable foam material model is used to model the
foam. Based on the study following conclusions can be deduced

1. Increase in drop height leads to increase in the reaction force, displacement, and
energy absorption for all the models considered in the present investigation.

2. Increase in density leads to increase in reaction force and increase in energy
absorption but it leads to decrease in displacement.

3. Presence of skin leads to decrease in displacement but leads to increase in reaction
force and energy absorption. Also, it leads to reduction in stress on foam from 4
to 30%.

4. If the velocity imparted to hammer exceeds a certain value then the presence of
skin does not matter much.
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Effect of Interfacial Crack
on the Prediction of Bone–Cement
Interface Failure of Cemented
Acetabular Component

Ajay Kumar, Rajesh Ghosh, and Rajeev Kumar

1 Introduction

The total number of hip revision was 106,320 between “April 2003 and December
2017”; out of that, approximately 45% of hip revision was caused due to the aseptic
loosening [1]. Failure of the cemented acetabular component is promising to be
begun by mechanical reasons, and it is related to its design, material properties of
the implant, interface strength, and fracture properties [2]. One of the leading causes
of loosening is interface debonding, which would rise due to the micro-crack gener-
ation at the interface. The presence of holes and cavities in the cement or interface
results in the initiation of the cracks and finally causes failure or fracture [3]. The
cement has further chances of debonding under tensile loading due to the effects
of material discontinuity and the crack at the cement–implant interface on interface
failure [4]. The bone–cement interface is more responsible for cup failure than the
cement–implant interface [5]. Some of the researchers investigated the fatigue failure
analysis and crack growth consideration in the cement mantle of acetabular replace-
ments and concluded that the crack propagates linearly in the radial direction until the
bone–cement interface [6, 7]. Earlier published studies investigated the interfacial
fracture behavior and fracture toughness of the bone–cement interface under mixed-
mode loading conditions considered both experimental and numerical approaches,
and they provide some primary understanding of the cement fixation technique for
joint replacements [8, 9]. However, they did not consider accurate geometry of bone
and loading condition and the impact of interfacial crack on the bone–cement inter-
face failure of the cemented acetabular component. Interfacial crack and its impact
on the interface failure of the cemented acetabular component is still vague. In this
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present study, an attempt has been made to understand the impact of the interfacial
crack on the bone–cement interface failure of the cemented acetabular component in
terms of the mixed-mode Stress Intensity Factor (SIF). To the authors’ knowledge,
there is a shortage of data related to the impact of interfacial crack on themixed-mode
SIF and potential causes of bone–cement interface failure of the cemented acetab-
ular component by considering the realistic geometry of a bone and corresponding
forces and boundary conditions. The goal of this study is to determine the impact of
interfacial crack on the SIF at the bone–cement interface of the cemented acetabular
component and predict the potential causes of failure of the cemented acetabular
component due to THR.

2 Materials and Methods

2.1 3D FEM Model Generation and Material Properties

Three-Dimensional (3D) FE model of the implanted pelvis was generated based on
Computed Tomography (CT) dataset of a 62-year-old female patient of weighing
70 kg. FE model created in this study was tested and validated with a previously
published research through the use of alike loading and boundary conditions [10–
12]. The development procedure of the FEmodel was described in detail in an earlier
published study [12]. The cup was placed at an anteversion angle of 20° and an incli-
nation angle of 40° [13]. For the present study, Polymethyl Methacrylate (PMMA)
was considered as the cement material. Uniform cement mantle thickness (3 mm)
was considered for the FE model of implanted pelvic bone. Ultra-High Molecular
Weight Polyethylene (UHMWPE) was considered for the acetabular implant, and
cobalt-chromium-molybdenum (Co-Cr-Mo) was considered for the spherical head.
The material properties of cortical bone, cancellous bone, cement, and implants are
presented in earlier published research [12, 14–17]. The cortical bone was assumed
elastic, isotropic, and homogeneous having Young’s Modulus of 17 GPa, Poisson’s
ratio of 0.3, and a density of 1.73 gm.cm−3. Young’s Modulus of the UHMWPE
(polymer) acetabular cup is considered as 1.174 GPa, and the Poisson’s ratio is
considered as 0.4 [12, 14–17]. Young’s modulus and Poisson’s ratio for cement
mantle (PMMA) were considered as 2 GPa and 0.33, respectively. Ten nodded tetra-
hedral elements were considered in the FE Modeling of implanted pelvic bone. The
FE model of the implanted pelvic bone model (Fig. 1) was solved using FEM-based
ANSYS FE software v 17 (ANSYS, Inc., PA, USA).

The loading conditions were analyzed similarly to the data given in the earlier
published literature [18]. All the forces and boundary conditions were considered
as the earlier published studies [10, 19]. The maximum value of the reaction force
of the hip joint was found for 13% of the gait cycle, and corresponding hip joint
force and muscle forces were considered in this present analysis. These forces were
calculated according to body weight and also mentioned in earlier published studies
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Fig. 1 Finite element model of implanted hemipelvis

[10–12]. Surface-to-surface contact elements (six nodes) were considered to imple-
ment contact analysis between the cup and the femoral head, and it was taken to
be frictionless [10]. The bonded condition was considered for the bone–cement
interface.

2.2 Crack Analysis

To investigate the impact of crack at the interface on the bone–cement interface failure
of the cemented acetabular cup, four anatomic locations (superior, inferior, anterior,
and posterior) were considered for the current analysis. To understand the impact of
interfacial crack at the bone–cement interface, the Two Dimensional (2D) analysis
was performed by considering Y–Z (Coronal plane) and X–Z (Sagittal plane) planes.
The average stress values (x, y, and z component nodal stresses) obtained from real-
istic FE models were assigned at the boundary of the rectangular sections. Consid-
ering those values of average stresses as boundary loading conditions (mixed-mode
loading conditions) (Table 1). There will be less chance of edge crack generation in
the Y–Z plane, and thus we considered the edge crack only in the X–Z plane at the
bone–cement interface for the FEmodel to understand the impact of interfacial crack
on bone–cement interface failure. Edge and center crack were modeled at the inter-
face (bone–cement) and analyzed using the Element Free GalerkinMethod (EFGM).
EFGM analysis was implemented to compute the mixed-mode SIF and to minimize
the computational time as compared to FEM. The size of the crack was considered
the same for both the cases of center and edge crack model. For fracture analysis,
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Table 1 Nature of the stress
components obtained through
FEM analysis was considered
as the mixed-mode loading
conditions to simulate
mixed-mode SIF analysis
using EFGM

Analysis Anatomic
locations

Mode-I load
(Opening load)
(σ )

Mode-II load
(Shear load)
(τ )

Y–Z plane Superior σz σy

Inferior σz σy

Anterior σy σz

Posterior σy σz

X–Z plane Superior σz σx

Inferior σz σx

Anterior σx σz

Posterior σx σz

the material properties of cement and implant materials were considered as similar
in earlier published studies [12, 14–17].

In recent years, EFGM has become one of the critical Meshless Methods (MMs)
to solve the fracture problem [20–22]. Moving Least Squares (MLS) interpolation
is used in the EFGM to compute shape functions. Lagrange’s multipliers are used to
enforce the boundary conditions as the shape function derived from (MLS) does not
follow the Kronecker delta property.

The bi-material interfacial crack problem contains both weak (material disconti-
nuity) and strong discontinuity (crack). Material discontinuity is modeled using the
jump function approach [23]. A standard intrinsic enrichment criterion was consid-
ered tomodel the crack-tip stress fields [23]. Amodified interaction integral approach
was considered to determine of mixed-mode SIF for the bone–cement interfacial
crack problem [23]. In this analysis, a domain of 4× 8 mm has been used for simu-
lation with the edge and center crack of 2 mm. 6 Gauss quadrature and 50 × 100
nodes were considered for simulation after a mesh convergence study. A MATLAB
(MATLAB_R2016b;MathWorks, United States) script was developed to implement
EFGM.

3 Results

Mode-I and mode-II SIF (KI and KII ) at the bone–cement interface of the cemented
acetabular component are presented in Figs. 2, 3, and 4. It is shown by the results
that mixed-mode SIF in the anterior location at the bone–cement interface is more
as compared to other locations (Figs. 2, 3, and 4).
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Fig. 2 Comparison of Stress
Intensity Factor (SIF)
a mode-I, and b mode-II for
Y–Z plane (coronal plane)
with the center crack in all
anatomic locations (superior,
inferior, anterior, and
posterior)

3.1 Impact of the Center Crack in the Coronal Plane (Y–Z
Plane)

The highest value of KI and KII at the anterior location was found to be 0.79 and
0.22 MPa.m1/2 at the bone–cement interface (Fig. 2). The highest value of SIF (KI

and KII ) at the superior location was found to be 0.282 and 0.11 MPa.m1/2 at the
bone–cement interface. The lowest value of KI and KII was found to be in a superior
location as compared to other anatomic locations (Fig. 2). The inferior and poste-
rior locations have an intermediate amount of KI and KII at both the interfaces as
compared to superior and anterior locations. The value ofmixed-mode SIFwas found
to be positive, and the value ofKI is higher thanKII . Hence there will bemore chance
of opening mode of failure in the Y–Z plane with center crack (Fig. 2).
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Fig. 3 Comparison of Stress
Intensity Factor (SIF)
a mode-I, and b mode-II for
X–Z plane (Sagittal Plane)
with the center crack in all
anatomic locations (superior,
inferior, anterior, and
posterior

3.2 Impact of the Center Crack in the Sagittal Plane (X–Z
Plane)

Thehighest value ofKI andKII were found in the anterior location at the bone–cement
interface.

The highest value of KI and KII at the anterior location was found to be 0.13
and 0.24 MPa.m1/2 at the bone–cement interface. The lowest and negative values
of KI and KII were found to be at the superior location as compared to any other
locations for both the interfaces (Fig. 3). The highest value of KI and KII at the
superior location was found to be−0.083 and−0.045 MPa.m1/2 at the bone–cement
interface. Results at the anterior location indicated that the value of KII is more as
compared to KI, and the chance of shear failure (mode-II) is more as compared to
opening mode (mode-I) (Fig. 3). In the superior location, the value of KI and KII for
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Fig. 4 Comparison of Stress
Intensity Factor (SIF)
a mode-I, and b mode-II for
X–Z plane (Sagittal Plane)
with edge crack in all
anatomic locations (superior,
inferior, anterior, and
posterior)

the bone–cement interface was found to be negative (Fig. 3). Hence, there are very
fewer chances of failure due to the opening of the crack (Fig. 3).

3.3 Impact of an Edge Crack in the Sagittal Plane (X–Z
Plane)

Edge crack at theX–Z plane has amore substantial impact onKI andKII as compared
to center crack in all the anatomic locations and at the bone–cement interface of
the cemented acetabular component (Figs. 3 and 4). For edge crack, the highest
value of KI was found in the superior location, whereas the highest value of KII



82 A. Kumar et al.

was found in the anterior location at the bone–cement interface. The highest value
of KI in the superior location was found to be 0.31 MPa.m1/2 at the bone–cement
interface. In the superior location, the value of KI at the bone–cement interface
was found to be positive and have a chance of opening mode (mode-I) of failure.
However, other locations (inferior, anterior, and posterior) have negative values of
KI due to compressive load fields (Fig. 4a). The highest value of KII was found to
be 0.4 MPa.m1/2 at the anterior location at the bone–cement interface. The value of
KI is found to be highest in the superior location. Hence, the superior location has
more chance of opening mode (mode-I) failure as compared to other locations. The
value of KII was found to be positive and more than KI in the inferior, anterior, and
posterior location at the bone–cement interface. Hence, there will be a chance of
shear failure (mode-II) at the inferior, anterior, and posterior locations (Fig. 4).

4 Discussion

In this research paper, we studied the impact of interfacial crack on the mixed-
mode SIF at the bone–cement interface of the cemented acetabular component. The
maximum and positive values of stress and the corresponding mixed-mode SIF were
considered in this study (Figs. 2, 3 and 4). Themaximum positive value ofKI andKII

at the bone–cement interface was obtained for all models are within the limit of inter-
facial fracture toughness (KIC) of cancellous bone and bone–cement (PMMA) under
mode-I and mixed-mode loading conditions [ 24–26]. One of the earlier published
studies stated that the fracture toughness of the bone–cement interface under mode-I
loading was within the limit of 0.5–0.8 MPa.m1/2 [24]. Though, the fracture tough-
ness of the bone–cement interface under mixed-mode loading was within the limit
of 0.11–1.6 MPa.m1/2 [25, 26].

It can be observed from the analysis of SIF (Y–Z plane) with the center crack that
KI is more as compared to KII (Fig. 2). This indicates that in the Y–Z plane with
center crack, the chances of failure would be dominated by opening mode (Fig. 2).
For SIF analysis with the center crack in the Y–Z plane, the highest value of SIF
was observed at the anterior location as compared to the other anatomic locations.
Hence, the anterior location was more prone to failure as compared to other locations
(Figs. 2, 3 and 4). The influence of center crack at X–Z plane indicated that mode-II
loading or failure plays a crucial role at the anterior location, whereKII (shear mode)
was found to be more as compared to KI at the bone–cement interface (Fig. 3).
However, the value of KII is more as compared to KI , which indicates that chances
of the shear mode of failure are more as compared to opening mode. The inferior
location also has the positive value of KI at the bone–cement interface. However,
the value is less than the anterior location. In the analysis of edge crack in the X–Z
plane, in the superior location, the KI is positive and more as compared to KII at the
bone–cement interface (Fig. 4). This indicated that the chances of failure in superior
location would be dominated by opening (mode-I) mode. Although, having a very
high negative value of KI , anterior have the maximum chance of shear failure due
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to the higher value of KII as compared to other anatomic locations and the fact that
bone–cement interface is more compliance in tension than compression [27]. The
main reason behind this is due to the increase in stresses in the bone, cement, and
the interface of the cemented acetabular component in anterior location as compared
to other anatomic locations (superior, inferior, and posterior). The high value of
stress and SIF at the bone–cement interface could increase the risk of failure of the
cemented acetabular component.

There are a few limitations and assumptions in this study. We do not take into
account the aspects like tissue porosity, cement line, and microstructure changes to
predict the mixed-mode Stress Intensity Factor (SIF) at the bone–cement interface.
The cancellous bone was assumed to be linear, elastic, isotropic, and heterogeneous.
In the case of numerical analysis, Linear Elastic Fracture Mechanics (LEFM) was
used toperform the interfacial SIF analysis, and itmayunderestimate the total fracture
parameters of bone because it did not account for the energy required for plastic
deformations. However, the bone cement (PMMA) is generally brittle, so there will
be less chance of plastic deformation around the interfacial crack tip.

5 Conclusions

The main aim of this study is to understand the influence of interfacial crack on
bone–cement interface failure of the cemented acetabular component. Mode-I and
mode-II SIF (KI and KII ) at the superior, inferior, anterior, and posterior locations
were identified by considering center and edge crack at the bone–cement interface.
The following conclusions may be drawn from the present analysis.

• The anterior location has the highest value of mixed-mode SIF and more likely
to fail as compared to other anatomic locations (superior, inferior, and posterior).

• The present analysis concluded that in the X–Z plane (Sagittal plane), the chances
of interface failure aremore for the generation of edge crack as compared to center
crack.
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Effect of Occlusion Percentage
and Lesion Length on Stenosed Coronary
Artery: A Numerical Study

Supratim Saha, T. Purushotham, and K. Arul Prakash

1 Introduction

Atherosclerosis is a disease state that causes about 20 million deaths worldwide.
CHD-related demise in India increased from 17% in 2001–2003 to 23% in 2010–
2013 [1]. Therefore, any rapid and accurate approach to the diagnosis of coronary
artery defects will improve its succession planning, along with clinical therapy in the
coronary artery. Nonetheless, most cases of CHD fall between extremely mild and
very severe cases. It perplexes the situation for physicians to assess the safest choice
in this case. Fractional flow reserve (FFR) is the ratio of coronary stenosis pressures
used as a clinical measure to evaluate the functional severity [2]. FFR is defined as
the ratio of distal pressure (Pd ) to proximal pressure (Pp) of the stenotic lesion. This
can be written as

FFR = Pd

Pp
(1)

Diagnostic procedure for patients to assess severity of the stenosis is invasive.
The process requires a wire probe to be inserted into a patient blood vessel and sent
to stenosis site for examination. In the end, pressure values are measured across the
occluded artery to measure the severity of the occlusion. A computed tomography
angiogram (CTA) obtains 3D images of patient’s beating heart and the larger blood
vessels associated with the human body. This 3D image is reproduced and computa-
tional calculations are performed on the generated 3D artery model to estimate the
FFR value.While 3Dmodelling predicts FFR value similar to that achieved using the
intrusive wire insertion process, the time needed for computing is immense because
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it involves a realistic stenotic lesion and also considers the incorporation of vessels
as a lumped model at the terminal end in the 3D computational domain which is
due to the computing expenses in a overall scenario [3]. The numerical simulation
is done for implementing a full arterial tree with the stenotic lesion as one of the
blood vessels, and 1D simulation with reasonably good accuracy can predict clinical
parameters at minimal numerical expenses. The partial differential equations which
govern the flow of blood through the blood vessel were given by Sherwin et al. [4].
A complete 1D arterial circulation model by incorporating the systemic circulation
dynamics is given by Mynard and Nithiarasu with the coronary flow circulation [5].
They integrated a cardiac model into the arterial flow and performed simulations.
The majority of earlier studies used a 3D model for FFR calculation. Nonetheless,
3D simulations require much computational time, whereas 1D simulations require
comparatively less computational time and cost. Iguchi et al. [6] clinically studied
the effect of lesion span on functional severity for intermediate coronary lesions.
They found that lesion length has physiological importance in coronary lesions of
intermediate-grade coronary. Several authors have clinically studied the impact of
lesion size on the severity of stenosis but no substantial numerical analysis has been
reported. Detailed analysis of the haemodynamic variables is expected due to the
impact of the occlusion percent and the size of the lesion combined concurrently. A
1Dmodel and calculations were conducted from the arterial network. The combined
effects of occlusion percentage and span of the lesion on haemodynamic parameters
are investigated in this study. The geometric effect of occlusion on FFR is primarily
investigated and the correlation between FFR and geometric attributes is generated.

2 Methodology

2.1 Numerical Results

The artery is regarded to be an elastic cylindrical conduit. For continuity and
momentum conservation, the 1D equations (as provided in Sherwin et al. [4]) are

∂A

∂t
+ ∂(Au)

∂x
= 0 (2)

∂u

∂t
+ u

∂u

∂x
+ 1

ρ

∂p

∂x
− f

ρA
= 0 (3)

where A represents the area of the cross-section, the mean velocity is u, the pressure
inside the artery is p, the density of the blood is ρ ≈ 1060 kg/m3 and the friction
force is f per unit length. For modelling the friction force term, a steady, laminar and
Poiseuille flow is assumed.



Effect of Occlusion Percentage and Lesion Length … 89

Equations (2) and (3) contain three unknown parameters. The system of equations
is closed by incorporating an equation relating the pressure to the cross-sectional area
based on the vessel’s elasticity (as shown in Formaggia et al. [7], Olufsen et al. [8])
by

p = pext + β
(√

A − √
A0

)
(4)

where pext is the ambient tissue pressure, A0 is the region where the transmural
pressure is nil (i.e. p = pext) and the vessel’s material properties are accounted for
β. w1 and w2 are roots of a typical characteristics system of hyperbolic equations. w1

and w2 are characteristics of the hyperbolic system of partial differential equations
corresponding to the 1D model. Dependent variables (A) and (u) are derived from
the values of forward (w1) characteristics and backward characteristics (w2) as

A = (w1 − w2)
2

1024

(
ρ

β

)2

(5)

u = 1

2
(w1 + w2) (6)

For numerical simulation, the Locally Conservative Galerkin (LCG) approach is
used. Mynard et al. [5] implemented the LCG numerical strategy, in which each
element is regarded as a subdomain with its own elemental boundaries.

2.2 Modelling of the Arterial Tree

The whole arterial framework coupling systemic and coronary flow is developed and
is demonstrated in Fig. 1. The blood vessel and their properties that are utilized for
carrying out the simulation are acquired from the works of Mynard et al. [5]. The
left endocardial artery is modelled as a left anterior descending artery in addition to
all other segments to be healthy [9].

2.3 Computational Domain of the Stenosed Section

The geometry of the Left Anterior Descending Artery (LAD) is given in Fig. 2. The
stenosed section is modelled based on Eq. (7) and it is represented as

y =
[
ε(Lseg − x)

Lseg

]
−

[
R

2
S0

{
1 − cos

(
2π

(
x − Lm − Ls

2

Ls

))}]
(7)
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Fig. 1. 1D blood vessel network of prime arteries is utilized from the works of Mynard et al. [5]

Fig. 2 Geometry with label

where
{
Lm − Ls

2
≤ x ≤ Lm − Ls

2

}
, (8)

S0 = severity

100
, e = (Di − Do)

2
(9)
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Fig. 3 Comparison of right
carotid artery pressure with
results reported by Low et al.
[10]

Lseg is the size of the blood vessel segment, Rs is the radius at the stenotic lesion,
Lm is the distance from the start of the arterial segment to the location where the
flow cross-section is maximum constricted, Ls is the span of the blood vessel having
stenosis, Di is the diameter of the inlet, Do is the diameter of the exit and severity or
occlusion percentage is the percentage of blockage that occurred in the blood vessel,
i.e. any value ranging from 0 to 100.

2.4 Validation of Results

The results obtained from present study are compared numerical results generated by
Lowet al. [10] in Figs. 3 and 4. The right carotid artery is the artery used for validation.
Under normal conditions and heart function, the pattern of pressure waveform and
flow waveform is found to be similar [11].

2.5 Grid Independence Test

Three grid sizes having nodes of 50, 100 and 150 are used in the calculations. For
the three grid sizes in Fig. 5, the axial velocity value variation along the span of the
artery is examined. It is observed that both 100 grid sizes along with 150 gride sizes
generate identical numerical results. Thus, for simulation, 100 nodes per artery are
chosen.
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Fig. 4 Comparison of right
carotid artery flow rate with
results reported by Low et al.
[10]

Fig. 5 Velocity change for
the grid independence check
along the axis of the artery
(70% blockage)

3 Results and Discussion

3.1 Waveforms of Flow Variables

Figures 6 and 7 demonstrate the flow waveform found in the occluded coronary
artery for different scenarios of occlusion percent (OP) and lesion length (LL). In the
systolic phase of heart cycle, a flow increase is found for situations of the diseased
state.
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Fig. 6 Variation of the
arterial flow rate for different
percent blockages having
same length of lesion (5 cm)
percent blockage 70

Fig. 7 Variation of the
arterial flow rate for different
lengths of a lesion having
percent blockage 70

The increase of flow during the systole phase of the heart cycle is evident, as
reported by Rammos et al. [12]. In the literature, this trend is referred to as the
systolic flow rise. With the rise in percent blockage of stenosis, the wave reflection
increases. As the amount of blockage increases, the velocity magnitude based on
the characteristics should diminish. So, the rate of flow declines with accretion in
occlusion. For the same percent blockage, the similar occurrence is observed with
the span of the lesion as illustrated in Fig. 7. This finding demonstrates that not only
percent blockage is a significant parameter but also the span of the lesion enact a
vital role in the artery of the intermediate level.

The flowratewaveform shows amore significant trend for higher percent blockage
due to lesion length, as shown in Figs. 7 and 8. The percent decrease of flow rate
for 70% blockage is almost four times compared to 50% blockage for the same
increase in lesion length. As the percent blockage increases, the influence of lesion
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Fig.8 Variation of the
arterial flow rate for different
lengths of a lesion having
percent blockage 50

Table 1 FFR variation with
lesion length for 70%
blockage

Lesion length (cm) FFR

1 0.93053

2 0.88932

3 0.85397

4 0.82311

5 0.79564

length is more significant in hemodynamic parameters. This trend is similarly found
for pressure waveform also. For same blockage percentage, FFR decreases with the
increase in lesion length as shown in Table 1.

The value of the maximum ub increases with increasing occlusion percentage,
but the values of maximum ua and maximum uc decrease as shown in Fig. 9. As
the occlusion percentage rises, the cross-section becomes thinner at the midspan of

Fig.9 Maximum velocity
variation with blockage
percent at different probes
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Fig.10 Maximum velocity
variation with lesion length
at different probes

the stenosed flow section causing an increase in the backward travelling wave (w2),
resulting decrease in the value of velocity (u ∝ (w1 + w2)). Therefore, maximum ua
decreases with increase in severity. Probe c is located at the end of diverging portion
in the stenosed section, and hence the velocity values decrease from probe b till c.
Themaximum uc values also show a similar trend shown bymaximum ua values. The
cross-sectional area increases till c and then it tapers downstream, and this tapering
cross-section causes an increase in w2 and reduces the velocity value at location c.
Similarly, the value of maximum ub decreases with increasing lesion length unlike
the value of maximum velocity at probe a and probe c following the same principles
of forward and backward travelling waves as demonstrated in Fig. 10.

AcorrelationbetweenFFRandgeometric factors is proposedbasedon thefindings
of numerical computation by the statistical analysis. The FFR data obtained using
numerical computation and correlation are in fairly good agreement and can be
utilized to predict FFR, rather than performing the numerical simulation.

Instead of carrying out numerical simulation for predicting FFR

FFR = a + blnL∗ + cb∗ + d(lnL∗)2 + e(b∗)2 + f(b∗)ln
(
L∗)

+ g((lnL∗))3 + h(b∗)3 + i(b∗)2lnL∗ + jb∗(lnL∗)2

where L * is the ratio of the span of the lesion to the span of the arterial section
and b * is the occlusion in terms of percent blockage. It is perceived that the R2

value corresponding to FFR is 0.9894 for correlation model having a confidence of
99%. Table 2 shows the value of the function’s correlation coefficients. Figure 11
indicates the effectiveness of the FFR regression model, where the parity is posed
between the values predicted by the correlation model and numerical simulation. It is
demonstrated that the deviations were estimated between the numerical computation
values and the regression values, and the deviation from the estimated value is well
within ±2.
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Table 2 Values of
coefficients of the correlation
function

Coefficient Value

a 0.93053

b 0.88932

C 0.85397

d 0.82311

e 0.79564

f 0.88932

g 0.88932

h 0.88932

i 0.88932

j 0.88932

Fig. 11 Parity plot between
numerical result and
correlation having a 99%
confidence for estimating
FFR

4 Conclusions

1. The flow circulation that is happening inside the artery is affected by character-
istics which are forward and backward.

2. In the stenosed artery, the changes within systolic flow are found as opposed to
healthy state.

3. The FFR values drop consistentlywith the increment of severity and lesion unlike
the pressure drop across the stenosis region.

4. The lesion span has a functional seriousness in the severity of stenotic lesion.
5. The influence of lesion length on the haemodynamic parameter becomes more

significant for higher percent blockage.
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6. A regression analysis of FFR is performed, and it is in good reasonable agree-
ment, and the results of the suggested correlation may be used instead of actual
numerical computation.

7. Better calculation of the FFR values cans be accomplished by treating terminal
vessels as Windkessel elements in comparison to the model of resistance
considered in this study.
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Model-Based Simulation of Surface
Electromyography Signals and Its
Analysis Under Fatiguing Conditions
Using Tunable Wavelets

Lakshmi M. Hari, S. Edward Jero, G. Venugopal, and S. Ramakrishnan

1 Introduction

Muscle fatigue is a neuromuscular condition duringwhich themuscle cannot produce
adequate force to perform a particular task. The muscle force production depends
on the availability of oxygen, nutrition, and regulated blood supply, and lack of
these can cause fatigue in a muscle [1, 2]. Fatigue analysis is an important part of
diagnosis in any neuromuscular disease, sports medicine, and ergonomics [3, 4].
Among various fatigue assessment techniques available, Surface Electromyography
(sEMG) is the most commonly used method [5]. It is non-invasive, reliable, and
requires less medical training.

The signal depends on several factors such as firing rate, number of motor units,
types of motor units, conduction velocity, muscle fibers, and recruitment pattern of
motor units [6]. The sEMG signals are generally noisy, non-stationary, and multi-
component in nature. For the better understanding about the muscular system and for
more accurate analysis, synthetic sEMG signals are generated by many researchers
using different models.

The influence and effect of various physiological parameters such as structure
of muscle, volume conductor, motor unit recruitment and firing rate, synchroniza-
tion of motor units, and fiber diameter have been analyzed and evaluated using
different models [5–12]. The effect of external parameters such as crosstalk, noise,
and percentage of maximum voluntary contraction [10] has also been addressed
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by researchers. Synthetic signals are generated for many muscles such as biceps
brachii, tibialis anterior, dorsal interosseous, rectus abdominis, and other skeletal
muscles [6, 7, 12, 13].

Large number of features have been used to relate progression of fatigue
with amplitude and frequency variations. Root Mean Square (RMS), mean, mean
frequency, median frequency, and Integrated EMG (IEMG) are some of the
commonly used amplitude- and frequency-based features [14–16].

Studies show that both time and frequency features fail to represent non-stationary
property of the signal. Time frequency analysis has been gaining importance in
signal processing and interpretation over the past few years, because it is capable
of providing considerable information about the nonstationarity [17, 18]. In the
proposed work, tunable Q-factor wavelets are used on generated synthetic signal to
increase the time frequency resolution [19]. Tunable Q-Wavelet Transform (TQWT)
has found a wide range of applications in biomedical signal analysis due to the ability
to tune parameters to match the oscillatory behavior of the signals [20].

The objective of this study is to evaluate an adopted sEMGmodel during isometric
contraction of the biceps brachii muscle using a set of amplitude-based features in
time domain and time frequency domain.

2 Methods

Synthetic sEMG signals for nonfatigue and fatigue conditions are generated using the
selected mathematical model. Statistical time-domain features such as RMS value,
Mean Absolute Value (MAV), Variance (VAR), and IEMG are extracted in this work
to examine the behavior of the signal. For the time frequency analysis of the generated
signal, TQWT is used. This transform decomposes the signal to different energy
subbands. Feature values are extracted from each decomposed frequency subbands
using the abovementioned amplitude-based features.

Further, percentage difference in extracted features between nonfatigue and
fatigue signal in each subband is analyzed. The conventional time-domain feature
analysis method and TQWT performance are compared in terms of percentage
difference of feature values between nonfatigue and fatigue signals.

2.1 Synthetic sEMG Generation Model

The components of the adopted synthetic sEMGmodel used in this work are current
source, volume conductor, motor unit recruitment, and firing behavior functions [8].
The current source function is expressed as [11]

Im(t) = CAλ2(λ(vt − ze))(6 − 6λ(vt − ze) + λ2(vt − ze)
2)e−λ(vt−ze) (1)
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where C is a constant which depends on axoplasm conductivity σ i, muscle fiber
diameter d, and conduction velocity V; ze is the distance between neuromuscular
junction and electrode; A is the amplitude factor which varies with amplitude of
Motor Unit Action Potential (MUAP); and λ is the scaling factor which varies with
duration of the MUAP.

This source function is used to generateMUAP for nonfatigue and fatigue signals.
MUAPamplitude and duration changewithA andλ values.A range of values adopted
from [13] is used for λ and A to generate the signal.

Volume conductor function used in this study is proposed by [9]. Themajor factors
in this model are radial conductivity σ r , longitudinal conductivity σ z, radial distance
betweenmuscle fiber and electrode rf , and distance between source and sink currents
b. This function is expressed mathematically as

φ(t) = 1

4πσr

⎡
⎣ 1√

r2f .
σz

σr
+ (vt − ze)

2
− 1√

r2f .
σz

σr
+ (vt − ze + b)2

⎤
⎦ (2)

Motor Unit (MU) recruitment and firing pattern function in this model are adopted
from [10]. It depends on two parameters excitatory drive (E) and Recruitment
Threshold Excitation (RTE). RTE is calculated as

RTE(i) = eai (3)

where i is the index of MU, a = lnRR
n , n is the total number of MUs, and RR is the

range of desired threshold value. E drive is calculated as

E(i) = RTEn + PFR(i) − MFR

ge
(4)

where RTEn is the highest excitation threshold, PFR(i) is the peak firing rate for each
MU, MFR is minimum firing rate, ge is the excitatory drive–firing rate relationship.
The firing rate of ith MU is given as

FR(i) = ge(E(i) − RTE(i)) + MFR (5)

sEMG signals are generated by convolving the expressions for the current source
function, volume conductor function, and recruitment and firing behavior function
for each MU and by summing it for the entire MU pool. The signal is sampled
at a frequency of 1 kHz. The percentage variation of λ and A from nonfatigue to
fatigue for a fast fatigable muscle is given as 174 ± 45 and 47 ± 24, respectively
[13]. Biceps brachii is a fast fatigable muscle which is the muscle of interest in this
study. Generated synthetic signal is based on needle EMG values, and convolution
of this values with volume conductor function can be considered as sEMG signal.
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Numerical values used for model parameters are taken from the literature reported
by [9, 10].

2.2 Features

A set of most commonly used amplitude-based features such as Root Mean Square
value (RMS), Mean Absolute Value (MAV), Variance (VAR) and Integrated EMG
(IEMG) is used to analyze the energy characteristics of the signal.

RMSvalue is used to represent the energy variations in a signal. It directly depends
on the amplitude of the signal. It is mathematically expressed as [14]

RMS =
√√√√ 1

N

N∑
i=1

x2i (6)

where N is the length of the signal and xi represents the sEMG signal. IEMG is the
summation of amplitude of a signal. It represents the force generated by the muscle
during contraction [16].

IEMG =
N∑
i=1

|xi | (7)

whereN is the length of the signal and xi represents the sEMGsignal.MAVrepresents
the muscle force and gives the mean of the amplitude values of a sEMG signal [15]
as

MAV = 1

N

N∑
i=1

|xi | (8)

where N is the length of the signal and xi represents the sEMG signal. VAR is the
power index of a sEMG signal. It is generally calculated by the mean of the square
of deviation in the signal. In EMG, mean is approximately equal to zero. Thus, here
variance is calculated by [15]

VAR =
∑N

i=1 (xi )
2

(N − 1)
(9)

where N is the length of the signal and xi represents the sEMG signal.
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2.3 Tunable Q-Wavelet Transform (TQWT)

TQWT is a discrete-time wavelet transform with three tunable parameters, namely,
Q-factor (Q), the number of subbands (J), and the redundancy or the over sampling
rate (r). These factors can be tuned according to the oscillatory behavior of the
signal to which it is applied. The TQWT is a combination of two channel filter bank
operations, a low-pass filter with scaling factor α, and high-pass filter with scaling
factor β [19].

Certain conditions have to be followed for setting abovementioned parameters:
First condition is that scaling parameters must satisfy 0 < α < 1 and 0 < β ≤ 1.
Second condition is that α + β > 1 for the perfect reconstruction of the signal by
oversampling filter bank.

Q-factor is the tunable factor which depends on α and β values. It is mathemati-
cally expressed as [19, 20]

Q = 2 − β

β
(10)

Redundancy or oversampling rate is estimated by a factor

r = β

1 − α
(11)

Maximum of number of decomposition level J depends on the length of a signal
N. It is expressed as

Jmax = log(βN/8)

log(1/α)
(12)

3 Results and Discussion

Synthetic sEMG signals are generated for both fatigue and nonfatigue conditions.
MUAP duration and amplitude values to generate the signal are adopted from
[13]. Table 1 shows the range of MUAP duration (λ) and amplitude (A) values
for both conditions. Fifty signals are generated for nonfatigue and fatigue conditions

Table 1 Range of amplitude
and duration values of
nonfatigue and fatigue signals

Amplitude (mV) Duration (mS)

Nonfatigue 0.2–1.3 6.9–19.3

Fatigue 0.15–0.36 21.15–23.40
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each. Signals are generated for the duration of 2 s. Representative signals for both
conditions are shown in Fig. 1a and b, respectively.

The generated sEMG amplitude varies from −80 to 90 mV for nonfatigue signal
and −60 to 65 mV for fatigue signal. It shows that amplitude reduced in the course
of fatigue as compared to nonfatigue signal. This might be due to the loss of number
of MUs involved in the activity as the fatigue progresses.

Table 1 shows the range of values A and λ during nonfatigue condition and after
4 min of fatigue in fatigue test which is adopted from [13].

The amplitude-based features such asRMS,VAR, IEMG, andMAVare performed
on the synthetic signal in time domain. Table 2 illustrates the feature values in both
conditions.

It is observed that all features have higher values in the case of nonfatigue signals
as compared to fatigue. This change in amplitude might be due to loss in number of
motor units involved in the activity in the course of fatigue. Amplitude of the MUAP

Fig. 1 Representative
synthetic sEMG signals
during a nonfatigue,
b fatigue conditions
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Table 2 Feature values in
time domain

Features Nonfatigue Fatigue

RMS 19.82 13.41

Variance 1.58e+02 77.90

IEMG 3.15e+04 2.09e+04

MAV 15.36 10.19

will be higher than nonfatigue at the beginning of fatigue test due to large number of
MU recruitment. It is found that amplitude decreased till the end of fatigue test and
duration of MUAP prolonged [13]. Similar response is obtained with the generated
synthetic signal using proposedmodel. Statistical significance of the features is tested
using Wilcoxon signed rank test. All the features are found highly significant with p
value < 0.001.

TQWT parameter values are chosen to satisfy the conditions mentioned in
Sect. 2.3 (Q = 1.22, r = 3 and Jmax = 15). Amplitude-based features used in time
domain are analyzed for each subband which have been obtained from fatigue and
nonfatigue signals after TQWT analysis. Mean of the feature values for all the 50
signals in each subband is calculated for both conditions. Figure 2 shows the feature
values obtained in each subband for both nonfatigue and fatigue conditions.

It is found that nonfatigue signal has higher amplitude for all the feature values
as compared to fatigue signal which is similar to time-domain response. This might
be due to the temporary chemical imbalances in muscles. This is in agreement with
existing literature on experimentally obtained sEMG signals [13]. All the features
give clear distinction between both conditions during high-frequency subbands.
Based on the results obtained from Wilcoxon signed rank test, each feature is found
highly significant with p value < 0.001 in high-frequency subbands.

Percentage difference in feature values from nonfatigue signal to fatigue signal is
estimated to extract the frequency distribution in the signal as illustrated in Fig. 3. It
is observed from Fig. 3 that there is a percentage decrease in feature values in high-
frequency subbands and a percentage increase is found in low-frequency subbands.

It is inferred that fatigue signal has more amplitude than nonfatigue in lower
frequency subbands. It is observed that during fatigue, frequency is shifted toward
the lower region of spectrum. This might be due to the synchronization of motor unit
recruitment during fatigue and also due to the increase in duration of MUAP with
the progression of fatigue.

Time -domain analysis and TQWT are compared in terms of percentage variation
in Table 3. It is found that percentage decrease is higher in TQWT analysis during
high-frequency subband. All the features perform better in time frequency domain
as compared to conventional time domain. Conventional time-domain method does
not provide any information about the frequency components present in the signal.
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Fig. 2 Analysis of synthetic sEMGsignal under nonfatigue and fatigue conditions in time frequency
domain using amplitude-based features a IEMG, b RMS, c VAR, d MAV

Fig. 3 Percentage variation
in feature values from
nonfatigue to fatigue signal
in each subband
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Table 3 Comparison of
percentage variation in
feature values of time domain
and TQWT

Features Time domain (%) TQWT (%)

IEMG −33.65 −43.67

RMS −32.34 −41.44

VAR −50.69 −60.77

MAV −33.66 −43.67

4 Conclusion

This study adopted values for amplitude and duration ofMUAP to generate synthetic
sEMG signal using a mathematical model. From the results obtained, it is found that
the proposed model is able to provide a realistic signal and it is capable of repre-
senting the sEMG signal for the biceps brachii muscle. This model can be used
to extract characteristics of the signal in detail using different features and signal
processing tools. The synthetic signal generated by the model shows that the fatigue
signal is not able to maintain the force required to perform the activity from the
reduced value of IEMG feature. The proposed amplitude-based features are able
to differentiate between fatigue and nonfatigue signals. This model can be recom-
mended for the analysis of neuromuscular diseases. TQWT performs better than
time-domain analysis with higher percentage difference. Percentage difference esti-
mated in each subband showed the shift in frequency toward lower region of spectrum
during fatigue. This method can be adopted for fatigue analysis in experimentally
acquired sEMG signals.

References
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Fractal Order Poro-elastic Model
for Modelling Biphasic Tissue
and Tissue-Like Materials

Shib Sundar Banerjee, Arockiarajan Arunachalakasi,
and Ramakrishnan Swaminathan

1 Introduction

Since 1980s, the common approach is to analyse the mechanical characteristics of
soft tissue to consider it to be an ensemble of solid and fluid constituents and then
devise a poro-elastic (PE) model to capture the interaction of these two phases in
the tissue matrix [1–3]. Various soft tissues, e.g. brain [4], kidney and liver [5], have
been characterized under the assumptions of PE substrate. A time-dependent stress,
strain and fluid pressure production is reported in soft tissues which is attributed to
the flow dynamics of the interstitial fluid [6]. Varieties of other biomaterials such as
hydrogels are also similarly comprised of aqueous and solid constituents and exhibit
time-dependent mechanical response [7]. Rate dependency in biological materials
has been addressed in two competent theories, namely, viscoelasticity and poro-
elasticity. Such materials, when subjected to compressive deformation, can undergo
a conformational change at microstructural level which gives rise to viscous effect,
while themovement of solvent results in PE behaviour [8]. Studies have observed that
PE performs better at explaining responses in quasi-static and intermediate defor-
mation rates while viscoelasticity is more relevant at fast strain rates [4]. Moreover,
Chandran and Barocas [9] concluded from a microstructural study that poro-elastic
processes are more likely to contribute in low and intermediate strain rates with
network viscoelasticity being significant only in long-time relaxation phenomena.

Preliminary poro-elastic formulations of tissues exploited the classical theory by
Biot in a finite deformation scenario [2, 10]. Standard practice is to adopt both theory
of porous media and mixture theory to design an effective framework for a biphasic
constitutive law. The solid skeleton is considered as a deformable skeleton with a
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governing hyperelastic strain energy function. Neo-Hookean- or Mooney–Rivlin-
type models are suitable choices for reduced computational cost [11–13]. Pore fluid
is often assumed to be non-viscous and barotropic, as the biphasic system in concern
is perfused by mostly water [14]. Standard Fickian diffusion is assumed for the
pressure-induced fluid transport in the body. Dynamics of fluid is often hypothesized
to be obeying Darcy’s law, i.e. there exists a linear relationship between interstitial
fluid velocity and inherent pressure gradient [15].

Recent literatures have demonstrated deviations from Fickian diffusion in many
real-world problems across the domains ranging from geophysics to biophysics.
Such departure from idealized behaviours have been encountered in fields of atom-
istic energy diffusion and heat diffusion in complex medium, and has constituted a
special class of problem named as anomalous diffusion problem [16]. Heterogeneous
biological tissues and hydrogels trigger trapping, tortuosity and turbulence during
diffusion because of the complex topology of the effective pore space lead to anomaly
in Fickian diffusion [17, 18]. Previously, a number of corrective measures either in
flux vector (Brinkman correction) or nonlinear, Forchheimer-type, corrective terms
of the state variables of the problems have been introduced to mitigate the deviations
observed [19]. Statistical scale invariance in microstructural domain of real hetero-
geneous materials such as tissues and hydrogels has been reported, which might
induce anomaly in diffusion [20]. In a physical sense, the inertial effect during the
pore fluid flowmight not be restricted to a local length scale�x and an integer-order
spatial derivative cannot correctly capture the contribution of this effect. Fractional
derivatives, however, are non-local operators which have found applicability in such
scenarios [21].

Despite immense success in modelling nonlinearity, fractional calculus has
several shortcomings due to the convolutional integral on Mittag–Leffler functional
embedded in its definition. This gives rise to singularities, violates ideal proper-
ties of integer-order derivatives and increases the computational cost. An alternative
definition, namely, fractal derivative, a local derivative based on Hausdorff metric
space has been introduced by Chen [16] which can effectively mitigate these short-
comings while preserving nonlinear properties. Fractal derivative diffusion has been
introduced for biological tissues in recent years [22]. Moreover, if the pore space
is fractal in nature, the matrix can be considered to be non-fractal [23] while the
interface between solid matrix and pore space can also be a fractal [24].

The aim of the work is to amend the classical poro-elasticity for heterogeneous
biological media by taking non-Fickian diffusion into consideration. Previously
Ostoja-Starzewski [25] has introduced the idea of fractal media in poro-elasticity. A
reformulation of mass conservation and fluid percolation at fractal length scale has
been proposed in the current study. The Fractal Poro-Hyperelastic (FPHE) model
along with its numerical application has been developed on that premise. A u-p
representation of the model has been generated. The model has also been validated
against literature data.
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2 Theory

2.1 Modelling Framework

The material is assumed to be a fluid saturated porous hyperelastic body. The total
Cauchy stress (σi j ) generated in the body under application of imposed deformation
is comprised of the Cauchy stress relevant to the porous hyperelastic matrix (σ

′
i j ) and

isotropic pore fluid pressure (p). The effective stress formulation can be written as

σi j = σ
′
i j − pδi j (1)

where δi j is the Kronecker delta. This relation (1) is a limiting case of Biot’s theory
where the porous skeleton has relatively higher compressibility as compared to inter-
stitial fluid. Early studies in the field of tissue mechanics have assumed full incom-
pressibility of tissues, but recent studies have shown limited but non-zero volume
deformability of fluid-rich systems such as cartilage, liver and hydrogel [26].

The reference coordinates of the undeformed skeleton are assumed to be
X = Xi (i = 1, 2, 3) which, under an applied strain, moves to a current coordi-
nate x = xi (i = 1, 2, 3). The deformation gradient, F, can therefore be defined
as

F = Fi j = ∂xi
∂X j

(2)

The corresponding finite strain can be expressed in terms of right Cauchy Green
tensor C and the definition is as follows: C := FTF. The compressibility can be
measured using volume Jaccobian, J , defined as J := det(F). Then the distortional

part of the deformation gradient can be computed as
−
F= J−1/3F. The modified first

and second invariant can be written as
−
I 1 = J−2/3 I1 and

−
I 2 = J−4/3 I2, where I1 and

I2 are the two preliminary strain invariants, respectively. The Helmholtz free energy
of compressible porous hyperelastic skeleton is a function of the modified invariants,

i.e. U = U (
−
I 1,

−
I 2, J ). If λ1, λ2 and λ3 are the principal stretch components, then

the corresponding Cauchy stress can be defined as

σ
′
i i = λi

J

∂U

∂λi
(3)

In the proposition to capture the complex topology of porous media, Chen [16]
has employed the idea of Hausdorff distance and a scaling transform to form a new
metric space. Under assumption of fractal invariance and equivalence, the metric
space can be defined as �x

∧ = �xq , where q is the order of fractal. The derivative
on this space can be defined as
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d f (x)

dq x
= 1

qxq−1

d f (x)

dx
(4)

The mass balance equation for this space can be rewritten under the modified
approach in mixture theory in a fractal configuration space x

∧

under assumption of
scalability of linear domain into fractal reference volume unit as follows:

∂ρα

∂t
+ ∇β

(
ραv

∧

α

) = 0, α = s, f (5)

where t is the diffusion time, β is the order of fractality in the media, ∇β is fractal
laplacian operator, ρα is fractional density of the respective phase α and s, f stand
for solid and fluid phases, respectively. v

∧

α is the fractal velocity of the annotated

phase and can be defined as dx
∧

dt .
The modified spatial fractal Darcy’s law [21] can be written as

ϕ
(
v
∧

f − v
∧

s
) = −κβ

η
∇β p (6)

where ϕ is porosity of the media, η is dynamic viscosity, p is interstitial pore
pressure and κβ is fractal order permeability.

Solving (5) and (6) simultaneously one can get the following relation between
displacements (u = ui ) and intrinsic pressure (p), in a purely axial loading condition:

∂ui
∂t

= 1

β2x2(β−1)
i

κβ

η

∂p

∂xi
(7)

Considering a one-dimensional confined compression scenario with unidirec-
tional deformation u = [ u(t) 0 0 ], one can define the deformation gradient as
follows:

F =
⎡

⎣
1 + ∂u(t)

∂X 0 0
0 1 0
0 0 1

⎤

⎦ (8)

where X1 is simply represented as X . Corresponding volume Jaccobian turns out

to be J =
(
1 + ∂u(t)

∂X

)
.

A compressible Mooney–Rivlin energy function is considered for the solid
hyperelastic media:

U = c10

(−
I 1 − 3

)

+ c01

(−
I 2 − 3

)

+ 1

D1
(J − 1)2 (9)

where c10, c01 and D1 are constitutive parameters. For the abovementioned
deformation case, the resultingCauchy stress in the skeleton canbewritten as follows:
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σ
′
xx = 4

3
c10

{(

1 + ∂u

∂X

)1/3

−
(

1 + ∂u

∂X

)−5/3
}

+ 4

3
c01

{(

1 + ∂u

∂X

)−1/3

−
(

1 + ∂u

∂X

)−7/3
}

+ 2

D1

∂u

∂X
(10)

2.2 Formulation for Ramp and Hold and Creep Conditions

The momentum balance equation in case of a fractal space can be formulated as
follows:

∇βv
∧

c = ∇β
(
(1 − ϕ)v

∧

s+ϕv
∧

f

) = 0 (11)

where the cumulative fractal velocity of the biphasic mixture, v
∧

c, satisfies the
properties of a solenoid vector field. Essentially, (11) necessitates spatial invariance
of v

∧

c across the body. Now, by the boundary condition at x = 0, both the apperent
Euclidean and fractal velocities for each phase are zero (no permeation), which leads
to v

∧

c = 0. The uniformity of cumulative fractal velocity will require the value to be
zero at any x . This reveals the relationship between the fluid and solid phase velocity
(v
∧

f and v
∧

s, respectively) as follows:

(1 − ϕ)v̂s + ϕv̂ f = 0

⇒ v f =
(

1 − 1

ϕ

)

vs (12)

In case of the dynamic compression, the momentum balance equation for a
biphasic mixture in macroscale can be written as follows:

ρs
∂vs
∂t

+ ρ f
∂v f

∂t
+ ∇

(
σ

′ − pI
)

= 0 (13)

This expression can be solved for x direction, and one can arrive at a relation
solely based on the deformation u and total stress σ

′
xx as follows:

(

ρs + ρ f

(

1 − 1

ϕ

))
∂2u

∂t2
+

(
ρ f

ϕ2

∂ϕ

∂t
− η

κβ

β2x2(β−1)

)
∂u

∂t
= −∂σ

′
xx

∂x
(14)

For creep condition, the inertial effect can be neglected and the problem
consequently reduces to a much simpler PDE with the following configuration:
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η

κβ

β2x2(β−1) ∂u

∂t
= ∂σ

′
xx

∂x
(15)

These Eqs. (14) and (15) are to be solved for a given boundary condition in order to
find out the temporal variation of the deformation u along xdirection. It is noteworthy
that setting β = 1 will result into transformation of the abovementioned model into
a Poro-Hyperelastic (PHE) category.

3 Methodology

3.1 Numerical Solution Scheme

A nonstandard finite difference scheme has been developed to solve the dynamic
problem as described in (14) [27]. The equation can be written in the following
format:

P(t)
∂2u

∂t2
+ Q(t)

∂u

∂t
= R(t) (16)

With P(t) =
(
ρs + ρ f

(
1 − 1

ϕ

))
, Q(t) =

(
ρ f

ϕ2
∂ϕ

∂t − η

κβ
β2x2(β−1)

)
and R(t) =

− ∂σ
′
xx

∂x . The corresponding difference equation can bewritten in terms of the following
substitution:

∂2u

∂t2
≈ uk+1

m − 2ukm + uk−1
m

(�t)2

∂u

∂t
≈ (1 − 2ε)

(
uk+1
m − ukm

�t

)

+ 2ε

(
uk+1
m − uk−1

m

2�t

)

(17)

where m is the spatial position, k is the time instance and �t is the time step. The
first time derivative u has been considered as a combination of forward and central
difference and ε is the weighting factor. Now (16) can be rewritten as a difference
equation by employing (17), and to eliminate the dependence of uk−1

m on the temporal
solution, one can find this necessary condition after a little algebraic manipulation
that:

εkm = 1

�t

Pk
m

Qk
m

(18)

Hence, we can write (16) in the form as follows:



Fractal Order Poro-elastic Model for Modelling Biphasic Tissue … 115

(
Pk
m

(�t)2
+ Qk

m

�t
(1 − εkm)

)

uk+1
m −

(
2Pk

m

(�t)2
+ Qk

m

�t

(
1 − 2εkm

)
)

ukm = Qk
m (19)

which can be solved further in an explicit scheme.
For (15) a central finite difference scheme is adequate. The stability of numerical

approach is ensured by optimally choosing �t/(�x)2 where �t and �x are time
step and spatial difference, respectively. If sample height is h and permeation of
water is only allowed through the surface at X = h, then the boundary conditions for
a confined compression case can be set as follows for a ramp and hold conditions:

(i) u(X, t) = 0 at X = 0 for t ≥ 0
(ii) u(X, t) = 0 at t = 0 for X ∈ (0, h)

(iii) ∂u
∂t

∣
∣
X=h

= β for 0 ≤ t ≤ tramp and 0 for t > tramp

where β is the rate of deformation imposed and tramp is the ramping time. For a
creep scenario, the third condition can be replaced with σ

′
xx

∣
∣
X=h = σ0 where σ0 is

the constant creep load.

3.2 Parameter Optimization

A two-phase genetic algorithm-based search programme has been developed for
parameter optimization, for a crude search of a global minima of squared fitting
error in first phase, and fine-tuning the parameters in the second. The methodology
is validated against test values. The model has been validated against the data of
Knapp et al. [28].

4 Results

The fractal order β has been observed to considerably affect the sensitivity to strain
rates at any loading case in FPHE model. A number of numerical experiments are
attempted to understand the salient features of the proposed formulation. For the
purpose of numerical simulation, the parameters chosen are c10 = 0 Pa, c01 = 10.8
Pa, D1 = 6 × 1013 Pa−1, κβ

η
= 9.88 × 10−7 unit and m = 1. The fractal order β is

varied from 0.8 to 1.2. The test protocols are kept similar to that of Knapp et al. [28].
The cylindrical collagen gel sample is of a height of 5 mm, which is operated

under confined configuration. The first case is of a ramp and hold experiment where
a ramp strain of 10% is applied gradually over a period of 120 s, which is followed
by a hold phase.

The second case is of a creep test where a load of 0.43 Pa is applied on the
gel sample. Both of the simulation results are shown in Fig. 1. As it is visible,
increased β reflects in increased stiffness, and consequent decrease in compliance
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Fig. 1 Numerical simulationwith different fractal orders (β) for twodifferent test scenarios:aRamp
and hold and b Creep test

of the material. Figure 1a shows that the peak stress attained by ramp loading is
increased by increasing β, but the long-term residual stress at hold phase converges
for all β at ample time interval. Figure 1b shows that the equilibrium compliance in
creep is higher for lower β.

Figure 2 illustrates the variation of the pore pressure at the non-permeable surface
in the bottom for different test cases. Increased β has resulted in reduced order
percolation rate which reflects in the following behaviour. Figure 2a shows the peak
pore pressure attained to be higher in case of a higher β. Also increased fractal
order resulted in sharper drop of pressure in the transition from ramp to hold and
lengthened the decay time during hold phase. Figure 2b also reflects the same result
as higher β leads to slower attainment of equilibrium.

The two-phase genetic algorithm is validated against a synthetic data in ramp
and hold case. The optimization algorithm is able to predict the parameters from
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Fig. 2 Evolution of fluid pressure at non-permeable bottom surface for different fractal orders (β)
in two different test scenarios: a Ramp and hold and b Creep test
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Table 1 Input parameters and predicted parameters found from two-step GA optimization

Parameters c10 (Pa) c01 (Pa) D1 (Pa−1) κβ

η
(unit) m β

Test 10 12 5 × 10+13 1.2 × 10−6 3 1.2

Predict 9.47 10.52 5.34 × 10+13 9.63 × 10−7 3.15 1.16
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Fig. 3 FPHE and PHE model fitting with the Knapp et al. data in two different protocols: a Ramp
and hold and b Creep test

synthetic data with an error of 2% in fitting with the model. The correlation of
the synthetic data and predicted data has been shown to be R2 = 0.99 with p <
0.001. The corresponding input parameters and predicted parameters can be seen in
Table 1.

The fitting algorithm has been employed to fit the literature data as obtained from
Knapp et al. The original data and fitted curves are shown in Fig. 3. Figure 3b shows
an excellent fit with the creep data with aR2 of 0.99. Figure 3a shows a satisfactory fit
with a square-rooted error of 4%. An underestimation of stress level can be observed
in the ramp phase, but the ramp peak has been identified satisfactorily. PHE model
underestimates the load level throughout the ramping phase with a 6% deviation in
the prediction of the peak load. The overall squared error obtained is 7% for PHE.
Model performed better capturing the behaviour in the hold phase. Figure 3b shows
a satisfactory fit for both FPHE and PHE models, and the reason might be absence
of manifestation of rate dependency in material response in quasi-static deformation
history.

5 Conclusion

In this work, an attempt has been made to accommodate for non-Fickian diffusion in
the premise of finite poro-elasticity. A spatially fractal ordered Darcy’s law is taken
into account and the balance equations are reformulated in terms of fractal metric



118 S. S. Banerjee et al.

space. A parameter optimization scheme based on two-phase GA is also proposed.
The model has been demonstrated to be sensitive to the fractal order, which might
indicate the relation between the index β and the order of the pore structure. The
model has been shown to characterize biphasic biological materials more accurately.
Thus, the model can be helpful in simulating tissues and biomaterials for various
applications in surgical or physiological relevance.
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Quantification of Brain Retraction Using
Visco-hyperelastic Framework for
Image-Guided Neurosurgical
Applications

Abhilash Awasthi, Suryanarayanan Bhaskar, Umesh Gautam,
and Sitikantha Roy

1 Introduction

In neurosurgery, brain retraction technique has become popular in the field of image-
guided (IG) procedure for intracranial operations such as in brain tumor, cerebral
aneurysms deep into the brain, cerebral hematoma, etc. Retraction provides acces-
sibility and adequate exposure to the operative field, which are otherwise hard to
access. During retraction, the brain tissue near a fissure is split open using a metal-
lic strip called spatula (see Fig. 1). The pressure applied to the spatula affects the
brain tissue in contact with it which causes temporary or permanent deformation
of adjacent brain tissue and partial or total closure of blood vessels, thus impairing
the oxygen supply to the brain [1]. This subsequently leads to several local brain
contusions, which limit the reliability of the IG neurosurgical systems. To obtain
an effective exposure of operative field without any damage to tissue, factors such
as magnitude and direction of brain retraction pressure (BRP), amount of exposure,
speed of retracting, etc. must be administered carefully. It is nearly impossible for
a new practitioner in neurosurgery to master these skills. Because of the softness
of brain tissue with marginal blood supply, a small variation in BRP could be fatal.
IG neurosurgical procedures help neurosurgeons in pre-planning and training well
before time and help in minimizing the risk of tissue damage. Therefore, there is
a need for surgical training in this field to enhance the precision, efficiency, and
reliability of the procedure.
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Fig. 1 Schematic of brain retraction with the help of spatulas by taking advantages of anatomical
corridors of the brain called fissures

Neuronavigation systems rely on the accurate registration of anatomical details
with the help of imaging techniques. The registration errors caused by the intraoper-
ative brain shift, retraction, or resection often hamper the accuracy of IG navigation
systems.With the help of computationalmodeling, registration errors can be avoided.
However, their accuracy increases proportionally with the level of computing power,
thus incurring a high computational cost. Brain retraction is the first and inevitable
procedure of neurosurgery and was studied extensively in the recent past. Most of the
studies on brain retraction remained focused on enhancing the accuracy, efficiency,
and reliability of IG neurosurgical systems [2–4].

Although brain retraction is indispensable during many intracranial procedures,
this comes with a cost of brain tissue getting damaged. There have been experimental
studies on the brain tissue injury following brain retraction [5–7], but little effort has
been made to study it using a computational model. Availability of a computational
model helps in determining the gauged retraction parameters preoperatively that will
minimize the risk of any cerebral injury such as cerebral ischemia. The model could
further be used to study the postoperative effects on brain tissue following retraction.
An anatomically correct numerical model with accurate material description to study
these complications is still lacking in the literature. The present work is an attempt to
bridge this gap by using a three-dimensional (3D) finite element (FE) model of the
human brain in the visco-hyperelastic framework. The study aims at demonstrating
the potential of an anatomically and constitutively correct 3D FEmodel of the human
brain to predict the stress relaxation following a retraction, which eventually prevents
it from injuries. The model could further be coupled with the theory of continuum
damage mechanics to enhance its capabilities.
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2 Materials and Methods

Due to several difficulties encountered during the experimental testing of many soft
tissues such as the brain, the computer models are providing a great advantage. With
the help of imaging techniques, a computer model of any complex shape can be
generated with almost similar anatomical features as well as its constituents. For
the clinical methods, a stack of images in Digital Imaging and Communications in
Medicine (DICOM) format is used for the 3D model reconstruction. Image segmen-
tation using image processing tools is used for differentiating different parts of the
model and finally converted into voxels. A similar procedure has also been followed
in the present study. The brain retraction problem has been defined as a boundary
value problem (BVP) in the non-linear elasticity framework. The essential compo-
nents for posing a complete BVP are a geometric/mathematical model, constitutive
relation/assumptions, and boundary conditions (BC). A complete description of BVP
with its components, which eventually will be solved for the field quantities has been
discussed in next subsections.

2.1 Geometric Modeling

Several anatomically correct 3D FE models that were developed in the past [8]
remained focused on Traumatic Brain Injury, an injury to the brain resulting from
the application of sudden or impact load on the head. Linear as well as angular
acceleration or deacceleration from these impacts, causes the relativemotion to occur
between different parts of the brain having different densities, hence causing damage
to the brain at the neuronal level. For surgical procedures such as brain retraction, the
speed at which forces act on the brain is medium in the range (1–10 mm/min). In the
past few decades, the effects of brain retraction on animal brains have been studied
experimentally as well as clinically. Recently, few studies used a numerical model
to study the deformed shape of the brain due to retraction and used it to register the
real-time deformation to a computer model intra-operatively. However, the prime
focus of these studies was to enhance the accuracy of IG neurosurgical procedures.
Due to higher computational cost associated with such systems and need for real-
time deformation mapping, makes them hard to execute. Also, the associated higher
computational cost resulted in the use of relatively simple (2D and 3D) computer
models of the brain in those studies without mimicking its actual geometry. All these
factors consequently lead to the requirement of examining the effects of retraction on
brain tissue numerically by simulating the real-time/actual procedure with the help
of an anatomically correct numerical model.

A 3D human brain model was segmented and reconstructed from the T1 weighted
magnetic resonance (MR) image data of the human head in DICOM format. The
DICOM images of an average adult subject were acquired using 1.5T PhilipsAchieva
MRI scanner with 1mm thick slice interval at All India Institute ofMedical Sciences,
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Fig. 2 Schematic of assembled 3D FE brain model with left hemisphere in red color, right hemi-
sphere in yellow color, brain stem in green color, and spatula in blue color

NewDelhi, India. A computer-aided designmodel of the human brain was developed
from the stack of acquired MR images. The different parts of the brain, such as left
and right hemispheres, brain stem, etc. (see Fig. 2) were identified and segmented
based on their grayscale value using a custom software ScanIP from Simpleware [9].
The geometry of spatula in contact with brain tissue was tapered with 5mm width
at the bottom. The brain model was meshed using C3D4 (4-node linear tetrahedral
continuum element) element type while the spatula was meshed using C3D8H ele-
ment type (8-node linear hybrid brick element). The FE model in total consists of
249,270 number of elements (both C3D4 and C3D8H) and 57,816 number of nodes.

2.2 Constitutive Model

Most of the studies on retraction considered the brain tissue to be linearly elastic or
poroelastic. However, these models, which are quite simple and have their solution
procedures already optimized, are applicable to numerical models undergoing small
deformations only. Usually surgery-related loads result into large deformations in the
tissue. This type of behavior can only be captured using the non-linear elastic frame-
work. Also, brain tissue is very soft and exhibits hyperelasticity and viscoelasticity
as its primary characteristics. Accordingly, the non-linear, incompressible, isotropic
material response of brain was modeled using a time-dependent polynomial strain
energy density function (W) given by [10]:
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Table 1 Coefficients for visco-hyperelastic material model

Hyperelastic parameters Viscoelastic parameters

C100 = C010 = 263Pa g1 = 0.27259 & τ1 = 0.83924s

C200 = C020 = 491Pa g2 = 0.25741 & τ1 = 9.60894s

C110 = 0

W (t) =
∫ t

0

⎧⎨
⎩

N∑
i+ j=1

Ci j0

[
1 −

n∑
k=1

gk

(
1 − exp

(−(t − τ )

τk

))]⎫⎬
⎭ · · · (1)

· · · × d

dτ

[
(I 1 − 3)i (I 2 − 3) j

]
dτ

where Ci j0 is the instantaneous relaxation modulus, gk is the dimensionless relax-
ation modulus, t represents current time, and τk are the characteristic times denoting
running time variable (0 ≤ τ ≤ t). I 1 and I 2 are the invariants of left Cauchy-Green
strain tensor (B) given by

I 1 = λ2
1 + λ2

2 + λ2
3 and I 2 = λ−2

1 + λ−2
2 + λ−2

3

where λi with i = 1, 2, 3 are the principal stretches in three principal directions.
Stretch is defined as the ratio between the deformed and undeformed length (λ =
L/L0) of a line element. From the second law of thermodynamics for an isothermal
process, the Cauchy stress tensor (T) can be expressed as

T = 1

J

∂W (t)

∂F
: FT (2)

where F is the deformation gradient and J = det (F) is the relative volume change.
A two-term polynomial strain energy density function (N = 1, 2) and two-term

Prony series (k = 1, 2) were considered for the present case. The values for the
hyperelastic and Prony series parameters were obtained from unconfined compres-
sion test on brain tissue [10], values of which are given in Table 1. The spatula is
assumed to be made up of steel and was modeled as linearly elastic material with
Young’s modulus and Poisson’s ratio as 200 GPa and 0.3, respectively. Combining
constitutive relation with the balance laws (from 1st and 2nd law of thermodynamics)
gives the field equations which are then solved using appropriate BC. The BC and
FE implementation of BVP are discussed in the next subsection.
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Fig. 3 Time-dependent BC
on spatula was divided into
three-time steps: loading till
displacement ux , holding at
same displacement for
30min, and then unloading

2.3 Finite Element Simulation

The last and essential part of a complete BVP is the BC. Based on expert neuro-
surgeon’s advice, it was hypothesized that for interhemispheric retraction, the right
hemisphere and brain stems remain fixed in their positionwhile the left hemisphere is
retracted.Hence for the simulation purpose, the right hemisphere and brain stemwere
kept as fixed. The deformable left hemispherewas kept traction free. Time-dependent
displacement BC were prescribed on the spatula by dividing the total loading time
into three steps, viz., loading, holding, and unloading steps. The schematic descrip-
tion of these steps is given in Fig. 3.

Initially, the spatula was displaced in x−direction by prescribing a displacement
(ux ) of 5mm at a loading speed of 5mm/min. After loading step, the same displace-
ment value (ux = 5mm) was kept constant for 30min describing the holding period.
Finally, the spatula was slowly unloaded to its initial position with the same speed as
that for the loading step. The holding period is the time during which whole surgery
is performed. Also, the tool-tissue interaction between spatula and brain tissue has
been modeled by specifying a non-penetrating frictionless surface to surface contact.

The solution to the BVP has been obtained using the FEmethod and implemented
using commercially available FE solver ABAQUS6.13/Standard [11]. The 3Dmodel
took approximately 1h to solve for the field quantities using a Windows 7 operating
system with 16 GB RAM. The BRP during the surgery can be computed by dividing
the reaction force on the spatula by the area of contact. Real-time monitoring of
BRP could help in preventing the brain tissue against any damage such as contusions
or hemorrhage. The variation of BRP throughout different loading steps has been
explained and discussed in the next section.

3 Results and Discussion

Over the past few decades, there has been a tremendous rise in the use of compu-
tational models for mimicking the experimental procedures. This is implemented to
make the surgical procedures less-invasive, thereby minimizing the risk of injury to
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soft tissues. Also, the validity of these numerical models becomes critical, requiring
the representation of actual physical processes. In an attempt to model the real-time
brain retraction procedure, anatomically correct 3D FE model was used to predict
the effects of retraction. A full-field solution using the visco-hyperelastic material
model in non-linear elasticity framework was compared with the experimental data
[5]. The experiments consisted of the retraction procedure on the temporal lobe of the
dog brain using a strain gauge spatula with pressure transducer on its front surface,
in-vivo. The brain tissue was retracted to expose the operative field. After achieving
sufficient exposure, the spatula was fixed in the same position, and attenuation of
BRP was recorded until a plateau value reached. Similar BC were also applied to
our model, and resulted variation in BRP was studied.

The variation in reaction force due to the displacement BC applied to spatula as
the time progresses is given in Fig. 4. The black curve shows different loading modes
during the deformation of brain tissue. The interesting and valuable information that
could be extracted from these plots is the value of peak BRP and a drop in its value
during the holding period. This attenuation of BRP is responsible for relaxing the
brain tissue from stresses and hence minimizing the chances of tissue damage during
brain retraction.

The excess of peak BRP results in secondary brain injuries such as focal contu-
sions, cortical incisions, brain hemorrhage, or other neurological disorders [12]. The
attenuation of BRP during the holding period (see Fig. 5) after obtaining sufficient
exposure continues until reaching a plateau at 30% of initial retraction pressure. The
decrease in BRP is attributed to the drainage of cerebrospinal fluid (CSF) from the
subarachnoid spaces and ventricular system. This further accounts for the viscoelas-
tic nature of brain tissue and demonstrate its relaxation behavior. Excessive and
frequently employed brain retraction results in higher BRP values, thereby putting
the whole surgical procedure at risk. The level of BRP and its attenuation does not
solely depend on the drainage of CSF but also get affected by the relative position
of the head, the exposure required, the physical condition of the brain, etc. The level
of BRP also gets amplified from abnormal brain conditions such as hypotension or
hypoxemia [13].

Over the past few decades, several researchers have provided threshold for brain
retraction using different methods such as mean and local retraction pressure, force
measurement method, cerebral pulsation method, brain electrical activity monitor-
ing, blood flow monitoring, among others. However, a general consensus for these
methods or threshold parameters provided by them is still not available at present [1,
12, 14]. Also, most of the brain injuries following retraction are not evident immedi-
ately postoperatively, thereby limiting the use of clinical or imaging techniques for
their prevention. The use of patient-specific computer head models, coupled with
various sensor technologies and haptic feedback devices for tool-tissue interaction,
will help to improve the reliability of surgical simulations. These simulations can
then be used for the surgical guidance of neurosurgeon or realistic training of the
practitioners.
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Fig. 4 Reaction force on
spatula versus, (i)
displacement (black curve),
and (ii) time (blue curve).
The trend of the curve shows
different loading modes
during the deformation
process

Fig. 5 Comparison of
attenuation in BRP during
the holding period between
experimental data and results
from present model

4 Conclusions

A3DFEmodel of the human brainwas devised to investigate the effects of deep brain
retraction. The FE brain model was segmented and reconstructed using MRI data of
the human head. A visco-hyperelastic material model was used to model the brain
tissue constitutively. The loading history was divided into three steps, viz., loading,
holding, and unloading; mimicking the actual surgical procedure. The attenuation of
BRP during the holding period (the period during which whole surgery is performed)
was compared with the available experimental data. The BRP decreases to 30% of
the initial BRP after 30min. The results could help in understanding the deformation
behavior of brain tissue while retracting and could further be used for preventing and
minimizing the risk of brain tissue getting injured. The present model could further
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be used to study the advantages of intermittent retraction as compared to continuous
one or the use of multiple retractors instead of one, etc. Finally, the present model
can also be used for the computation of model-updated intraoperative images for
neurosurgical image-guidance in minimally invasive surgeries.
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Calculation of NSIFs and Shape Factors
of Four-Point Bend Specimens
Containing Sharp V-Notches

Mirzaul Karim Hussain and K. S. R. K. Murthy

1 Introduction

Structures or machine components often contain sharp V-notches. The singular stress
field exists in the vicinity of the notch tip of sharp V-notches. In linear elastic fracture
mechanics, Williams [1] suggested that the singular stress field can be stated in the
form of Krλ−1fij(θ), here K is the notch stress intensity factor (NSIF), r is the radial
distance from the notch tip, λ − 1 is the order of stress singularity, and fij(θ) are the
angular functions of stress components. Among the various brittle fracture criteria
developed, the more popular and widely employed criteria are based on the critical
values of NSIF [2–5].

In past decades, many techniques have been developed by researchers to compute
the NSIFs. Gross and Mendelson [6] proposed the boundary collocation method
(BCM) to determine the NSIFs of sharp V-notches. Chen [7] developed a body force
method (BFM) to evaluate the NSIFs for specimens under mixed mode (I/II) tensile
and in-plane bending loading conditions. Moreover, Ju and Chung [8] and Liu et al.
[9] used finite element (FE) stresses, and utilizing the least-squares method deter-
mined the NSIFs. These least-squares methods [8, 9] require higher order Williams
coefficients and/or very fine meshes for attaining the accurate values of NSIFs. In
another research, Ayatollahi and Nejati [10] proposed an over deterministic method
using the FE displacements to calculate the NSIFs along with the higher order terms
of Williams coefficients. Recently, a collocation technique and a point substitution
technique were proposed by authors [11, 12] to obtain the mixed mode (I/II) NSIFs
using the FE displacements along the notch flanks.
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It is worth mentioning here that, unlike the availability of popular quarter-point
elements (QPEs) in the crack problems, no such singular elements are currently
available for the sharp V-notched problems.Moreover, even though the displacement
components are more accurate than the stress components in the FE method and
the notch flank displacements are the most accurate in the entire domain, there are
not many popular methods available for the determination of NSIFs using notch
flank FE displacements. One of the reasons for neglecting the advantages of the
notch flank displacement may be the presence of rigid body displacements in the
displacement components which are absent in stress components. Therefore, the
method proposed by authors [11], the rotational components in the displacements are
not neglected; rather, nicely negotiated using a simple formula. Thus, the main thrust
of the present work is to demonstrate the efficacy and capabilities of the collocation
technique proposed by authors [11] in terms of accurate estimation of the NSIFs of
a four-point bend (FPB) specimens with sharp V-notches. The FPB specimens with
sharp V-notches are one of the widely used specimens to study the fracture of brittle
materials.

In this research, the mode I and mode II NSIFs of the FPB are determined under
various loading and geometry conditions using the collocation technique. The dimen-
sionless notch shape factors and the mixing ratios are also presented for all the exam-
ples. The results obtained in the present investigation are then compared with the
available solutions [13].

2 Theoretical Background

Consider a homogeneous elastic 2D geometry containing a sharp V-notch having
notch angle γ (= 180 − 2α) as shown in Fig. 1. Considering the singular terms and
the constant displacement terms, the displacement field at any pint point P(r, θ) near
to the notch tip O under any arbitrary in-plane loading can be given as [8]

u = κ + 1

2G
A0 + A1

2G
rλ

I
1
{(

κ + λI1 cos 2α + cos 2αλI1

)
cos λI1θ − λI1 cos

(
λI1 − 2

)
θ
}

Fig. 1 Notch geometry
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where A0, A1, B0, B1, and B2 are Williams’ coefficients, A0 and B0 are coefficients
corresponding to the rigid body translation and B2 is coefficient corresponding to the
rigid body rotations, Kolosov constant κ is equal to (3 − ν)

/
(1 + ν) for plane stress

and 3− 4ν for plane strain conditions, G = E
/
2(1 + ν) is the shear modulus, ν and

E are the Poisson’s ratio and Young’s modulus, respectively, and λI
1 and λII

1 are the
modes I and II eigenvalues, respectively.

Similar to the crack problems, mode I and mode II NSIFs can be defined as [6]

KI = √
2πλI

1

(
1 + λI

1 − λI
1 cos 2α − cos 2αλI

1

)
A1
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2πλII

1
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1

)
B1

(2)

It can be shown that [11], the notch opening displacement (NOD) can be written
as

	v = vIθ=+α − vIθ=−α = 2vIθ=+α = 2
A1
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= 2A1C1r
λI
1 (3)

Similarly, the notch sliding displacement (NSD) can be obtained as [11]

	u = uIIθ=+α − uIIθ=−α = 2uIIθ=+α = 2
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(4)

where C1, C2, and C3 are constants which depend upon the geometry of the notch
and material property.

ConsideringN number of nodes are considered along the notch flanks (as shown in
Fig. 2a), and the residual RI between the analytical and the FE NOD can be obtained
as

RI =
N∑
j=1

[
ln

(
	vFEj

)
− ln(A1) − ln(2C1) − λI

1 ln
(
rj
)]2

(5)

For the minimum value of RI , the partial differentiation of RI with respect to
ln(A1) should be equals to zero
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Fig. 2 a Selection of the collocation nodes and b typical mesh arrangement around the notch tip

∂RI

∂ ln(A1)
= 0 (6)

From (6), the Williams’ constant A1 can be obtained as [11]

A1 =
exp

[
1
N

∑N
j=1 ln

(
	vFEj r

−λI
1

j

)]

2C1
(7)

The NSD (Eq. (4)) contains two unknown Williams constants (B1 and B2) and
therefore, computation of B1 is not straight forward. Hence, two additional radial
lines (radial line 1 and radial line 2 as shown in Fig. 2b) along θ = +α′ and θ = −α′
apart from the notch flanks (θ = +α and θ = −α) are considered. Similar to mode
I, using effective NSD (	uFEeff ,j) at N number of nodes along the notch flanks and the
radial lines 1 and 2, B1 can be obtained as [11]

B1 =
exp

[
1
N

∑N
j=1 ln

(
	uFEeff ,jr

−λII
1

j

)]

2C4
(8)

Using theWilliams constants the mode I and mode II NSIFs can be obtained from
Eq. (2). The NSIFs can be normalized using the following equation [13]

FI = (2πa)λ
I
1−1 2L

P1
KI and FII = (2πa)λ

II
1 −1 2L

P1
KII (9)

Moreover, the state ofmixity can be defined by an auxiliary parameter notchmode
mixity ratio parameter (Me), which can be defined as [13]

Me = 2

π
tan−1

(
FI

FII

)
(10)
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3 Numerical Results and Discussions

A four-point bend (FPB) specimen is considered for the present analysis, as shown
in Fig. 3a. The geometry and loading conditions for the FPB are shown in Fig. 3a.
The length and width of the specimen are L = 80 and w = 10, respectively. The
point load P = 10 is applied as shown in Fig. 3. The notch length to width ratio
a/w = 0.4 is considered.

The finite element solution is completed in ANSYS. Eight-noded quadratic
elements are used in the entire domain, and the notch tip elements are collapsed
to form a spider web pattern at the notch tip. The typical FE mesh used for the FPB
specimen is shown in Fig. 3b. The enlarged notch tip elements are shown in Fig. 3c.

At first, the results for the FPB for the notch angle γ = 30º obtained using the
collocation method [11] are validated with the results of Ref. [13]. In Ref [13], the
shape factors were determined using an overdeterministic technique [10]. For the
validation the following configurations were considered: L1

/
L = L2

/
L = 0.45,

L4
/
L = 0.3, and L3

/
L = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The present and

published results are shown in Fig. 4. From Fig. 4, it can be seen that both mode I
and mode II shape factors using the present approach are in good agreement with the
published results [13]. After that, some new results for the shape factors with the new
configurations, L1

/
L = L2

/
L = 0.6, L4

/
L = 0.45, and L3

/
L = 0.45, 0.5, 0.6, 0.7,

0.8, and 0.9 are plotted in Figs. 5 and 6 for γ = 60º and 90º, respectively. Moreover,
the mixity ratio parameters (Me) are also plotted in Figs. 5c and 6c. It can be seen
that when L3

/
L = L4

/
L, the specimen will be under pure mode I condition and

as L4 increases the specimen will be under mixed-mode loading conditions. It has

Fig. 3 a FPB specimen, b typical FE mesh used for the FPB specimen, and c typical mesh
arrangement around the notch tip
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Fig. 4 Validation of shape factors for a FI and b FII for γ = 30◦

Fig. 5 Results for a FI , b FII and c Me for γ = 60◦

been also observed that when L3
/
L = 0.9 the specimen will be under pure mode II

loading conditions. Therefore, the mixity ratio (Me) is 1 for L3
/
L = L4

/
L = 0.45,

and the ratio of L3
/
L changes, the value ofMe decreases and becomes equal to zero

at L3
/
L = 0.9.
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Fig. 6 Results for a FI , b FII and c Me for γ = 90◦

4 Conclusions

In this paper, the efficacy of an FE based NSIF extraction technique has been demon-
strated by determining the NSIFs of four-point bending specimens. The notch flank
opening and sliding finite element (FE) displacements are considered for determining
the NSIFs. The rigid body displacements are nicely bypassed to evaluate the mixed
mode (I/II) NSIFs. The NSIFs obtained using the present technique are found to
be in good agreement with the available solutions. The mixed mode mixity ratio
parameters are also determined for various loading positions from pure mode I to
pure mode II. The results verify that the present collocation technique is simple,
straightforward, and easy to be implemented in the available FE code.
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Tera-Hertz Wave Propagation
in Non-classical Beams Using Spectral
Finite Element Method

K. Sainath and S. Narendar

1 Introduction

The present work is motivated by the growing attention toward the development
of the futuristic nanoscale devices. Design, modeling and analysis of such devices
under the umbrella of molecular dynamics methodologies and computations is quite
cumbersome and costly. Due to this, the modified continuum theories are used to
predict the accurate results which will give an idea about the result trends for a
particular model [1, 2].

In the literature, nonlocal elasticity theory [2–6] is very popular to model the
nanoscale elements to study their behavior.Many researchers have applied this theory
to nanostructures to analyze the vibration, buckling or wave dispersion behavior
[7, 8] at nanoscale [9]. These nanostructures are the primary elements in the nanoscale
devices. So, the present paper deals with the dynamic wave behavior of two types
of non-classical beams, i.e., Euler-Bernoulli and Timoshenko beams. To analyze the
dynamic wave behavior of these beams, spectral finite element method [7] is used to
obtain the non-classical dynamic stiffness matrix and the variation of the elements
of dynamic stiffness with respect to frequency are studied in detail.
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2 Mathematical Formulation

2.1 The Theory of Non-classical Elasticity

The theory of non-classical elasticity was formally initiated by the papers of Erigen
[3–6]. This takes in to account the remote action of forces between atoms. As per this
theory, the stress state at a reference point x in the body is regarded to be dependent
not only on the strain state at x but also on the strain states at all other points x′ of
the body as

σi j, j = 0 (1)

σi j (x) =
∫
V

α(|x − x′|, ξ)Ci jklε jk(x′)dV (x′), ∀x ∈ V (2)

εi j = 1

2
(ui, j + u j,i ) (3)

where Ci jkl is the elastic modulus tensor of classical isotropic elasticity, σi j and εi j
are stress and strain tensors, respectively, and ui is the displacement vector. α =
α(|x − x′|, ξ) is nonlocal modulus. |x − x′| is the Euclidean distance, and ξ = e0a

�
,

where e0 is nonlocal parameter.

3 Non-classical Beams

As mentioned in introduction, we will use two different beam models, namely, the
Bernoulli-Euler model and Timoshenko beam models, to study the dynamic wave
behavior in these non-classical beams.

3.1 Non-classical Euler-Bernoulli Beam Model

The governing equation of the non-classical Euler-Bernoulli beam model is given
as [6]

E Iω,xxxx + ρAω̈ − (e0a)2ω̈,xx = 0 (4)

where ω = ω(x, t) is the flexural deflection, ρ is the mass density, A is the cross-
sectional area, E I is the bending rigidity of the beam structure and e0a is the nonlocal
scaling parameter. Here (̇) denotes derivative with respect to time(t) and ( ,x) is
the derivative with respect to x . It is observed that if the internal length scale a is
identically zero, then the classical Euler-Bernoulli beam model is recovered.
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Fig. 1 Spectrum curves
(Wavenumber dispersion),
for a nonlocal beam obtained
from both local and nonlocal
Euler-Bernoulli beam
theories
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The time variable can be eliminated from the governing partial differential equa-
tion of the non-classical beam (Eq. (4)) by using the Fourier transformation,

ω (x, t) =
N∑

n=1

Ŵ (x,ωn)e
iωn t (5)

where ωn the circular frequency of the nth sampling point and N is the Nyquist
frequency.

For non-trivial solution of the amplitude, this implies that

E Ik4 − ρAω2 (e0a)2 k2 − ρAω2 = 0 (6)

this is knownas the dispersion equation for the assumednon-classicalEuler-Bernoulli
beam. The wavenumbers are obtained by solving the dispersion equation (6). The
wavenumber (k) variation with the frequency (ω) is shown in Fig. 1 for both the
classical and non-classical beams. The dispersion equation gives four wavenumber
solutions. Out of these four wavenumbers two are purely real and the other two are
purely imaginary. The real part gives rise to the propagating component of the wave
while the imaginary part gives rise to the spatially damped mode of the wave. From
Eq. (6) it is obvious that, there is no possibility for a cut-off frequency for these
flexural modes, above which the spatially damped mode turns to be propagative.
The relation between the wavenumber k and frequency ω is called the spectrum
relation and it is a nonlinear function of frequency and is clearly seen in Fig. 1. The
non-classical elasticity predicts the higher wavenumbers than the classical elasticity.
This leads to the lower group speeds (Cg = Re(∂k/∂ω)) in non-classical elasticity
as shown in Fig. 2. The complete dynamic wave dispersion in the non-classical
Euler-Bernoulli beam is obtained from the dynamic stiffness.
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Fig. 2 Dispersion curves
(group speed dispersion), for
a nonlocal beam obtained
from both local and nonlocal
Euler-Bernoulli beam
theories
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Fig. 3 Schematic of
Euler-Bernoulli spectral
beam element

3.2 Computation of Dynamic Stiffness Matrix
for Euler-Bernoulli Beam

Since the spectral element can be very long then the ability to compute the response
between nodes is necessary. This can be done conveniently using the dynamic stiff-
ness matrix. Thus the total solution for the displacement field to be considered as:

ω(x, t) = (Aeik1x + Beik2x + Ceik3x + Deik4x )eiωt (7)

Now that the representation of the displacement field has been established from the
governing partial differential equation, the dynamic stiffness can be formulated. The
dynamic stiffness is formulated using a direct method. both the nodal displacements
and nodal forced can be written in terms of the unknown coefficients (A, B,C, D).
These relations can be used to form an expression for the dynamic stiffness matrix.
the spectral beam element developed will use two nodes with two DOF, transverse
displacement (ω1,ω2) and rotation (θ1, θ2) at each node as shown in Fig. 3.

Writing the displacements and rotations at the nodes in matrix form gives
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⎧⎪⎪⎨
⎪⎪⎩

ω(0, t)
θ(0, t)
ω(L , t)
θ(L , t)

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

ω1

θ1
ω2

θ2

⎫⎪⎪⎬
⎪⎪⎭
eiωt = [D]

⎧⎪⎪⎨
⎪⎪⎩

A
B
C
D

⎫⎪⎪⎬
⎪⎪⎭
eiωt (8)

for the case of the Euler-Bernoulli beam elements, [D] is a 4 × 4 matrix and has the
form

[D] =

⎡
⎢⎢⎣

1 1 1 1
ik1 ik2 ik3 ik4
eik1L eik2L eik3L eik4L

ik1eik1L ik2eik2L ik3eik3L ik4eik4L

⎤
⎥⎥⎦ (9)

writing the shears and moments at the nodal locations in matrix form gives

⎧⎪⎪⎨
⎪⎪⎩

V (0, t)
−M(0, t)
−V (L , t)
M(L , t)

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

V1

M1

V2

M2

⎫⎪⎪⎬
⎪⎪⎭
eiωt = [F]

⎧⎪⎪⎨
⎪⎪⎩

A
B
C
D

⎫⎪⎪⎬
⎪⎪⎭
eiωt (10)

For the case of Euler-Bernoulli beam element, [F] has the following form

[F] =

⎡
⎢⎢⎣

−ik31 −ik32 −ik33 −ik34
k21 k22 k23 k24

ik31e
ik1L ik32e

ik2L ik33e
ik3L ik34e

ik4L

−ik21e
ik1L −ik22e

ik2L −ik23e
ik3L −ik24e

ik4L

⎤
⎥⎥⎦ (11)

The transverse displacement and rotation evaluated at the nodes in Eq. (11) form
the vector of nodal DOF {d} = {

ω1 θ1 ω2 θ2
}T

eiωt . The shear force and bending
moments are evaluated at the nodes in Eq. (10) from the vector of nodal forces
{ f } = {V1 M1 V2 M2}T eiωt . The dynamic stiffness matrix [Kdyn] relates the nodal
DOF {d} to the nodal loads { f } as { f } = [Kdyn]{d}. The dynamic stiffness matrix
can be solved from Eqs. (8) and (10) to be [Kdyn] = [F][D]−1.

The dynamic stiffnessmatrix is symmetric and includes transverse inertial effects.
The dynamic stiffness matrix was developed through a direct method using the nodal
displacements and forces. the displacement field that the nodal displacements and
forces were based on was the exact solution of governing PDE. Because the dynamic
stiffness is based on the exact solution to the governing PDE, the nodal displacements
and forces obtained through the use of the dynamic stiffness will be exact. The
dynamic stiffness elements variation with frequency is shown in Figs. 4 and 5. Due to
space limitation the dynamic stiffness for diagonal terms of K11, K44 and off-diagonal
terms of K13, K24 are shown in the results. The variation of the diagonal stiffness
elements with frequency are shown in Fig. 4 for classical and non-classical solutions.
A slight good match in the dynamic stiffness obtained for very low frequencies, i.e.,
<1 THz between classical and non-classical solutions. A tremendous variation in
the dynamic stiffness is seen in the non-classical solutions at higher frequencies.
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Fig. 4 Dynamic stiffness (K11, K44) behavior of non-classical Euler-Bernoulli beam at lower
frequencies

As the nonlocal scale coefficient increases the amplitude of the dynamic stiffness
response reduces and also this effect introduces extra number of peaks within the
given frequency range. This effect cannot be captured in classical solutions. Similar
variations are observed in the off-diagonal stiffness elements and are shown in Fig.
5. These variations in dynamic stiffness elements are directly related to the dynamic
response of the non-classical beams.

3.3 Non-classical Timoshenko Beam Model

The governing equation of the non-classical Timoshenko beam model is given as [6]

GAκ
(
ψ,x − ω,xx

) + ρA
(
ẅ − (e0a)2ω̈,xx

) = 0 (12)

E Iψ,xx + GAκ
(
ω,x − ψ

) − ρI
(
ψ̈ − (e0a)2ψ̈,xx

) = 0 (13)

where G = E
2(1+ν)

is shear modulus of the beam, ν is the Poisson’s ratio, κ is the
shear adjustment coefficient, vary with the cross section of the beam [5], I is the
moment of inertia of the cross section of the beam, A is the cross-sectional area, and
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Fig. 5 Dynamic stiffness (K13, K24) behavior of non-classical Euler-Bernoulli beam at lower
frequencies

ρ is the mass density of the beam. It is observed that if the internal length scale a is
identically zero, then the local Timoshenko beam model is recovered.

The time variable can be eliminated from the governing partial differential equa-
tion of the nonlocal beam Eqs. (12-13) by using the Fourier transformation,

w (x, t) =
N∑

n=1

Ŵ (x,ωn)e
iωn t , ψ (x, t) =

N∑
n=1

Ψ̂ (x,ωn)e
iωn t (14)

The wavenumbers and hence the group speeds are solved from resulted characteristic
equation by using Polynomial Eigenvalue Problem (PEP) [7].

Multiplying the temporal and spatial components and combining coefficients give
the complete solution to be

ω(x, t) = (AR1e
ik1x + BR2e

ik2x + CR3e
ik3x + DR4e

ik4x )eiωt

ψ(x, t) = (Aeik1x + Beik2x + Ceik3x + Deik4x )eiωt (15)

The solutions for the displacement fields can now be used to form the dynamic
stiffness matrix.

The spectrum and dispersion curves obtained from classical and non-classical
Timoshenko beam theories are shown in Figs. 6 and 7. Figure 6 shows the variation
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Fig. 6 Spectrum curves
(Wavenumber dispersion:
Real wavenumbers—thick
lines; Imaginary
wavenumbers—thin lines),
for nonlocal beam obtained
from both local and nonlocal
Timoshenko beam theories
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Fig. 7 Dispersion curves
(Group speed dispersion),
for nonlocal beam obtained
from both local and nonlocal
Timoshenko beam theories
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of the wavenumbers with the wave frequency for both classical and non-classical
elasticity. This figure shows only two modes, namely, flexural and shear. Flexural
wave mode starts from zero wave frequency and shear wave mode propagates only
after shear cut-off frequency, the frequency at which the imaginary part of wavenum-
ber becomes real. For e0a = 0, which is the case of local theory of elasticity solution,
wavenumbers increase monotonically with the increase in frequency, which is shown
in Fig. 6 and correspondingly, the group speeds, shown in Fig. 7) increases with
increase in wave frequency. However, at higher frequencies, they attain a constant
value, which is typical of Timoshenko beam solution. However, with the introduction
of nonlocal scale effects, the wave behavior is altered drastically. Both the flexural
and shear wave modes escapes to infinity at a particular frequency called the “escape
frequency”, beyond this frequency there is no wave propagation.
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3.4 Computation of Dynamic Stiffness Matrix
for Timoshenko Beam

The dynamic stiffness matrix for the spectral Timoshenko beam element is formu-
lated following the same direct method as the spectral Ruler-Bernoulli dynamic stiff-
ness. The displacements and forces at each node are written in terms of the unknown
coefficients A, B, C and D. These relations can then be used to form an expression
for the dynamic stiffness matrix, The spectral beam element developed will use two
nodes with two DOF, transverse displacement (ω1,ω2) and rotation (ψ1,ψ2) at each
node as shown in Fig. 8.

Evaluating the transverse displacement and rotation, in Eq. (15), at the nodes and
writing in matrix form gives

⎧⎪⎪⎨
⎪⎪⎩

ω(0, t)
ψ(0, t)
ω(L , t)
ψ(L , t)

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

ω1

ψ1

ω2

ψ2

⎫⎪⎪⎬
⎪⎪⎭
eiωt = [D]

⎧⎪⎪⎨
⎪⎪⎩

A
B
C
D

⎫⎪⎪⎬
⎪⎪⎭
eiωt (16)

for the case of the Timoshenko beam element, [D] is a 4 × 4 matrix and has the form

[D] =

⎡
⎢⎢⎣

R1 R2 R3 R4

1 1 1 1
R1eik1L R2eik2L R3eik3L R4eik4L

eik1L eik2L eik3L eik4L

⎤
⎥⎥⎦ (17)

writing the nodal shear and moment forces in matrix form gives

⎧⎪⎪⎨
⎪⎪⎩

V (0, t)
−M(0, t)
−V (L , t)
M(L , t)

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

V1

M1

V2

M2

⎫⎪⎪⎬
⎪⎪⎭
eiωt = [F]

⎧⎪⎪⎨
⎪⎪⎩

A
B
C
D

⎫⎪⎪⎬
⎪⎪⎭
eiωt (18)

For the case of Timoshenko beam element, [F] has the following form

Fig. 8 Schematic of
Timoshenko spectral beam
element
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[F] =

⎡
⎢⎢⎣

−Γ (ik1R1 − 1) −Γ (ik2R2 − 1) −Γ (ik3R3 − 1) −Γ (ik4R4 − 1)
−E I ik1 −E I ik2 −E I ik3 −E I ik4

Γ (ik1R1 − 1)eik1L Γ (ik2R2 − 1)eik2L Γ (ik3R3 − 1)eik3L Γ (ik4R4 − 1)eik4L

E I ik1eik1L E I ik2eik2L E I ik3eik3L E I ik4eik4L

⎤
⎥⎥⎦
(19)

where Γ = GAκ. The transverse displacement and rotation evaluated at the nodes in
Eq. (19) form the vector of nodal DOF {d} = {

ω1 ψ1 ω2 ψ2
}T

eiωt . The shear force
and bending moments are evaluated at the nodes in Eq. (18) from the vector of nodal
forces { f } = {V1 M1 V2 M2}T eiωt . The dynamic stiffness matrix [Kdyn] relates the
nodal DOF {d} to the nodal loads { f } as { f } = [Kdyn]{d}. The dynamic stiffness
matrix can be solved from Eqs. (16) and (18) to be [Kdyn] = [F][D]−1.

The dynamic stiffness matrix is symmetric dynamic stiffness matrix includes
the effects of transverse inertia, rotary inertia, shear deformation, and bending. The
dynamic stiffness elements variation with frequency is shown in Figs. 9 and 10. Due
to space limitation the dynamic stiffness for diagonal terms of K11, K44 and off-
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Fig. 9 Dynamic stiffness (K11, K44) behavior of non-classical Timoshenko beam at lower
frequencies
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Fig. 10 Dynamic stiffness (K12, K23) behavior of non-classical Timoshenko beam at lower
frequencies

diagonal terms of K12, K23 are shown in the results. The variation of the diagonal
stiffness elements with frequency are shown in Fig. 9 for classical and non-classical
solutions. A slight good match in the dynamic stiffness obtained for very low fre-
quencies, i.e., <1 THz between classical and non-classical solutions. A tremendous
variation in the dynamic stiffness is seen in the non-classical solutions at higher
frequencies. As the non-classical scale coefficient increases the amplitude of the
dynamic stiffness response reduces and also this effect introduces extra number of
peaks within the given frequency range. This effect cannot be captured in classical
solutions. Similar variations are observed in the off-diagonal stiffness elements and
are shown in Fig. 10. These variations in dynamic stiffness elements are directly
related to the dynamic response of the non-classical beams. It has been shown that
the non-classical Timoshenko beams will have maximum of 2 escape frequencies.
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4 Conclusion

In the present work, non-classical elasticity theory has been incorporated into clas-
sical Euler-Bernoulli and Timoshenko beam model to capture unique properties of
these beams under the continuummechanics theory. The spectral finite element (SFE)
formulation of both beams are performed. The dynamic stiffness matrix are obtained
as function of nonlocal scale parameter. It has been found that the small scale affects
the elements of the dynamic stiffness matrix. It has seen found that the relation
between dynamic stiffness and frequency can be seen upto certain frequencies only,
depending on the values of nonlocal small scale parameter. Such frequencies are
termed as escape frequencies.

References

1. Doyle, J.F.: Wave Propagation in Structures. Springer, NY (1997)
2. Eltaher, M.A., Khater, M.E., Emam, S.A.: Applied Mathematical Modelling (2016)
3. Eringen, A.C.: J. Appl. Phys. 54, 4703 (1983)
4. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, NY (2002)
5. Eringen, A.C., Edelen, D.G.B.: J. Eng. Sci. 10, 1 (1972)
6. Gopalakrishnan, S., Narendar, S.: Wave Propagation in Nanostrucutres. Springer (2013)
7. Gopalkrishnan, S., Roy Mahapatra, D., Chakraborty, A.: Spectral Finite Element Method.

Springer London Ltd. (2008)
8. Graff: Wave Motion in Elastic Solids. Dover Publications (1995)
9. Reddy, J.N., Panga, S.D.: J. Appl. Phys. 103, 023511 (2008)



Fem Simulations for Fatigue Life
Estimation of Big Turbo-generator Shaft
During Various Fault Disturbances
Under Active Control

Tarun Kumar , Rajeev Kumar, and S. C. Jain

1 Introduction

Turbo-generator coupled shaft subjected to torsional vibrations in power generation
system due to various short circuits in network, it may be 3-Phase, 2-Phase, 1-
Phase to line or mal-synchronization [1]. These faults are very sensitive to turbo
generator rotor system because of its bulky size and long length. Various types of
fault occurring due to grid interaction cause an impulsive electromagnetic torque on
the coupled shaft system which generates torsional vibrations in it with amplitude
2 to 6 times of the nominal torque [2]. Sometimes these vibrations lead to severe
damage to coupled shaft system or complete failure of it due to aggregation of stress.
Low cycle fatigue wears of 70% of life of rotor and creep accounts for remaining
30% [3, 4]. The synchronous generator draws power from a prime mover (turbine)
as shown in Fig. 1. The different researchers simulated generator vibrations during
various electrical faults under loaded and unloaded conditions using different models
[5–12]. Further, various researchers presented computational methods to measure
torsional vibration produced on coupled shaft due to electrical faults on generator
under unloaded condition and estimated the fatigue life of rotor under vibrations
[13–19]. Although no complete analysis is available in the literature in which turbo-
generator shaft life is numerically simulated under loaded conditions for various
electrical faults. Further no comprehensive literature is available inwhich such turbo-
generator rotor’s vibrations is semi-actively controlled using piezoelectric material
and vibrations produced are compared with the uncontrolled system. Therefore, in
this paper, a comparative result of vibrations under uncontrolled and controlled rotor
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Fig. 1 Schematic of power transmission system

conditions are numerically simulated and fatigue life is compared for different faults
using rain-flow counting algorithm.

2 Mathematical Formulation

2.1 Generator Modeling

The generalized dq0 model is used for modeling synchronous generator [9]. The
voltage equations of synchronous generator are given by set of differential Eqs.
(1–6) wherein u, i, ψ denote voltages, currents, and flux linkages, respectively. The
subscripts d , q, 0 are associated with the stator d , q axis components and the zero
sequence component of voltages, currents, and flux linkages as given in Eq. (7).

[u] = −[R][i] − d [ψ]

dt
+ ω[ψ] (1–6)

where

[x] = [
xd xq x0 xfd xD xQ

]′
, x → u, i, ψ

x0 = xA + xB + xC
3

,x → u, i, ψ (7)

The equation of mechanical motion is given as

Tdrive = Tem + J

p

dω

dt
(8)

where

Tem = 3

2
p
(−ψd iq + ψqid

)
(9)
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dγ

dt
= −ω (10)

Equations (1–10) are used to drive final dynamical model to find various generator
parameters during sudden fault conditions. The same approach as used by [9] is
adopted to drive final dynamical model equations for loaded generator. Park-Gorev
transformation as given in (11) is used to express d , q, 0 parameters (u, i, ψ) in term
of a, b, c phase parameters.

Tdrive = driving turbine torque
J = moment of inertia
p = no of generator pole pairs

⎡

⎣
xd
xq
x0

⎤

⎦ = 2

3

⎡

⎣
cos γ cos

(
γ + 2π

3

)
cos

(
γ + 4π

3

)

sin γ sin
(
γ + 2π

3

)
sin

(
γ + 4π

3

)

1
2

1
2

1
2

⎤

⎦

⎡

⎣
xA
xB
xC

⎤

⎦=[T ]
⎡

⎣
xA
xB
xC

⎤

⎦ (11)

where, x → u, i, ψ .

2.2 Fault Modeling of Loaded Generator

As shown in Fig. 2 generator is in loaded condition, i.e., it is delivering power to the
grid system. Terminal voltage at three phases of generator has value ua, ub, and uc.
Generator is transferring power through line with inductance Le and resistance Re.
Line voltage at the point of fault is u∞a, u∞b, u∞c. During occurrence of fault the
phase voltages at generator terminals are different in loaded condition in contrary to
unloaded case [9] as given by Eqs. (12–13).

[uabc] = [u∞abc] + Re[I ][iabc] + Le[I ]

[
d

dt
[iabc]

]
(12)

From (11) and (12), we get

[
udq0

] = [T ][u∞abc] + Re[I ][T ][iabc] + Le[I ]

[
d

dt
[T ][iabc]

]
(13)

Fig. 2 Loaded generator connected to infinite bus bar
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Above equations are furthermodified based on faultmodeling for loaded generator
for four different cases of electric faults as below.

Line to ground short circuit. Line to ground short circuit occurred when a phase
line come in contact with ground. The mathematical model in case of line to ground
short circuit consists of four numbers of differential equations given by Eqs. (14–17).
Let us assume that phase A is grounded then boundary conditions will be as

u∞A = 0, iB = iC = 0

Equations (14–16) are directly obtained from [9].

Lfdσ

difd
dt

− LDσ

diD
dt

= −Rfd ifd + RDiD + ufd (14)

Lmd
did
dt

+ Lmd
difd
dt

+ LD
diD
dt

= −RDiD (15)

Lmq
diq
dt

+ LQ
diQ
dt

= −RQiQ (16)

For the loaded generator Eq. (17) is derived using boundary conditions for the
specific fault as.

At generator’s terminal

−uA = R iA + dψA

dt

Also from converse Park-Gorev transformation, we get

ψA = ψd cos γ + ψq sin γ + ψ0

Differentiating the above equation w.r.t time and using same terminology as in
[9], finally get

dψd

dt
cos γ + dψq

dt
sin γ + dψ0

dt
= −RiA − ωψd sin γ + ωψq cos γ − uA

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

1
3L0
Ld1
Lq2
Lmd1
Lmd1
Lmq2

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

d

dt

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

iA
id
iq
ifd
iD
iQ

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

−R
−ωLd2
ωLq1

−ωLmd2
−ωL
ωLmq1

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

iA
id
iq
ifd
iD
iQ

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

− uA (17)

uA can be evaluated using (12) by applying boundary conditions.
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The electromagnetic torque of synchronous generator is given by Eq. (18) (Ref.
[9].)

Tem = −P

⎡

⎢⎢
⎣

2
3 (Ld1 − Lq1) sin γ

Lmd2
Lmd2

−Lmq1

⎤

⎥⎥
⎦

T ⎡

⎢⎢
⎣

iA
ifd
iD
iQ

⎤

⎥⎥
⎦iA (18)

Line to line short circuit Line to line short circuit occurred when two phases
come in contact with each other. The mathematical model in case of line to line
short circuit consists of four numbers of differential equations given by Eqs. (14–16)
and Eq. (19). Let us assume that phase B and phase C are shorted then boundary
conditions will be as

u∞B = u∞C, iA = 0, iB = −iC

For the loaded generator Eq. (19) is derived using boundary conditions for the
line to line short circuit fault as.

At generator’s terminal

−uB = R iB + dψB

dt
, −uC = R iC + dψC

dt

d

dt
(ψB − ψC) + R (iB − iC) = −uB + uC

d

dt
(ψB − ψC) + 2R iB = −uB + uC

Also from converse Park-Gorev transformation, we get

ψB − ψC = √
3
(−ψd sin γ + ψq cos γ

)

Differentiating the above equation w.r.t time and using the same terminology as
in [9], finally get

⎡

⎢⎢⎢⎢⎢
⎣

Ld2
−Lq1
Lmd2
Lmd2

−Lmq1

⎤

⎥⎥⎥⎥⎥
⎦

T

.
d

dt

⎡

⎢⎢⎢⎢⎢
⎣

id
iq
ifd
iD
iQ

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

2√
3
R

ωLd1
ωLq2
ωLmd1
ωLmd1
ωLmq2

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

T⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

iB
id
iq
ifd
iD
iQ

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

− uB + uC (19)

uC and uB can be evaluated using (12) by applying boundary conditions.
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The electromagnetic torque of synchronous generator is given by Eq. (20) (Ref.
[9].)

Tem = −p

⎡

⎢⎢
⎣

2(Ld1 − Lq1)sin γ

−√
3Lmd1

−√
3Lmd1

−√
3Lmq2

⎤

⎥⎥
⎦

T ⎡

⎢⎢
⎣

iB
ifd
iD
iQ

⎤

⎥⎥
⎦iB (20)

Three-phase short circuit Three-phase short circuit occurred when all three
phases come in contact with each other. The mathematical model in case of three-
phase short circuit consists of five numbers of differential equations given by (1),
(2), (4), (5). and (6) modified as in [9]. The boundary conditions in this fault will be
as

u∞A = u∞B = u∞C = 0

The electromagnetic torque of synchronous generator is given by Eq. (21) (Ref.
[9].)

Tem = 3

2
p ( − Lmd imd iq + Lmq id imq) (21)

Phase synchronization fault In phase synchronization fault the frequency of the
generator goes out of phase with frequency of the network. The mathematical model
for phase synchronization fault consists of five numbers of differential equations
given by (1), (2), (4), (5), and (6). The phase difference over transmission line at the
time of fault is defined as δ. The torque equation for this type of fault is same as
Eq. (21).

2.3 Dynamic Modeling

The complete dynamic model for line to ground and line to line faults are represented
by set of coupled Eqs. (22), (24), (25) and for three-phase and mal-synchronization
faults are represented by set of coupledEqs. (23)–(25). The coupled turbine-generator
equations are solved numerically using fourth-order Adams predictor–corrector
scheme with startup by fourth-order Runge–Kutta method in MATLAB.

L · d

dt

⎡

⎢
⎢
⎣

iphase
ifd
iD
iQ

⎤

⎥
⎥
⎦ + X

⎡

⎢
⎢
⎣

iphase
ifd
iD
iQ

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

ufd
0
0
0

⎤

⎥
⎥
⎦ (22)
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L · d

dt

⎡

⎢⎢⎢⎢⎢
⎣

id
iq
ifd
iD
iQ

⎤

⎥⎥⎥⎥⎥
⎦

+ X

⎡

⎢⎢⎢⎢⎢
⎣

id
iq
ifd
iD
iQ

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎣

ud
uq
ufd
0
0

⎤

⎥⎥⎥⎥⎥
⎦

(23)

dω

dt
= −P

J
Tem + Tdrive (24)

dγ

dt
= −ω (25)

2.4 Active Control of Turbo-generator Shaft

The turbo-generator shaft is modeled using finite element method. The rotor is
divided into number of elements with 2 rotational dofs (single dof at each node). The
Hamilton’s principle is used to drive elemental stiffness and mass matrices. Three
types of sections, solid circular, hollow circular, and tapered, are used to model the
rotor elements. The elemental matrices are combined to form the global matrices
and complete FEM equation is represented by Eq. (26).

[I ]g
{
θ̈
}
g + [C]g

[
θ̇
]
g + [K]g{θ}g = [

Tp
]
g + [Tuniform]g (26)

where

[I ] = Global moment of inertia matrix
[C] = Global damping matrix
[K] = Global stiffness matrix
[Tp] = Global point torque matrix
[Tuniform] = Global distributed torque matrix.

The piezoelectric material is used as sensor as well as actuator to actively control
the rotor vibration. The sensor material is placed at specific elements of rotor and
feedback is generated using PD control as shown in Fig. 3. The torque generated
by the actuator in closed-loop plant is given by Eq. (27). The specific meaning of
various parameters for sensor and actuators are given in Table 3.

Tact = 4d15
3he

UA

[(
R + ts + hpe

)3 − (R + ts)
3
]
Gpe (27)

where
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Fig. 3 Piezoelectric sensor and actuator fixed on the rotor system

UA = kpUs + kd
dUs

dt
(28)

Us = Gped15R

ε0εpe

[
φpe

(
xs2 , t

) − φpe
(
xs1 , t

)]
(29)

Fatigue life calculation begins with determining number of cycles (life L) of
component at particular stress amplitude by using Basquin’s equation given as

A = Sf L
B (30)

where, Sf shear is stress level at which component is undergoing L number of cycles,
A and B are constants which are determined by using two boundary conditions, at Sf
= Se(endurance stress), L = 106, and Sf = 0.9Sut (Sut = ultimate tensile strength),
L = 103. From A and B life of component at any stress level can be calculated by
using Eq. (30). Linear damage accumulation rule or Palmgren–Miner’s is given as

N1

L1
+ N2

L2
+ · · · + Nn

Ln
= 1 (31)

At shear stress level Sf 1 component is subjected to N1 number of cycles is known.
By using Eq. (30) at stress level Sf 1 life of component is calculated as L1. There-
fore, life completed in N1 cycles is

N1
L1

and if there are Sf 2, Sf 3, . . . , Sfn stress levels
completingN2, N3, . . . , Nn cycles then the total life/amount of damage is calculated
by using Eq. (31).
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3 Validation

The dynamic model described in Sect. 2.3 is validated by the results from [9]. The
values of inductance Le and resistance Re are assumed to be zero for validation
purpose only. Since dynamic model is same for line to ground and line to line short
circuit fault (six coupled equations), the results are validated with generator torque
in line to ground short circuit for the most unfavorable conditions given in [9] as
shown in Fig. 4.

Similarly dynamic model is same for three-phase short circuit and phase synchro-
nization fault. So results are validated with generator torque in three-phase short
circuit for most unfavorable condition as given in [9] and shown in Fig. 5.

To validate the code in all circumstances the numerical results obtained from
MATLAB are validated with peak value of generator torque for line to ground short

Fig. 4 Comparison of calculated electromagnetic torque during line to ground short circuit with
[9] results

Fig. 5 Comparison of calculated electromagnetic torque during three-phase short circuit with [9]
results
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Fig. 6 Comparison of peak value stator current, field current, and electromagnetic torque during
line to ground short circuit with [9] results

circuit over a range of rotor lag angle given by [9] as shown in Fig. 6. From Figs. 4,
5 and 6 it is clear that numerical results are matching well with the Ref. [9] results.

Further the finite element model for the rotor is validated using Ref. [19]. The
first three natural frequencies are calculated to validate the global mass and stiffness
matrices. The first three natural frequencies are compared with the Ref. [19] and
convergence of the code is established in Table 1. The first three natural frequencies
of the tube as given in Ref. [19] show close resemblance to the simulated results.

4 Results and Discussion

The generator is modeled using dq0 formulation. The complete system is connected
with the infinite load through grid with resistance Re and inductance, Le. The gener-
ator torque vibrations are plotted in Fig. 7 for 1 phase to ground, 2 phase to ground,
Three Phase and mal-synchronization faults. Per unit system is used to calculate the
peak values of torque. The coupled turbine-generator equations are solved numeri-
cally using fourth-order Adams predictor-corrector scheme with startup by fourth-
order Runge–Kutta method in MATLAB. The peak values of pu torque for line to
ground, line to line, three-phase andmal-synchronization faults are 12 pu, 7.9 pu, 17.1
pu, and 8.1 pu, respectively. The actual value of electromagnetic torque is calculated
by multiplying per unit value by torque base 3pUnInω−1

n . The various parameters of
generator are given in Table 2.

The rotor is modeled using finite element method. Complete rotor is divided into
187 numbers of elements and 188 numbers of nodes. Each element have two degrees
of freedom, i.e., one rotational degree of freedom at each node. Since torsional
vibrations are independent from translational and axial vibrations so other DOFs
are neglected to keep the formulation simple. The whole rotor is modeled using
three types of elements (Solid cylinder, hollow cylinder and tapered) and stiffness
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Table 1 Comparison of first three natural frequencies from MATLAB and Ref. [19]

S. No No of elements
considered in
MATLAB

First 3 natural
freqs. from
MATLAB
(x103Hz)

First 3 natural freqs.
of Ref. [19].
(x103Hz)

% error Avg. % error

1 5 1.682 1.534 9.647 174.46

7.737 4.911 57.544

46.247 8.315 456.187

2 6 1.576 1.534 2.737 14.294

5.553 4.911 13.072

10.566 8.315 27.071

3 7 1.557 1.534 1.499 6.047

5.045 4.911 2.728

9.472 8.315 13.91

4 8 1.551 1.534 1.108 1.904

4.859 4.911 −1.058

8.786 8.315 5.664

5 9 1.547 1.534 0.847 −0.302

4.774 4.911 −2.789

8.401 8.315 1.034

6 10 1.547 1.534 0.847 0.0353

4.773 4.911 −2.810

8.487 8.315 2.068

is calculated accordingly. The generator torque is applied on nodes associated with
the generator position on rotor length. The complete dynamic system is solved using
ODE15s in MATLAB. The diameter of various sections of coupled rotor along the
length is shown in Fig. 8.

Further the piezoelectric material is used as sensor and actuator to control the
rotor vibrations. PVDF polymer layer is used due to its low brittleness and high
shear constant. The sensor layer is glued on the element just near the generator and
actuator is glued near high-pressure turbine. The PD feedback control law is used
to give appropriate torque to actuator layer. The various parameters for controlled
system are given in Table 3.

The element 39 is selected for the analysis of uncontrolled and controlled torque
comparisons. The comparative results for uncontrolled and actively controlled system
are plotted in Fig. 9a–c for line to ground, three-phase and mal-synchronization
fault. The peak torque in uncontrolled system are 0.34 MNm, 0.48 MNm, and 0.23
MNm and in actively controlled system peak torque is 0.23 MNm, 0.33 MNm, and
0.16 MNm for the mentioned faults, respectively. From Fig. 9 it is clear that there
is significant reduction in the peak torque. Further to calculate the fatigue life at
element 39, the shear stress is calculated using torsion equation. The numbers of
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Fig. 7 a Per unit generator torque during line to ground fault. b Per unit generator torque during
line to line fault. c Per unit generator torque during three phase fault. d Per unit generator torque
during mal-synchronization fault

Table 2 Various parameters
used in generator modeling

Parameter Symbola Value

Parameters related to generator Sn 588 MVA

Uline,n 11,000 V

Cosϕn 0.85

nn 3000 rpm

f 50 Hz

Stator winding parameters R 0.00193 p.u

Lσ 0.1256 p.u

Rotor windings parameters Rfd 0.0009 p.u

RD 0.0093 p.u

RQ 0.008 p.u

Lfdσ 0.02721p.u

LDσ 0.33 p.u

LQσ 0.08 p.u

d-q axis magnetizing inductances Lmd 1.9539 p.u

Lmq 1.8504 p.u

Line resistance Re 0.1235 p.u

Line inductance Le 6.773 p.u

Infinite Voltage U∞ 8.7639 p.u

aVarious symbols and related subscripts are given in [9]
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Fig. 8 Diameter of various sections of rotor along the length

Table 3 Various parameters
for active vibration control of
rotor

Parameter Symbol Value

Piezoelectric coefficient d15 −27 pCN−1

Shear modulus of PVDF Gpe 3.5 Gpa

Relative dielectric permittivity of
PVDF

ε 12

Glue layer thickness ts 1 × 10−6 m

Piezoelectric layer thickness hpe 1 × 10−3 m

Amplification coefficients kp

kd

10−9

10−8

different amplitude stress cycles are calculated using rain-flow counting algorithm.
Relative damage index (D) in uncontrolled system is found to be 0.005011, 0.002209,
0.3991 and for controlled system is 0.004124, 0.002106, 0.005868 for line to ground,
three-phase and mal-synchronization faults, respectively. From above results, it is
clear that there is increase in fatigue life of a particular section in actively controlled
system as compared to the uncontrolled system.

5 Conclusions

The dynamic models of loaded synchronous generator under four types of electric
are analyzed in MATLAB. The evolution of electromagnetic torque with time is
plotted and compared under the most unfavorable conditions. The rotor is modeled
using FEM and complete dynamic system is numerically simulated using ode15s in
MATLAB. Further the coupled turbo-generator shaft is controlled using piezoelectric
PVDF sensor and actuator and PD feedback control law is used for closed-loop
system. The controlled system shows significant decrease in the peak torque which
further enhance the fatigue life of rotor under vibrations during electrical faults.
Further study can be performed to control the turbo-generator shaft vibrations using
intelligent control like neural network.



166 T. Kumar et al.

Fig. 9 a Torque on element
39 for uncontrolled and
actively controlled system in
line to ground fault. b Torque
on element 39 for
uncontrolled and actively
controlled system in
three-phase fault. c Torque
on element 39 for
uncontrolled and actively
controlled system in
mal-synchronization fault
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Complete Creep Life Prediction Using
Continuum Damage Mechanics
and XFEM

V. B. Pandey, I. V. Singh, and B. K. Mishra

1 Introduction

Several components of nuclear power plants are usually subjected to high temperature
applied at several hours leading to creep phenomenon. It is noticed that creep plays
an important role in the failure of these components. Therefore, the life estimation of
such parts under creep loading is quite essential. The creep life of a component can be
divided into two parts: the life under crack nucleation (i.e., microvoids and microc-
rack growth period) and the life during crack growth. In literature, several approaches
have been developed to analyze the creep failure. In these approaches, continuum
damage mechanics (CDM) is considered most suitable for the estimation of the life
during crack nucleation. In fact, CDM was developed for creep analysis. Gener-
ally, finite element method (FEM) is used along with CDM to estimate the life.
Although, CDM well predicts the crack initiation life. However, the pathological
mesh dependency limits the use of CDM for life prediction during crack propaga-
tion. Although, several attempts have been suggested in literature to resolve this
issue [1]. However, the use of CDM was limited to crack initiation only. Recently,
CDM and extended finite element method (XFEM) are combined to compute the
life during crack propagation. The application of this combination has been used to
replicate the crack growth in different types of problems such as elastic crack growth
[2], plastic crack growth [3], fatigue crack growth [4], and creep crack growth [5].
All the aforementioned studies suggest that the crack propagation can be simulated
successfully through this combination. Sebra et al. [3] proposed a framework inwhich
crack nucleation and propagation can be done through CDM-XFEM combination.
They developed this framework to compute the crack growth for plasticity problems.
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Similar to [3], we are proposing a framework to determine the complete creep life
through CDM and XFEM. In this approach, a non-discontinuous domain is consid-
ered in the beginning. In the absence of discontinuity, the XFEM is replaced by the
FEM. The life of this non-discontinuous domain is evaluated through CDM. Once
the damage reaches its critical value, a developed macrocrack is modeled through
the XFEM. In short, CDM estimates the life and XFEM demonstrates crack as well
as its growth.

2 Theoretical Formulation

The analytical formulation and essential mathematical equations are detailed in this
section for performing creep simulations.

2.1 Elastic–Plastic Creep Analysis

Similar to [5], elasto-plastic creep analysis is performed in this work. Elasto-
plastic analysis involves time-independent plasticity whereas creep analysis is time-
dependent phenomenon, therefore, both can be solved separately to simplify the life
estimation. Hence, the creep simulations would be accomplished after the comple-
tion of elasto-plastic analysis. Moreover, the damage will be computed during creep
only. Based on these assumptions, the requiredmathematical equations are presented
in the following section.

In the framework of small strain, the total strain εtotal can be written as elastic εe,
plastic εp and creep strain εc,

εtotal = εe + εp + εc (1)

To perform the elasto-plastic analysis, isotropic hardening with J2 plasticity is
considered. For small deformation, the total incremental elasto-plastic strain is

dε = dεe + dεp (2)

The elastic strain increment is calculated through the Hooke’s law,

dεe = C dσ (3)

where C is the compliance constitutive matrix.
To compute the plastic strain increment, the associated flow rule of plasticity is

dεpi j = �λ
∂F

∂σi j
(4)

where �λ is a scalar multiplier and F is von-Mises yield function.
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2.2 Creep Strain Relations

Liu–Murakami established a creep constitutive model to calculate the creep strain
rate in an isotropic homogeneous material. The multiaxial form of Liu–Murakami
creep constitutive model is [6]

ε̇ci j = 3

2
Aσ n

eq

Si j
σeq

exp

(
2(n + 1)

π
√
1 + 3/n

(
σ1

σeq

)2

ω3/2

)
(5)

where A and n are material constants. ε̇ci j ,Si j , σ1, σeq is creep strain rate, devia-
toric stress, maximum principle stress and von-Mises stress, respectively. A damage
variable (ω) is also incorporated in the above equation to demonstrate the deteriora-
tion of material. To evaluate the value of ω, a damage evaluation equation is given
as

ω̇ = D

(
1 − e−q

)
q

σ p
r e

qω (6)

whereD, q, and p arematerial constants. The constants are acquired from the uniaxial
creep experiments. σr is the rupture stress which is given as

σr = ασ1 + (1 − α)σeq (7)

where α is the multi-axiality parameter which determines the effective stress
condition in the component.

2.3 Extended Finite Element Method

Extended finite element method (XFEM) is used to model the crack growth without
disturbing the original mesh. In XFEM, the crack is represented through the enrich-
ment functions. The enrichment functions are special functions which introduce the
local behavior of the discontinuity in the standard finite element (FE) approxima-
tion. In the presence of the enrichment functions, the displacement approximation
becomes

u(x) =
ne∑
i=1

Ni (x)ui +
np∑
j=1

N j (x)
[
H(x) − H(x j )

]
a j

+
nq∑
k=1

Nk(x)

{
4∑

α=1

[
γα(x) − γα(xk)

]
bα
k

}
(8)
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where ne, ui, andN(x) are the number of nodes, nodal displacement vector, and shape
function of the standard FE mesh, respectively. np and aj are the nodes and nodal
displacement vector, respectively, corresponding to split elements.H(x) is the Heav-
iside jump function. nq and bk are the nodes and nodal displacement vector, respec-
tively, corresponding to tip elements. The branch function is designated through
γα(x) in the above equation.

The stress–strain values near the crack tip region are limited due to plasticity.
Therefore, HRR (Hutchinson, Rice, and Rosengren) singularity is employed as
branch functions [5] to capture this phenomenon.

γα(x) = r1/1+m

[
cos

θ

2
, sin

θ

2
, cos

θ

2
sin θ, sin

θ

2
sin θ

]
(9)

where (r, θ) are the cylindrical coordinates at crack tip andm is theRamberg–Osgood
hardening exponent which is evaluated from tensile data.

3 Crack Initiation and Growth Approach

CDM represents the nucleation of microcracks and voids through a damage variable
in the continuum domain. As the damage variable reaches its critical value, it is
assumed that the damaged portion is not capable enough to resist the external loading.
Therefore, this damage region can completely describe the failure ofmaterial through
the nucleation and propagation of a macrocrack.

To model the nucleation and propagation of crack, the crack characteristics such
as initiation point, direction, and length of the crack must be determined. The crack
initiation point lies in an element inwhichdamage reaches initially to its critical value.
In this work, a notched single-edge notched tensile (SENT) specimen is selected to
study the complete creep life of a component. The notched specimen is subjected to
mode I loading. Since, the notch works as a stress riser in this problem. Hence, the
maximum value of equivalent stress will be at the tip of the notch. The evolution of
damage depends directly on the equivalent stress (as presented in Eq. 6). Hence, the
damage will reach its critical value in an element which is at the tip of the notch.
Therefore, the tip of the notch is considered as crack initiation point in this problem.

After the identification of crack initiation point, the initial crack length and its
direction needs to be determined. To find the crack direction, a semi-circle is drawn
taken initiation point as the center. On this semi-circle, a set of equidistance points
are created. Then, stress triaxiality is calculated on these points. The point with the
maximum value of triaxiality determines the direction. The study is conducted on
316 stainless steel. In metals, the size of the representative volume element (RVE) is
given as 0.1 mm [7]. Therefore, initial crack length is considered as 0.1 mm in this
work.
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The growth of crack is the simpler case of crack initiation. The previous tip of
the crack becomes the starting point of the new crack segment. The direction of
crack and incremental crack length are two unknowns. The direction of new crack
segment is determined similarly through a semi-circle whose center is at the crack
tip. Similar to crack initiation study, a set of equidistance points are created on this
semi-circle and stress triaxiality is calculated on these points. The point with the
maximum triaxiality, determines the crack direction. Similar to [5], the crack growth
increment is considered as �a = 0.2 mm.

There is no crack at the beginning. Therefore, in the absence of any discontinuity,
the XFEM works as standard FEM. Once the crack is initiated in the domain, the
tip enrichment is required to capture the crack features and hence, XFEM is used to
represent the crack and its propagation.

4 Numerical Results and Discussion

In this section, the complete creep life estimation is illustrated by solving a numerical
example. Two studies are performed in this section. First, a crack growth simulation
is validated on a pre-cracked single edge notched tensile (SENT) specimen. Further,
a notched SENT specimen without pre-crack is simulated to predict the complete
life. The results of both studies are also compared.

Kim et al. [8] experimentally studied the creep crack growth on a pre-cracked
SENT specimen. The specimen is made of 316 stainless steel and subjected to 35
kN load at 550 °C. The schematic figure with dimensions of pre-cracked SENT is
shown in Fig. 1a. The tensile and creep properties of 316 SS at 550 °C is provided
in Table 1. The thickness of specimen is taken as 10 mm.

The local approachof fracture is used in thiswork. In the local approachof fracture,
mesh works as a numerical parameter. Therefore, Q4 element mesh with 1.6 mm ×
1.54 mm is considered. The value of critical damage parameter is considered as 0.44
for this material. The simulation is performed assuming plane strain condition. The
simulated creep crack growth life is compared with the experiment. The crack length
versus time graph is reported in Fig. 2, which shows that the crack growth life can
be estimated efficiently through the CDM-XFEM coupling.

After the validation, a notched SENT specimen is considered for crack initiation
and propagation. To compare the results with pre-cracked SENT specimen, the radius
of notched SENT specimen and applied load are taken as 7.75 mm and 35 kN,
respectively. The other dimensions of notched specimen are given in Fig. 1b itself.
All the other required parameters including mesh size are considered same as the
validation study. The simulated creep life is demonstrated in the crack length versus
time curve in Fig. 2. As expected, the notched specimen takes more time to start
the crack growth as compared to pre-cracked specimen. Moreover, this numerical
example proves that the complete creep life can be predicted easily through the
proposed methodology.
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Fig. 1 Schematic figures of a pre-cracked and b notched SENT specimens

Table 1 Tensile properties and creep constants for 316H steel at 550 °C [5, 9]

E
(GPa)

v σy (MPa) σu (MPa) m D p q A n

140 0.3 170 588 2.3 1.28 × 10–30 10.594 9.2 2.41 × 10–33 11.131

5 Conclusion

A methodology is proposed in this paper to simulate the crack initiation and propa-
gation under creep conditions. The complete life is estimated through the coupling of
CDMandXFEM. In this approach, CDMdetermines the creep and damage evolution
in the component whereas XFEMmodels the crack and its propagation. The damage
variable and creep strains are estimated through the Liu–Murakami creep damage
model. The developed methodology is applied to study the notched SENT specimen
subjected to 550 °C. This article concludes that the proposed methodology is capable
enough to determine the complete life of the specimen under creep conditions.
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Fig. 2 A comparison of experimental and predicted creep life of pre-cracked and notched SENT
specimen
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Numerical Study of Coupled
Elasto-Plastic Hydrogen Diffusion
at Crack Tip Using XFEM

Anjali Jha , I. V. Singh, B. K. Mishra, Ritu Singh, and R. N. Singh

1 Introduction

The mechanical properties and fracture behavior of material are highly influenced
by the hydrogen. Hydrogen diffusion in material can cause reduction in tensile
strength, failure time, and fracture toughness of the material. The simultaneous
process of hydrogen diffusion with hydride precipitation and mechanical deforma-
tion is termed as hydrogen embrittlement. Hydrogen embrittlement can reduce the
ductility of the material and change the fracture mode from ductile to brittle. The
two main mechanisms widely used for the hydrogen embrittlement are hydrogen-
induced cohesion and hydrogen-enhanced local plasticity. The later one is used by
Sofronis and Mcmeeking [1] where the flow stress of the material is modeled as a
function of total hydrogen concentration. Kim et al. [2] used the hydrogen-enhanced
plasticity mechanism to analyze the hydrogen transport phenomenon coupled with
elasto-plasticity.

The hydrogen present in the environment diffuses inside the material and then
follows by precipitation of hydride when the concentration of hydrogen exceeds the
terminal solid solubility limit. These hydrides usually precipitate at the high tensile
stress regions such as discontinuities and cracks. Hydrides present at the crack tip
will grow up to a critical size followed by hydride fracture and then the process
repeats. A numerical model is developed which takes into account the processes of
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hydrogen embrittlement to analyze the process of hydrogen diffusion coupled with
the material deformation ahead of the crack tip using XFEM [3, 4].

Many researchers have used various methods such as finite element method and
cohesive zone modeling to model the hydride-induced cracking. Very few studies are
present in which extended finite element is used for this purpose. Shanati et al. [5]
used finite element method (FEM) to model the stress-assisted diffusion process and
used a staggered approach to solve the coupled problem. Barrera et al. [6] also used
FEM to couple the hydrogen diffusion and mechanical behavior of material using
coupled temperature displacement process. Kotake et al. [7] studied the fatigue life
of a component for transient hydrogen diffusion near the crack tip by coupling the
diffusion and plasticity under cyclic loading. The effect of hydrogen diffusion on the
yield stress of thematerial is also considered. Varias and Feng [8] studied the hydride-
induced cracking in metals using the finite element method. Martínez-Pañeda et al.
[9] used the phase field method to model the hydrogen-assisted cracking in a cracked
square plate and notched cylindrical bars.

In the present work, the effects of stress-assisted diffusion on the hydride precip-
itation and stress triaxiality are studied in the hydrogen environment. The effective
plastic strain in the material depends on the stress triaxiality which directly affects
the plastic deformation of the material. The stress triaxiality (λ) is defined as the
ratio of the hydrostatic stress and the effective von Mises stress. The higher value
of stress triaxiality represents the ductile fracture process [10]. The effect of stress
triaxiality on edge crack specimen in the presence or absence of hydrogen ahead of
the crack tip should be considered. The variation of stress triaxiality with the change
in distance from the crack tip is studied.

2 Governing Equations

2.1 Hydrogen Diffusion

The equation of hydrogen diffusion gives the balance of hydrogen in the material
at a certain point under steady-state crack growth conditions. It is assumed that no
hydrogen is produced within the material. The equation is given as

∂CHT

∂x1
= ∂QH

k

∂xk
(1)

where CHT is the total concentration of hydrogen and QH
k is the hydrogen flux. Some

of the hydrogen present gets diffused and precipitates in the form of hydrides while
the remaining free hydrogen is present in the solid solution. Therefore, the total
hydrogen concentration can be written as

CHT = f CH,hr + (1 − f )CH (2)
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whereCH,hr is the concentration of hydrogen in the hydride,CH is the concentration
of hydrogen in the solid solution, and f is the volume fraction of hydrides. The
following relation is used to evaluate the hydrogen flux which gives the diffusion of
hydrogen in hydrides,

QH
k = −(1 − f )

DHCH

RT

∂uH

∂xk
(3)

where DH is the diffusivity coefficient and uH is the chemical potential of hydrogen.
The chemical potential of hydrogen depends on the hydrostatic stress in the material,

uH = −σkk

3
V H (4)

where V H is the molar volume of hydrogen and σkk represents the hydrostatic stress.
The evaluated hydrostatic stress is used to solve the diffusion Eq. (1) which requires
the gradient of chemical potential of hydrogen and hence the gradient of hydrostatic
stress is evaluated as

σkk, j = ∂σkk

∂ap
∗ J−1

i j (5)

where J is the jacobian, which maps the natural coordinates with actual coordinates
and ap are interpolation function.

2.2 Hydride Precipitation

The hydrides precipitate in the material when the value of hydrogen concentration
in the material exceeds the value of terminal solid solubility CT S ,

CT S = CT S
e exp

(
w̄int

mRT

)
exp

(
σkk V̄ H

3RT

)
(6)

where CT S
e is the terminal solid solubility under no applied stress, m is the hydrogen

mole fraction in hydride, and w̄int is the interaction energy of precipitating hydride
per mol.

2.3 Material Deformation

Stress field is required to evaluate the hydrostatic stress used in the hydrogen diffusion
equation. Therefore, the extended finite element analysis is done to deal with the
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hydrogen diffusion crack problem. Elastoplastic analysis is performed to consider
the plastic strain around the crack tip. The plastic strain obtained affects the hydrogen
diffusion near the crack tip. The constitutive relations used are given as

dσi j = Dep
i jkldεkl − E

3(1 − 2ν)
δi j dεH

mm (7)

Dep
i jkl =

(
E

1 + ν

)[
δikδ jl + ν

1 − 2ν
δi jδkl − 3

2σ̄ 2
×

(
1

1 + 2
3
dH
d ε̄ p

(1+ν)

E

)
σ

′
i jσ

′
kl

]
(8)

where E is the elastic modulus, ν is Poisson’s ratio, δi j is Kronecker delta, σ̄ is effec-
tive stress, and ε̄p is the effective plastic strain. Isotropic hardening of the material
is assumed according to the following relations:

σ̄ = H(ε̄ p) (9)

(
σ̄

σ0

)1/n

− σ̄

σ0
= 3E

2(1 + ν)

ε̄ p

σ0
,

σ̄ ≥ σ0 (10)

where n is the hardening exponent and σ0 is the yield strength of the material. Stress
trace in the solid solution of the hydride precipitation zone is determined using the
following relation [8]:

σ hz
kk =

(
3x

θhr V hr

)[
σkkV H

3
+ RT ln

(
CT S
e

CH
b

)]
(11)

whereCH
b andσ hz

kk are the concentration of hydrogen and the stress trace of a reference
particle, respectively.

3 Methodology

Extended finite element method (XFEM) is used to perform the structural anal-
ysis of the model. The XFEM helps in eliminating the issue of re-meshing during
crack growth. It is more accurate and requires less computational time as compared
to FEM. It uses appropriate enrichment functions in the domain of interest using
partition of unity. Heaviside and near tip enrichment functions are used for the
elements containing the crackdiscontinuity as shown inFig. 1. InXFEM, the enriched
displacement approximation can be written as [3]
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Fig. 1 Elements intersected
by crack with enriched nodes

Crack 

Split nodes 

Tip nodes 

Heaviside enriched node 

Tip enriched node 

uh(x) =
n∑

i=1

Ni (x)ūi+
nA∑
i=1

Ni [H(x) − H(xi )] ai +
nB∑
i=1

Ni

4∑
α=1

[Fα(x) − Fα(xi )]bα
i

(12)

where Ni are finite element shape functions,H(x) is aHeaviside enrichment function,
and Fα(x) is crack tip enrichment. n is the set of all nodes in the mesh; nA is the
set of nodes associated with those elements which are completely cut by the crack;
nB is the set of nodes associated with those elements which are partially cut by the
crack; ai is the nodal enriched degrees of freedom for H(x); and bα

i is the degrees of
freedom vector for Fα(x).

The solution strategyof themodel is divided into twoparts—diffusion analysis and
structural analysis. After giving the initial conditions and properties of the material,
structural analysis of the specimen is done to evaluate the hydrostatic stresses in the
domain. These stresses are then used to evaluate the hydrogen concentration in the
diffusion analysis. If the solution converges, it will be updated at the end of time
step. This process continues until the end of time iteration loop. The pre-processing
part consists of the evaluation of the hydride fraction, terminal solid solubility, and
stress trace and stress triaxiality in the hydride precipitation zone.

An edge crack specimen subjected to tensile loading under plane strain
conditions is solved by XFEM. A square-shaped specimen of dimension 2 mm ×
2 mm (L = 2 mm and H = 2 mm) with an edge crack a = 0.5 mm is used for the
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simulation. The top and bottom edges of the specimen are subjected to a tensile load
(σ ) of 120 MPa as shown in Fig. 2. x1 represents the distance from the crack tip in
x-direction. Amesh of size (47× 47 nodes) is taken for the simulations. Higher order
nine node quadrilateral elements are used for the evaluation of the hydrostatic stress
gradients. The element containing crack tip is enriched with crack tip enrichment
and the elements cut by the crack are enriched with Heaviside enrichment. For the
hydrogen diffusion part of the model, a uniform distribution of the hydrogen C =
6.33 × 105 mol/m3 is given as the boundary condition. The material properties used
are given in Table 1.

Fig. 2 Specimen of edge
crack

σ

σ

Ha

L

x1

x2

Table 1 Value of material properties correspond to Zircaloy-2 and δ hydride [8]

Material properties Value

Elastic modulus (E), Poisson ratio (υ) 80.4 GPa, 0.369 (573 K)

Yield strength (σ−0) 580 MPa (573 K)

Diffusivity coefficient (DH) 2.17 × 10−7 exp (−35087.06/RT) m2/s

Terminal solid solubility (CT S
e ) 6.3741 × 105 exp (−34542.75/RT) mole/m3

Concentration of hydrogen in hydride (CH,hr ) 1.02 × 105 mol/m3

Molar volume of hydrogen in solid solution (V H ) 7 × 10−7 mol/m3

Molar volume of hydrogen in hydride (V hr ) 16.3 × 10−6 mol/m3

Mole fraction of hydrogen in hydride (m) 1.66
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4 Results and Discussion

The edge crack specimen is subjected to the tensile loading and the stress–strain
behavior of the specimen material predicted is shown in Fig. 3. Stress trace of a
reference particle near the crack tip is determined by putting the value of hydrogen
concentration in Eq. (11). The value of σ hz

kk tends to zero as CH
b /CT S

e approaches to
1 (hydrogen chemical equilibrium). The results are shown in Fig. 4 and agree well
with results available in Varias and Feng [8]. Figure 5 shows the variation of hydride
in the edge crack specimen near the crack tip. The hydrogen present in the solid
solution will diffuse in the material and hydride precipitates when the hydrostatic
stress near the crack tip increases. The volume fraction of hydrogen in hydride is
given by hydride fraction (f) whose value varies from 0 to 1. If all the hydrogen is
present only in solid solution, then its value is 0 or vice versa. The peak value of
hydride fraction is achieved at a small distance from the crack tip where the hydride
precipitates and its magnitude increase with the increase in load. Stress triaxiality in
the edge crack specimen is also calculated at varying distance from the crack tip (r).
As shown in Fig. 6, stress triaxiality increases with increase in distance from crack
tip up to a value of 0.08 mm and thereafter it starts decreasing with further increase in
r. Higher value of stress triaxiality at the crack tip shows the ductile fracture behavior
as suggested by Bao and Wierzbicki [11]. The decrease in stress triaxiality after a
distance of 0.08 mm indicates the presence of hydride which reduces the ductility of
material ahead of crack tip.

Fig. 3 Stress–strain behavior of the material for Zircaloy-2 at 573 K [8]
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Fig. 4 A comparison of obtained stress trace in the hydride precipitation zone as a function of
hydrogen concentration near the crack tip with Varias and Fang [8]

Fig. 5 Hydride fraction with the distance from the crack tip at varying loads
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Fig. 6 Variation of stress triaxiality with loading time for different values of distance from the
crack tip

5 Conclusion

The hydrogen diffusion coupled with the hydride precipitation and deformation
process of the material is modeled for an edge crack specimen using XFEM. Hydro-
static stress is evaluated near the crack tip, and its effect on the hydrogen concentration
and hydride precipitation near the crack tip is analyzed. From the present study, the
following conclusions can be drawn:

• Hydride fraction increases with increase in load and finally approaches toward its
maximum possible value 1.

• With the increase in distance from the crack tip, the hydride fraction first increases
to attain a peak value and then decreases.

• The magnitude of peak value of hydride fraction increases with the increase in
load.

• Stress triaxiality increases with the increase in distance from the crack tip up to a
value of 0.08 and then decreases.
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Role Played by Grain Boundaries
in Plastic Deformation of Polycrystalline
Metals: A Discrete Dislocation Dynamics
Study

Tawqeer Nasir Tak, Aditya Prakash, Indradev Samajdar,
and P. J. Guruprasad

1 Introduction

Plastic deformation in metals and their alloys is a consequence of the collective
motion of line defects. These line defects, typically known as dislocations, move by
gliding on close-packed planes along close-packed directions [1]. If the dislocations
are free to glide on their path, a material undergoes perfect plasticity. However, if the
dislocations face obstructions along their path, it may become difficult to move them
under a constant applied load. This demands an increase in the amount of applied
load in order to have a sustained plastic deformation and is known as strain hardening
[1]. Such obstructions may happen due to a variety of reasons, a few of them being
precipitates, second-phase particles, and/or other defects.

Dislocations interact with precipitates and second-phase particles and get pinned
at the interface as a consequence. Dislocations also interact with other dislocations
forming a variety of locks based on the type of interaction, and hence jamming
each other. All such interactions, leading to strain hardening of the material, govern
the material behavior under applied load. Moreover, dislocations also tend to interact
with other crystal defects like point defects, such as interstitials, and two-dimensional
defects, such as grain boundaries.

Grain boundaries, being two-dimensional (2D) defectsmark the interface between
two crystallites that differ from each other due to their orientation. These defects
play a critical role in plastic deformation [2]. The interaction between dislocations
and grain boundaries is a complex phenomenon and has been a topic of interest
to the community for past few decades [3]. This work intends to explore the role
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played by grain boundaries in deformation of polycrystalline metals using a Discrete
Dislocation Dynamics (DDD) framework.

2 Model Formulation

The formulation is based on the original framework laid down by Amodeo and
Ghoniem [4]. After further development by Kubin et al. [5] and Lubarda [6], in the
next few years, Van der Giessen and Needleman [7] finally adapted the model to
solve a boundary value problem by coupling the framework with Finite Element
Method (FEM). The procedure was developed by the authors for solving a two-
dimensional (2D) plane strain problem, which did not take into account dislocation–
dislocation interactions in three dimensions that are primarily responsible for various
hardening mechanisms. The key three-dimensional (3D) mechanisms were added to
the framework by Benzerga et al. [8]. This included incorporation of dislocation–
dislocation interactions at junctions that would ultimately lead to the formation of
dynamic sources and obstacles, hence controlling the later stages of strain hardening
in the material.

2.1 Original Framework

It has been well established that dislocations are the primary carriers of plastic defor-
mation [1]. Collectivemotion of a plethora of dislocations produces permanent defor-
mation. Dislocations are modeled as line defects embedded in an elastic continuum.
Each dislocation is characterized by a Burgers vector, bi and a unit normal, ni of
its slip plane. The problem is solved using the principle of superposition, assuming
infinitesimal deformation gradients [7]. The state of the body, at an instant, defined
in terms of displacement, strain, and stress is given as

u = ∼
u + u

∧

, ε = ∼
ε + ε

∧

, σ = ∼
σ + σ

∧

(1)

where (˜) represents the singular fields that are obtained by superposition of the
fields (ui , εi , σ i ) associated with individual dislocations,

∼
u=

N∑

i=1

ui ,
∼
ε=

N∑

i=1

εi ,
∼
σ=

N∑

i=1

σ i (2)

N being the total number of the dislocations in the specimen. Here the (ˆ) fields
are the image fields used for correcting for the actual boundary conditions and are
specified in terms of conventional tractions and displacements applied to portions of
the boundary. The governing equations may thus be specified as
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∇ · σ = 0, ε = ∇u, σ = C : ε (3)

where C represents the elasticity matrix. Time-dependent traction, T = T0(t) and
displacement, u= u0(t) boundary conditions are applied on the appropriate sections
of boundaries to emulate uniaxial tension, compression, or pure shear. Assuming
the displacement fields to remain smooth makes the problem a well-posed one and
solvable by Finite Element Method (FEM).

In order for the dislocated body to be thermodynamically stable, the dislocations
naturally reorganize themselves tominimize the energy of the system.This rearrange-
ment takes place under the action of a gliding force, referred to as Peach–Koehler
force, which essentially can be described as the change of the potential energy of
the body associated with an infinitesimal variation of the dislocation position in the
glide plane. The expression for the Peach–Koehler force is given below:

f i = mi · {σ∧ +
∑

j �=i

σ j } · bi (4)

Peach–Koehler force is the primary driving force behind the dislocation glide. The
drag-controlled dislocation glide is represented through the following constitutive
rule:

Bvi = f i (5)

where B is the viscous drag factor and νi is the glide velocity of dislocation i. The
position of each dislocation is updated using a first-order time stepping scheme,
commonly known as Euler method,

xi,t+δt = xi,t + vδt (6)

The problem is solved in an incremental fashion in time, where each time incre-
ment involves three main steps: (i) computation of the current dislocation configu-
ration and the associated stress and strain values for the current configuration; (ii)
determination of the Peach–Koehler force that drives the dislocations to a stable
configuration; and (iii) determination of the instantaneous rate of change of disloca-
tion structure based on a set of constitutive rules, which involves generation, motion,
and annihilation of dislocations.

2.2 Grain Boundaries

Until recently, grain boundaries have been modeled as obstacles that inhibit the
dislocationmotion.However, during plastic deformation, a dislocation approaching a
grain boundarymay interactwith the latter inmany differentways, which gives rise to
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a variety of mechanical behaviors. An elastic interaction between a dislocation and a
grain boundary is repulsive and hence leads to dislocations piling up at the boundary.
However, quite recently [3] several mechanisms based on the plastic interaction
between an incoming dislocation and a grain boundary have been distinguished.
Few of them being (i) dislocations piling up at the grain boundary, (ii) dislocation
absorption into the grain boundary, (iii) dislocation emission from the grain boundary,
(iv) residual Burger’s vector accumulation at the grain boundary, etc.

Keeping all these things in mind, a basic dislocation transmission mechanism has
been implemented in this manuscript. The fundamental principle followed was given
by Koning et al. [9]. The transmission can be direct or indirect. The former assumes
that the entire dislocation upon reaching the grain boundary is transmitted to the
neighboring grain whereas the latter assumes that only a part of a dislocation gets
transmitted, and a residue is left on the boundary [10].

When a dislocation in grain with orientation g1 reaches a grain boundary, a poten-
tial plane for transmission is identified in the neighboring grain with orientation g2.
As soon as the plane is identified, a Frank-Read source is placed on the plane at a
distance ln , which is the distance that marks the equilibrium separation between the
dislocations when τR(= τn) tries to drive the dislocations apart. The relationship
between ln and τn can mathematically be given as

ln = μb

2π(1 − ν)τn
(7)

Although dislocation interaction with grain boundaries is a quite complex
phenomenon [3], a simple transmission mechanism [11, 12] has been discussed
in this work.

3 Problem Definition

A boundary value problem consisting of a unit cell of dimensions 10 × 10 μm2

was considered. The unit cell was divided into square grains, each side with length
2 μm. Slip planes representative of an FCC slip system in two dimensions (2D)
were defined in each grain. Each slip plane was oriented at an angle of ±35.25° with
the horizontal. Individual grains were considered elastically isotropic with Young’s
modulus, E = 70 MPa, and Poisson’s ratio, n = 0.33, the values being representative
of aluminum. A variable initial source density, ρs was used with an average source
strength, τFR = 50 MPa and a standard deviation, σ = 10 MPa. Critical time for a
source to nucleate dislocations was taken as 10 ns. The grains were also supplied
with an initial obstacle density, representative of precipitates, etc. with a typical
strength, τobs = 150 MPa. The unit cell did not contain any dislocations before the
beginning of the simulation. The dislocations were nucleated on the slip planes as
soon as the stress at the location of a Frank-Read source reached a critical value, τFR.
The velocity of a dislocation was given based on Eq. 5, with value of B = 10–4 Pa s.
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Other short-range interactions between dislocations and obstacles, dislocations and
dislocations, etc. were governed by constitutive rules built in the framework.

4 Results and Discussion

Figure 1 shows the schematic of a bicrystal with the grain boundary, separating two
crystallites, inclined at an angleφwith the horizontal. The slip systems, representative
of the crystal orientation in thismanuscript, in the twograinswere oriented differently
with respect to the loading. It can be seen from the schematic that the orientation of
one of the grains is g1 and the orientation of the other grain is g2.

The bicrystal was subjected to pure shear and two cases were considered (i) when
the grain boundarywas supposed to be an obstacle andwould simply stop dislocations
from getting transmitted to the neighboring grain and (ii) in which the grain boundary
allowed dislocation transmission from one grain to other.

Figure 2 shows contours of stress development in a bicrystal with dislocation
substructure superposed upon them. The grain boundary was considered perpendic-
ular to the horizontal. By looking at the stress contours in both the cases, it can be
seen from Fig. 2a that the dislocations piled up at the grain boundary creating stress

Fig. 1 Schematic of a bicrystal with grains having orientations g1 and g2, respectively. The dotted
line denotes the grain boundary between two grains oriented at an angle of ∅ with respect to the
horizontal
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Fig. 2 Stress contours along with dislocation substructure in a bicrystal a without and b with
dislocation transmission across grain boundaries

concentration at the grain boundary and when the transmission is allowed across the
grain boundary, the level of stress concentration diminishes (see Fig. 2b).

In a quite similar manner, the same bicrystal with an initial density of Frank-Read
sources, ρs = 5× 1012, and no obstacles was subject to pure shear. Figure 3 shows the
dislocation substructure superposedupon stress contours post-deformation. Figure 3a
represents the case in which grain boundaries act as obstacles to dislocation motion
and thus inhibit it; however, Fig. 3b represents the case in which grain boundaries
allow dislocation transmission.

It can be seen from Fig. 3 that as the dislocations piled up at the grain boundary,
new sources that aid indirect dislocation transmission, represented by red-colored
circles near the grain boundary, emerged in the neighboring grain. The strength and
location of these sources were governed by the strength of the grain boundary. As
the stress near these new sources reached a value that was a representative of grain
boundary strength, new dislocation pairs were nucleated in the neighboring grain,
one of which traveled to the grain boundary to form a residue and the other one
behaved as the transmitted one.

Stress versus strain response of the bicrystal was recorded for both (i) soft
boundary, a boundary that allows dislocation transmission and (ii) hard boundary, a
boundary that does not let the dislocations transmit to the neighboring grains.

Figure 4 gives a representative stress versus strain response of a bicrystal under
pure shear for both the cases. It can be seen from the figure that in case of a grain
boundary that doesn’t allow slip transmission the response is quite different from
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Fig. 3 Stress contours along with dislocation substructure in a bicrystal a without and b with
dislocation transmission across grain boundaries

Fig. 4 Representative stress
versus strain response of a
bicrystal under pure shear for
two different cases (i) in
which grain boundary allows
slip transmission, (ii) in
which slip transmission is
not allowed

the case in which slip transmission is allowed. One can see that the material hardens
more in case of a grain boundary that does not allow slip transmission, whereas shows
a softer response in case, dislocation transmission is allowed. This response, hence
the role played by grain boundaries in deformation of polycrystalline materials, is
worth studying and needs rigorous analysis with modern approaches.
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5 Summary

This work is an endeavor to understand the role of grain boundaries in deforma-
tion of polycrystalline metallic materials. The work extended Discrete Dislocation
Dynamics (DDD) from a single crystal to a polycrystalline setting. Grain bound-
aries were modeled as (i) hard, which did not allow dislocation transmission; (ii)
soft, which allowed dislocation transmission. Deformation of a bicrystal, under pure
shear, with the grain boundary perpendicular to the horizontal was studied. Stress
contours showed that the hard boundaries were potential sites for stress concentration
whereas stress seemed diffused in case of boundaries that allowed dislocations to
pass through. Representative stress versus strain response showed that the material
hardenedmore quickly in case of grain boundaries that did not allow slip transmission
and remained softer in case slip transmission was allowed.
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Effective Properties of Two-Scale
Viscoelastic Composites

Vivek Singh, Jayram Desai, and Vikranth Racherla

1 Introduction

Polymers commonly exhibit viscoelasticity. They have dissipation effects (from vis-
cous part) as well as storage effects (from elastic part). Viscoelastic composites have
gained interest among researchers because of their applications in energy absorbers,
dampers, acoustic insulation, thermal insulation, etc. Many works have been carried
out to evaluate the effective properties of viscoelastic composites. Eshelby through
his seminal paper [1] introduced a new arena of research in the field of composite
materials, Effective Behavior of Composite Materials. Thereafter, the area was pio-
neered by Hill [2, 3], Walpole [4], Mori and Tanaka [5], Hashin and Shtrikman [6],
Christensen [7], Mura and Nemat-Nasser [8], etc. For elastic composites, microme-
chanicalmethods are verywell used to predict the effective properties if the properties
of components and the volume fractions of phases are known. Eshelby’s approach
for elastic materials has been extended by researchers to viscoelastic materials by
Laplace–Carson transformor correspondence principle. In thismethod, the equations
for local and effective properties of linear viscoelastic composite after being trans-
formed to Laplace domain can be treated similar to those for elastic composite with
complex moduli. Hashin [9] for the very first time considered the problem of spher-
ical viscoelastic inclusion in elastic and viscoelastic matrices. Laws and McLaugh-
lin [10] extended self-consistent method for the estimation of effective properties
of (i) sphere-dispersed viscoelastic composite and (ii) fiber-reinforced viscoelastic
composite. Brinson and Lin [11] presented a comparison of Mori-Tanaka and finite
element unit cell method for viscoelastic composites. Frequency and volume frac-
tion were found to affect the results for different methods. Yi et al. [12] had applied
asymptotic homogenization technique for estimating effective moduli of composite
with periodic microstructure. Friebel et al. [13] used the correspondence principle to
extend the two-step homogenization procedure to estimate the effective properties of
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Fig. 1 Schematic of the
microstructure considered

multi-phase viscoelastic composites. Nguyen et al. [14] modeled a porous medium
as a mixture of viscoelastic matrix with pore inclusion. Both the matrix and inclu-
sion were modeled as Maxwell elements and the results were in agreement with the
exact solution. Lahellec and Suquet [15] developed a direct method based on time-
integration approach to estimate the effective properties of composite comprising of
linear viscoelastic constituents. Daridon et al. [16] estimated the effective proper-
ties of a composite which consisted of matrix, inclusion, and the interface. All of
the constituents were modeled as Kelvin–Voigt elements but the resulting effective
behavior obtained was of Kelvin–Voigt type with an additional memory term.

In the present article, mean-field-homogenization-based effective properties for
viscoelastic composite are estimated. The composite consists of elastomeric matrix
and inclusions in the form of pores and porous viscoelastic media (Fig. 1). This
paper presents a micromechanical approach to estimating the effective viscoelastic
properties of the composite that consists of (i) pores and (ii) porous viscoelastic
inclusion.

2 Governing Equations

Consider a material with N different phases that are distributed either randomly or
periodically, in the specimen occupying a volume Ω0 with the boundary ∂Ω0 such
that the characteristic length of inclusion is much smaller than the specimen than
length scale separation is used to derive macroscopic properties of the composite
using the microstuctural properties. In this work, porous viscoelastic composite con-
sisting of pores and porous viscoelastic inclusion is considered. The size of pores
in matrix and viscoelastic inclusion is assumed to be much smaller than the size of
the viscoelastic inclusion. A representative volume element Ω is considered at the
boundary ∂Ω of which macroscopic strain is related to displacement as u = Ēx.

For a linear viscoelastic non-agingmaterial, the stress evolution is related to strain
rate as

σi j (x, t) =
t∫

0

Ci jkl
(
x, t − t ′

) ∂εkl
(
x, t ′

)
∂t ′

dt ′, ∀x ∈ Ω (1)
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where Ci jkl is the relaxation modulus. In case of small displacement and neglecting
body force, the compatibility condition and equilibrium equation are as follows [17]:

εi j = 1

2

[
ui, j + u j,i

]
, ∀x ∈ Ω (2)

σi j, j = 0, ∀x ∈ Ω (3)

For viscoelastic material, the stress–strain relations are converted to linear form by
applying Laplace–Carson (LC) transform. Thereafter, the linear viscoelastic prob-
lem becomes similar to a linear elastic problem. The viscoelastic properties of the
composite are estimated in the LC space by relating the local behavior

σ∗(x) = C
∗(x) : ε∗(x) (4)

and macroscopic behavior of an RVE

�∗(x) = C
∗
hom : E∗ (5)

In the above equations, (*) superscript terms represent LC transform of the corre-
sponding quantities as

ϕ∗(x, p) = p

∞∫

0

ϕ(x, t)e−pt dt (6)

The local and average strain tensors are related by the equation

ε∗(x) = A∗(x) : E (7)

where A∗(x) is the strain localization tensor at point x. Strain localization tensor
for an inclusion embedded in the matrix is obtained by solving Eqs. (1)–(3) along
with uniform strain boundary condition. In elastic domain, the problem is solved
by displacement approach. Perfect interface is considered between the matrix and
inclusion and both the phases are considered to be isotropic. The shear moduli (μ)
and bulk moduli (K) are estimated by prony series

μ(t) = μ0

[
1 −

m∑
i=1

wi

(
1 − e− t

ξi

)]
(8)

K (t) = K0

[
1 −

m∑
i=1

wi

(
1 − e− t

ξi

)]
(9)
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Table 1 Mechanical properties of the idealized viscoelastic materials used by Friebel et al. [13]

Shear Bulk

τi [s] μ0wi [bar] τi [s] K0wi [bar]

0.032 2.512 100.000 3000

0.100 10.000 316.228 100

0.316 56.234

1.000 316.228

3.162 1000.000

10.000 199.526

31.623 50.119

100.000 19.953

316.228 12.589

1000.000 2.512

3162.278 1.698

10,000.000 1.202

31,622.777 1.148

100,000.000 1.096

μ0 = 1677.979 K0 = 3300

where μ0 and K0 are instantaneous shear and bulk moduli, and wi K0 and wiμ0 are
weights corresponding to relaxation time ξi . The representative values for prony
series have been taken from Friebel et al. [13] and are listed in Table1.

The relaxation tensors for the phases are given as

C
i∗ = 3K ∗

i J + 2μ∗
i K (10)

Ji jkl = 1

3
δi jδkl, Ki jkl = 1

2

(
δikδ jl + δilδ jk − 2

3
δi jδkl

)
(11)

where K ∗
i is the bulk relaxation and G∗

i is the shear relaxation. For particulate com-
posites, the global strain localization tensor is related to local strain localization
tensor as

A
∗ = Ai∗

(
c0 I +

N∑
r=1

crA
r∗

)−1

= Ai∗
(

N∑
r=0

crA
r∗

)−1

(12)

where c0 is the volume fraction of the matrix, cr is the volume fraction of different
inclusions, and Ai∗ is the local strain localization tensor. Also, A0∗ = I has been
used. For any phase(s),

As
i∗ = [

I + P
i∗
s

(
Cs − C0

)]−1
(13)
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where the polarization tensor P for a spherical inclusion in a matrix with shear and
bulk moduli μ0, K0 is given by

P
0 = 1

3Kp0
J + 1

2μp0
K

3Kp0 = 3K0 + 4μ0, 2μp0 = 5μ0

3

3K0 + 4μ0

Ko + 2μ0

(14)

TheMori–Tanaka scheme when applied to matrix-inclusion composite considers the
matrix to be reference medium [19]. The subscript 0 denotes matrix whereas the
subscripts 1, 2, ..., N denote different inclusions. Effective modulus of the composite
obtained using Mori–Tanaka model is

C
∗
hom =

N∑
r=0

crC
r
A

i
r

(
N∑

s=0

cs A
i
s

)−1

(15)

The individual behavior of porous elastomer and porous viscoelastic phase is given
by

K̄1
∗ = 4

3

1 − p1
p1

μ0∗
1 , μ̄1

∗ = 3 (1 − p1)

3 + 2p1
μ0∗
1

K̄2
∗ = 4μ0∗

2 K 0∗
2 (1 − p2)

4μ0∗
2 + 3p2K 0∗

2

, μ̄2
∗ = (9K 0∗

2 + 8μ0∗
2 )(1 − p2)μ0

2∗
K 0∗

2 (9 + 6p2) + μ0
2 ∗ (8 + 12p2)

(16)

where p1 and p2 represent porosity in elastomer and viscoelastic phase, respectively,
also (μ0∗

1 , K 0∗
1 ) and (μ0∗

2 , K 0∗
2 ) are shear andbulkmoduli of elastomer andviscoelastic

phase in Laplace–Carson space.
Composite Sphere Assemblage (CSA) [20] model states that the composite can

be modeled with the assembly of concentric composite spheres of different sizes.
The composite sphere consists of an inner sphere—inclusion and an annular sphere
matrix. The size of composite sphere is such that in each sphere the inclusion volume
fraction is same as that of the composite. The radius ratio of a (internal sphere) and
b (outer sphere) is related to inclusion volume fraction in composite as (a/b)3 = f ,
f being the volume fraction of inclusion in composite. CSA model gives an exact
solution only for bulk modulus as

K̄/K = (1 − p)(2 − 4ν)

(2 − 4ν) + (1 + ν)p
(17)

where p is porosity and ν is Poisson’s ratio.
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Fig. 2 Effective normalized modulus of porous elastomer

3 Results

In this section, mean-field estimate for macroscopic properties is presented. Silicone
rubber is used as matrix material. For silicone rubber, bulk modulus (K) is 1.8 GPa
and shear modulus (μ) is 0.01 GPa. By substituting Laplace variable (s) with iω we
can get frequency-dependent behavior. Here we have taken the frequency to be 1Hz
and the results below are for that. Porosity in the matrix as well in inclusion varies
from 0 to 70%. The effective bulk modulus (K̄ ) is observed to decay exponentially
with the variation of porosity (Fig. 2a). K̄ drops to ∼7% at 20% porosity which
indicates the sensitivity of K̄ (i.e., resistance to uniform compression) to porosity.
However, in case of shear modulus, the behavior is different as it decreases gradually
with porosity (Fig. 2b).

Mechanical loss factor or dissipation factor (tan δ) is measure of material’s ability
to dissipate energy in addition to storage of energy. Higher mechanical loss factor
ensures better dissipation of energy. For a composite with only porous inclusions
and no porosity in matrix, tan δ is observed to increase up to 0.85 volume fraction
of viscoelastic inclusion and thereafter it decreases but with the increase in volume
fraction of viscoelastic inclusion tan δ keeps increasing (Fig. 3). Viscoelastic phase
thus helps in easy energy dissipation. For the second case, when non-porous inclu-
sions are embedded in porous matrix, it is observed that dissipation is better at high
volume fraction of inclusion but matrix porosity has adverse effect on its dissipation
property (Fig. 4).
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Fig. 3 Effect of inclusion
pore fraction on tan δ of the
composite
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Fig. 4 Effect of viscoelastic
phase volume fraction on tan
δ of the composite
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3.1 Effect of Porosity on Effective Behavior

In this section, we present the results about the effect of matrix and inclusion porosity
on effective properties of the composite. Figure5 shows the results for three cases of
porosity in inclusion: (i) 0.3, (ii) 0.5, (iii) 0.7.

Bulk modulus has an exponential decay with the addition of porous inclusion
as well as matrix porosity (Fig. 5a). The composite’s effective bulk modulus K̄ is
sensitive to porosity and inclusion. Young’s modulus and shear modulus are almost
similar in nature with a gradual growth (Fig. 5b, c). The growth of shear modulus
and hence Young’s modulus is due to the fact that shear modulus for viscoelastic
phase is much higher than that of silicone rubber. Also it can be seen that addition of
porous inclusion reduces the normalized modulus of composite. Addition of porous
inclusions enhances the ability of composite to dissipate energy whereas the addition
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Fig. 5 Effective normalized elastic modulus of porous composite

of porosity in matrix is seen to weaken the energy dissipation behavior of composite.
Also the increase of viscoelastic phase also improves the composite’s ability to
dissipate energy.

4 Conclusion

The present study for two-scale viscoelastic composites was carried out in linear
elasticity and viscoelasticity. Linear viscoelastic problem was converted to linear
elastic one using Laplace–Carson transform. The effective behavior of heteroge-
neous material can be determined by mean-field estimation technique (Mori–Tanaka
method). Here Mori–Tanaka method was used to estimate effective properties of the
composite.

1. Themicrostructure of the composite is governed by the porosity in the constituent
phases and their volume fractions.
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2. The dissipation effect in the composite is affected by the microstructure of the
composite, i.e., the volume fraction of inclusion and porosity in the inclusion
and matrix.

3. Bulk modulus has an exponential decay whereas shear modulus has a gradual
decay with an increase in matrix porosity, and addition of viscoelastic inclusion
improves Shear and Young’s modulus.

4. With the addition of porous inclusions dissipation effect gets enhanced.
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Thermo-Mechanical Analysis of Shape
Memory Polymer Composite

L. Bhola, P. M. Mujumdar, and P. J. Guruprasad

1 Introduction

The intent of this paper is to formulate an analytical framework to analyze different
shape memory polymer-based composite and sandwich structures. Main goal of this
study is to evaluate the applicability of shape memory polymer in self-deployable
large structures. Currently existing approaches to deploy large structures in space
such as solar arrays, antennas, solar sails, sunshields, etc. all rely upon conventional
systems [1–4]. The support structure and mechanisms can sometime comprise 90%
weight of the total deployable assembly. In addition, they increase the failure rate,
cost of the system, and complexity of overall structure. These disadvantages can be
overcome by using smart materials such as shape memory materials, due to their
ability to store a shape which can be recovered back with the help of external stimuli
such as hygro/thermo-mechanical cycle, electromagnetism, chemical reaction, and
photo-activity [3].

Shape memory polymer is used due to its high recovery rate compared to shape
memory alloys and shape memory ceramics which is a major requirement for self-
deployable application. Due to low stiffness and strength of shape memory polymer,
it is used in different topological architectures such as SMP sandwich structure or
an SMP composite (SMPC) structure. However, these configurations have to be
assessed and a proper analysis and design has to be carried out since combining
such a low stiffness material with high stiffness fiber or material layers without any
shape memory effect in different topological configurations will significantly affect
the structural recovery and stored strain.
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Shape memory polymer due to its ability to store a shape which can be recovered
with the help of an external stimuli has many engineering applications in bio-medical
[4], heat shrinkable tubes [5, 6], self-deployable space shields [7], various medical
devices, and other intelligent structures. This characteristic of shape memory poly-
mer is due to its differential physical nature above and below its glass transition
temperature. Significant work has been done on the shape memory polymer-based
composites, including carbon nanotubes composite, chopped fiber configuration [8],
fiber-reinforced composite, and nanotube composite [9–12]. Most of the work, how-
ever, mainly focuses on the recovery characteristic of SMP composite. There is not
much work done focusing on the deformation characteristics of structures made of
these material systems. This paper deals with the development of an analytical and
numerical framework of a unidirectional shape memory polymer-based composite
and sandwich structure which can be extended to other composite architectures.

2 Analytical Formulation

In this section, the analytical framework for SMP-based unidirectional composite is
described. First the constitutive model of the material will be extended to calculate
micro-mechanical properties of a laminae based on SMP matrix and fiber. This
material configuration will be used throughout the paper to investigate the behavior
of a one-dimensional SMP-based composite laminate under a transverse loading. The
modeling strategy presented can be extended to sandwich structure, other composite
architectures, and various boundary conditions.

2.1 SMP Constitutive Model

SMPconstitutivemodel used for analytical formulation is based on phase transforma-
tion theory, i.e., at any arbitrary temperature, SMPmodel is a mixture of two distinct
phases: “Active Phase” and “Frozen Phase.” The frozen phase (glassy phase) refers
to the phase with locked confirmational rotation corresponding to higher temperature
entropic deformation. In contrast, active phase (rubbery phase) refers to the phase
with free confirmational motion of molecules [13]. According to the model volume,
fraction of these phases depends on the change in temperature and by changing the
ratio of these phases during a thermo-mechanical cycle shape memory behavior can
be captured.

The constitutive equation for the material describing normal stress versus normal
strain can be given by

σ = E(T )(εm − εs −
T∫

Th

αdT ) (1)
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where εs represent stored strain in SMP during cooling,α is the coefficient of thermal
expansion, Th is reference temperature above glass transition temperature, and E(T )
is effective elastic modulus which can be given as

E(T ) = 1
φ f

Ei
+ 1−φ f

Ee

(2)

where φ f is the volume fraction of frozen phase, and Ee and Ei are the elastic
modulus of active and frozen phases, respectively.

Storage or inelastic strain can be determined from the following equation:

dεs

dT
= εm − εs − ∫ T

Th
αdT

Ee[φ f

Ei
+ 1−φ f

Ee
]

dφ f

dT
(3)

The phase transformation ratio φ f can be computed empirically from the following
relation:

φ f = 1 − 1

1 + c f (Th − T )n
(4)

The variation of elastic modulus with respect to temperature can be determined
using the above set of equations, which is shown in Fig. 1. A drastic change in
elastic modulus can be observed near glass transition temperature. This is due to the
transformation of frozen phase into active phase of SMP [14].
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Fig. 1 Variation of elastic modulus with respect to temperature
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2.2 SMP Composite Modeling

This formulationwill involve only laminatemadeupof unidirectional laminate for the
sake of micro-mechanical simplicity. However, the methodology described here can
be extended for other composite architectures using appropriate micro-mechanical
analysis to determine their material properties.

Unidirectional Laminate Properties: Mechanical properties of a laminate can be
calculated in all the principal directions using basic micro-mechanical approach
based on the constitutive model of both fibers and matrix. A pseudo-time history
variable will be present in the constitutive relation of SMP. The constitutive relation
for fiber and matrix is given as

σ f = E f ε f

σm = Emat (T )(εm − εs −
T∫

Th

αdT )

where σ f and σm represent stress in fiber and matrix, respectively.
Along fiber direction: Let’s assume anRVEof laminatewith load in fiber direction

which causes equal strain in fibers andmatrix, Fig. 2a. The final constitutive equation
for the laminate along fiber direction is given as

σ1 = E1ε1 − Es
1(εs − εT ) (5)

Here, micro-mechanical properties are given as

E1 = (E f V f + Emat Vm) (6)

Es
1 = VmEmat (7)

(a) Along fiber direction (b) Across fiber direction

Fig. 2 Loading representation on RVE (representative volume elements)
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Across fiber direction: Let’s assume anRVEof laminawith load across fiber direction
which causes different deflections in both fiber and matrix as shown in Fig. 2b. The
final across fiber direction is given as

σ2 = E2ε2 − Es
2(εs − εT ) (8)

which results in the following expressions:

E2 = Emat E f

E f Vm + Emat V f
(9)

Es
2 = Emat E f Vm

E f Vm + Emat V f
(10)

Similarly, we can calculate shear modulus and Poisson’s ratio of the respective SMP
composite.

Using above equivalent properties one canwrite constitutive equation for a lamina
of 0◦ and 90◦ layups, which can be used to construct constitutive equation for any
layup using the transformation scheme.

⎧⎨
⎩

σx

σz

τxz

⎫⎬
⎭ = [Q]

⎧⎨
⎩

εx
εz
γxz

⎫⎬
⎭ − [Q]s

⎧⎨
⎩

εsx + εT
εsz + εT
γs
xz + εT

⎫⎬
⎭ (11)

where given matrix can be calculated as

[Q] = [T (θ)]−1[Q][R][T (θ)][R]−1

[Q]s = [T (θ)]−1[Q]s[R][T (θ)][R]−1

[Q] =
⎡
⎣Q11 Q12 0
Q21 Q22 0
0 0 Q66

⎤
⎦ (12)

where Q11 = E1/(1 − ν12ν21), Q22 = E2/(1 − ν12ν21),Q12 = ν21E2/(1 − ν12ν21),
and Q66 = G12.

[Q]s =
⎡
⎣Qs

11 Qs
12 0

Qs
21 Qs

22 0
0 0 Qs

66

⎤
⎦ (13)

where Qs
11 = Es

1/(1 − νs
12ν

s
21), Q

s
22 = Es

2/(1 − νs
12ν

s
21),Q

s
12 = νs

21E
s
2/(1 − νs

12ν
s
21),

and Q66 = Gs
12.
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The storage strain for a lamina can be given as

dεs k

dT
= [Ee]−1σmk

dφ f

dT

d{εs}k
dT

= [Ee]−1
(
[Q ′ ]{ε}k − [Q ′s]({εs}k + {εT }k)

)dφ f

dT
(14)

where given matrix can be calculated as

[Q]′ = [T (θ)]−1[Q]′ [R][T (θ)][R]−1

[Q]′s = [T (θ)]−1[Q]′s[R][T (θ)][R]−1

The prescribed constitutive model for shape memory polymer composite is imple-
mented on UMAT, for further finite element-based analysis of various SMPC-based
structures.

3 UMAT Implementation

Usermaterial subroutine (UMAT) is a Fortran programwritten for finite element soft-
ware ABAQUS to define underlying constitutive equation. In general, finite element
software has inbuilt material libraries along with various types of material charac-
teristics like elastic, plastic, viscoelastic, viscoelastoplastic, temperature dependent,
etc. But sometimes either observed material behavior is not available or some new
material type is absent from the library of FEM softwares, the need to provide mate-
rial type and behavior from outside becomes important. UMAT is thus one such way
to guide ABAQUS toward new material model.

An ideal UMAT requires following definitions for its correct implementation:

• Definition of Cauchy stress or true stress for user element.
• Definition of stress rate for co-rotational framework.
• Dependence of material properties on temperature, time, deformation, or any other
variable.

• Solution-dependent variables denoted by SDVs. In each time increment, they get
updated and used in next increment.

• Constant material properties are denoted by PROPS.
• Correct definition of variables, use of nomenclature, and strict following of Fortran
conventions so that it can easily be implemented in ABAQUS.

• Definition of proper Jacobian matrix (DDSDDE) (Fig. 3).
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Fig. 3 Shape memory polymer-based UMAT algorithm

3.1 Finite Element Simulation Procedure in ABAQUS

To simulate a shape fixation response of a shape memory polymer-based structure in
solver module of ABAQUS, the thermo-mechanical cycle is divided into four steps
which include a initial step and three static-thermal steps. In the initial step, temper-
ature is defined constant throughout the geometry using pre-defined field. Bound-
ary conditions are also defined subsequently in the step, which will be propagated
throughout all the steps involved. The pre-defined temperature field is propagated
to the next step (loading step). However, in forward steps, it is modified as per the
thermo-mechanical programming of material. In the second step (loading), loads are
created, as per the problem definition. The step time has been taken as one second to
reduce the simulation time. In the second step (cooling step), the pre-defined temper-
ature field was modified from Th to Tl . Another boundary condition was applied to
constrain the whole geometry in the deformed position. The loads are propagated in
this step. The process introduced an inelastic strain also known as stored strain and
the updated values of stress are computed with the increase in time. The time incre-
ment was taken quite low for higher accuracy, which will be seen in the result section.
In the final step (unloading step), loads and second boundary conditions applied in
the previous steps are made inactive. However, the pre-defined temperature field was
propagated. By the end of this step, the shape fixation simulation will be completed
and the results can be checked and validated with the analytical results. In case of a
shape recovery analysis, an additional step is required with same inactive boundary
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Table 1 Finite element model steps, analysis parameters, and material’s elastic and thermal prop-
erties

STEPS definition

Initial step Loading step Cooling step Unloading step

Boundary
condition

Created Propagated Propagated Propagated

Loading
condition

– Created Propagated Inactive

Disp.
constrain

– – Created Inactive

Pre-defined
field

Created
(assigned Th)

Propagated Modi f ied
(reduced to
Tl )

Propagated

Material’s properties

Ee (MPa) n c f Tg (K) k (m2 kg/s2 K) α (K−1 × 10−4)

813 4 2.76 × 10−5 343 1.30 × 10−23 −3.16 +
0.0142T

Analysis parameters

E f (MPa) L (m) b (mm) t f ace (mm) tcore (mm) P (N)

70 1 50 0.5 49 0.025(E Ie f f )Th

conditions as the unloading step. The pre-defined temperature field is modified from
Tl to Th . Additional things such as heating and cooling rate can be added to the
pre-defined field. The whole procedure is provided in tabular form in Table1.

4 Results and Discussion

In this section, the proposed quasi-static finite element model will be implemented
on an SMP sandwich cantilever beam with a concentrated load at the tip of the beam
as shown in Fig. 4, to examine the shape fixation and recovery behavior of such SMP
structural architecture. Basic assumptions based on Euler–Bernoulli beam theory
were made with very small rate of heating and cooling to exclude the dynamic effect
of inelastic strains while changing temperature.

4.1 Analysis Results

Results sectionwill provide insight into the thermo-mechanical response of sandwich
beam under linearly varying bending moment or concentrated load at the tip of
the beam. The important parameters analyzed or simulated are shape fixation and
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recovery of the sandwich beam due to SMP core. The thermo-mechanical analysis
is mainly divided into four steps which are given below:

• Displacement loading of the beam at higher temperature above glass transition
temperature.

• Inelastic strain formulation while cooling the beam below glass transition temper-
ature.

• Force unloading of the beam below glass transition temperature.
• Inelastic strain recovery while heating the beam.

The second step of thermo-mechanical cycle can be performed with constant load-
ing condition or constrained displacement condition, a constant loading condition
is analyzed in this case as it is much practical compared to the other in physical
applications.

As a UMAT is formulated for analysis of SMP-based structure in ABAQUS, a
validation study of the solution was required. Results for a pure SMP-based beam
with earlier parameters were computed using formulated UMAT in ABAQUS and

Fig. 4 Cantilever sandwich
beam with tip load
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Fig. 5 Validation of shape fixation response of SMPbeam computedwith analytical andABAQUS-
UMAT formulation
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Fig. 6 Displacement response of SMP sandwich beam under tip load at temperature Th

analytically. It can be seen in Fig. 5 that the UMAT results agree with the analytical
results for SMP beam.

To initiate the thermo-mechanical analysis, the sandwich beam is loaded with a
concentrated load at the tip above glass transition temperature. Deformation response
at Th is computed first which can be seen in Fig. 6. Since the applied load is a multiple
of E I (flexural stiffness) at higher temperature, the shape of deformation does not
change regardless of the sandwich parameters.

The beam is then cooled from temperature Th to Tl with tip load held constant,
to compute the shape fixation response under quasi-static condition. As the beam
is cooled, a component of inelastic strain (storage strain and thermal strain) will
be formed due to which an additional deformation can be seen in Fig. 7a, b. This
inelastic strain is caused due to change in mechanical and structural properties of
SMP above and below glass transition temperature.

The phase transformation of SMP from active phase to frozen phase will lead to
the locking or storage of a part of mechanical or bending strain in the core region of
sandwich structure.

Finally, shape recovery response of the sandwich beam is computed while heating
the unloaded structure quasi-statically from temperature Tl to Th , which causes trans-
formation of frozen phase to active phase. As the phase transformation starts, internal
modeled moment tends to zero, and the original shape of the beam is recovered as
seen in Fig. 8.
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Fig. 7 Shape memory response of beam while cooling: a displacement of beam at various temper-
ature; b bending strain at various temperatures
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Fig. 8 Unconstrained shape recovery response of sandwich beam while heating

5 Concluding Remarks

The goal of this study was to develop an analytical and numerical framework for
composite and sandwich shape memory polymer structure for engineering applica-
tions. Analytical framework is divided into three parts: constitutive model for SMP,
computation of micro-mechanical properties of SMP laminate, and finally constitut-
ing the governing equation for a laminate following the general classical laminated
plate theory. The proposedmodel is capable of analyzing any unidirectional laminate
or sandwich structure based on SMP.
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Model predictions were capable of highlighting the salient features of SMP com-
posite and sandwich beam shape fixation, recovery, and spring back response.
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Energy Absorption Characteristics
of Balsa Wood Filled Aluminum
Honeycomb Structures Subjected
to Axial Quasi-static Loading

Nadeem Ahmad, Devendra K. Dubey, and Rohit Sankrityayan

1 Introduction

Over the last few decades, man-made honeycombs have been widely used in many
industries due to their properties such as high strength to weight ratio and excellent
energy absorption capabilities. Honeycombs are manufactured from materials such
as Aluminum, NOMEX, polymer, and ceramic. Aluminum honeycombs are used as
industrial products, as well as core materials in sandwich panels in various fields
of engineering such as aerospace, automotive, and naval engineering [1]. Energy
absorbers made from honeycombs are thin-walled structures which absorb kinetic
energy typically through progressive folding and/or bending collapse [2]. In order
to enhance the energy absorption with low value of the peak load while keeping
lightweight design, low-density fillers, such as polymeric and metallic foams, have
demonstrated considerable potential.

Several studies have been conducted on the out-of-plane compression of
Aluminum honeycombs for quasi-static and impact cases [3–6]. Zhou and Mayer
studied the effects of strain rate in out-of-plane compression scenario on Aluminum
honeycombs and found that the plateau stress, increased with strain rate [6]. Apart
from the studies conducted on the crushing characteristics of bare honeycomb, there
have been studies on enhancing the energy absorption of honeycomb using other
lightweight materials in combination with it.

As a low-density material, Polyurethane (PU) foam was first attempted by Reddy
andWall [7], and it was shown that in very thin cylindrical tubes filling with PU foam
prevented irregular overall buckling and forced development of more symmetric
stable buckling patterns; thus the stability of the crushing process was improved
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by the presence of the filler. Alavi and Sadeghi conducted experiments on foam-
filled Aluminum hexagonal honeycombs under the out-of-plane compression loads
[8]. They observed that the crushing strength of bare honeycombs and foam-filled
honeycombs increased with strain rate and bare honeycombs were more sensitive
to strain rate than foam-filled honeycombs. Mozafari et al. employed ABAQUS
software and observed that the mean crushing strength and energy absorption of
foam-filled honeycomb were higher than the sum of those of bare honeycomb and
foam [9]. Wu et al. [10] improved the mechanical properties of the honeycomb core
by filling with rigid PU foam. Such a foam-filled honeycomb was used to construct
sandwich panels with graphite/epoxy composite face-sheets, which were showed to
have a higher impact resistance through the low-velocity impact tests.

Other than the metallic or polymeric foams, there have been studies performed
on naturally occurring and biodegradable lightweight energy absorbing materials.
Among these are balsa wood and cork. Balsa wood is a naturally occurring porous
bio-composite that offers remarkable mechanical and physical properties. As its
cellular/porous microstructure allows the application of large deformations, fine
composite nano-architecture of wood cell material increases its specific strength
and stiffness, giving rise to a high specific energy dissipation capacity. Balsa wood is
found in a wide range of densities from 40 to 380 kg/m3, depending on the average
size and the wall thickness of cells, which provides the flexibility in design since
the strength is a monotonic function of its density [11]. According to Borrega and
Gibson, there are no engineered materials suitable for sandwich panel cores with a
similar combination of mechanical properties and low-density as balsa wood [12].
Atas and Sevim investigated low-velocity impact response of sandwich composite
panels made of balsa wood cores and glass/epoxy face-sheets [13]. They concluded
that balsa wood was able to absorb more energy for less deformation.

Unlike the honeycomb filled with foams, a study on the honeycomb structures
combined with balsa wood or cork has not been conducted. In this work, an experi-
mental and numerical study on the energy absorption characteristics of bare honey-
comb and honeycomb filled with balsa wood in different configurations have been
carried out. The out-of-plane quasi-static compression tests have been carried on bare
honeycomb and two different styles of filled honeycombs. Subsequently, the exper-
imental results have been used to validate the finite element analysis of quasi-static
simulations.

2 Experimental Setup

The Out-of-plane quasi-static crushing tests were performed on the bare and filled
honeycomb panels at room temperature in Shimadzu Universal testing machine with
a loading capacity of 10 KN (Fig. 1). The specifications of honeycombs used in the
experiments are mention in Table 1. Each honeycomb core sample tested, consists
of 25 cells. The specimen was placed in between the support and loading platen
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Fig. 1 Shimadzu universal testing machine used for carrying out compression tests

Table 1 Geometrical and physical properties of Aluminum honeycomb

Designation Material Cell size
(mm)

Foil thickness
(μm)

ρhoneycomb (kg/m3) Panel
height
(mm)

H37 Al 3003 12 80 37 30.8

without any fixture andwas loaded at a constant rate of 2mm/min. Load and displace-
ment data were directly recorded by an automatic data acquisition system, and then
nominal stress (defined as force over the original cross-sectional area) and nominal
strain (defined as displacement over the original thickness of the specimen) were
calculated. Stress and strain data were subsequently used to calculate the densifica-
tion strain (critical strain when the cell walls are squeezed together), peak strength
(corresponding to the peak load in force-displacement curve over the cross-sectional
area), plateau strength (average taken from the peak stress to the densification strain),
absolute energy absorption (AEA), and specific energy absorption (SEA).

3 Materials

Aluminum honeycombs used in the experiments were manufactured with Al 3003
H19 alloy. Due to the unavailability of Al 3003 properties, approximate material
properties were acquired from the literature [14] as σY = 195MPa and σU = 211MPa
and plastic stress-strain data as shown in Table 2.

Experiments were carried out on bare honeycombs, and two different configura-
tions of balsa wood filled honeycombs. In Type A filled honeycomb, all the cells of
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Table 2 True plastic stress-strain data for Al 3003 H19 [14]

Strain 0 0.006 0.011 0.018

Stress (MPa) 195.0 209.8 215.4 216.0

the honeycomb were filled with wood. In type B, only the cells along the periphery
of the honeycomb panel were filled. Figure 2 shows the bare, Type A, and Type B
filled honeycombs. It should be noted that the wood fillings have fibers perpendicular
to the length, which means, the compression is carried out perpendicular to the fiber
direction.

Balsa wood with 112 kg/m3 density was used to fill the honeycomb cells.
Although, various wood species differ largely from one another, the cell wall mate-
rial of the wood is the same for all of them. Density, modulus and yield strength
of the cell wall material are 1469 kg/m3, 38 GPa and 120 MPa, respectively [11].
The mechanical properties of balsa wood have been found to be largely dependent
on its density [12]. Young’s modulus in the longitudinal direction (EL), compres-
sive strength in the longitudinal direction (σL), and tangential direction (σT) are 2.5
GPa, 8 MPa, and 0.8 MPa, respectively [15]. Other properties of balsa wood used in
simulations are mentioned in Table 3.

Quasi-static compression tests were carried out in the tangential direction on
balsa wood of cross-section of 10 mm by 10 mm and height 20 mm to obtain the
compression behavior of the wood. The stress-strain graph obtained is shown in
Fig. 3.

Fig. 2 Honeycomb samples filled with balsa wood, (a) bare honeycomb, (b) type A filled
honeycomb, and (c) type B filled honeycomb

Table 3 Elastic ratios for Balsa [15]

ET/EL ER/EL GLR/EL GLT/EL GRT/EL μLT

0.015 0.046 0.054 0.037 0.005 0.488



Energy Absorption Characteristics of Balsa Wood … 221

Fig. 3 Experimental result
obtained from compression
test of balsa wood in
tangential direction

4 Finite Element Modeling for Quasi-static Simulation

Finite Element (FE) modeling of Aluminum honeycombs were carried out using LS-
DYNA [16] package.Mass scaling and time scaling techniques were used to simulate
quasi-static condition. Figure 4 shows representative FE models of the bare, Type A,
and Type B filled honeycombs.

Belytschko-Tsay Shell 163 elements with four integration points were employed
to simulate the honeycomb cell walls for high computational efficiency [17]. In each
honeycomb cell, four oblique walls are modeled with single wall thickness while two
vertical walls with double wall thickness. Since, the time-step for shell element is
directly proportional to itsmass and characteristic length, Ls, therefore, for increasing
time-step, mass scaling is employed. For implementing mass scaling in LS-DYNA,
CONTROL_TIMESTEP card was used.

Aluminum honeycomb walls were simulated using a PIECEWISE LINEAR
PLASTICITY material model, without strain rate sensitivity for foil material. Input

Fig. 4 FE model of (a) bare honeycomb with impactor (top), honeycomb (middle), and fixed
support (bottom), (b) only bare honeycomb (c) type A filled honeycomb, and (d) type B filled
honeycomb
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material properties are given in Table 2. For the lower platen, all degrees of freedom
were fixed. For upper platen, all the three rotational movements and two transitional
movements in the X and Y directions were fixed. The upper platen was kept free to
move in the negative Z direction at a constant velocity to compress.

AUTOMATIC_SURFACE_TO_SURFACE contacts were employed between
platens and honeycomb, and AUTOMATIC_SINGLE_SURFACE was provided for
the honeycomb to incorporate the contact during folding of the cell wall. Mesh char-
acteristics can affect the numerical simulation results as it is important in building
up a reliable numerical model. For this purpose, convergence and mesh sensitivity
study for mesh size variation of 0.5–2 mm is performed for the meshed models.
In case of bare honeycomb, it is discretized with 2, 1.4, 1, 0.73, and 0.5 mm size
shell elements. Stress-strain plots corresponding to different element mesh sizes are
shown in Fig. 5, along with resulting curve from experiments. It is observed that,
FE model with 0.5 mm mesh shows good agreement with the experimental results
followed closely by 0.73 and 1 mm meshed models. However, the time required for
0.5 and 0.73 mmmeshed models are very large as compared to 1 mmmeshed model.
Significant fluctuations in stress values are observed in the case of 1.4 mm meshed
model and in case of 2 mm meshed model. Hence, mesh size of 1 mm is considered
for further studies on Type A and Type B filled honeycombs.

In the FE model, balsa wood was modeled with a constant stress solid
element. The material model chosen for balsa wood was MAT_HONEYCOMB.
MAT_MODIFIED_HONEYCOMB and MAT_WOOD were the other two material
models used for modeling wood in FEA. Among these three, MAT_HONEYCOMB
has been noticed to be the fastest and reasonably accurate in modeling compression
of balsa in a confined space [18].

The contact between the impactor/support and the wood filling were modeled
by AUTOMATIC_SURFACE_TO_SURFACE contacts. The same was used to
model contact between wood and honeycomb. The size of the wood filling was

Fig. 5 Comparison between
stress-strain graphs of 0.5,
0.73, 1, 1.4, and 2 mm
meshed model for bare
honeycomb case



Energy Absorption Characteristics of Balsa Wood … 223

kept slightly smaller than the cells of honeycomb to avoid initial penetration.
The self-contact of the wood filling during buckling was modeled with AUTO-
MATIC_SINGLE_SURFACE contact algorithm. Mesh sizes used for compression
of Type A honeycomb, for both honeycomb as well as wood, were 0.5, 0.73, 1, and
1.4 mm.

5 Results and Discussion

In this section detailed analysis of the experimental, aswell as FE results are presented
in terms of compression and energy absorption characteristics of the bare and filled
honeycombs.

5.1 Experimental Results

Quasi-static compression of two types of wood filled honeycomb has been investi-
gated along with out-of-plane quasi-static compression of bare honeycomb. Stress-
strain behavior of the bare, Type A, and Type B honeycombs is obtained and shown
in Fig. 6. The graphs in all the three cases, show three regions of elastic compression
(first peak), progressive buckling (plateau region), and densification (final ramping
up of stress), as demonstrated by a typical honeycomb in compression (Fig. 7).

It is observed from Fig. 8a, that the SEA (Specific Energy Absorption) in case of
both Type A and Type B honeycombs decreases compared to bare honeycomb case.
Furthermore, the SEA of Type A is noticed to be lower than that of Type B. The
reason for this decrease in SEA could be due to the relatively high density of balsa

Fig. 6 Comparison between
stress-strain graphs of bare,
type A filled, and type B
filled honeycombs
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Elastic compression

Plateau region

Densification

Fig. 7 Stress-strain curve for bare Aluminum honeycomb labeled with different regions of the
curve

(a) Energy Absorption (b) Compression Characteristics

Fig. 8 (a) Energy absorption behavior and (b) compression characteristic of bare, type A, and type
B filled honeycombs (AEA: Absolute Energy Absorption, SEA: Specific Energy Absorption)

wood compared to honeycomb. A combination of lower density of balsa wood with
the honeycomb of present density may lead to different results.

As shown in Fig. 8b, there is a sharp increase in the plateau stress of the filled
honeycombs (74% for Type A and 55% for Type B) when compared to the bare
honeycomb case. Peak stress for both type A and Type B honeycomb is nearly the
same and is higher than the bare honeycomb by 16% and 22.22% for type A and
type B, respectively.
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5.2 FEA Results for Quasi-static Simulation

The experimental results given in the previous section have been used to validate
quasi-static simulations for bare, Type A, and Type B honeycombs. Figures 9, 10,
and 11 shows the comparison between FE and experimental results for bare, Type
A, and Type B honeycombs, respectively.

FE Simulations were performed using LS-DYNA software. As the peak stress
is very short-lived, the slight difference in the experimental and the FE peak stress
may be due to the difference in the frequency of capturing the output data, which is
many times higher in the experimental result than the FE result. The plateau region
of FE result for bare honeycomb shows good agreement with the experimental result,
see Fig. 9. In the case of Type A and Type B filled honeycombs, FE results slightly

Fig. 9 Stress-strain curve
showing comparison
between experimental and
FE compression result for
bare honeycomb

Fig. 10 Stress-strain curve
showing comparison
between experimental and
FE compression result for
type A honeycomb
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Fig. 11 Stress-strain curve
showing comparison
between experimental and
FE compression result for
type B honeycomb

overestimate the plateau stress as compared to experimental results, see Figs. 10 and
11. The difference may be because of the contact between wood and honeycomb,
which is much more complex to be accurately simulated in the FE model. Other
reason could be the irregularities in the honeycomb cell shapes, and the shapes of
wood fillings, which were also difficult to control. However, the trend in the curves is
found to be very similar. The slow increase in the plateau stress as the strain increases
is capturedwell in both the FE results. Densification also starts approximately around
the same strain values in both, Type A and Type B filled cases.

The deformation behavior of bare, Type A, and Type B honeycombs are shown
in Figs. 12, 13, and 14.

It can be seen in Figs. 12, 13, and 14, that honeycomb cell walls deformation
pattern during the beginning of experiment is not like the deformation characteristics
obtained in FE simulations. In the experiment, plastic deformation starts somewhere

Fig. 12 Comparison between the initial deformation pattern of experiment (a) and FE compression
(b) results for bare honeycomb
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Fig. 13 Comparison between the initial deformation pattern of experiment (a) and FE compression
(b) results for type A honeycomb

Fig. 14 Comparison between the initial deformation pattern of experiment (a) and FE compression
(b) results for type B honeycomb

in the middle while buckling begins from one of the interfaces (moving or stationary)
in the FE model. The difference in the deformation behavior could be due to the
adhesive failure in the experimental case while in the FE model, perfect adhesive
bonding between the walls was assumed. Hence, in the experimental tests, material
starts to fail from the weaker region, i.e., from the failure of the adhesive bond. The
unavailability of the actual material properties of the Aluminum honeycombs could
be another reason for the difference in the initial deformation pattern.
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The final deformed shapes for experimental and FE results of bare, Type A,
and Type B honeycombs are shown in Figs. 15, 16, and 17. The final deformed
shapes show a good agreement between the experimental result and FE simulation
results for all the three cases. In both FE and experimental results, outer cell walls
of honeycombs are deformed irregularly, predominantly in bare honeycomb case. In
all the three cases, the inner walls show more regular deformation.

Fig. 15 Comparison between the final deformed shape of experimental and FE compression results
for bare honeycomb

Fig. 16 Comparison between the final deformed shape of experimental and FE compression results
for type A honeycomb
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Fig. 17 Comparison between the final deformed shape of experimental and FE compression results
for type B honeycomb

6 Conclusion

Present work focuses on experimental and numerical analysis of bare and balsa
wood filled honeycombs for comparison in the energy absorption characteristics
under compressive loading for two different configurations. In the first configuration,
(Type A) balsa wood is filled to each cell of the honeycomb (Fig. 2b), and in the
second configuration (Type B) balsa wood is filled in the cells along the periphery
of the honeycomb panel (Fig. 2c). The FE simulation under quasi-static condition
is validated using experimental results. The FE results show good agreement with
experimental results (Figs. 9, 10, and 11). The slight overestimation of the plateau
stress in the case of Type A and Type B filled honeycombs may be because of
the following two reasons. Firstly, the contact between wood and honeycomb is
much more complex than the contact algorithm used in the present FE model. The
irregularities in the shapes of honeycomb and wood filling may be the second one.

The energy absorption behavior, in terms of absolute energy absorption and
specific energy absorption, is compared for bare and filled honeycombs in Fig. 8a.
It is observed that AEA for filled honeycombs is higher than bare honeycomb by
32 and 18.51% for Type A and Type B honeycombs, respectively. This increase
shows the possibility of using balsa wood filled honeycomb in areas where signif-
icant energy absorption along with larger in-plane stiffness of the sandwich core is
required. Specific energy absorption, however, decreases for balsa filled honeycombs
as compared to the bare honeycomb. This can be attributed to the relatively higher
density of balsa wood, 112 kg/m3 with respect to the density of present honeycomb
37 kg/m3. The compression characteristics, in terms of peak stress and plateau stress
in Fig. 8b, shows that the balsa filled honeycomb exhibit higher plateau stress as
compared to the bare honeycomb by about 74% and 55% for Type A and Type B,
respectively.
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Experimental and FE deformation behavior of bare and filled honeycomb for all
the cases is shown in Figs. 12, 13, and 14. The initial deformation of honeycomb
during experiments show failure around the middle, while in the results from FE
analysis, it begins from the interface (moving or stationary). The adhesive failure of
the honeycomb walls and the unavailability of material properties of the Aluminum
honeycomb material are the possible reasons for the difference. The final deformed
shapes from the FE results are quite like that of the experiments with outer walls
irregularly deformed while the inner ones deformed regularly. Overall, this study
contributes towards developing an understanding of energy absorption characteristics
of light wood (balsa) filled Aluminum honeycomb materials.
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Simulation of Flow and Transport
Process—Scope of Meshless Methods

Aatish Anshuman and T. I. Eldho

1 Introduction

Groundwater is a vital resource of water as it is widely used for drinking, agricultural
and industrial purposes. Due to overuse/pumping of groundwater, its availability is
decreasing continuously. Apart from that, it is being contaminated due to various
sources of pollution such as waste storage facilities, industries and sanitary landfills.
Transport of contaminants in groundwater is incredibly complex which includes
advection, dispersion, adsorption and single or, multispecies reactions. Therefore,
prediction/assessment of quality and quantity of groundwater in an aquifer is essen-
tial for efficient management of the resource. Groundwater flow and contaminant
transport simulation is an important step in this directionwhich enables the prediction
of groundwater availability fate of contaminants.

Flow and contaminant transport modelling in the aquifer requires solving
partial differential equations derived from conservation of mass and other appli-
cable equations. Analytical solutions to these equations can be obtained for
simplistic cases. However, field aquifers often encountered with irregular bound-
aries, complex boundary conditions, heterogeneity, anisotropy, recharge zones and
pumping/injection wells. Hence, numerical modelling is done to estimate head
and concentration in these problems. Conventionally, these are modelled using
grid/mesh-based methods such as Finite Difference (FDM) and Finite Element
Method (FEM). Grid/mesh creation necessitates expensive computations. Mesh/grid
refinement is required nearby the high-stress areas such as pumps/injection well
locations. Further, contaminant transport modelling using these methods is prone to
instabilities such as numerical dispersion and artificial oscillation [14]. One of the
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techniques to stabilize this issue is adaptive meshing or, re-meshing [5] in which the
mesh is modified at each time step thus increasing the computational effort further.
Apart from that, the introduction of artificial oscillation, crosswind diffusion and
upwinding are some of the techniques for improving the stability in mesh-based
methods [5].

Meshlessmethods are alternatives to solving flow and contaminant transport prob-
lems. These methods eliminate the use of mesh which reduces the computational
effort and adds adaptability to the models. The models using these methods are
actively being developed for different field and hypothetical problems. Based on the
formulation of governing equations, these methods are either strong or, weak form-
based. Further, these methods use some kind of basis functions for interpolation of
state variables in the domain. Some examples of weak form-based techniques include
Radial Point Interpolation Method (RPIM) [10], Element Free Galerkin Method
(EFGM) [13] and Meshless Petrov Galerkin method (MLPG) [16]. An example of
a strong form meshless method is Point Collocation Method (RPCM) [1–3, 11, 12,
15]. This method uses Radial Basis Functions (RBF) for interpolation of shape func-
tions and their derivatives. These shape functions are used to discretize the governing
equations and boundary conditions in the problem domain. Kansa used this technique
for the very first time to solve partial differential equations [8, 9]. This technique is
further improved with local support domains which eliminate the ill-conditionality
issue associated with it. Meenal and Eldho [11, 12] used rectangular support domain
which required dummy nodes around the boundary for uniformity number of nodes
in support domains. Singh et al. [15] used circular support domains which does not
necessitate creation of dummy nodes. Anshuman et al. [1] extended the application
to reactive transport problems and performed sensitivity analysis with respect to the
model parameters. Further, reactive simulation of decay chain in porous media is
developed and verified against RT3D [2, 3].

2 Methodology

2.1 Governing Equations

2.1.1 Flow in Confined and Unconfined Aquifers

The flow in a confined aquifer is governed by the following equation [4].

∂

∂xi

[
Txi

∂h

∂xi

]
= S

∂h

∂t
+ Qwδ (1)

where h is the head in groundwater, Txi is the transmissivity, S is the storativity, t is
time, Qw is the pumping rate and δ is the Kronecker delta function. The governing
Eq. (1) is subjected to the following initial and boundary conditions:
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h(xi , 0) = h1 xi ∈ � (2)

h(xi , t) = h2 xi ∈ ∂�1 (3)

T
∂h

∂n
= q1 xi ∈ ∂�2 (4)

where h1 is the known head in the problem domain � at t = 0. h2 and q1 are known
head and flux along the boundaries ∂�1 and ∂�2, respectively. Similarly, the flow in
unconfined aquifers is governed by Eq. (5) [4].

∂

∂xi

[
kxi

∂h

∂xi

]
= Sy

∂h

∂t
+ Qwδ − q (5)

where kxi is the hydraulic conductivity and Sy is the specific yield of the aquifer. For
an unconfined aquifer, the initial and boundary conditions are given by [4]

h(xi , 0) = h1 xi ∈ � (6)

h(xi , t) = h2 xi ∈ ∂�1 (7)

kxi h
∂h

∂n
= q1 xi ∈ ∂�2 (8)

2.1.2 Contaminant Transport

Due to the presence of hydraulic head gradient, the contaminants in the groundwater
are migrated from one location to another. The governing equation for transport of
reactive contaminant species in groundwater is given by [4].

R
∂C

∂t
= ∂

∂xi

[
Dxxi

∂C

∂xi

]
− ∂

(
Vxi C

)
∂xi

− RλC + QwC

ne
(9)

where C is the concentration of the contaminant species, ne is the porosity of the
medium, Qw is the pumping rate, Dxxi is the dispersion coefficient and Vxi is the
seepage velocity. The reactions related to the species are denoted by R and λ which
are retardation factor and order decay rate, respectively. The initial and boundary
conditions associated with the governing Eq. (9) are given by

C(xi , 0) = 0 xi ∈ � (10)
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C(xi , t) = C1 xi ∈ ∂�1 (11)

[
Dxxi

∂C

∂xi

]
nxi = g2 xi ∈ ∂�2 (12)

In a coupled environment, the velocities and dispersion coefficients in Eq. (9) are
obtained with the help of a groundwater flow model as shown in Eqs. (13) and (14).

Vxi = −kxi
ne

∂h

∂xi
(13)

Dxxi =
∑

αxi V
2
xi

V̄
(14)

where αxi is the dispersivity and V̄ is the resultant velocity.

2.2 Radial Point Collocation Method

In RPCM, a set of scattered nodes are used for the representation of the domain. For
approximation of shape functions and their derivatives, intersecting local support
domains are formed around all nodes. Shape function interpolation is carried out
using radial basis functions (RBF) and polynomial basis functions (PBF) [10]. For
instance, the state variable C in Eq. (9) can be written as a combination of n number
of RBFs (R) and m number of polynomial basis functions (PBFs) as follows [10].

C(xi) =
n∑

i=1

Riai +
m∑
j=1

p jb j (15)

where a and b are the unknown coefficients computed by enforcingC to pass through
the nodes in the local support domain. A total of n number of equations are gener-
ated with n + m variables due to the above-mentioned condition. The following m
constraint conditions can be used to obtain the remaining m equations.

m∑
i=1

p j (xi )ai = 0, j = 1, . . . ,m (16)

Here multi-quadrics radial shape functions (MQ-RBF) are used which are given
as [7]

Ri = (r2i + c2s )
q (17)
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The terms q and cs are referred to as MQ-RBF shape parameters. In standard
MQ-RBF, q is fixed as 0.5 [10]. However, studies have demonstrated that fixing the
value to 0.98 or 1.03 gives good results for fluid- and structure-related problems [10].
The parameter cs is represented as a factor of nodal distance [10]. The method for
calculating dc for different nodal distributions is presented in Liu and Gu [10]. The
term ri denotes the distance between the point of interest and ith node in the support
domain. The procedure for solving the system of Eqs. (15) and (16) is explained in
the previous studies [2, 3, 10]. Here, the use of PBF is avoided as satisfactory results
have been reported using MQ-RBFs [1, 3, 11, 12, 15]. The shape functions (φ) are
derived at n nodes in the support domain by solving Eqs. (15) and (16). The state
variable C is approximated at a node as follows:

C(x, y) =
n∑

i=1

φiCi (18)

Similarly, the shape function derivatives can be employed for computation of
derivative of state variables at all nodes. The point collocation method is then used
for discretization of governing. For discretization in time domain in Eq. (9), the
forward difference scheme [14] as shown in Eq. (20) is implemented.

∂C

∂t
= Ct+�t

i − Ct
i

�t
(19)

The concentration C in Eq. (7) is replaced by the semi-implicit formulation as
follows.

C = θCt+�t + (1 − θ)Ct (20)

Here, θ is a temporal weighting parameter which ranges between 0 and 1 [14].
Here, θ = 0.5 is used which is known as Crank–Nicolson scheme. It is a fairly stable,
accurate and widely used method [1–3, 15]. Using Eqs. (19) and (20), Eq. (9) can be
expressed as follows:

[
Rφ

�t
− θ

{
Dxxi

∂2φ

∂x2
− Vxi

∂φ

∂x
− λφ

}]
Ct+�t
i

= Ct
i

[
Rφ

�t
+ (1 − θ)

{
Dxxi

∂2φ

∂x2
− Vxi

∂φ

∂x
− λφ

}]
+ qwC ′

ne
(21)

Equation (21) is applied at the internal nodes in the domain � which yields a
system of equations. For the nodes on the Dirichlet boundary ∂�1 (see Eq. (11)), the
discretization is implemented as

φCi = C1 (22)
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Here, the Neumann type boundary (∂�2) is discretized using direct collocation
approach given by

Dxx
∂φ

∂n
Ci = g1 (23)

For impervious boundaries, the fluxes (g1) are set to zero. Combining Eqs. (21),
(22) and (23), for N boundary and internal nodes, the following system of equations
will be obtained.

[K ]N×N {C}t+�t
N×1 = [F]N×N {C}tN×N + {Q}N×1 (24)

The system matrix K is sparse as it is formed using local support domains. The
sparsity of the matrix decreases with increase in the number of nodes in the support
domain. The governing equations for confined (Eq. (1)) and unconfined aquifer
(Eq. (5)) and the corresponding boundary can also be discretized in a similar manner
using the shape functions and its derivatives. These equations are used to determine
the head values at the nodes throughout the aquifer. The system of equations for
determination of head can be written as follows.

[K ]N×N {h}t+�t
N×1 = [F]N×N {h}tN×N + {Q}N×1 (25)

2.3 Model Development

The development of coupled flow and transport model in RPCM consists of the
following steps:

1. Node definition and local support domain: The problem domain is represented
using nodes scattered throughout the domain. At this step, the size of the local
support domain is input. The aquifer characteristics such as transmissivity,
hydraulic conductivity, pump/recharge well location, porosity and dispersivity
are also input at this stage.

2. Computation of matrices containing shape function information: The MQ-RBF
shape parameters q and cs are specified. The shape function and derivatives are
computed for each node and its support domain using MQ-RBF.

3. Development of the flow model and solution: The governing equation and
boundary conditions for the concerned aquifer type (confined or, unconfined)
(Eq. (5)) are discretized using shape function values and its derivative values.
This system of equations is represented in the form of Eq. (25). The unknown
heads are obtained by solving the system of equations using matrix inversion or,
Gaussian solver.

4. Computation of seepage velocities and dispersion coefficients: Based on the
difference of the head, the seepage velocities at all nodes are computed using the
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corresponding support domain. For instance, the velocity components at node k
may be computed using values of head and derivatives of shape function.

Vxi = −kxi
ne

n∑
i=0

∂φi

∂xi
hi (26)

where n is the number of nodes in the support domain. The dispersion coefficients
are computed using the nodal velocities as per Eq. (14).

5. Development of the transport model and solution: The governing equations and
boundary conditions are assembled in a similar manner as the flow model as
shown in Eq. (24). These equations are solved till the maximum simulation time
is reached. Formultispecies transport problems, the systemofEq. (24) is obtained
for each species.

The steps involved in the model development are presented in Fig. 1.

Fig. 1 Flow chart for model development



242 A. Anshuman and T. I. Eldho

3 Model Applications

3.1 Case Study 1

Here, a hypothetical homogenous unconfined aquifer of dimensions 200m×150m is
considered. Thehydraulic conductivity andporosity of the aquifermaterial are 50m/d
and 0.3, respectively. The north and south boundaries are no flow boundaries whereas
the west and east boundaries are Dirichlet boundaries with head values of 10 m and
8 m, respectively. There is a pump located in the aquifer at (120, 110 m) which
extracts groundwater at the rate of 150 m3/d. A contaminant source which is located
at (50, 70 m) injects Tritium of 2000 ppm at the volumetric rate of 2 m3/d. The
contaminant undergoes first-order degradation with decay rate of 0.000153 d−1. The
steady-state flow in the aquifer is modelled by RPCM-Flow model with 26 × 16
uniformly distributed nodes (see Fig. 2). The size of the local support domain is 4
times the nodal distance. The MQ-RBF shape parameters q and cs are 0.98 and 5
times the nodal distance. The model results are compared with MODFLOW [6] in
Fig. 3. It is observed that the results from the meshless model match excellently with
that of MODFLOW.

The reactive transport model is developed using RPCM with the same nodal
configuration as the flow model. The longitudinal and lateral dispersivities are 10 m
and 0.1 m, respectively. The model is run for a simulation period of 1 year with
time step of 5 days. MT3DMS [17] model is used for comparison. The contaminant
concentrations at the end of the simulation period are presented in Fig. 4 and Table 1.
It is observed that the concentrations obtained by both models are similar to the
maximum relative difference of 0.28. This case study shows the efficiency of the
RPCM model for the coupled flow and reactive transport in unconfined aquifers.

Fig. 2 Representation of nodal distribution for case study 1
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Fig. 3 Distribution of head in the aquifer as simulated by RPCM (left) and MODFLOW (right)

Fig. 4 Distribution of Tritium at the end of 1 year in the aquifer as simulated by RPCM (left) and
MT3DMS (right)



244 A. Anshuman and T. I. Eldho

Table 1 Comparison of concentrations obtained by RPCM and MODFLOW-MT3DMS at
randomly selected locations

Location Coupled-RPCM (ppm) MODFLOW-MT3DMS (ppm) Relative difference

125, 125 m 0.49 0.38 0.28

95, 70 m 31.27 30.30 0.03

70, 80 m 19.57 16.97 0.15

160, 65 m 16.07 14.10 0.13

145, 45 m 3.78 3.03 0.24

3.2 Case Study 2

In this case, a hypothetical field-like aquifer is considered as shown in Fig. 5. The
velocities in x- and y-directions are assumed to be 1.25m/d and 0.2m/d (in downward
direction), respectively. A three-species decay chain is considered for study in which
species 1, 2 and 3 are formed in a sequential manner. The location of contaminant
source which injects species 1 at the rate of 1 ppm/d is shown in Fig. 5. Here,
direct sources for species 2 and 3 are not considered. Species 1 acts as the source
for species 2, and species 2 acts as the source for species 3. The first-order decay
rates of the species 1, 2 and 3 are 0.002 d−1, 0.003 d−1 and 0.004 d−1, respectively.
The formulation of RPCM transport model for simulating decay chain reaction is
discussed in Anshuman and Eldho [2, 3]. The dispersion coefficients in x- and y-
directions are taken as 5 m2/d. The RPCM-Transport model is developed with 1841
nodes with uniform nodal distance of 25 m as shown in Fig. 5. The model parameters
q and cs are 0.98 and 5 times the nodal distance, respectively. The radius of local

Fig. 5 Schematic diagram of study area and nodal distribution for case study 2
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support is taken as 4 times the nodal distance. The model is run for a simulation
period of 2 years with a time step of 5 days.

The developed model is compared with a FEM-based model developed in
COMSOL [5]. The results from both models are presented in Fig. 6. It is observed
that the results from the proposed model matches with the FEM-based model. The
concentrations of the contaminants at randomly selected locations are presented in

Fig. 6 Distribution of species 1, 2 and 3 at the end of 2 years in the aquifer as simulated by RPCM
(left) and COMSOL (right)
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Table 2 Comparison of
concentrations obtained by
RPCM and COMSOL at
randomly selected locations

Location COMSOL RPCM Rel. Diff.

Species 1 (ppm)

600, 525 m 20.34 21.73 0.07

675, 525 m 13.76 14.43 0.05

700, 550 m 8.02 7.42 0.08

850, 550 m 4.26 3.65 0.14

Species 2 (ppm)

600, 525 m 2.39 2.58 0.08

675, 525 m 3.03 3.23 0.07

700, 550 m 2.19 1.91 0.13

850, 550 m 1.93 1.64 0.15

Species 3(ppm)

600, 525 m 0.24 0.27 0.10

675, 525 m 0.53 0.58 0.08

700, 550 m 0.47 0.39 0.18

850, 550 m 0.67 0.57 0.15

Table 2. The maximum value of the relative difference between both the model simu-
lations is 0.18. Hence the meshless method can be efficiently used for studying the
transport of species in a decay chain in aquifers.

4 Conclusion

Here, the applicability of a meshless method named RPCM is demonstrated with
two case studies. It is observed that the model simulations are similar to that of FDM
and FEM based models. In meshless methods, the connectivity between the nodes
is not present which reduces the modelling steps and enhances the adaptability of
the model. It also provides increased stability due to the use of local domains in
case of high advective [1, 15] and reactive problems [1]. The study showed that
the meshless methods can be applied for a variety of problems related to flow and
transport modelling in groundwater aquifers.

Acknowledgements The authors of the paper are thankful to Board of Research in Nuclear
Sciences (BRNS) for supporting this work through the project “Modelling of reactive transport
in groundwater using meshfree based numerical methods” (Project no. 16BRNS002).
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Computational Modelling of Stochastic
Buffeting of Fin-Like Structures

Rahul Sundar, Avisha Ghorpade, Jithin Jith, Sayan Gupta,
and Sunetra Sarkar

1 Introduction

Buffeting is defined as the response of a structure to the aerodynamic excitation
provided by separated flows [1]. Fin buffeting refers to the response of an aircraft fin
to the separated wake from upstream components like the wing, foreplane, fuselage,
etc. Depending on the flight conditions and geometry configurations, the buffeting
response of a fin may be very large, and may lead to the accumulation of significant
fatigue damage [2], thus, warranting its study in the design of a delta wing aircraft.

A thorough understanding of the sources of fin buffeting enables better modelling
and estimation of buffeting loads on the structure. For flow over a delta wing, there
exist four major flow phenomena responsible for fin buffeting—(i) vortex wandering
[3], (ii) vortex breakdown [4], (iii) fluctuations of the breakdown location, [5], and
(iv) vortex shedding [6]. All of these mechanisms are due to the vortices generated
by the delta wings themselves, or by leading-edge extensions and forebodies.

The fluctuations in the velocity field due to these sources occur in different fre-
quency regimes as identified by Gursul et al. [7] which can be visualised using a
power spectrum of velocity fluctuations. From Gursul et al.’s [7] experimental work,
it was evident that the helical mode instability (arising from vortex breakdown) has
the highest frequency and occurs at smaller angles of attack of the delta wing. On
the other hand, vortex shedding has a lower frequency and occurs at larger angles of
attack. Vortex interaction (the major cause of fluctuation of the breakdown location)
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has the lowest frequency and is seen to occur at intermediate angles of attack, and
vortex wandering happens to be the weakest source compared to others.

The structural response of the fin to various buffeting sources has been studied in
a statistical manner by various authors. The earliest work was done by Liepmann [8],
in which the forces acting on a thin plate in a turbulent flow were determined using
analytical methods. Once the power spectrum of the forces was obtained, it was
applied to the frequency response function of a single degree of freedom model
representing the thin plate. In this manner, it was possible to determine the response
of the plate. In the following work, Liepmann [9] was able to extend this approach to
wings of finite spans. A similar approach has been used by Ribner et al. [10] as well.
The main drawback of these approaches is that they require analytical methods to
determine the forces acting on the fin. This is not always possible and, when possible,
may not be as accurate as compared to a CFD simulation.

In this work, a stochastic approach is proposed to model the unsteady wake of a
delta wing to estimate buffeting loads acting on the fin-like structure. The approach
is demonstrated by computing the buffeting loads on a 2D symmetric NACA airfoil
representing a fin structure located in the wake of an idealised delta wing. The
computational studies are carried out using OpenFOAM [11], an open-source CFD
software based on the finite volume method.

2 Computational Methodology

2.1 Statistical Model of the Flow Field and Computational
Implementation

Using the spectral characteristics of the various buffeting sources described in Sect. 1,
it is possible to construct a temporally consistent statistical model of the flow down-
stream of a delta wing. The present study proposes to achieve this by reconstructing
the flow field as a collection of random processes derived from the available exper-
imental power spectra. To this end, two tasks are undertaken—(i) fitting the noisy
experimental power spectra to a smoother numerical approximation, and (ii) gener-
ating the velocity field as random processes based on the fitted spectra.

To obtain a smoother numerical fit to the experimental power spectra, the present
study utilises a linear combination of Gaussian distributions and linear interpolation
functions asmost experimental power spectra consist of multiple peaks [12]. Figure5
shows an experimental spectrum which has been approximated as mentioned.

2.1.1 Generation of Random Processes

This section deals with the generation of velocity fields from a prescribed power
spectral density (obtained by fitting a smoother numerical approximation) using
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random processes. A random process also requires an associated probability distri-
bution. When prior knowledge of the probability distribution is unavailable, as is
the case here, it is customary to assume that the random process follows a Normal
distribution [13]. One of the most popular methods of generating stationary ran-
dom processes with a Normal distribution from a given power spectral density is the
Spectral Representation Method (SRM) [14]. Suppose the power spectral density of
a random process, in this case, the velocity fluctuation magnitude V (t), is given by
S(ω), a realisation v(t) of V (t) can be generated using SRM by

v(t) =
N−1∑

n=0

√
2S(ωn)Δω cos(ωnt + φn), (1)

where Δω = ωu/N ,ωn = nΔω, and φn is a random phase angle which follows a
uniform distribution in the range [0, 2π]. Here, ωu is called the cut-off frequency
that represents an upper frequency limit for S(ω), and N represents the number of
segments into which the frequency range of S(ω) needs to be discretised. Shinozuka
et al. [14] have shown that the time step Δt used to evaluate Eq.1 needs to be
Δt ≤ 2π/2ωu . Another point to keep in mind is that v(t) generated from equation
(1) will be periodic with a time period T = 2π/Δω. Therefore,Δω should be chosen
such thatv(t)does not showperiodic behaviour in the timespan chosen for generation.
Though SRM can also be used to generate stationary vector random processes [15],
in this work we limit ourselves to a univariate random process.

2.1.2 Implementation of SRM in a CFD Solver

Existing OpenFOAM boundary conditions suffered from the drawback that the ran-
dom process had to be generated beforehand which led to the computational process
being cumbersome. The new boundary condition ensures that the random process
generation is performed on the fly. The method described in the previous subsection
(SRM) is implemented in the open-source CFD software OpenFOAM [11] as a cus-
tom boundary condition written in C++. It can be used as an inlet boundary condition
which generates the velocity field (see Eq. (2)) at the inlet as a random process using
SRM. The user simply needs to specify the mean free stream velocity (U0), an input
power spectral density (S(ω)), and a unit direction (ĝ) for the velocity fluctuation
(v(t)) at the inlet. The velocity field at the inlet can be given by

U(t) = U0 + v(t)ĝ. (2)

Here, v(t) is obtained as described in Sect. 2.1.1.
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2.2 2D Computational Study of Fin Buffeting

2.2.1 Study Conditions

Because of the symmetric nature of the fin and its zero angle of attack, fluctuations in
the streamwise velocity are less significant when it comes to buffeting, and therefore
the focus is on fluctuations of velocity in the transverse direction [16]. It is to be noted
that the fin is assumed to have a zero dihedral angle. In case of non-zero dihedral
angles, other components of the velocity also become significant [16]. In the present
study, the airfoil is subjected to a random vertical gust emanating from the inlet. The
frequency range of the spectrum is decided from experimental measurements [12]
which show that the buffeting phenomena over a delta wing are present in the range
f c/U∞ ∈ [0, 10] (where f is the frequency of the gust and U∞ is the free-stream
velocity). A flat spectrum is chosen for initial validation of the boundary condition
so that the energy contribution of all the frequencies in the range of interest are
equal. The final study is performed with a realistic spectrum, the details of which
will be discussed in Sect. 3. The time history of the vertical gust is generated using
the Spectral RepresentationMethod [14]. The vertical gust is assumed to be perfectly
correlated along the vertical axis.

2.2.2 Liepmann’s Analytical Model

Liepmann’s model [8] provides a way to determine the power spectrum of the lift
coefficient of a thin airfoil which encounters a random vertical gust. It is based
on Sears’ function [17] which can be used to obtain the lift coefficient of a thin
airfoil subjected to a sinusoidal vertical gust. Liepmann’s model states that the power
spectral density of the lift coefficient is given by

Scl(ω) = 4π2Sv(ω)|φ(k)|2 (3)

where Sv(ω) is the power spectral density of the vertical gust, and

φ(k) = J0(k)K1(ik) + i J1(k)K0(ik)

K1(ik) + K0(ik)
. (4)

Here, k = ωc/2U∞ and Jn and Kn are Bessel functions.

2.2.3 Computational Domain

The computational domain of the study is shown in Fig. 1. It consists of an airfoil
of chord c = 1 m and angle of attack α = 0◦ placed in a rectangular domain of
dimensions 16c × 22c. The leading edge of the airfoil is placed at a distance of 3c
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Fig. 1 Computational
domain

Fig. 2 NACA 66005 airfoil

from the inlet (leftmost edge). NACA 66005 (see Fig. 2) is considered in this study
which has a symmetric profile, representative of vertical tail fins on the delta wing
aircraft. The details of the study parameters are given in Table1.

A hybrid mesh, which is structured within an elliptical region around the airfoil
and unstructured outside of it, is used to discretise the computational domain. The
mesh near the airfoil, where it is much finer, is shown in Fig. 3. The computational
mesh is parameterised by the number of grid points (na) present on the surface of the
airfoil. A mesh and time step convergence study was performed for different mesh
resolutions and time step resolutions. In order to maintain brevity, the details and
results of the study aren’t presented. However, the mesh with na = 600 and a time
step, Δt = 2.5 × 10−5 was found to be the suitable choice for further computational
studies.

2.2.4 Solver Details

Computational studies have been carried out using OpenFOAM, a finite volume-
based computational fluid dynamics framework. The solver used is PisoFOAM,
which is an unsteady Navier–Stokes solver with the pressure velocity coupling
achieved through the PISO algorithm [18]. The spatial and temporal discretisa-
tion schemes are second-order accurate. The pressure equation is solved using Geo-
metric Algebraic Multi Grid (GAMG) solver with Diagonal Incomplete Cholesky
(DIC)-Gauss Seidel-based smoother and the velocity is solved using Preconditioned
Bi-conjugate Gradient (PBiCG) iterative solver with Diagonal Incomplete LU
(DILU) preconditioning.
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Table 1 Study parameters

Parameter Value

Chord, c 1 m

Angle of attack, α 0◦

Free-stream velocity, U∞ 1 m/s

Reynolds number, Re 104

Fig. 3 Closer view of the mesh around the airfoil

3 Results and Discussion

In this section, we discuss the key results obtained from computational studies for
a flat spectrum and a realistic input spectrum obtained from experimental data [16].
Figure4 compares the power spectral density of cl of NACA 66005 airfoil for the
converged mesh with Liepmann’s model for the flat spectrum. It is quite evident that
the two are quite close to each other. This is therefore a confirmation of the validity
of the implemented boundary condition.

The realistic power spectrum is obtained from experimental studies conducted by
Breitsamter et al. [16] on the wind-tunnel model of a high-agility aircraft of canard-
delta wing type. Figure5 represents the power spectrum of the non-dimensional
vertical gust v/U∞ for a delta wing angle of attack of α = 30◦ and a gust intensity
of vrms/U∞ = 3.41% at a Reynolds number of Re = 0.97 × 106. However, we have
chosen to restrict the study inRe= 10, 000 regime using the same experimental input
power spectrum. The experimentally measured power spectrum (represented by the
red curve in Fig. 5) is approximated by a smoothed power spectrum (represented by
the blue curve) for numerical convenience (see Sect. 2.1). The time history of the
vertical gust is generated using SRM as discussed in Sect. 2.1.

The time series of the lift coefficient for the first 60 s is shown in Fig. 6. The
power spectrum of the lift coefficient is shown in Fig. 7 where it is compared with
the analytical prediction from the Liepmann model [8]. It can be seen that the peak
frequencies of the numerical and analytical spectra coincide, however, the magnitude
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Fig. 4 Power spectral
density of cl for na = 600
(NACA 66005) compared
with Liepmann’s model for a
flat spectrum

Fig. 5 Realistic vertical gust
spectrum. Dashed red lines
and smooth blue lines
indicate the experimental
and fitted spectrum,
respectively (see Sect. 2.1)

Fig. 6 Time history of lift
coefficient (cl ) for the
realistic input spectrum
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Fig. 7 Comparison of power
spectra of lift coefficient
with Liepmann model at
Re = 104 for a relistic input
spectrum

Fig. 8 Power spectra of lift
coefficient with 95%
confidence interval

of the spectra are quite different. Keeping in mind that the time series of the lift
coefficient is random in nature, the 95% confidence interval of the spectrum [19] is
computed and plotted in Fig. 8. It can be seen that the upper bound of the confidence
interval is significantly higher than what is predicted by the Liepmann model.

4 Conclusion

In this study, themechanisms leading to fin buffetingwere investigated and their spec-
tral characteristics were reviewed. Through this study, a novel stochastic approach
to estimate the buffeting loads on a fin-like aircraft structure was presented which
uses the spectral representation method to reconstruct a temporally consistent veloc-
ity field from its associated power spectral density. The reconstructed velocity field
was used as an inlet boundary condition in the CFD studies carried out on a 2D fin
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section using OpenFOAM. The novel boundary condition implemented in Open-
FOAM allowed us to estimate the buffeting loads (cl) in a computationally efficient
manner. The cl power spectra for a flat as well as a realistic input spectrumwere com-
pared with that of Liepmann’s analytical model. The studies revealed that for the flat
spectrum the numerical results matched with that of Liepmann’s. However, for the
realistic input spectrum, it was found that the Liepmann’s model underpredicted the
amplitude of cl , thus showing the necessity to use a full-fledged CFD simulation to
accurately obtain the buffeting loads over analytical models. The authors believe that
the novel boundary condition implemented in this study is generalised and can be
used to even study other problems involving a random gust input spectra as long as
the power spectral density is known and the process is stationary.
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Investigating the Dynamical Behaviour
of Dipteran Flight-Inspired Flapping
Motion Using Immersed Boundary
Method-Based FSI Solver

Chhote Lal Shah, Dipanjan Majumdar, and Sunetra Sarkar

1 Introduction

Biologically inspired insect flight mechanisms have recently become a primary
research subject, mainly, to use in micro air vehicles (MAVs) for defence surveil-
lance and environmentalmonitoring [1]. The prime source of inspiration in this regard
with the reliance on natural selection comes from insects, which constitutes nature’s
successful flyers [2]. The insect flight motors have considerably evolved over ages
making their fapping flight energetically efficient by storing the kinetic energy as
elastic energy. These make use of deformed flexible elements such as flight muscles,
flight thorax and wing hinges for storing the elastic energy and recovering it during
the wing stroke reversal [3]. The Dipteran flight mechanism is one such mechanism.
In particular, it has been discovered that Dipteran flight systems and their muscu-
lar control over the resulting flight dynamics are an efficient growth strategy of the
mechanical wing-motor systems that are bio-inspired [4–6].

Diptera enhances the aerodynamic forces by significantly modifying the wing
stroke dynamics through muscle-induced variations in the flight motor [7]. The
bistable “click” mechanism [8, 9] is one of the most common modelling procedures
to illustrate the muscle to a wing interface mechanism accounted for in the literature
so far. Most of the research on the Diptera flight have focused on the formulation of
an accurate mathematical model of the click mechanism. A few investigations have
directed on studying the dynamical aspects associated with the click mechanism
at a low Reynolds number. Although the majority of the research works [10–12]
have focused on investigating the “complex” flight patterns performed by the natural
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flyers such as insects and birds, there are significant gaps in the understanding of
underlying physics. The Dipteran flight motor-inspired flapping system is inherently
non-linear and further encounters external actuation from themuscle forces. If a non-
linear dissipative system is stimulated by external forcing, it veers from its state of
equilibrium and either oscillates or goes through a complex temporal transformation
called chaos.

Modelling theDipteranflightmechanismas an irrationally non-linear forcedoscil-
lator structure, Cao et al. [13] investigated the interesting bifurcation phenomenon
involving various flight patterns along with complicated coexisting flight mecha-
nisms. They stated a period of doubling cascade, contributing to a chaotic attractor
when the system is introduced to an external excitation force. In all the aforemen-
tioned literature, the direct contribution from the surrounding unsteady flow has not
been considered. Hence, the system dynamics comprising the coupling between the
non-linear framework and the unsteady fluid flow need to be studied as the flight pat-
tern can be remarkably amended in the presence of fluid–structure interaction (FSI)
conditions. Recently, Bose et al. [14] have reported chaotic transients, and inter-
mittent transitions to stable chaos in the study of Dipteran flight-inspired flapping
motion. Their FSI solver was developed using the Lumped Vortex Method (LVM)-
based flow solver and did not consider the effect of viscosity. However, the Reynolds
number (Re= U∞c/ν) regime in which insects fly, the viscous effects are significant
that may alter the dynamic behaviour of the system.

In this paper, we present an in-house FSI solver developed based on the forced
Duffing oscillator model as a structure given by Brennan et al. [9]. The structural
model [9] is coupled with the IBM solver to capture the non-linear interaction
between the wing and unsteady viscous flow. The current study is primarily focused
on examining the coupled non-linear FSI behaviour of the Dipteran flight motor
system. This paper is arranged in the following way: Sect. 2 gives the details about
the problem statement, formulation of the FSI solver and boundary conditions along
with convergence study and validation of the solver. Section3 describes the char-
acterisation of the different system dynamics using non-linear time-series analyses.
Section4 briefs the significant results of the paper.

2 Computational Methodology

2.1 Structural Model

A simplified structural model for the Dipteran flight motor system has been proposed
by Brennan et al. [9]. A schematic of the flight motor system is presented in Fig. 1a.
The two cantilever beams C1 and C2 represent the cuticle (notum (C1), pleural
apophysis (C2)). The columns C1 and C2 are considered to have equal stiffness ks
and are one of the simplifications found in this model as in the case of cantilever
C2; the pleurosternal muscle adds to its stiffness. The wing is modelled at B and
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Fig. 1 Schematic of Dipteran flight motor model: a Click mechanism [9], and b Duffing oscillator
model

C as a rigid ABC link. CD is also a rigid connection representing the parascutum,
articulating at C and D. The hinge at B is the wing mechanism, and the hinge at C
is the first axillary sclerite. The scutellar lever driving force Fy(t) is applied at C.
BC = CD = l is presumed for simplicity. It is also assumed that the cantilevers are
massless, while at C the equivalent mass m of the rigid connections is lumped. As
shown in Fig. 1, y is the instantaneous vertical displacement of C from BD and x
is the horizontal displacement of the cantilevers. The initial distance between the
columns is 2b. In the present two-dimensional FSI simulation, the shape of the wing
is considered to be an elliptical foil of thickness to chord ratio of 0.12 and the centre
of the ellipse is at point C as shown in Fig. 1b.

The structural equation for the insect flight motor governing the heaving motion
of the wing can be expressed in the following way as given in [9]:

ÿ (t) − ω0

2

2
y (t)

[
1 − y2 (t)

D2

]
= P

m
sin (ωt) + L (t)

m
, (1)

where y(t) denotes the vertical displacement of the centre of ellipse, D =
√

2(1− b
l )(

b
l3

) ;

ω0 =
√

4ks(1− b
l )

m is the structural natural frequency. Here, P and ω are the amplitude
and frequency of the sinusoidal driving forcing Fy(t), respectively. The readers are
requested to refer to [8, 9] for a deep understanding of the biological connections
and detailed formulation of the mathematical model of the insect flight motor. Under
the effect of the aerodynamic load L(t), the resulting system forms a single degree-
of-freedom two-way-coupled FSI system mimicking the click mechanism in the
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Dipteran flight. Equation (1) is in the form of a forced Duffing oscillator model,
where the external forcing term comes from muscle actuation and the aerodynamic
lift.

The structural governing equation is non-dimensionalized as given below:

d2y

dτ 2
− 1

2
k20 y

[
1 −

(
y

D

)2
]

= F sin (kτ ) + 1

2μ
CL , (2)

where y = y/c (c is the chord length of elliptical foil), D = D/c, τ = U∞t/c is
the non-dimensional time, k0 = ω0c/U∞ is the reduced structural natural frequency
and k = ωc/U∞ is the reduced forcing frequency, U∞ being the incoming free
stream velocity. μ = m/ρ f c2 denotes the equivalent mass (ρ f is the fluid density)
and F = Pc/mU 2∞ is the non-dimensional forcing amplitude.

The b
l ratio is an important structural parameter as it directly affects the structural

stiffness enabling the system to undergo complex dynamic behaviours. Here, it has
been chosen to be 0.9 for all simulations. The structural damping has been considered
to be zero, and the non-dimensional forcing frequency (k) has been taken as 0.5k0.
Equation (2) is integrated using the explicit fourth-order Runge–Kutta scheme.

2.2 Flow Solver

The discrete forcing Immersed Boundary Method proposed by Kim et al. [15] is
used in the present work to solve the incompressible Navier–Stokes equations for
computing the flow-field around the flapping foil. The flow governing equations are
given in the non-dimensional form below:

∂u
∂τ

+ ∇. (uu) = −∇ p + 1

Re
∇2u + f, (3)

∇.u − q = 0, (4)

where u denotes the flow velocity non-dimensionalised by U∞, and p is the pres-
sure non-dimensionalised by ρ f U 2∞. Here, f is the momentum forcing applied to
enforce the no-slip boundary condition at the solid boundary immersed in the fluid.
The source/sink term, q, is added to the continuity equation (Eq. 4) to ensure mass
conservation across the immersed boundary. A finite volume-based second-order
semi-implicit Fractional Step Method (FSM) is used to solve flow equations (Eqs.
3 and 4). The diffusion term is discretised using a second-order Crank–Nicolson
method, and Adams-Bashforth discretisation is used to advance for the convection
term. The velocity is corrected using a pseudo pressure correction term so that the
continuity is satisfied at every time step. The discretised form of governing equations
(Eqs. 3 and 4) are as follows:
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ûn − un−1
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un = ûn − Δτ∇φn, (7)

pn = pn−1 + φn − Δτ

Re
∇2φn, (8)

where L(∗) is the discretised form of the Laplace operator and H(∗) denotes the
discretised form of the convective term, ûn is the intermediate velocity at nth time
step, q̂n is the source term calculated from ûn ,φ is the pseudo pressure correction term
and Δτ is the time increment. For further details regarding the solution procedure of
flow equations the readers are requested to see [15].

At every time step, the flow equations are solved to get the flow-field around the
body, and the aerodynamic loads acting on the body are evaluated. Then this lift force
calculated by the flow solver is supplied to the structural equation to compute the
position of the body in the next time step. Thus, at every time step, the flow solver
and the structural solver exchange information in a staggered manner resulting in a
weak coupling FSI solver.

2.3 Convergence Study

The flow domain and themesh grid used in the present study are shown schematically
in Fig. 2. At the initial time, the centre of the elliptic foil lies at the origin. A Dirichlet

Fig. 2 a Flow domain and corresponding boundary conditions, and b Cartesian grid
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Fig. 3 Convergence: a and c grid and time convergence for displacement, b and d grid and time
convergence for CL , respectively

condition is applied at the left-hand side boundary as inflow, and the slip boundary
conditions are applied at upper and lower boundaries. A Neumann type condition is
employed at the outlet. The boundary conditions are shown in Fig. 2a. The grid and
time convergence tests are carried out to select the appropriate grid size and time
step Δt , respectively. The convergence tests are performed at an actuating forcing
amplitude of F̄ = 12.07. The flow domain is discretised using a mesh of Nx × Ny

grid points, where Nx and Ny indicate the number of Cartesian grid points along
horizontal and vertical directions, respectively. The values of Nx × Ny for Grid-1,
Grid-2, Grid-3 and Grid-4 are 796 × 1192, 718 × 1017, 660 × 892 and 614 × 799,
respectively. The convergence studies have been performed for the parameters D =
0.9428, μ = 1.0 and Re = 100. The steady-state solutions for vertical displacement
of the foil (ȳ) and lift coefficient (CL) are shown inFig. 3. Time evolutions of ȳ andCL

match closely for Grid-1 and Grid-2 as shown in Fig. 3a, b, respectively. Therefore,
Grid-2 is considered for the further simulations. For the time convergence test, four
different time steps have been chosen (Δτ = 0.0004, 0.0002, 0.0001 and 0.00005)
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Fig. 4 Comparison of a aerodynamic lift coefficients (CL ) and b vertical displacement (y) (present
study and Griffith et al. (2016) [16])

to perform the simulations. The time histories of ȳ and CL at these four different Δτ
are compared in Figs. 3c, d, respectively. The results for Δτ = 0.00005 and 0.0001
are in very good agreement with each other as shown in Figs. 3c, d. Therefore, Grid-2
and time-step size Δτ = 0.0001 are selected for the rest of the simulations in this
paper.

2.4 Validation

To establish the efficacy of the current FSI solver, it is validated thoroughly with
the work of Griffith et al. [16], where the flow past an elastically mounted elliptic
cylinder is studied for various aspect ratios (ratio of major to minor axis) of the
elliptic section. The harmonic oscillator model governing the heaving motion of the
cylinder and the active control implemented via a pitching motion is given in [16].
We present the time histories of lift coefficient (CL ) and vertical displacement (ȳ) for
an aspect ratio of � = 6.0 at Re = 200, cζ

MU = 0.503 (ζ is the damping coefficient),
f ∗
N = 0.2 and f ∗

D = 0.18 in Fig. 4. Very good agreement is observed between the
results from the present FSI solver and that of Griffith et al. [16].

3 Results and Discussion

Due to their small size and low flight speed, the insect flight manifests a low
Reynolds number flow around their wing. The present work investigates the dynami-
cal behaviour of the Dipteran flight motor model at Re= 100. First, the driving force
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amplitude (F̄) is considered to be zero to examine the natural response of the system
inside a viscous flow field. Next, an actuation force with F̄ = 4.82 is considered to
explore the response of the Dipteran flight system in the presence of both the muscle
actuation force and aerodynamic loading. The other parametric values are as follows:
D̄ = 0.9428, μ = 1.0.

3.1 Fixed Point Solution at F̄ = 0

In the absence of any actuation force, the system response damps down and settles
to an equilibrium position. The displacement time history for F̄ = 0 and the corre-
sponding phase portraits are shown in Figs. 5a, b, respectively. In this case, the system
has damped down solely due to the flow-induced damping as structural damping has
not been considered in the model. The basin of attraction of the system consists of
two stable spiral sinks in the two potential wells and a saddle point which is similar
to the case of an unforced damped Duffing oscillator. The potential energy of the
present system is given by the following equation (Eq.9) and is plotted as shown in
Fig. 6.

V = −1

4
k20 y

2 + 1

8

k20

D
2 y

2. (9)

Two potential wells marked with a and c are stable equilibrium points, and the peak
point marked with b is an unstable equilibrium point. It is observed that the response
settles down at any one of the stable equilibrium points corresponding to one of the
potential wells depending on the initial conditions.

Fig. 5 a Displacement time histories and b phase portrait for F̄ = 0.0
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Fig. 6 Schematic of
potential well

3.2 Periodic Orbits at Small Amplitudes Forcing

As F̄ is increased, the spiral sinks turn into period-1 orbits. One such period-1
response and the corresponding phase portrait and frequency spectrum observed at
F̄ = 4.82 are shown in Figs. 7 and 8, respectively. It is interesting to note from the
time history shown in Fig. 7 that the system response jumps into different periodic
orbits as the solution progresses in time. These jumps in amplitude and settling
into different stable periodic orbits are seen in the corresponding phase portrait (see
Fig. 8a). Though the system response jumps into different amplitude orbits, the fre-
quency of oscillation remains the same. The frequency spectrum shown in Fig. 8b

Fig. 7 Displacement time history for F̄ = 4.82
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Fig. 8 a Phase portrait and b frequency spectra for F̄ = 4.82

Fig. 9 CL − CD phase
portraits for F = 4.82

shows the dominant peak depicting the forcing frequency and its super harmon-
ics with gradually decreasing power, which indicates the periodicity in the system
response.

The jumps in the displacement time history are possibly due to the jump in the
aerodynamic forces acting on the elliptic cylinder. The CL − CD phase portrait,
as shown in Fig. 9 is not the same for the complete CL − CD time histories, but it
gradually changes from having two loops to one single loop and finally to three loops.
These changes in the aerodynamic loads seem to be reflected in the displacement
time history of the coupled FSI system. However, the specific reasons behind the
underlying physics of these jumps are under investigation.
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4 Conclusions

In this paper, the dynamic behaviour of a Dipteran flight motor inspired flapping
system has been investigated in the low Reynolds number regime. The Dipteran
flight motor, coupled with aerodynamic forces resembles a forced Duffing oscillator
system. The simulations are performed using an in-house FSI solver developed by
combining the Duffing oscillator model with an Immerse Boundary Method-based
flow solver. In the absence of muscle actuation, the system response damps down to a
fixed point solution due to the fluid added damping.On the other hand, in the presence
of a harmonic muscle actuation, the system shows periodic oscillation. However, the
response jumps into different periodic orbits as the simulation is run for a long
time. Detailed flow-field studies are further being undertaken for understanding the
underlying physics associated with this jump phenomenon.
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Probing into the Efficacy of Discrete
Forcing Immersed Boundary Method
in Capturing the Aperiodic Transition
in the Wake of a Flapping Airfoil

Dipanjan Majumdar, Chandan Bose, and Sunetra Sarkar

1 Introduction

The fundamental understandingof aero/hydro-dynamics of thenatural bio-propulsion
system has a great significance in efficient design of futuristic Micro Aerial Vehicles
(MAV) and Autonomous Underwater Vehicles (AUV). The dynamical signature of
the aerodynamic loads generated by a flapping foil inherently depends on the near-
field wake topology. The flow topology around the foil, in turn, depends on the
kinematic parameters such as flapping amplitude (say, A) and frequency (say, fe).
The combined effect of amplitude and frequency can be better described by the non-
dimensional plunge velocity (κh), here κ (= 2π fec/U∞) is the reduced frequency,
h (= A/c) is the non-dimensional plunge amplitude,U∞ is the free stream velocity,
and c is the chord length of the airfoil. In a low κh regime, a drag producing Kármán
vortex street is observed [1–3] whereas the thrust generation at higher κh is asso-
ciated with a reverse Kármán vortex street [1–3] in the trailing-wake of a flapping
foil. With further increase in κh, a symmetry-breaking bifurcation takes place giving
way to a deflected reverse Kármán vortex street [2]. Eventually, the wake becomes
aperiodic at high values of κh [6]. With the growth in the computational resources,
various low and high fidelity numerical methodologies [4–6] have been employed
to study these phenomena. Among these, the Navier-Stokes (N-S) framework can
accurately capture the nonlinear wake-structure interactions arising from fluid non-
linearity at high κh regime. In recent studies, an interesting chaotic transition has
been reported in the flow-field behind a flapping airfoil at significantly highκh values
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(κh > 1.5) [5, 6]. Furthermore, Bose and Sarkar [6] have reported that the leading-
edge separation and the interaction of the primary leading-edge vortex (LEV) with
the trailing-edge vortex (TEV) structures hold the key to the aperiodic trigger and its
subsequent propagation in the far-field.

It is to be noted that most of the aforementioned studies are carried out using
body conformal mesh methods (for example, Arbitrary Lagrangian Eulerian (ALE)
method). However, in the ALE approach, re-meshing is required to incorporate any
movement and/or deformation of the body as the solution is advanced in time, thus
increasing the computational overhead and algorithmic complexity. A possible alter-
native to this approach is the Immersed Boundary Method (IBM). In the IBM frame-
work, the presence of a solid boundary immersed inside a fluid is incorporated by
imposing constraints in the governing equations instead of direct application of phys-
ical boundary condition at the grid points. Therefore, the complex geometry prob-
lems involvingmoving boundaries can be handled using simple structured orthogonal
mesh without regenerating the mesh at every time step. A detailed review of both
the approaches can be found in [7, 8]. In IBM, the implementation of boundary
conditions is not trivial and suffers from non-physical oscillation of the pressure and
velocity fields across the immersed boundary (IB) [12]. These flow-field oscillations
near the boundary can affect the formation and growth of the primary LEV structures
which are key to the manifestation of the aperiodic trigger. Small discrepancies in
capturing these boundary structures may not have significant effect on the overall
flow-field in the periodic regime. However, these small perturbations may result in a
different dynamical state of the flow-field and lead to an erroneous prediction of the
transitional route in the aperiodic regime. Therefore, it is important to thoroughly
test the potency of IBM methods in capturing the transitional flow dynamics.

The primary focus of the present work is to investigate if the onset of chaotic
transition in the unsteady flow-field behind a plunging foil (at a high κh value:
κh = 2.0 and Re = 300) can be accurately captured using an in-house IBM solver
in comparison to a well-established ALE-based N-S solver. The flow solver has been
developed in the C++ environment, broadly following the discrete direct forcing IBM
approach proposed by Kim et al. [9]. The simulation results obtained from the IBM
solver are compared with the results obtained from a well-established body-fitted
ALE solver, in terms of vorticity contours of the flow-field and time history of drag
coefficient. The present study aims to compare the accuracy of the IBM solver in
capturing the boundary structures such as, the formation, growth, and separation of
the primary LEV which provides the trigger to aperiodicity in the near-field. The
rest of the paper is organized as follows: The kinematics of body movement and
detailed computational methodology of the in-house solver are discussed in Sect. 2.
Details of the computational domain, boundary condition, convergence study, and
the validation study are presented in Sect. 3. The time evolutions of the aerodynamic
forces and the corresponding flow fields around the solid body obtained through
the two different numerical approaches are compared in Sect. 4. Finally, the major
findings of the present study are concluded in Sect. 5.
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2 Computational Methodology

2.1 Governing Equation

A 2D elliptic foil is considered to be plunging harmonically in a uniform free stream
and the equation of motion of the center of the foil is given in the non-dimensional
form as below,

ȳc(t̄) = h sin(κt̄), (1)
˙̄yc(t̄) = κh cos(κt̄). (2)

Here t̄ (= tU∞/c) is the non-dimensional time. The present work is focused at low
Reynolds number regime where the flow is governed by the incompressible Navier-
Stokes equation. The governing equations are solved using the discrete direct forcing
Immersed Boundary Method [9]. A forcing term, f̄ , is added to the momentum
conservation equation to reconstruct the velocity field around the IB and thus the no
slip-no penetration boundary conditions are satisfied. Also a source/sink term, q̄ , is
added to the continuity equation to ensure the mass conservation. Therefore, in the
framework of the discrete forcing IBM [9], the governing equations are given by,

∂ū
∂ t̄

+ ∇̄ · (ūū) = −∇̄ p̄ + 1

Re
∇̄2ū + f̄, (3)

∇̄ · ū − q̄ = 0. (4)

Here, ū (= u/U∞) is non-dimensional flow velocity and p̄
(= p/(ρU 2∞)

)
is non-

dimensional pressure; Re (= U∞c/ν) is the Reynolds number. ∇̄ is the non-
dimensional form of the operator ∇. Here ρ and ν are the density and kinematic
viscosity of the fluid, respectively. Henceforth, all the discussion will be done based
on the non-dimensional quantities and for the sake of typographical ease, the over-bar
sign (¯) on the symbols, representing non-dimensional quantities, will not be used.

2.2 Numerical Method

The flow governing equations are solved on a background Cartesian grid and the
location of the solid body is tracked by a set of Lagrangian markers. The grid points
that are on or inside the solid domain aremarked as solid points and the grid points that
are outside the solid domain are marked as fluid points. Figure1 shows a schematic
of the mesh grid classification. The grid points, on or inside the solid domain, where
the flow velocities are reconstructed by applying the momentum forcing, will be
referred as forcing points (Fig. 1). The momentum forcing is applied only to the grid
points residing just inside the solid domain and have at least one neighbor in the fluid
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Fig. 1 Schematic of the mesh grid depicting the u, v, fx , fy, p, and q locations and the grid points
classifications. Shaded area inside the IB denotes the solid domain

domain. Flowgoverning equations (Eqs. (3) and (4)) are solved using a finite-volume-
based second-order semi-implicit Fractional StepMethod (FSM) on a staggered grid
arrangement as shown in Fig. 1. A second-order Crank-Nicolson method is used to
discretize the diffusion term whereas the convection term is advanced in time using
Adams-Bashforth discretization. A pseudo pressure correction term is used to correct
the velocity to satisfy continuity at every time step. In the present framework of FSM,
the discretized form of the governing equations are as follows:

ûk − uk−1

Δt
= −∇ pk−1 − 3

2
H

(
uk−1

) + 1

2
H

(
uk−2

)

+ 1

2Re
L

(
ûk

) + 1

2Re
L

(
uk−1

) + fk, (5)

∇2φk = 1

Δt

(∇ · ûk − qk
)
, (6)

uk = ûk − Δt∇φk, (7)

pk = pk−1 + φk − Δt

Re
∇2φk, (8)

where L(∗) is the discretized form of the Laplace operator and H(∗) denotes the
discretized form of the convection term; ûk denotes intermediate velocity at the kth
time step, φ is pseudo pressure correction term and Δt denotes time step size.

To solve the discretized momentum equation Eq. (5) for intermediate velocities
ûk , the momentum forcing term fk must be known a priori. Kim et al. [9] suggested to
evaluate fk at the forcing points by advancing momentum equation explicitly. Thus
an estimation of the intermediate velocity is computed at all the grid points around
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the IB as follows:

ũk − uk−1

Δt
= −∇ pk−1 − 3

2
H

(
uk−1

) + 1

2
H

(
uk−2

) + 1

Re
L

(
uk−1

) + fk . (9)

Equation (9) is solved for ũk (an estimate of intermediate velocity ûk) considering
fk = 0. Then, fk at a forcing point, is evaluated using the following equation,

fk = Uk
f − ũk

Δt
, (10)

whereUk
f is the desired velocity at a forcing point that ensures no slip-no penetration

boundary conditions on the IB surface. The discrete forcing approach of IBM is
essentially setting desired values of velocity (Uk

f ) to the forcing points such that
appropriate boundary conditions are satisfied exactly on the immersed boundary
itself. For the special case of a forcing point lying exactly on the immersed boundary,
Uk

f = Uk
� , where U

k
� is the velocity of the IB at that particular point at the kth time

step. However, in general, most of the forcing points do not lie on the IB as the
mesh grid does not conform with the IB. For those cases, the desired velocities at the
forcing points are to be evaluated using appropriate extrapolation scheme from the
velocity at the surrounding fluid nodes and the velocity of the boundary movement.

The mass source/sink term (qk) in the discretized pressure correction equation
(Eq. 6) can be evaluated using the intermediate velocity field (ûk) in the following
way [10]:

qk = 1

ΔA

4∑

i=1

αi
(
ûk − Uk

�

) · nΔli , (11)

where ΔA is the area of a grid cell, n is unit outward normal at each cell face, Δli
is the length of each cell face and αi is a flag at each cell face and is defined as 1
only at the cell faces where momentum forcing is applied (i.e., where fk �= 0) and
otherwise zero.

The fluid dynamic loads F (in non-dimensional form) on the solid body are eval-
uated using the following equation as given in Lee et al. [11]:

F = −
∫

Ωb

f dV +
∫

Ωb

(
∂u
∂t

+ ∇ · (uu)

)
dV, (12)

where Ωb is the control volume bounded by the solid boundary. The lift coefficient(
CL = L/0.5ρu2∞c

)
and drag coefficient

(
CD = D/0.5ρu2∞c

)
are defined in the

usual way and evaluated as CL = 2Fy and CD = 2Fx , where Fx and Fy are the
components of the non-dimensional aerodynamic load F along the x and y-axis,
respectively.

Discrete forcing IBM approaches are known to suffer from spurious oscillations
of the pressure and velocity field near the IB due to the temporal and spatial discon-
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tinuities [11, 12]. The present study explores the capability of the IBM tools in-hand
in capturing the chaotic behavior in near-field vortex structures in the unsteady wake
of a plunging foil, where any small discrepancies in resolving the boundary struc-
tures will result in incorrect prediction of the aperiodic transition. In this context,
the present study investigates the ability of the discrete forcing IBM in capturing
the near-field vortex interactions as compared to a well-validated body-fitted ALE
solver. The convergence and validation of the ALE solver was presented in Bose
and Sarkar [6]. The simulations for the ALE results are performed using a finite-
volume-based CFD solver OpenFOAM [13]. One can find an extensive validation of
the OpenFOAM tool in Boss Ph.D. Thesis [14].

3 Convergence and Validation of IBM Solvers

A rectangular computational domain of size [−10c, 25c] × [−12.5c, 12.5c] is con-
sidered in the IBM solver. A Dirichlet boundary condition (u = 1, v = 0) is used at
the inlet of the computational domain. Slip boundary condition (∂u/∂y = 0, v = 0)
is applied at the top and bottom boundaries and a convective flow boundary condition
(∂u/∂t + us∂u/∂x = 0, us is the average stream wise velocity) is used at the out-
let. A time step size of Δt = 0.0001 is chosen after performing a time convergence
study. The time convergence results are not shown here for the shake of brevity. A grid
independence test is also performed considering four minimum grid sizes of Δx =
Δy = 0.003,Δx = Δy = 0.004,Δx = Δy = 0.005, andΔx = Δy = 0.006 in the
region of body movement. Figure2 shows that the time traces of the aerodynamic
loads at the grid sizes of Δx = Δy = 0.003 and Δx = Δy = 0.004 have almost no
difference and also are in good agreement with the reference results of the ALE
solver. Therefore we choose the minimum grid size of Δx = Δy = 0.004 for all the
following simulations.

The present IBM solver has been validated thoroughly by comparing the results
with that of Lewin and Haj-Hariri [5] at various κh values. Figure3 shows that the

Fig. 2 Grid convergence study (a Lift coefficient and b Drag coefficient) of IBM solver for the
flow over an plunging foil at h = 0.25 wtih κh = 1.0
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Fig. 3 Vorticity contours at different time instants during the down-stroke of a plunging foil at
κ = 3.333 and κh = 0.8 at Re = 500. In the figure a, b Lewin and Haj-Hariri [5] and c, d present
IBM solver

Fig. 4 Vorticity contours at different time instants during the down-stroke of a plunging foil at
κ = 6.667 and κh = 0.8 at Re = 500. In the figure a, b Lewin and Haj-Hariri [5] and c, d present
IBM solver

LEV is getting entrained in the TEV and only one vortex is shed into the wake
per stroke for κ = 3.333 and κh = 0.8 at Re = 500. Instantaneous vorticity con-
tours during the down-stroke at κ = 6.667 and κh = 0.8 are depicted in Fig. 4
which shows the presence of a well-organized reverse Kármán vortex street in the
trailing-wake. These results show very good agreement with the results of Lewin and
Haj-Hariri [5].
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4 Results and Discussions

Since the present study focuses on investigating the accuracy of discrete forcing IBM
approach in capturing the chaotic trigger in the unsteady flow-field, numerical simu-
lations have been performed at a high non-dimensional plunge velocity of κh = 2.0
at Re= 300. At thisκh value, chaotic behavior is observed in the near-field structures
around the foil which, in turn, is reflected in the time history of the drag coefficient as
captured by the ALE solver; see Fig. 5. However, IBM approach results in unphysical
oscillations in the velocity field near the boundary giving rise to inaccurate near-field
structures cascading into incorrect flow-field behavior. Consequently, it ends up in
predicting the wrong onset of chaos in the unsteady flow-field.

Time histories of CD and the CL − CD phase portraits, obtained through IBM
and ALE, are compared in Fig. 6. It is seen that after some initial transients (beyond
t/T = 3), the ALE approach results in chaotic time history of CD (Fig. 6b). On the
contrary, IBM approach fails to demarcate the aperiodic trigger from the flow-field
correctly and the flow-field remains almost periodic (or quasi-periodic) till t/T = 10,
beyond which it becomes aperiodic as reflected in the CD time history as shown in
Fig. 6a. The CL − CD phase portraits also reflect the similar transition. In order to
clearly visualize the delayed onset to aperiodicity captured by IBM, the trajectories
in the CL − CD phase-space are plotted in two different colors and line types, as
can be seen from Fig. 6c, d; the solid-blue color line denotes the trajectories between
4th and 10th cycles and the dashed-ash color line represents the trajectories between
11th and 20th cycles. It is seen that the initial part (solid-blue) of the phase-portrait
between 4th and 10th cycles, obtained from IBM approach (Fig. 6c), is indicative
of a quasi-periodic attractor whereas the latter part (dashed-ash) reflects a chaotic
attractor. Contrastingly, the phase portraits obtained from the body-fitted ALE solver
(Fig. 6d) are representative of a chaotic attractor throughout.

It is also important to investigate the underlying vortex interactions which lead to
the incorrect prediction of the chaotic onset in the case of IBM. Next, we compare the
flow fields captured by the IBM and ALE solvers in relation to predict the accurate
flow dynamics behind a flapping foil. The leading-edge separation phenomenon
during the 4th flapping cycle captured by these two solvers are compared in Fig. 7.
The flow-field captured by the ALE solver shows that the leading-edge separation

Fig. 5 a CD time history b Fourier spectra of CD and c CL − CD phase-portrait at κh = 2.0
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Fig. 6 Comparison of CD time histories and CL − CD phase portraits obtained from the two
numerical approaches at κh = 2.0

Fig. 7 Comparison of near-field structures during the 4th flapping cycle, obtained from the two
numerical solvers

becomes aperiodic at the onset of aperiodicity during the 4th flapping cycle; see
Fig. 7b.

However, IBM solver could not capture this aperiodic trigger and predicts a peri-
odic leading-edge separation till t/T = 10. In case of IBM, two counter rotating
TEVs (T1* and T2*) developed during the 3rd flapping cycle form a vortex cou-
ple C1* and become the primary wake structure; see t/T = 3.0 to t/T = 3.25 of
Fig. 7a. However, near the leading-edge a counter-clockwise LEV (L1*) is separated
and then is seen to reattach at the mid surface of the foil as the foil moves down-
ward during the 4th cycle (t/T = 3.0 to t/T = 3.5, Fig. 7a). Same series of events
takes place in an opposite sense of rotation during the next half-cycle (t/T = 3.5 to
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t/T = 4.0, Fig. 7a). It is also to be noted that the primary leading-edge structures
do not undergo any interaction with the TEVs in this case and have no role to play
in the formation of trailing-wake. The wake remains nearly periodic till t/T = 10,
which can be confirmed from the time history of CD shown in Fig. 6a.

On the other hand, the ALE solver captures the actual trigger from the flow-field
which causes the aperiodicity. The flow-field captured byALE shows that the primary
counter-clockwise leading-edge structure (L1) form a strong vortex couple (C2) with
equal contribution from the clockwise shear layer from theupper surface of the elliptic
foil during the 4th flapping cycle (see t/T = 3.0 to t/T = 4.0, Fig. 7b). This vortex
couple (C2) traverses in a circular arc and collides with the stronger couple formed
by the TEVs T3 and T4, the otherwise primary wake structure, in the subsequent
cycles; thus destroying the organized pattern of the wake. Notably, the leading-edge
separation patterns are seen to be completely different in the subsequent cycles
sustaining the chaos. It is worth mentioning the fact that the interaction between the
main leading-edge structure (C2) with the primary wake structures is seen to be the
key factor behind the destruction of the periodic wake.

The IBM solver could not capture the actual aperiodic trigger at the 4th flapping
cycle due to its inability to capture the formation of the strong vortex couple near
the leading-edge. Though the IBM solver captures a weak vortex couple C2* (see
t/T = 4.0, Fig. 7a), it got diffused and shredded very fast and thus could not interact
with theTEVs.The error associatedwith the unphysical oscillation in the pressure and
velocity field near the IB eventually results in a different boundary layer development,
thus showing discrepancies in the formation, growth, and evolution of the primary
leading-edge structures and their interaction with the trailing-wake.

5 Conclusion

The efficacy of the conventional discrete forcing Immersed Boundary Method in
accurately capturing the flow-field transitions behind a plunging airfoil has been
investigated in this paper. The flow past a plunging elliptic foil at a high plunge
velocity is simulated using an in-house IBM solver. The outcomes of this IBM solver
are compared with that of a well-validated body-fitted ALE method-based solver
in OpenFOAM. Though the IBM approach is able to capture the flow dynamics
and the aerodynamic loads in good agreement in the periodic regime at lower κh
values, it fails to accurately predict the correct aperiodic trigger from the flow-field
at high κh value as predicted by the well-established ALE solver. The authors are
currently working on implementing the needful modification in the IBM solver so
that the unphysical oscillation of the velocity field near the immersed boundary can
be reduced and the aperiodic transition in the unsteady flow-field can be captured
accurately.
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Numerical Investigation of Switching
of a Jet Generated by a Foil Pitching
in Still Fluid

Chayanit Nigaltia and Sachin Y. Shinde

1 Introduction

Flying and swimming animals have motivated researchers to study flapping foils.
Wings of aircraft and birds, propeller and helicopter rotor blades, tails of fish all
have cross-sections of airfoil shape. For this reason, airfoil has remained a topic of
immense interest for a long time.

How the natural flyers generate power for propulsion has been a topic of keen
interest for researchers. Flapping foils have been studied extensively for the same.
The phenomenon of thrust generation by a flapping foil in a fluid flow is known
as Knoller–Betz effect. Jones et al. [1] experimentally and numerically investigated
the Knoller–Betz effect on sinusoidally plunging airfoil. They reported that these
unsteady thrust producing wakes are mainly due to inviscid phenomenon. Deflected
wakes were also observed by them, leading to the production of lift and drag. Exam-
ination of the mean streamwise velocity field of a plunging NACA0012 airfoil in
the absence of freestream velocity by Lai and Platzer [2] revealed that the velocity
profiles were independent of the frequency of oscillation, when the jet velocity and
the lateral distance were nondimensionalized by the peak plunge velocity and the
amplitude of oscillation, respectively. Numerical viscous simulations by Lewin and
Haj-Hariri [3] on a sinusoidally heaving symmetric airfoil, over a range of frequen-
cies and amplitudes showed distinct solutions. Aperiodic and asymmetric solutions
were also reported. Heathcote and Gursul [4] studied the jet switching phenomenon
for a periodic plunging airfoil with varying stiffness in zero freestream velocity. The
jet switching phenomenon was observed to be quasi-periodic. It was also observed
that the switching frequency increases with increasing plunge frequency and plunge
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amplitude, and the amplitude of jet switching showed a decrease with decreasing
Strouhal number (St = fA/U∞). Godoy-Diana et al. [5] experimentally studied the
vortex wakes produced by a high aspect ratio flapping foil in a hydrodynamic tunnel.
Transition from Benard-von Karman (BvK) to reverse Benard-von Karman (rBvK)
and the symmetry breaking to asymmetric wakes was discussed. It was also observed
that the transition from a BvK to rBvK wake precedes the actual drag-thrust tran-
sition. Godoy-Diana et al. [6] studied the vortex wakes, and the deflection angle of
the mean jet is used to specify the asymmetry in the wake. A quantitative model
based on the effective phase velocity (UP

*), which is the velocity along the dipole
direction induced by the vortex street, excluding the dipole velocity and the free-
stream velocity, to characterize the symmetry breaking was derived. Cleaver et al.
[7] did an experimental investigation on plunging NACA0012 airfoil undergoing
small amplitude and high-frequency oscillations with varying angle of attack (α).
Bifurcations were observed at high St for the cases in which α ≤ 10°. Shinde and
Arakeri [8] experimentally studied the flow produced by a rigid pitching airfoil in
quiescent water. A weak jet was observed which changes direction continuously.
This meandering was random and independent of initial conditions.

To study this switching phenomenon in great detail, the data has been captured
for large number of cycles and at highly resolved time-steps. Acquiring this data
experimentally is difficult, so numerical simulations have been performed.

The chapter is organized as follows: Sect. 2 presents the numerical formulation of
the problem. Section 3 describes the jet switching pattern from a rigid pitching foil
in still fluid. Some criteria are laid to classify the jet deflection as upward, downward
or aligned along the centerline. The data obtained has been organized in a way
to observe the switching process clearly at highly resolved time-steps. Finally, in
Sect. 4, the conclusions are collected and the future scope of the research work has
been discussed.

2 Numerical Formulation

2.1 Problem Statement and Flapping Kinematics

Simulations have been conducted to study the flow generated by an airfoil pitching
in the absence of freestream velocity. We used open source software OpenFOAM 5.0
for simulations. NACA0015 airfoil has been considered for investigating the flow
field. The motion profile is given as

θ = θmax sin(2π f t) (1)

where θ is the instantaneous pitching angle, θmax is the amplitude of oscillation, f is
the pitching frequency and t is the time.
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Fig. 1 Schematic diagram of a pitching foil

The peak-to-peak amplitude of the airfoil TE is denoted by A, chord by c,
maximum airfoil thickness by D and the airfoil pitching point by P (Fig. 1).

The amplitude of oscillation (θmax) and the pitching frequency (f ) have been
varied, keeping the mean angle of attack of the airfoil equal to zero and the flow has
been studied. We studied four amplitudes (±5°, ±10°, ±15° and ±20°) and four
frequencies (1, 2, 3 and 4 Hz) for each amplitude, thus constituting an all 16 cases.

2.2 Governing Equations and Discretization

Flowequations are solved using the arbitraryLagrangianEulerian (ALE) formulation
on a mesh, which deforms with time. ALE form of incompressible Navier–Stokes
equations is written as

∂U

∂x
+ ∇.[(U −Um)U ] = −∇

(
p

ρ

)
+ υ∇2U (2)

where ρ is the fluid density, U is the velocity of the fluid, Um is the mesh velocity, p
is the pressure and υ is the kinematic viscosity of the fluid.

Temporal discretization is first-order implicit Euler and a maximum Courant
number (Comax) of 0.8 is used to vary the corresponding time-step. The flux values are
interpolated from cell centers to face centers linearly. Convective term is discretized
using second-order upwinding and the diffusive term using central differencing.
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Fig. 2 a Computational domain, b grid around the airfoil, c closer view near LE, d closer view
near TE

2.3 Computational Domain and Boundary Conditions

A schematic diagram of the computational domain is shown in Fig. 2. The domain
is circular in shape with radius 12c, where c is the chord length of the airfoil with
center at the quarter-chord point, which is the pitch point of the airfoil. A circular
region of radius 5c undergoes a pure pitching motion, while the outside grid remains
stationary. The boundaries are far enough to eliminate boundary effects.

For velocity, a constant free stream boundary condition is kept at the inlet and a
zero-gradient condition at the outlet boundary.On the airfoil, amovingwall boundary
condition is imposed with no flux normal to the wall. A zero pressure gradient is
kept at the inlet and on the airfoil, while a constant pressure condition is set at the
outlet boundary.

2.4 Solver Details and Validation

Treatment of velocity equation is done using preconditioned bi-conjugate gradient
(PBiCG) solver with diagonal incomplete-LU (DILU) preconditioner. The pres-
sure equation has been handled using preconditioned conjugate gradient (PCG)
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Fig. 3 Mean thrust
coefficient (CT ) versus
reduced frequency (k) plot of
the airfoil with a pitching
amplitude of θmax = ±2°.
Data from the literature are
included for comparison

solver with diagonal incomplete-Cholesky (DIC) preconditioner. The velocity and
the pressure equations are coupled using PISO algorithm.

The flow solver is validated quantitatively with the data from the literature.
NACA0015 airfoil is used for validationwith pitching point at quarter-chord distance
from the LE. Figure 3 shows quantitative validation of the solver wherein the
thrust coefficient (CT ) is plotted against the reduced frequency k defined as k =
(2π fc)/(2U∞). The plot shows good match with the previous studies. In comparison
to the experimental study by Mackowski and Williamson [9] with NACA0012, for
low and high k values, our CD and CT values are higher, respectively. This is due
to the fact that NACA0015 being thicker than NACA0012 will produce larger drag
force at low frequencies and at high frequencies will produce higher thrust. This
fact is also reported by Jian Deng et al. [10]. The results have also been compared
with the viscous simulations on NACA0012 by Ramamurti and Sandberg [11] and
experimental results of Bohl and Koochesfahani [12].

A qualitative validation of the solver is also carried out by comparing the vorticity
fields of the flow generated with the flow from Schnipper et al. [13] and Bohl and
Koochesfahani [12]. We also performed a mesh independence study and observed
that a mesh with 4,27,880 nodes gives satisfactory results. More details about the
solver and validation can be found in Nigaltia’s M.Tech thesis [14].

3 Results and Discussion

The results are discussed in detail for one case, namely θmax = ±10°, f = 2 Hz.
The detailed features of the instantaneous and the time-averaged flow are presented,
followed by discussion on the criterion used in the literature to detect and classify jet
deflection. Later, our own criterion has been defined and described based on location
of maximum resultant velocity magnitude. Further, a detailed investigation of the jet
switching and meandering patterns is presented, and the jet switching is classified
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into two patterns—abrupt and gradual. The temporal evolution of abrupt and gradual
switching is studied in detail. Finally, the section is concluded by presenting a detailed
and thorough investigation of the effect of variation in amplitude and frequency of
pitching on the jet switching and meandering patterns.

3.1 The Flow

Figures 4 and 5 show the vorticity and velocity fields for three different instances,
respectively, for the case θmax = ±10° and f = 2 Hz, when the jet shows different
deflection: downward, upward and along the centerline. In the absence of freestream
velocity, there is no agency to convect the vortices away from the place of shedding.
This is the main reason for the production of an inclined flow as commented by
Shinde and Arakeri [8].

The time averaged flow is shown in Fig. 6. The averaged velocity and vorticity
fields do not show the irregular patches as seen in the instantaneous flow fields. As
will be evident later, the jet deflects and meanders randomly, which result in the

Fig. 4 Instantaneous spanwise vorticity contours at three different instances for the case θmax =
±10° and f = 2 Hz, when the jet is a inclined in the downward direction, b inclined in the upward
direction and c nearly along the centerline

Fig. 5 Instantaneous resultant velocity contours at three different instances for the case θmax =
±10° and f = 2 Hz, when the jet is a inclined in the downward direction, b inclined in the upward
direction and c nearly along the centerline
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Fig. 6 Time averaged a resultant velocity and b spanwise vorticity field for the case θmax = ±10°
and f = 2 Hz

cancellation of the velocity and vorticity in the downstream over long time average.
Some flow, however, is seen near the trailing edge region.

3.2 Criterion for Jet Deflection

Researchers have used different criteria to identify jet deflection. Heathcote and
Gursul [4] while studying rigid and flexible foils observed the streamwise velocity
distribution values at a point (x/c, y/c)= (1, 0.5),where origin is assumed to be located
at the airfoil TE. However, they did not present a clear picture of directionality of the
jet. They observed quasi-periodicity in the variation of the streamwise velocity with
time. Shinde and Arakeri8 studied this switching phenomenon in pitching airfoil.
They manually observed the jet flow field, and classified it into three different cate-
gories: upward (U), downward (D) and spread along centerline (S-C). The jet picks
up directionality after some cycles and this direction keeps changing with time.

To identify and classify the jet deflection,maximum resultant velocities are plotted
for all the time instants at five different sections x/c = 0.5, 0.75, 1.0, 1.25, 1.5 to
look at the velocity variation over time, as shown in Fig. 7. It is decided to focus on
two x-stations x/c = 0.5 and 1 as the deciding criteria for jet deflection. In case, it
is difficult to decide based on the two sections, one more x-station at x/c = 1.25 is
considered.

3.3 Jet Inclination

To get the idea of the switching pattern of the generated jet, interrogation points are
set at y/c = ±0.25, at different x/c sections, after looking at the velocity and the
vorticity fields. If the maximum resultant velocity locations are present beyond these
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Fig. 7 Plots showing location ofmaximum resultant velocity at every instant at different streamwise
× locations, for θmax = ±10° and f = 2 Hz

y-locations, then this may be because of stray vortices present in the flow, and hence
we neglect it. Let the numbers 1, 2 and 3 denote the sections at x/c = 0.5, 1 and
1.25, respectively, so y1max will give the transverse location of maximum resultant
velocity at Sect. 1 at a particular instant.

Using the criteria detailed in Table 1, the jet inclination data is obtained for the
case when θmax = ±10° and f = 2 Hz, for 128 cycles (Fig. 8). The jet switches
direction randomly, as observed from the figure, and the switching is sometimes
abrupt and sometimes gradual. It is evident from Fig. 8 that the jet stays in one
particular orientation for a time period which ranges from a fraction of a cycle to
several cycles, and also it keeps changing the direction continuously and randomly.

Table 1 Criteria used for
classifying jet deflection. y1,
y2, y3 represent the y-location
of maximum resultant
velocity at three x-stations,
respectively, at x/c = 0.5, 1
and 1.25

y1max y2max y3max Deflection

>0.25 >0.25 – Upward (U)

0< , <0.25 >0.25 – Upward (U)

>0.25 0< , <0.25 >0.25 Upward (U)

>0.25 0< , <0.25 <0.25 Center (C)

<−0.25 <−0.25 – Downward (D)

0> , >−0.25 <−0.25 – Downward (D)

<−0.25 0> , >−0.25 <−0.25 Downward (D)

<−0.25 0> , >−0.25 >−0.25 Center (C)



Numerical Investigation of Switching of a Jet Generated … 291

Fig. 8 Jet inclination data for the case when θmax = ±10° and f = 2 Hz. The figure shows
random switching. U, D, C, respectively, indicate upward, downward deflected jet and jet along the
centerline

3.4 Temporal Evolution of the Switching Process

By looking at the jet inclination (Fig. 8) and themaximumvelocity transverse location
plot (Fig. 9), it is observed that the jet sometimes changes direction abruptly and
sometimes gradually. Cycle time at section x/c = 0.5 is extracted to observe these
switching patterns.

From the maximum velocity transverse location plot, it can be seen that gradual
switching is taking place for 3 cycles, from 60 to 63 cycles and the sudden switching
happens several times between 35 and 40 cycles. Figure 9 shows the zoomed view of
the cycle period of interest and the jet inclination data in case of gradual switching.
Similarly, Fig. 10 shows the zoomed view of the cycle period of interest and the jet
inclination data in case of sudden switching. Sudden switching indicates that the time
scale of switching is even smaller than the smaller time scale used in the simulations,
that is, t/T = 0.01 and it needs further investigation with a time-step much smaller
than that used in present simulations.

3.5 Parametric Study

A similar kind of study has been carried out by varying four amplitudes (θmax =
±5°, ±10°, ±15° and ±20°) and four frequencies (f = 1, 2, 3 and 4 Hz), for each
amplitude. We observed a deflected jet that continually and randomly changes the
directions in all the 16 cases studied. We present the data for two representative
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Fig. 9 Figure showing a gradual switching and b jet inclination data for the case θmax = ±10°
and f = 2 Hz

Fig. 10 Figure showing a sudden switching and b jet inclination data for the case θmax = ±10°
and f = 2 Hz

cases corresponding to θmax = ±15°, f = 1 Hz and θmax = ±20°, f = 3 Hz. The
jet inclination plot is shown in Fig. 11. It appears that amplitude and frequency does
not have any particular effect on the jet switching pattern.

4 Conclusions and Future Scope

The flow generated by a symmetric NACA0015 foil pitching about quarter-chord
point from the leading edge in the absence of freestream velocity is studied. The
flow is studied by varying amplitude and frequency of pitching. The present work is
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Fig. 11 Jet inclination data for the case for a θmax = ±15°, f = 1 Hz and b θmax = ±20°, f =
3 Hz

aimed to explore the jet deflection andmeandering trends generated by a foil pitching
in an otherwise still fluid. To identify and classify the jet deflection, a criterion is
designed based on the y-location of the maximum resultant velocity at two or three
x-stations located at x/c = 0.5, 1, 1.25. It was observed that the jet remains in one
particular orientation for time periods which range from some fraction of a cycle
to several cycles and the jet changes the inclination continuously and randomly. No
pattern, quasi-, or periodicity in the jet switching pattern was observed. Two types
of switching process—gradual and sudden—were observed. The time resolution
used in the simulations was found to be insufficient, to study sudden switching. The
parametric study conducted by varying amplitude and frequency of pitching reveals
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that amplitude and frequency do not have any particular effect on switching pattern,
and the switching is observed to be random in all the cases.

The controlled jet deflection from flapping foils can be exploited in man-made
devices for turning and maneuvering activities. If by any regulated process, this jet
deflection can be eliminated, the straight jet can be used for straight line propulsive
motions. Both these things, the straight and the deflected jets can be utilized effi-
ciently by the humans and can pave the way of building the artificial propellers. The
artificial propellers may be more efficient than the conventionally used propellers.
Flow investigation for even longer time may reveal some different jet switching
pattern. Hence, the flow demands further investigation for longer duration. In case of
abrupt switching, the simulations need to be carried out at even smaller time-steps,
which can reveal very interesting details on switching patterns. The criterion used to
classify the jet inclination seems to be less robust for some instances when the stray
vortices arrive at the investigation stations.
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Studying the Channel Confluence
Hydraulics Using Eddy Viscosity Models
and Reynolds Stress Model

Abhishek K. Pandey, Pranab K. Mohapatra, and Vikrant Jain

Notations

hd Tailwater depth (m)
Ud Tailwater average velocity (m/s)
W Channel width (=0.914 m)
u* Non-dimensional longitudinal velocity
x*, y* and z* Non-dimensional Cartesian coordinate axes
W ∗

s , L
∗
s Non-dimensional maximum width and length of the separation zone

k Turbulent kinetic energy (m2/s2)
∈ Turbulent dissipation rate (m2/s3)
ω Specific dissipation rate (1/s)

1 Introduction

Channel confluence is an essential part of a river system. A better understanding
of the confluence hydraulics is required to study the fluvial dynamics, irrigation
and drainage network, pollution dispersion and sediment transport. Channel conflu-
ence hydraulics is three-dimensional (3D) and is associated with complicated flow
features.

Best [1] studied the open channel confluence and identified six different flow
zones, viz. Flow stagnation; Flow separation; Maximum velocity zone; Flow diver-
sion; Flow recovery zone; and Shear layer with associated vortex and turbulence
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Fig. 1 Flow structures at the channel confluence [1]

(Fig. 1). The separation zone is formed below the downstream of the confluence
corner, and it reduces the effective width of the downstream channel. Channel conflu-
ence has been studied extensively by the researchers analytically [13, 23], experi-
mentally [1, 2, 12, 14, 17] and numerically [11, 15, 16, 18, 22]. Weber et al. [25]
obtained a 3D velocity field in a 90-degree horizontal, equal-width channel conflu-
ence, using Acoustic Doppler Velocimeter (ADV). Above studies listed different
parameters such as confluence angle, discharge ratio, bed topography and planform
geometry as the main controlling parameters of the 3D flow features of the channel
confluence.

Most of the previous numerical studies on confluence hydraulics were carried
out utilizing RANS equations. RANS equations require additional equations for the
turbulence closure. Several turbulence models were reported in the earlier studies.
None of the turbulencemodels is appropriate for all types of flows. Thus, the selection
of the turbulence model is critical in a study. For example, standard k-∈ and standard
k − ω turbulence models do not perform satisfactorily in case of the adverse pressure
gradient [4, 21]. Therefore, the separation zone, which is characterized by an adverse
pressure gradient,may not be predicted accurately by suchmodels. These twomodels
are insensitive to high strain, high swirl and rotation [4, 8]. Other variants of the k
− ∈ and k − ω turbulence model are also not reliable when the turbulence is highly
anisotropic [8]. However, Shear Stress Transport (SST) variant of k − ω model
is seen as more sensitive for the prediction of the separation zone (Fluent Theory
Guide 2017; [16]. Due to the inherent demerits of the eddy viscosity models (Spalart-
Allmras; k − ∈ and k − ω), RSM is attempted here to have a comparison between
the two types of models.

Huang et al. [15] and Luo et al. [16] studied the channel confluence hydraulics
using the k − ω model and SST k − ω model, respectively. Bradbrook et al. [4–
6] and Geberemariam [11] studied the flow structures of the channel confluence for
different bed topography, junction angles and flow conditions using k − ∈ turbulence
model. Bradbrook et al. [4–6] used a renormalized group (RNG) k − ∈model, while
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Geberemariam [11] used a standard variant of k − ∈ turbulence model to study the
separation zone. Biron et al. [3] studied the role of bed discordance in the mixing
process of the channel confluence using the RNG variant of the turbulence model.
Ðor -dević and Stojnić [9] studied the flow structures for the discordant bed using
a standard variant of k − ∈ turbulence model. Baranya and Józsa [7] also used a
standard variant of k − ∈ turbulence model to study the flow structure of the scaled-
down model of the actual river confluence. Roberts [20] studied the flow structures
of the confluent meander bend using standard and the realizable variant of the k −
∈ turbulence model.

The studies cited above used a wide range of turbulence models to predict the
confluence hydraulics. To the authors’ knowledge, only different eddy viscosity
models have been utilized in these studies. The present study aims to assess the capa-
bilities of two different classes of turbulencemodels in predicting the channel conflu-
ence hydraulics. Three eddy viscosity turbulence models (Spalart-Allmras model;
Standard k − ∈ model; SST k − ω model) and RSM are adopted for the purpose.
Simulated results are compared with the experimental results for velocity fields and
WSE by Weber et al. [25].

2 Methodology

2.1 Numerical Modelling

The present study uses the CFD software Fluent, version 17.2, which solves 3D
RANS equations. For eddy viscosity turbulence models, (a) Spalart-Allmras (SA)
model; (b) Standard k − ∈ model; (c) SST k − ω model are chosen. SA model
is a one-equation turbulence model that solves the transport equation of kinematic
turbulent viscosity. The standard k − ∈model and SST k − ωmodel are two-equation
turbulence models. They solve transport equations for turbulent kinetic energy and
its dissipation rate. For eddy viscosity turbulence models, Reynolds stresses are
related to mean strain rate as per the Boussinesq eddy viscosity assumption. RSM is
a seven-equation model that solves transport equations for the Reynolds stresses and
their dissipation rates. Linear pressure-strain model has been chosen to model the
pressure-strain term in transport equations of the Reynolds stresses. Standard model
constants for all the turbulence models are adopted. A multiphase flow approach
is adopted and governing equations are discretized using the finite volume method
[24]. Thewater surface is tracked using the Volume of Fluid (VOF)method. SIMPLE
algorithm is adopted for pressure-velocity coupling. Time discretization is second-
order accurate. Normalized scaled residuals for all the flow variables are set to 10−4

to satisfy convergence.
Hexahedral grids are generated throughout the computational domain.Mesh sizes

are chosen based on the grid independence test.Mesh size is finer near thewall region,
at the water-air interface and at the channel confluence as the flow variables are



298 A. K. Pandey et al.

expected to change sharply in these areas [11, 16]. Spatial and temporal boundary
conditions are specified as the governing equations are elliptic. Uniform velocity
and turbulence parameters are specified for water inlets at upstream channels. For
air inlets, pressure inlet and turbulence parameters are specified at upstream chan-
nels. The pressure outlet boundary condition with appropriate backflow turbulence
parameters is specified at the outlet. Water flow depth at the outlet (hd = 0.296 m for
all the cases) is imposed. The symmetry boundary condition is set on the top of the
computational domain. Stationary and no-slip boundary conditions with zero rough-
ness height are specified on all solid boundaries. The wall function is adopted for
wall treatment. A steady-state flow condition is achieved through the false transient
approach. More details and other information can be found in Fluent [10].

3 Results and Discussion

The computational domain of the present study is the same as that of the physical
model of Weber et al. [25]. The Cartesian coordinate system is shown in Fig. 2
with z*-direction in vertically upward and origin at the channel bed. Width of the
channel (=0.914 m) and tailwater average velocity (=0.628 m/s) are used as length
and velocity scales, respectively.

Mesh independency tests are conducted before finalizing the mesh sizes as the
turbulent flows are more grid sensitive. Figure 3 shows the value of simulated u*
near the water surface (z* = 0.278) at x* = −1.33 and −2 using standard k − ∈
model. The results of mesh independency tests are shown for three different numbers
of meshes: coarser (504000), medium (672000) and fine (973000). All the numerical
simulations are carried out for the medium size of the meshes.

Fig. 2 Computational domain used in the present study
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Fig. 3 Simulated u* along
the width of the channel near
the water surface for three
different mesh sizes: a x* =
−1.33; b x* = −2
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3.1 Longitudinal Velocity

Figure 4 compares the simulated and experimental [25] longitudinal velocities. The
non-dimensional values at x* = −1.33, −2, −3 and −5 for discharge ratio, Qr =
0.75 (Q1/Q3 in Fig. 1) are considered. As shown in Fig. 4, simulated results compare
satisfactorily with those obtained experimentally except at two regions: (i) near the
bed and (ii) towards the left bank. The mismatch near the bed may be attributed to
the limitations of ADV, which was used to measure velocities near the bed. Note that
wall function has been imposed near the solid boundaries in the present numerical
model. Prediction of u* is satisfactory in other regions of the cross sections. At x*
= −1.33, high values of u* near the water surface are well predicted by the standard
k − ∈ model and RSM model [(Fig. 4c, e), while SA model and SST k − ω model
slightly over-predict the values (Fig. 4b, d)]. The spatial extension of high values
of u* is more for SA model and SST k − ω model at this section. Farther at the
downstream cross sections, high values of u* decrease (Fig. 4 corresponding to x*
= −2, −3 and −5]. At x* = −2, SA and SST k − ω model over-predicts the high
region of velocity (Fig. 4b, d), while standard k − ∈model under-predicts this region
(Fig. 4c). RSM model predicts more accurate high region of u* region at x* = −
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y* y*

u*

x* = -1.33 x* = - 2(a)

(b)

(c)

(d)

(e)

z*

z*

z*

z*

z*

Fig. 4 Isovels of u*: a and f Experimental; b and g Present study (SA); c and h Present study
(Standard k− ∈); d and i Present study (SST k − ω); e and j Present study (RSM)
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x* = -3 x* = -5

Fig. 4 (continued)

2 (Fig. 4e). Region of high values of simulated u* over-predicts the experimental
values at x* = −3 and −5 for all the turbulence models. In all the cases, simulated
u* under-predicts the corresponding experimental values towards the upper region
of the left bank at x* = −3 and −5 (Fig. 4f–j). Under-prediction of u* is less for the
standard k − ∈ model and RSM model (Fig. 4h, j), while more for the SA and SST
k − ω model (Fig. 4g, i).
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Table 1 Simulated flow
separation zone

Case z* W ∗
s L∗

s

Experimental 0.278 0.130 1.34

Spalart-Allmras 0.278 0.118 2.13

Standard k− ∈ 0.278 0.090 1.18

SST k − ω 0.278 0.120 2.11

RSM 0.278 0.180 1.98

3.2 Flow Separation Zone

The boundary of the separation zone is obtained using zero isovels of u* [19]. Flow
separation zone is characterized by its maximum width, Ws and length, Ls. Table 1
summarizes the results for the flow separation zone through the non-dimensional
parameters, W ∗

s , and L∗
s . Values are presented near the water surface (z* = 0.278).

Standard k − ∈ model is weak in predicting the dimensions of the separation zone.
Standard k − ∈ model under-predicts the values of W ∗

s , and L∗
s . RSM model over-

predicts the values ofW ∗
s , and L∗

s . SA and SST k−ω models predict the value ofW ∗
s

more accurately compared to standard k− ∈ . However, SA and SST k − ω models
highly over-predict the value of L∗

s .

3.3 Water Surface Elevation

Simulated WSE along y* = 0.167, 0.5 and 0.833 are presented in Fig. 5. As the
flows combine at the junction, the water surface starts falling at the junction area
and the depression continues in the downstream direction and then it starts rising
again. WSE in the downstream channel is always less than the WSE at upstream
of the junction. Minimum WSE is associated with the separation zone region. For
all the cases, simulated WSE underestimates the experimental WSE in upstream
of the junction. Simulated WSE in the downstream channel shows more deviation
as compared to the experimental values. RSM over-predicts water depression. The
stretch of thewater depression is larger compared to that of the other cases. Simulated
water depression by the SA and SST k − ω models is satisfactory. However, large
localized water depression is predicted along y* = 0.5 using the SST k − ω model
(Fig. 5b). Model performance in predicting the WSE using SA model and SST k −
ω model shows a similarity with respect to the experimental WSE for most of the
channel reach. Water depression is captured accurately using standard k − ∈ model.
WSE prediction by standard k − ∈ model is accurate at other places also. WSE
prediction appears similar in the farther downstream channel for all eddy viscosity
turbulence models considered in the present study. The above discussion shows that
free surface tracking by VOF method in the current simulations is more suitable
using standard k− ∈ turbulence model.
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Fig. 5 Comparison of flow
depth along a y* = 0.167;
b y* = 0.5; c y* = 0.833

(b)

(a)

(c)
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4 Conclusions

Open-channel confluence hydraulic has been studied numerically by using CFD
software, Fluent. For turbulencemodeling, three eddy viscositymodels andReynolds
Stress Model (RSM) have been adopted. Simulated u* andWSE has been compared
with the corresponding experimental values of Weber et al. [25]. From the present
study, the following conclusions are drawn:

(a) The simulated u* match satisfactorily with the corresponding values of exper-
imental results for all the cases considered in the present study. RSM shows
comparatively more deviation from the experimental results towards the left
bank of the downstream main channel (Fig. 4e, j).

(b) No turbulence model is best suited for the prediction of W ∗
s and L∗

s (Table 1).
Standard k− ∈ model under-predicts the values of W ∗

s and L∗
s . RSM model

over-predicts the value of W ∗
s and L∗

s . SA and SST k − ω models are more
appropriate for estimating W ∗

s . However, these two models highly over-predict
the L∗

s .

(c) Prediction of WSE using standard k− ∈ model is more accurate than all the
other cases. The Prediction of WSE is less accurate using RSM.

Acknowledgements The authors acknowledge the financial help by Prime Minister Research
Fellowship and IIT Gandhinagar to conduct this study.
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Computational Modelling of Turbulent
Flows Using an Adaptive Mesh Finite
Element Method: A Benchmarking Study

Naman Agarwal and Gaurav Bhutani

1 Introduction

Turbulence is an essential feature of many engineering applications, such as multi-
phase process flows, due to the mixing it induces. Thus, understanding turbulence
is critical for increasing the efficiency of these processes. Flow fields—velocity and
pressure—in turbulence are chaotic, which causes diffusion of mass, momentum
and energy. Turbulence is characterised using eddies of different length scales, the
smallest of which scale as Re−0.75, which makes it challenging to perform experi-
ments for turbulent flows. Modelling turbulence using computational fluid dynamics
(CFD) provides an economical alternative to experiments in many cases for a better
understanding of the physics of these flows. With an advancement of computational
infrastructure turbulent flows can now be simulated for industrial applications.

Turbulence can be modelled using different approaches. In the past, engineers
have used two-equation Reynolds-averaged Navier–Stokes (RANS) k–ε model
[1, 3, 7, 10], where k and ε represent the turbulent kinetic energy and the rate
of dissipation of turbulent kinetic energy in the flow, respectively. This model is
computationally economical; however, it lacks accuracy because of the simplifying
assumption of modelling all scales of turbulence in the flow. Moreover, it can only
be used for modelling fully developed turbulent flows. On the other end of the spec-
trum, direct numerical simulation (DNS) resolves all scales of turbulence making it
extremely expensive computationally; computation time scales as Re3 in DNS. Large
Eddy Simulation (LES) turbulence model provides a bridge between the above two
models as it uses spatial filters to filter out smaller universal scales of motion and

N. Agarwal (B) · G. Bhutani
Multiphase flow research lab (MFRL), School of Engineering, Indian Institute of Technology
Mandi, Suran, Himachal Pradesh, India
e-mail: s17001@students.iitmandi.ac.in

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2021
S. K. Saha and M. Mukherjee (eds.), Recent Advances in Computational
Mechanics and Simulations, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-15-8315-5_27

307

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8315-5_27&domain=pdf
mailto:s17001@students.iitmandi.ac.in
https://doi.org/10.1007/978-981-15-8315-5_27


308 N. Agarwal and G. Bhutani

resolves the larger anisotropic scales. It has been shown to provide a better result as
compared to the RANS models [8, 9].

The finite element method (FEM) has become popular in recent times in the engi-
neering community for solving flow transport equations. It shows promise as com-
pared to the finite difference method (FDM) and the finite volume method (FVM)
due to the ease with which it can handle unstructured meshes and the ease in obtain-
ing higher order accurate schemes (through the use of higher order shape functions),
respectively. FEM is increasingly used in computational mechanics nowadays, espe-
cially in interdisciplinary problems such as fluid–structure interaction (FSI) applica-
tions. This motivated the choice of an open-source, finite element (FE) framework
for modelling turbulence in the present work. This framework, known as Fluidity,
is highly parallelised and utilises adaptive mesh refinement, which makes it a highy
tractable for solving industrial-scale turbulent flow problems. A two-dimensional
(2D) backward-facing step (BFS) was chosen as a model problem in the present
work to model turbulence due to the simplicity and popularity of this benchmarking
flow problem. A 2D problemwas chosen as opposed to a fully 3D one due to the com-
putation economy of the simulations, which enabled more numerical experiments to
be performed.

A robust FEM for LES turbulence models is required with a clarity on the perfor-
mance of different discretisation schemes and solvers. Although somework has been
carried out on LES with FEM [4], however, lack of guidelines leaves the user con-
fused when deciding the schemes and numerical parameters for the stable solution
of LES turbulence model. The current work presents a detailed numerical analy-
sis of incompressible turbulent flow over a 2D BFS using a continuous Galerkin FE
method in an open-source finite element framework, which allows fully unstructured
anisotropic adaptive mesh refinement along with the use of distributed parallelism.
The use of adaptive and fixed meshes, two LES models (second-order Smagorinsky
and dynamic tensorial LES model), non-linear relaxation parameters and velocity–
pressure shape function pairs are investigated and thoroughly analysed in this work.
The primary reattachment length was calculated for the different simulation cases
and compared against experimental data found in the literature [2], which has been
presented and discussed in this work.

2 Model Details

2.1 Governing Equations

Turbulence can be described completely by the incompressible Navier–Stokes
equation, which for Newtonian flow is given as:

∂ui
∂t

+ ∂uiu j

∂x j
+ 1

ρ

∂ p

∂xi
− ν

∂2ui
∂x j∂x j

= 0, (1)



Computational Modelling of Turbulent Flows Using an Adaptive Mesh … 309

where ui is the flow velocity, ρ is the flow density, p is the fluid pressure and ν is the
kinematic viscosity of the fluid. The continuity equation for incompressible flows is
given as

∂ui
∂xi

= 0. (2)

LES works by filtering the velocity field, which decomposes it into its filtered and
sub-filtered components, ui and u′

i , respectively, given as

ui = ui + u′
i . (3)

The filtered velocity is resolved and the fluctuating velocity, whose behaviour is
universal, needs to be modelled. The filtering operation on a field φ(xi , t) is achieved
using a convolution product of filter kernel G with φ, given as:

φ = G � φ(xi , t) =
∞∫

−∞
G(ri , xi )φ(xi − ri , t)dr, (4)

where ri is the radial distance associated with the filter. This helps us write the filtered
momentum equation as

∂ui
∂t

+ ∂uiu j

∂x j
+ 1

ρ

∂ p

∂xi
− ν

∂2ui
∂x j∂x j

= 0. (5)

The filtered velocity product uiu j is expressed in terms of the product of filtered
velocities uiu j as

uiu j = uiu j − τi j , (6)

where τi j is the sub-filter-scale (SFS) stress tensor, which in the LES method is
modelled. The SFS stress tensor contains contribution from the interaction between
filtered scales, the filtered and sub-filter scales, and the interaction between the SFS
terms. Thus, the final filtered Navier–Stokes equation can be written as

∂ui
∂t

+ u j
∂ui
∂x j

+ 1

ρ

∂ p

∂xi
− ν

∂2ui
∂x j∂x j

− ∂τi j
R

∂x j
= 0, (7)

where τ R
i j is the deviatoric part of SFS stress, with the isotropic part of the SFS stress

is absorbed into the filtered pressure term p. The SFS stress is generally modelled
using the Boussinesq eddy viscosity hypothesis, which assumes a linear relationship
between deviatoric SFS stress τ R

i j and the filtered rate of strain Si j . The two LES
models explored in this work are described below.
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2.1.1 Second-Order Smagorinsky Model

The second-order Smagorinskymodel assumes a balance between energy production
and energy dissipation rates. The SFS stress is expressed as

τ R
i j = −2νT Si j , (8)

where νT is known as the eddy viscosity. For the second-order Smagorinsky model,
it is given as

νT = C2
s Δ

2|S|, (9)

where Cs is the Smagorinsky coefficient (=0.17), Δ is the filter length which is
calculated as scalar multiple of the square root of area of an element, and |S| =√
2Si j Si j .

2.1.2 Dynamic Tensorial LES Model

This model uses a tensorial eddy viscosity along with a dynamic Smagorinsky coef-
ficient. That is, Cs(xi , t), which helps address the anisotropy and inhomogeneity of
the turbulent flow. The tensorial eddy viscosity model is given as

νT,i j = C2
s (Δ

2
)i j |S|, (10)

where (Δ
2
)i j is the tensorial squared filterwidthwhich is calculated as scalarmultiple

of the squared mesh size tensor (Δ)2i j (see [5] for details). The anisotropic nature of
the eddy viscosity helps in the calculation of diffusion independently in each spatial
direction. The dynamic model uses a two-step filtering to calculate the Smagorisnky
coefficient Cs . A sequential application of the mesh (represented using an overbar)
and the test (represented using a tilde) filters results in an expression for Cs , given as

Cs(xi , t) = −1

2

Li j Si j

(Δ̃
2 |̃S |̃Si j Si j − Δ

2
˜|S|Si j Si j )

, (11)

where Li j is the Leonard tensor expressed as

Li j = ˜ui u j − ũi ũ j . (12)

Bull [5] can be referred for further details.
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2.2 Finite Element Formulation

The FEM helps discretise the filtered momentum equation which can then be solved
numerically. In the continuous Galerkin (CG) FE method, the momentum equation
is multiplied by a test function w̃ and integrating it over the volume Ω to obtain the
weak form of the equation, given as:

∫

Ω

w̃

(
∂ui
∂t

+ u j
∂ui
∂x j

+ 1

ρ

∂ p

∂xi
− (ν + νT )

∂2ui
∂x j∂x j

)
= 0 (13)

The overbar representing filtering has been removed for simplicity. The above equa-
tion is discretised using a finite approximation for ui , given as u j

i = ∑Nnodes
j=1 u j

i φ
j ,

whereφ j are basis functions of velocity (which take a value one at the node j and zero
at all other nodes) and u j are the unknown coefficients. For pressure, the discretisa-
tion is performed by approximating p = ∑Nnodes

i=1 piϕi , where ϕi are basis functions
of pressure. The final discretised equation, written in matrix form, is given as

M
dui
dt

+ A(ui )ui + Kui + Cp = 0, (14)

where amassmatrixM , advectionmatrix A, viscositymatrix K and pressure gradient
matrix C . ui and p represents unknown vectors of velocity and pressure coefficients,
respectively.

2.3 Mesh Adaptivity

Fixed meshes are seldom suitable for a dynamic problem since the solution fields
change continuously, so adaptive meshes are required for capturing anisotropy and
inhomogeneity of the flow fields. Mesh adaptivity is implemented in fluidity using an
interpolation-based method for the estimation of an a posteriori error metric, which
optimises themesh iteratively until a given tolerance ismet.Mesh adaptivity is carried
out in three steps in Fluidity. (1) Metric estimation: desired error metric of the field
is estimated, (2) Mesh generation: desired mesh (which agrees with the above error
metric) is generated using an iterative technique and (3) Field interpolation: all fields
are transferred from the old to the new mesh.

3 Problem Set-up and Model Parameters

As stated previously, turbulent incompressible flow in a 2D BFS with air as the
working fluid was simulated using the finite element fluidity framework. The pri-
mary recirculation length was calculated for the different cases and the results were
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compared with experimental data available in the literature [2]. The following anal-
yses have been presented in the present paper:

1. Grid independence test
2. Comparison of different LES models
3. Comparison of velocity–pressure pairs
4. Comparison of non-linear relaxation parameter.

The geometry chosen for the present work is illustrated in Fig. 1. It is exactly the
same as used by Armaly et al. [2] in their experiments. The Reynolds number (Re)
expression is also same as used by [2], given as

Re = uD

ν
,

where D is twice the step height, i.e. 2(H − h). All simulations are presented for Re
= 2000.

The boundary conditions are listed in Table1. A parabolic x-velocity profile with
a mean value of 4.1m s−1 was selected for the inlet. A no-slip boundary condition
at the walls and a homogeneous Neumann condition for velocities at the outlet was
applied. The physical and numerical parameters chosen in the solver are listed in
Tables2 and 3, respectively. Implicit scheme with a CFL number of 2 was used.
All simulations were executed on a multicore machine with 20 threads to save on
computation time. The flow velocity was initialised to zero for all simulations.

Fig. 1 The 2D BFS geometry used for modelling turbulence in the present work. L = 460, l = 60,
h = 5.2, H = 10.1. All dimensions in mm

Table 1 Boundary condition for 2D BFS simulation

Boundary Velocity Pressure

Inlet u = parabolic, v = 0
∂ p

∂n
= 0

Walls No slip
∂ p

∂n
= 0

Outlet
∂u

∂n
= ∂v

∂n
= 0 p = 0
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Table 2 Physical parameters for 2D BFS simulation

Physical parameter Value

Air density (kgm−3) 1.225

Air viscosity (Pa · s) 1.7894 × 10−5

Table 3 Numerical parameters for 2D BFS simulation

Numerical parameter Value

Overall simulation time (s) 20

Number of Picard iterations 2

Tolerance for Picard iterations (L2-norm) 10−12

4 Results and Discussion

4.1 Grid Independence Test

In order to study the effect of grid resolution on the flow prediction, the second-
order Smagorinsky LES model was chosen. A P2–P1 velocity–pressure pair, which
corresponds to quadratic shape functions for velocity and linear shape functions
for pressure, was used with adaptive time stepping. The results are presented for 6
different unstructured meshes, which include fixed and adaptive meshes, the details
for which are given in Table4. An initial timestep of 2 × 10−5 s was chosen for
each simulation to ensure that the initial CFL number was below 1.0. The mesh was
adapted to the velocity field in the present work, the numerical adaptivity parameters
for which are shown in Table5.
The flow pattern for fixed and adaptive meshes is presented in Figs. 2 and 3, respec-
tively. For the fixed-mesh case, the recirculation zone size increased with time and
attained a steady value after 2.3 s. However, the flow pattern in the adaptivemesh case

Table 4 Meshes chosen for grid independence test

Nodes Δx (mm) Simulation time to steady state
(s)

11k 0.75 1.59

38k 0.398 2.26

65k 0.3 2.393

65k adaptive 0.3 –

97k 0.246 2.36

130k 0.212 2.337
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Table 5 Adaptivity settings for adaptive mesh simulation

Number of timesteps between two adapts 10

Gradation parameter 2

Minimum edge length (mm) 0.2122

Maximum edge length (mm) 0.75

Fig. 2 Flow x-velocity for a fixed mesh with 97K nodes. Top: 0.1 s simulation time, middle: 2.36 s
simulation time (corresponds to steady state) and bottom: magnified view for steady state showing
the recirculation zone

Fig. 3 Flow x-velocity for the adaptive mesh. Top: 0.5-s simulation time, middle: 1.5-s simulation
time and bottom: magnified view for 6.64-s simulation time
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Fig. 4 Mesh for a 97k nodes fixed mesh, b 65k nodes adaptive mesh

is different from the fixed-mesh case, as seen in Fig. 3. The solution never achieved
a steady state in the adaptive mesh case because of the instability caused by flow
near the step for the present Reynolds number, which corresponds to a transition
flow regime. The fixed and adaptive meshes near the recirculation zone are shown
in Fig. 4. A grid independence (or mesh convergence) behaviour is clearly visible in
Fig. 5, which shows results for the fixed meshes. The computation time is seen to
scale linearly with the number of nodes. This was the reason for the choice of the
97k mesh as reference for the fixed-mesh results to be compared with the adaptive
mesh case, which is discussed in the forthcoming paragraphs.

Demonstrated in Fig. 6, the predicted value of the recirculation length agrees well
with the experimental results, with a small discrepancy, which could be attributed
to either the experimental uncertainty or due to the three-dimensional nature of
the experiments [2]. Since the recirculation zone length fluctuated with time for
the adaptive mesh simulation for reasons discussed above, a moving average of
the flow fields was analysed instead of instantaneous values same as Bull et al.
[4]. Figure7 shows the recirculation length calculated from moving averaged flow
velocities plotted against the simulation time for different averaging time window
sizes (Δt). The recirculation length can be seen to stabilise with increasing Δt , as
expected. For this reason, the moving average recirculation zone for Δt = 0.5 s is
presented in Fig. 6 corresponding to the adaptive mesh results, which agree well with
the experiments. Mesh adaptivity, therefore, provides better results than fixed-mesh
simulations, as seen from the validation results in Fig. 6, which makes it preferable
to fixed meshes. Recirculation length of 65k adaptive mesh case was 0.069m as
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Fig. 5 Recirculation length and computation time on 20 cores plotted for various fixed-mesh
simulations

Fig. 6 Recirculation length with simulation time
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Fig. 7 Recirculation length with simulation time for adaptive meshes—effect of moving average
time window Δt

compared to the 97k fixed-mesh case which was 0.071m, whereas the computation
time of the 65k adaptive mesh case was 8 % less as compared to the 97k fixed-
mesh case, as seen from Fig. 5. Therefore, for the comparison of different LES
models, adaptive- esh simulations were used and the results are presented in the next
subsection.

4.2 LES Turbulence Models

Two LES models—second-order Smagorinsky and dynamic tensorial LES model—
are compared in this section. For the simulations, the adaptive mesh case (with 65k
mesh nodes) was selected, with a P2–P1 velocity–pressure element pair and adaptive
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Fig. 8 Comparison of different LES models

time stepping. The numerical parameters used for the dynamic tensorial model are
as follows: first filter ratio = 2, test filter ratio = 2 and a scalar length scale. First filter
ratio is defined as the ratio of the first filter width to length scale, whereas the test
filter ratio is the ratio of the second filter width to the first filter width.

A comparison of the primary recirculation length predicted by the two turbulence
models is shown in Fig. 8. The second-order Smagorinsky model clearly shows a
result that is much closer to the experimentally measured value. The dynamic tenso-
rial model, however, shows a sub-optimal result due to the present choice of the use
of first filter ratio. The prediction is similar to Bull et al. [5] who could not obtain
a decent match with the experiments with a filter width ratio of 2. Germano et al.
[6], however, reported a superior result with the same choice of filter width ratio.
The effect of the filter width ratio on the prediction of turbulence dynamics is not
understood well and requires further investigation.

Moreover, the computation cost associated with the dynamic tensorial model was
significantly more as compared to the second-order Smagorinsky model, as shown in
Fig. 9.Hence, for 2D simulations on unstructuredmeshes, second-order Smagorinsky
model was found to be the optimum choice for modelling turbulence in the transition
flow regime.
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Fig. 9 Comparison of computational time for different LES models (for a simulation time of 2.36
s). All simulations performed on 20 cores

4.3 Velocity–Pressure Element Pairs

P1–P1 (linear–linear) and P2–P1 (quadratic–linear) velocity–pressure pairs were
compared for a second-order Smagorinsky model. A fixed mesh with 97k nodes was
chosen for this comparison, with adaptive time stepping.

Figure10presents the recirculation length for the two element pairs,with very sim-
ilar prediction. The P2–P1 element is expected to be computationallymore expensive
due to the quadratic shape functions used for velocity and the same was confirmed
from simulation results, as shown in Fig. 11.

4.4 Nonlinear Relaxation Parameter

The Navier–Stokes equation, which is non-linear in the velocity in the convective
term, is linearised before the standard FEM can be applied. A relaxation parameter
θ ∈ (0, 1) is used to calculate the nonlinear velocity as a weighted sum of the velocity
at the nth timestep and the present Picard iteration. Two values of θ (0.5 and 1.0)
were tested in the present work for a second-order Smagorinskymodel. As seen from
Fig. 12, the recirculation length calculated using both these values were very similar.
Thus, the results are not too sensitive to the choice of θ.
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Fig. 10 Comparison of recirculation length for different velocity–pressure pairs. All simulations
on 20 cores

Fig. 11 Comparison of computational time for different velocity–pressure pairs. All simulations
on 20 cores
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Fig. 12 Comparison of recirculation length for different values of nonlinear relaxation parameter θ

5 Conclusion

The following conclusions can be drawn based on the results presented in this work:

1. The validation error in the recirculation length for the fixed-mesh case (with 97k
nodes) was larger than the adaptive mesh case. It was found to be 4.4% as opposed
to 1.47% for the latter. At the same time, the adaptive mesh simulations were 8%
quicker than the fixed-mesh case. This clearly showed the superiority of using
mesh adaptivity in the CFD modelling of turbulence.

2. For fixedmeshes, both P1–P1 and P2–P1 element pairs provided similar result for
the recirculation length, with a difference of only 0.7%between the two.However,
the P1–P1 element pair was 58% faster than the P2–P1 element pair. Thus, P1–P1
element pair is preferred for fixed meshes.

3. The choice of non-linear relaxation parameter was not found to affect the result
for the prediction of the validation results.

This work can be extended to study the effect of first filter ratio on the dynamic
tensorial LES model. Also, the effect of filter functions with mesh-adaptivity on
recirculation length can be investigated in the future.

The results presented in this work will help the user choose LES models and
parameters more effectively for a finite element solution method. Although the study
was presented for a 2D BFS, the results are expected to hold for 3D simulations too.
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Finite Element Computational Modelling
of Non-Newtonian Fluids Using
Anisotropic Mesh Adaptivity

Neeraj Kr. Singh and Gaurav Bhutani

1 Introduction

Non-Newtonian fluids are widely encountered in many fields of science and engi-
neering, such as geophysics, hydrogeology, chemistry, food, petroleum, lubricants, to
name but a few.Moreover, manymodernmaterials andmanufacturing processes also
require further understanding of the behaviour of non-Newtonian fluids, due to their
wide applications in practice [1]. Compared to Newtonian fluids, non-Newtonian
fluids usually have a complex constitutive behaviour, which may complicate their
investigation through the use of numerical methods. In the past few years, progress
has taken place in the solution of non-Newtonian flows using the following meth-
ods: finite element method (FEM) [2], finite volume method [3], lattice Boltzmann
method (LBM) [4] and smoothed particle hydrodynamics (SPH) [5]. Using themeth-
ods mentioned above, some complex flow features that differ from the Newtonian
fluids have been reported.

With the flow systems becoming large, an accurate analysis of non-Newtonian
flows through the use of CFD has become computationally expensive. In this paper,
we demonstrate the use of a highly parallelised adaptive mesh finite element solver—
Fluidity—to study the behaviour of power-law non-Newtonian fluid flows in a two-
dimensional (2D) square cavity. The FEM has been proved to be a powerful numer-
ical technique for simulating Newtonian and non-Newtonian fluid flows and partic-
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ularly successful in dealing with complex boundaries. Non-Newtonian fluids have
non-linear dependence on the rate of shear strain, which makes the flow equations
non-linear, and therefore more complex. Compared to the finite volume and finite
difference methods, FEM allows for accuracy improvement by changing the order
of polynomial in test and trial functions for the flow fields, helping in the handling
of non-linearity. Hence, the FEM is considered to offer excellent possibilities for
simulating non-Newtonian flows.

The flow in a 2D lid-driven square cavity, which is a classic benchmark prob-
lem in fluid mechanics, has been widely studied by many researchers in the past
decades. Driven cavity flow is of great importance as it can offer an ideal frame-
work in which meaningful and detailed comparisons can be made between results
obtained from theory and computation [6]. However, to the best of the knowledge
of the authors, most available works are limited to the Newtonian fluids and only a
few works associated with the non-Newtonian (power-law) fluid flows in a square
cavity have been reported. To address this limitation, in the present work, power-law
non-Newtonian fluid flow is simulated in a 2D square cavity using a finite element
adaptive mesh solver. Non-Newtonian effects in the lid-driven cavity (LDC) flows
are investigated and a detailed comparison of the results with published results have
been shown. Along with the LDC benchmark, code verification is also presented for
a non-Newtonian Poiseuille flow problem.

2 Model Details

2.1 Governing Equations

Following are the governing equations for an incompressible non-Newtonian fluid
flow:

Mass Conservation Equation
ui,i = 0 (1)

Momentum Conservation Equation

ρ∂t ui + u jui, j = σi j, j + ρbi (2)

σi j = −pδi j + τi j (3)

τi j = 2η(γ̇)γ̇i j (4)

γ̇i j = 1

2
(ui, j + u j,i ) (5)
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Here, η(γ̇) denotes the dependence of viscosity on the rate of strain tensor. Other
symbols have their usual meaning. It must be noted that Einstein’s notation had been
used in this text.

Shear Strain Rate

The shear strain rate (γ̇) is defined by using I2, the second invariant of shear strain
rate tensor, which makes γ̇ a scalar. It is dependent on the rate of the strain tensor,
and independent of the coordinate system:

I2 = γ̇i j γ̇i j , (6)

γ̇ = √
2γ̇i j γ̇i j . (7)

Here γ̇i j is the rate of strain tensor and γ̇ is magnitude of strain tensor.

Power-Law Model
η = K γ̇n−1 (8)

Here, K is consistency index, γ̇i j is shear strain rate and n is power-law index.

2.2 Finite Element Formulation

Thefinite elementmethod helps to discretise themomentumequation,which can then
be solved numerically. In the Continuous Galerkin (CG) FE method, the momentum
equation is multiplied by a test functionψ and integrated over the volumeΩ to obtain
the weak form of the equation, given as

∫

Ω

ψ

(
∂ui
∂t

+ u j
∂ui
∂x j

+ 1

ρ

∂ p

∂xi
− ∂ν

∂x j

∂ui
∂x j

)
= 0 (9)

The above equation is discretised using a finite approximation for ui , given as u
j
i =∑Nnodes

j=1 u j
i φ

j , where φ j are basis functions of velocity (which take a value one at
the node j and zero at all other nodes) and u j are the unknown coefficients. For
pressure, the discretisation is performed by approximating p = ∑Nnodes

i=1 piϕi , where
ϕi are basis functions of pressure. The final discretised equation, written in matrix
form, is given as

M
dui
dt

+ A(ui )ui + Kui + Cp = 0, (10)
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where mass matrix M , advection matrix A, viscosity matrix K and pressure gradient
matrix C are known. ui and p represent unknown vectors of velocity and pressure
coefficients, respectively, which are determined by solving the above system.

2.3 Mesh Adaptivity

Fixed meshes are seldom suitable for a dynamic problem since the solution fields
change continuously, so adaptive meshes are required for capturing anisotropy and
inhomogeneity of the flow fields. An important step is the construction of an error
metric that allows the size and shape quality of individual elements to be assessed, so
that local operations may be applied to improve overall mesh quality. This approach
results in anisotropic meshes, and so a metric that incorporates information on the
anisotropy of the solution variables being approximated is advantageous [7].

Mesh adaptivity is implemented in Fluidity using an interpolation-based method
for the estimation of an a posteriori error metric, which optimises themesh iteratively
until a given tolerance is met. Mesh adaptivity is carried out in three steps in Fluidity.
(1) Metric estimation: desired error metric of the field is estimated, (2) Mesh gen-
eration: desired mesh (which agrees with the above error metric) is generated using
an iterative technique, and (3) Field interpolation: all fields are transferred from the
old to the new mesh.

3 Problem Setup and Model Parameters

3.1 Poiseuille Flow—Verification

For the verification of the implementation of non-Newtonian power-law model in
Fluidity (as a Python script), flow between two semi-infinite parallel plates, also
known as Poiseuille flow,was considered in the fully developed region. The following
analyses were performed for this case:

1. Comparison of numerical results with analytical results for three cases: n =
0.5, 1.0, 1.5.

2. Relative percentage error in numerical and analytical solution with time.

The Reynolds number in the present work is given by

Re = U 2−nhn−1

K

whereU is velocity of the fluid at the inlet, h is the characteristic length that is equal
to distance between two parallel plates, and K is the consistency parameter and n is
power-law index.
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Fig. 1 The 2D parallel plate geometry used for verification in the present work. L = 20, h = 1.0.
All dimensions in m

Table 1 Boundary condition for parallel plate simulation

Boundary Velocity Pressure

Inlet u = 1.0, v = 0
∂ p

∂n
= 0

Plates No slip
∂ p

∂n
= 0

Outlet
∂u

∂n
= ∂v

∂n
= 0 p = 0

Table 2 Physical parameters for parallel plate simulation

Physical parameter Value

Consistency index (K) 0.01

Power index (n) 0.5, 1.0, 1.5

Table 3 Numerical parameters for parallel plate simulation

Numerical parameter Value

Overall simulation time (s) 17

Number of Picard iterations 2

Tolerance for Picard iterations (L2-norm) 10−12

The boundary conditions are shown in Fig. 1. A uniform x-velocity profile with
a magnitude of 1.0m s−1 was selected for the inlet. A no-slip boundary condition
at the walls and a homogeneous Neumann condition for velocities at the outlet was
applied. Details are specified in Table1.

The physical and numerical parameters chosen in the solver are listed in Tables2
and 3, respectively. An implicit scheme with a CFL number of 5.86 was used. All
simulations were executed on a multicore machine with 20 threads to save on com-
putation time. The flow velocity was initialised to zero for all simulations.
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3.2 Couette Flow—Benchmark

A 2D-LDC configuration, a type of Couette flow, the same as that used by Li et al.
[8] was used in this work, as shown in Fig. 2. The Reynolds number definition is
given by

Re = U 2−n Ln−1

K
,

where U is velocity of the fluid at the top wall, L is the characteristic length that
is equal to length of the square cavity, K is the consistency parameter, and n is
power-law index. The following analyses were carried out for this case:

1. Grid independence test for four fixed meshes,
2. Effectiveness of anisotropic mesh adaptivity,
3. Effect of timestep on accuracy,
4. Effect of Reynolds number,
5. Effect of power-law index,
6. Effectiveness of parallel computation.

The initial condition for velocity was 0.0 ms−1. Boundary conditions are listed
in Table4 and shown in Fig. 2. The x-velocity was constant on the top wall for grid
independence test. No-slip boundary condition at the remaining three walls with
homogeneous Neumann boundary conditions for pressure was used. The physical
and numerical parameters are listed in Tables5 and 6. A 2D unstructured mesh was
used for this exercise.

Fig. 2 The 2D-LDC geometry used for modelling non-Newtonian fluid in the present work. L = 1,
all dimensions in m
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Table 4 BCs for 2D-LDC simulation

Boundary Velocity Pressure

Top wall u = constant = 1.0, v = 0
∂ p

∂n
= 0

Remaining walls No slip
∂ p

∂n
= 0

Origin u = 0, v = 0 p = 0

Table 5 Physical parameters for 2D-LDC simulation

Power-law index (n) 0.5, 1.0, 1.5

Re 100

Table 6 Numerical parameters for 2D-LDC simulation

Numerical parameter Value

Time step Δt (s) 1× 10−2

Overall simulation time (s) 200

4 Results and Discussion

4.1 Verification

The results for simulation of flow between two parallel plates with power-law fluids
for different flow indices (n = 0.5, 1.0, 1.5) are compared with analytical solution,
as shown in Figs. 3, 4, 5. The agreement was excellent as seen from the figures.
Percent relative error (with analytical results) was calculated and plotted in Fig. 6 at
h = 0.5 m. The convergence can be clearly seen from the plot with a large initial
error and decreases to within 0.15% after 6 s.

4.2 Benchmarking

Fluidity results for the 2D-LDC were compared with the results obtained using the
Lattice Boltzmann method [8].

4.2.1 Grid Independence Test

In order to study the effect of grid resolution on the flowprediction, a P1–P1 velocity–
pressure pair, which corresponds to linear shape functions for velocity with no sta-
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Fig. 3 Shear thinning
(n = 0.5)

Fig. 4 Newtonian (n = 1.0)

Fig. 5 Shear thickening
(n = 1.5)
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Fig. 6 Relative percentage
error

Table 7 Meshes chosen for grid independence test

Nodes Δx (m) Simulation time to steady state
(s)

336 0.0625 15

1271 0.03125 30

4831 0.015625 55

19324 0.0078125 350

1400 adaptive – 18

Table 8 Adaptivity settings for adaptive mesh simulation

Number of timesteps between two adapts 10

Gradation parameter 2

Minimum edge length (m) 0.001

Maximum edge length (m) 0.5

bilisation and linear shape functions for pressure, was used with fixed time stepping.
The Crank–Nicolson (θ = 0.5) discretisation is used in time. The results are pre-
sented for 4 different fixed unstructured meshes. One adaptive mesh simulation is
also presented to analyse the effect of mesh adaptivity on simulation run-time and
error. The details of meshes are given in Table7. An initial timestep of 0.01 s was
chosen for each simulation to ensure that the initial CFL number was below 1.0. The
mesh was adapted to the velocity field in the present work, the numerical adaptivity
parameters for which are shown in Table8.

A grid independence (or mesh convergence) behaviour is clearly visible in Fig. 7,
which shows results for the fixed meshes. The computation time scales linearly with
the number of nodes, hence the mesh with 4831 nodes is the most optimal.
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Fig. 7 Grid independence test

4.2.2 Anisotropic Mesh Adaptivity

In anisotropic mesh adaptivity, the mesh resolution depends on the interpolation
error for the fields of interest—x-velocity, y-velocity and pressure in this work. The
adaptive mesh is shown in Fig. 8. The upper edge of the square cavity mesh is refined
due to the velocity shear. The interpolation error was within 10, 6 and 1% for hori-
zontal velocity (u), vertical velocity (v) and pressure fields, respectively. Anisotropy
allows to refine the mesh in particular directions which reduces the computational
time significantly, as shown in Fig. 9. The characteristic mesh length for fixed mesh
is plotted on the x-axis with computation time on y-axis. The accompanying adaptive
mesh histograms correspond to similar accuracy as the fixed mesh.

Parallel and serial simulations were also run for the above-mentioned four fixed
mesh cases on a 20-core machine. A clear reduction in run-time can be seen through
the use of multicore simulations (Fig. 10).

4.2.3 Effect of Reynolds Number

A large number of simulations are carried out for shear-thickening (n = 1.5) and
shear-thinning (n = 0.5) fluids with Re =1000, 3000, 5000 and 8000. Figures11
and 12 show the flow streamlines for shear-thickening and shear-thinning cases,
respectively. With an increase in Re, the primary vortex generated by the motion of
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(a) Mesh at t=0 s (b) Mesh at t=10.0 s

Fig. 8 Adaptive mesh

Fig. 9 Comparison between fixed and adaptive mesh

upper lid gradually deviates from the top right corner and moves towards the centre.
Also, the number of secondary vortices increases with an increase in Re. In short,
increasing Reynolds number not only leads to an increase in the number of vortex
structures but also brings more complexity to the flow structure. These effects are
more pronounced for shear-thinning fluids.
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Fig. 10 Serial–Parallel computational time comparison

Table 9 Comparison of location of centre of primary vortex

Li et al. [8] Fluidity

Re Xc Yc Xc Yc

100 0.5628 0.7282 0.5698 0.7284

500 0.5495 0.6377 0.5477 0.6287

1000 0.5345 0.6097 0.5337 0.6001

The comparison of location of centre of primary vortex can be seen in Table9. A
clear shift of the primary cortex centre to down-left can be seen from the data.

4.3 Detailed Benchmarking of Numerical Results

The horizontal velocity (x-velocity) in the y-direction at x = 0.5 m has been com-
pared with the published data of Li et al. [8]), which shows a good agreement for both
shear-thinning (n = 0.5) and shear-thickening (n = 1.5) fluids, as shown in Figs. 13
and 14. The vertical velocity also shows a good agreement with previous work.

Since the implementation of non-linear viscous terms is explicit in the present
solver, the effect of the choice of timestep size is presented in Fig. 15. The error
drops with timestep size as expected.
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(a) Re=1000 (b) Re=3000

(c) Re=5000 (d) Re=8000

Fig. 11 Effect of Re on Shear-thickening fluids

4.3.1 Effect of Power-Law Index (n)

The increase in the power-law index (n) results in the velocity to increase near the top
and bottom of the cavity (Fig. 16). The v-velocity appears sinusoidal and becomes
sharper with an increase in n.
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(a) Re=1000 (b) Re=3000

(c) Re=5000 (d) Re=8000

Fig. 12 Effect of Re on Shear-thinning fluids

5 Conclusion

In this paper, power-law (non-Newtonian) fluid flow in a 2D square cavity is stud-
ied using the finite element Fluidity code. The effects of mesh adaptivity, change
in Reynolds number, and power-law index are presented. A detailed comparison
between velocity values with published results is also shown. The following conclu-
sions can be drawn based on the results obtained:
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(a) x-velocity (b) y-velocity

Fig. 13 Velocity benchmarking for shear-thinning fluids

(a) x-velocity (b) y-velocity

Fig. 14 Velocity benchmarking for shear-thickening fluids

Fig. 15 Effect of timestep
size
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(a) x-velocity (b) y-velocity

Fig. 16 Effect of power-law index (n)

1. There is a noticeable difference between the flow structure of power-law fluid and
that of a Newtonian fluid.

2. Use of anisotropic mesh adaptivity reduces the computational time while main-
taining the dynamics of the problem.

3. Numerical results show that the Fluidity code can be used to simulate non-
Newtonian flows at high Reynolds number robustly.
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Computational Study of Shear Flow Past
Square Cylinder with Horizontal Control
Plate

Ashwani and Rajendra K. Ray

1 Introduction

The studyof uniformflowbeyonda cylindrical impediment has fascinated researchers
for a long term, and exact data is to be had in the literature. However, many sensi-
ble cases exist where the flow coming near a frame is sheared rather than uniform.
For example, cylindrical structures submerged in wind, tides or currents are usually
exposed to a non-uniform loose circulation.When the oncoming free stream is a linear
drift, a consistent vorticity is embedded within the free stream. This might also result
in a complicated interplay with the boundary layers that become independent from
the bodywhich ends up in a exclusive type of vortex shedding structure. It is essential
to recognise the consequences of the imminent shear flowon themechanismof vortex
shedding. Such type of study would cause higher expertise of the vortex-precipitated
vibration, its subsequent suppression and control. In our problem, shear flow past
a square cylinder with horizontal control plate is studied systematically over more
than a few shear rates by making use of a valuable numerical scheme, that is, HOC
(Higher order compact) scheme. Much of the prior research has already been done in
various fields using uniform flow past bluff bodies till date. Cheng et al. [1] investi-
gated the linear shear flow over a square cylinder at a Reynolds number of 100 using
the lattice Boltzmann method. Their results show the suppression effect of the flow
on vortex shedding with some basic features of the flow phenomenon with respect
to K . Later on, Cheng et al. [2] numerically simulated shear flow around square
cylinder, examined vortex shedding frequency and aerodynamic forces exerted on
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the cylinder for Re = 100 and K ranging from 0.0 to 0.4 using lattice Boltzmann
method. Their results show that vortex phenomenon is strongly dependent on Re and
K . In 1960, Lax and Wendroff [3] use an idea to raise the temporal accuracy from
one to two. They use this idea on transient hyperbolic PDEs and use the original PDE
to approximate the second-order time derivative in a Taylor series expansion. After
this, in 1982 Gartland [4] uses discrete weighted mean approximation to get higher
order compactness while Noye and Tan [5] apply weighted modified PDE method
and in 1984, Gupta et al. [6] apply series to get higher order compactness expansion
to the differential equations.

In 2002, Kalita et al. [7] works on higher order compact schemes for the unsteady
two-dimensional convection–diffusion equation with variable convection coeffi-
cients and they showed the regionwhere complexity ismore, very accurate results can
be achieved through HOC schemes with significantly small number of grid points.
Later, Ray andKalita [8, 9] developHOC scheme for incompressible viscous flows in
polar coordinate system (r, θ). Therefore, of late, the Higher Order Compact (HOC)
finite difference schemes for the computation of incompressible viscous flows are
steadily gaining reputation due to their immoderate accuracy and advantages related
to compact difference stencils.

The purpose of the present study is to investigate the effect of shear rate on the
unsteady flow separation and the vortex shedding phenomenon using a structural
bifurcation. In the process, we aim to know the effect of added control plate with the
square cylinder on flow. The schematic diagram of the problem is shown in Fig. 1.

Fig. 1 Schematic diagram of the problem
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2 Problem Statement and Governing Equations

In our problem we are considering an unsteady, incompressible shear flow past a
square cylinder with a horizontal control plate of unit length and placed at a distance
‘d’ from the square cylinder, where ‘d’ is the length of the side of the cylinder. Here
centre of the square cylinder is fixed at origin (0, 0) and a horizontal plate is attached
to the cylinder as shown in schematic diagram of the problem. The physical domain
is infinite but for the computational feasibility of problem, the computational area
must be finite. Thus the usage of right boundary conditions can reduce the scale of
computational domains. we apply a linear combination at inlet,

u = Uc + Ky, v = 0 (1)

where Uc is the centre line velocity of flow and K is the shear parameter. The slip
boundary situations are applied on the above and lower side of the domain. That is,

∂u

∂y
= K , v = 0 (2)

No-slip boundary conditions are considered on the surface of the cylinder [10]. We
use convective boundary conditions at the outer boundary of domain which is as
follows:

∂φ

∂t
+Uc

∂φ

∂x
= 0 (3)

The flow is governed by the incompressible Navier–Stokes equation. The stream-
function vorticity (ψ − φ) formulation of the Navier–Stokes equation in Cartesian
coordinate (x, y), is given as

∂2φ

∂x2
+ ∂2φ

∂y2
= Re

(
u

∂φ

∂x
+ v

∂φ

∂y
+ ∂φ

∂t

)
(4)

∂2ψ1

∂x2
+ ∂2ψ1

∂y2
= −φ (5)

whereφ = vorticity, ψ1 = Stream function, u, v = x-direction and y-direction velocity
component, respectively.
Velocity component u, v in terms of stream function (ψ1) can be written as

u = ∂ψ1

∂y
, v = −∂ψ1

∂x
(6)

so vorticity,
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φ = ∂v

∂x
− ∂u

∂y
(7)

2.1 Numerical Discretisation

As flow is governed by Navier–Stokes equations. So, first, we have to discretise the
governing equations. Discretisation of governing equations by using Higher Order
Compact (HOC) scheme in Cartesian coordinate as follows:

∂2φ

∂x2
+ ∂2φ

∂y2
= Re

(
u

∂φ

∂x
+ v

∂φ

∂y
+ ∂φ

∂t

)
(8)

∂2ψ1

∂x2
+ ∂2ψ1

∂y2
= −φ (9)

HOC discretisation of (8) at (i, j)th node is given as

[Re+Ai, jδ
2
x + Bi, jδ

2
y + Ci, jδx + Di, jδy + Gi, jδxδy + Hi, jδxδ

2
y + Ki, jδ

2
xδy+

Li, jδ
2
xδ

2
y]φn+1

i, j = [Re + Ai, jδ
2
x + Bi, jδ

2
y + Ci, jδx + Di, jδy + Gi, jδxδy

+Hi, jδxδ
2
y + Ki, jδ

2
xδy + Li, jδ

2
xδ

2
y]φn

i, j (10)

Similarly, HOC discretisation of (9) is

[δ2x + δ2y − (h2 + k2)δ2xδ
2
y]ψi, j = [−1 + H2δ2x + K2δ2Y ]φi, j (11)

where
Ai, j = −H12Re − 0.5Δt A1i, j
Bi, j = −K12Re − 0.5Δt A2i, j
Ci, j = −H11Re − H12ui, j Re2 − 0.5Δt A3i, j
Di, j = −K11Re − K12vi, j Re2 − 0.5Δt A4i, j
Gi, j = −0.5Δt A5i, j
Hi, j = −0.5Δt A6i, j
Ki, j = −0.5Δt A7i, j
Li, j = −0.5Δt A8i, j

where
A1i, j = 1 + H11Reui, j + H12Re2u2i, j + 2H12Re(ux )i, j

A2i, j = 1 + K11Revi, j + K12Re2v2
i, j + 2K12Re(vy)i, j

A3i, j = −Reui, j + H11Re(ux )i, j + K11Re(uy)i, j + H12Re2ui, j (ux )i, j
+H12Re(uxx )i, j + K12Re(uyy)i, j + K12Re2vi, j (uy)i, j
A4i, j = −Revi, j + H11Re(vx )i, j + K11Re(vy)i, j + H12Re2ui, j (vx )i, j
+H12Re(vxx )i, j + K12Re(vyy)i, j + K12Re2v(vy)i, j
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A5i, j = H11Revi, j + k11Reui, j + H12Re2ui, jvi, j
+2H12Re(vx )i, j + 2k12Re(uy)i, j + k12Re2ui, jvi, j
A6i, j = −H11 − H12Reui, j + K12Reui, j
A7i, j = − K11 + H12Revi, j − K12Revi, j
A8i, j = − H12 − K12
H2 = − h2/12, K2 = −h2/12,
H11 = K11 = Reui, j h2/6,
H12 = K12 = −h2/12.

2.2 Validation with Existing Results

The instantaneous streak-line patterns are shown in Fig. 2, which are in good agree-
ment with the results of Cheng et al. [2] at Re = 100 and K = 0.0 and K = 0.4.
The vortices behind the cylinder are in a regular alternating arrangement.

2.3 Results and Discussion

Figures3, 4 and 5 show the vorticity contours for different K values. The centre
of the cylinder is fixed at origin. We can easily see that for K = 0.0 the pattern
of flow is symmetric. We found that for K = 0.1 the vorticity contour is different
from K = 0.0 because as K changes in positive direction, the speed of the fluid flow
decreases at bottom of cylinder. For K = 0.4, it is totally suppressed. In this case,
vortex formation region does not change with respect to time. We plot the transverse
velocity component fluctuation on a centerline in Figs. 6 and 7 for Re = 100 at
different K values. Figure 7 shows that as K increases, u values increase in the
upper part and decrease in the lower part of the cylinder, whereas with increment

Fig. 2 Comparison of streak-line pattern at Re = 100 for a K = 0.0 and b K = 0.4with the results
of Cheng et al.
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Fig. 3 Vorticity contours for K = 0.0

Fig. 4 Vorticity contours for K = 0.1
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Fig. 5 Vorticity contours for K = 0.4

Fig. 6 v along x-axis for
different values of K at
Re = 100

of shear parameter values, v values decrease along the x-axis as shown in Fig. 6. A
phase diagram (Fig. 8) is also drawn between u versus v at a monitoring point (0.75,
0.5) behind the cylinder at different K . These plots are the indication of a periodic
solution.

2.4 Study of Structural Bifurcation Analysis

Bifurcation is the mathematical analysis of qualitative adjustments in the topological
shape of a given family. A bifurcation takes place when a small clean shift within the
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Fig. 7 u along y-axis for
different values of K at
Re = 100

Fig. 8 (u-v) phase diagram
for Re = 100, at different K
values

parameter values of a system leads to a fast shifting in its qualitative or topological
behaviour. The conditions for the separation at a point P∗ on the floor of the cylinder,
at time T ∗ for a fluid flow governed by N-S equations with no-slip condition on the
boundary of solid, are given by

ω = 0,
∂ω

∂τ
= 0,

∂2ω

∂τ 2
> 0,

∂ω

∂t
< 0 (12)
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Fig. 9 Vorticity distribution
on the surface of the cylinder
and horizontal plate during
the structural bifurcation at t
= 0.626 for K = 0.1

Table 1 Occurrences of first and second structural bifurcation points at Re = 100

Re = 100 [P1(x, y), T 1] [P2(x, y), T 2]
K = 0.0 [(−0.22,−0.5), 1.201] [(−0.22, 0.5), 1.201]
K = 0.1 [(−0.26,−0.5), 0.626] [(−0.22, 0.5), 2.587]
K = 0.4 [(−0.34,−0.5), 1.122] [(−0.22, 0.5), 4.601]

at (P∗, T ∗). It is thought that a structural bifurcation takes place at time T ∗ and has
a degenerate singular factor P∗ at the solid floor with a downward flow. In the case
of an upward shear flow, remaining two inequalities will change the symptoms.

From Figs. 9 and 10, we can easily see that at point P1 and P2, ω = 0 and also
there exist extremum (relative minimum or maximum) at P1 and P2 so ∂ω

∂τ
= 0.

At the point P1, there is relative minima and at point P2 there is relative max-
ima. This implies that ∂2ω

∂τ 2 > 0 and ∂2ω
∂τ 2 < 0 at P1 and P2, respectively. Now for

fourth condition we plot the vorticity variation with time at point P1(−0.26,−0.5),
P2(−0.22, 0.5) as in Figs. 11 and 12. From Fig. 11, we can observe that vorticity is
decreasing with respect to time. This implies ∂ω

∂t < 0. In Fig. 12, vorticity is increas-
ing with respect to time. This implies ∂ω

∂t > 0, which implies that P1 and P2 are our
bifurcation points for K = 0.1. Similarly, we found bifurcation point for different
values of K as shown in Table. From Table1, we found that time of occurrence of
second bifurcation is increasing but time of occurrence of first bifurcation it is not
monotonic.



348 Ashwani and R. K. Ray

Fig. 10 Vorticity
distribution on the surface of
the cylinder and horizontal
plate during the structural
bifurcation at t = 2.587 for
K = 0.1

Fig. 11 Vorticity variation with time at point P1(−0.26,−0.5)

3 Conclusion

The current work presents the study of shear flow past a square cylinder with hori-
zontal control plate. By using the HOC scheme, we can increase the accuracy of the
solution. The study of vorticity contours concludes that these are mainly dependent
on the shear parameter (K ) and control plate. As K increases, the speed of the flow
from lower side of the cylinder decreases and for different value of shear parameter
flow behaves differently. The u-v phase diagrams for different K are the indication
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Fig. 12 Vorticity variation with time at point P2(−0.22, 0.5)

of a periodic solution. Bifurcation analysis concludes that first bifurcation occurs at
the bottom of the cylinder and second bifurcation occurs at the top of the cylinder.
We also observed that for K = 0.0 first and second bifurcation occur at same time
because flow is symmetric in the case of K = 0.0.
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Numerical Study of Shear Flow Past an
Inclined Square Cylinder with Vertical
Control Plate

Rishabh Saxena and Rajendra K. Ray

1 Introduction

Oneof themost consideredproblemswhenflowpast through square cylinder inwhich
different types of experimental and numerical studies has been done. This problem
is interesting because of its practical importance in different fields like bridges,
buildings, vortex flow metre, etc., apart from the experimental studies, this problem
also plays an important role for academic importance inwhichmost of the researchers
are doing numerical simulation. Kumar and Ray [1] has already done numerical
simulation for inclined square cylinder (α = 45◦) for different shear parameter (K )
values at Reynolds number (Re = 100). Yoon et al. [2] present the study for the
laminar flow past an inclined square cylinder in uniform free stream. Sohankar [3]
presents the study for different incidence angles (α = 0◦−45◦) of square cylinder,
Sohankar has done computational work with the help of SIMPLEC code with non-
staggered grid for computing the flow behaviour.

In this paper, we extend the problem of the inclined square cylinder (α = 45◦)
with the help of vertical control plate. In which we have used higher order compact
(HOC) finite difference scheme on uniform grids, which is given by Kalita et al. [4].
We used HOC scheme because it is already tested for the square cylinder and it gives
accurate flow behaviour, which was already presented by Kumar and Ray [5]. But
in this paper, we extend the use of HOC scheme for the inclined square cylinder
with the help of vertical control plate, until no one tested HOC scheme for control
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plate. Also, we analyse the flow behaviour with different K values at Re = 100 and
apart from the numerical studies we also have done the topological based structural
bifurcation analysis which gives us the exact location and exact timewhen and where
first and second bifurcation occurs.

2 Problem Statement and Discretisation

2.1 Governing Equations and Boundary Conditions

We consider the problem of an unsteady, incompressible shear flow past an inclined
cylinder with vertical control plate. The square cylinder is inclined at an angle (α =
45◦). Flow is governed by Navier–Stokes equation. The stream function vorticity
(ψ − ω) formulation of the two-dimensional Navier–Stokes equation in Cartesian
coordinate (x, y) is

ωxx + ωyy = Re(uωx + vωy + ωt ) (1)

ψxx + ψyy = −ω (2)

here ω = vorticity
ψ = Stream function
Re = Reynold number
u and v represent the velocity component along x and y, respectively.

Here we define velocity component in terms of stream function ψ

u = ψy, v = −ψx

so the vorticity ω = vx − uy .
In this problem, We have taken the width and height of the inclined cylinder as

‘d’ and distance of the vertical control plate from the inclined cylinder as ‘d’.
Here we apply a linear combination, for the physical boundary condition at inlet,

U = Uc + Ky

at v = 0, whereUc = centre line velocity of inflow, K = shear parameter. A schematic
diagramof the problem is given inFig. 1. Themajor issue comes to solve the boundary
conditions specially outlet boundary. This happens because our problem is based on
physical problem with the infinite domain. So to make the problem computationally
feasible we take some finite domain.We choose convective boundary condition at the
outlet boundary because it is found as the best fit boundary condition for this problem
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Fig. 1 Schematic diagram of flow control behind the inclined cylinder with an inlet shear using
vertical control plate

in the literature [6]. We choose slip boundary condition on the top and bottom of the
domain which is shown in Fig. 1.

uy = K , v = 0

We have used no-slip boundary condition on the surface of the cylinder and on the
control Plate. At the outlet boundary, we have used convective boundary condition

φt +Ucφx = 0.

2.2 HOC Discretisation

In this section, we discretise the our governing Eqs. (1) and (2) with the help of
higher order compact finite difference scheme. To solve the problem, we have used
higher order compact finite difference scheme on uniform Cartesian grid. Thus, the
higher order compact (HOC) discretisation of the governing Eqs. (1) and (2) at the
(i, j) node of the computational domain is given as follows:
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[Re + A11δx
2 + A12δy

2 + A13δx + A14δy + A15δxδy +
A16δxδy

2 + A17δx
2δy + A18δx

2δy
2]ωn+1

i j

= [Re + A21δx
2 + A22δy

2 + A23δx + A24δy + A25δxδy +
A26δxδy

2 + A27δx
2δy + A28δx

2δy
2]ωn

i j (3)

and discretisation for Eq. 2,

[
δx

2 + δy
2 − (H2 + K2)δx

2δy
2] ψi j = [−1 + H2δx

2 + K2δy
2]ωi j (4)

where coefficients in Eqs. (3) and (4) are given as

A11(i, j) = −H2Re − 0.5Δt Ai, j , A21(i, j) = −H2Re + 0.5Δt Ai, j ,

A12(i, j) = −K2Re − 0.5Δt Bi, j , A22(i, j) = −K2Re − 0.5Δt Bi, j ,

A13(i, j) = −H1Re − H2ui, j R
2
e − 0.5ΔtCi, j ,

A23(i, j) = −H1Re − H2ui, j R
2
e + 0.5ΔtCi, j

A14(i, j) = −K1Re − K2vi, j R
2
e − 0.5Δt Di, j ,

A24(i, j) = −K1Re − K2vi, j R
2
e + 0.5Δt Di, j

A15(i, j) = −0.5ΔtGi, j , A25(i, j) = 0.5ΔtGi, j

A16(i, j) = −0.5Δt Hi, j , A26(i, j) = 0.5Δt Hi, j

A17(i, j) = −0.5Δt Ki, j , A27(i, j) = 0.5Δt Ki, j

A18(i, j) = −0.5Δt Li, j , A28(i, j) = 0.5Δt Li, j

H1 = Reui, j
h2

6
, K1 = Revi, j

h2

6
, H2 = −h2

12
− Reui, j

h4

24
,

K2 = −h2

12
− Revi, j

h4

24
,

Ai, j = 1 + H1Reui, j + H2Re
2u2i, j + 2H2Re(ux )i, j ,

Bi, j = 1 + K1Revi, j + K2Re
2v2i, j + 2K2Re(uy)i, j ,

Ci, j = − Reui, j + H1Re(ux )i, j + K1Re(uy)i, j + H2Re
2ui, j (ux )i, j + H2Re(uxx )i, j+

K2Re(uyy)i, j + K2Re2vi, j (uy)i, j ,

Di, j = − Revi, j + H1Re(vx )i, j + K1Re(vy)i, j + H2Re
2ui, j (vx )i, j + H2Re(vxx )i, j+

K2Re(vyy)i, j + K2Re2vi, j (vy)i, j

Gi, j = H1Revi, j + K1Reui, j + H2Re
2ui, jvi, j + 2H2Re(vx )i, j + 2K2Re(uy)i, j+

K2Re2ui, jvi, j ,

Hi, j = − H1 − H2Reui, j + K2Reui, j , Ki, j = −K1 + H2Revi, j − K2Revi, j ,

Li, j = − H2 − K2, E2 = −h2

12
, F2 = −h2

12
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Equations (3) and (4) represent the discretisation of Eqs. (1) and (2) with the help
of HOC scheme. The brief discretisation of the governing equation is explained by
Kalita et al. [7].

3 Results and Discussion

3.1 Validation with Existing Result

In this section, we validate our results with the existing results of Kumar and Ray
[3], in which we first validated streamline pattern for Re = 100 and K = 0.0 with
different times, then after we validate velocity fluctuation. The qualitative compar-
isons are presented in Figs. 2 and 3 from the figures we can conclude that our results
are almost similar to existing result.

Fig. 2 Comparison of streamline pattern for Re = 100, K = 0.0 at different times a t = 295, b
t = 298 and c t = 301

Fig. 3 Comparison of v velocity fluctuation for Re = 100 at K = 0.0
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3.2 Study of Flow Behaviour for Re = 100

In our study, we consider three shear parameter values 0.0, 0.1 and 0.2 at Re = 100.
In Fig. 4, left-hand side we plot the streamlines pattern and corresponding K values
on right-hand side is vorticity contour. In vorticity contour, the dotted vortex produces
clockwise from the upper surface of the cylinder whereas the solid vortex produces
anticlockwise from the lower surface of the cylinder. For K = 0.0, the flow pattern
is symmetric behind the cylinder which is shown in two ways, first is streamlines
pattern and another is vorticity contour, both parts confirms that at K = 0.0 the flow
is symmetric behind the control plate, which is shown in Fig. 4a. When K = 0.1,
the flow behaviour is asymmetric behind the control plate, which is clearly shown
in Fig. 4b of streamline pattern and vorticity contour. The vorticity contours are
completely changed in shape and size behind the control plate for K = 0.1 plate
is, the dotted vortices are rolling over the solid vortices which are shown in Fig. 4b.
When K = 0.2, the flow behaviour is again changed and it is completely different
from previous K values. In the streamlines, we can see the shape of the contours
behind the control plate is completely different from previous K values as shown in
Fig. 4c and for vorticity part Fig. 4c when K = 0.2, vortices forms only upper surface
of the inclined cylinder. So from the observation, we can say that the shape and size
of the vortices are changed with respect to the K values. We plot the variation of
velocities with respect to time for Re = 100, K = 0.0 and 0.2. Variation of u and
v velocities behind the control plate with time at point (2.58, 0.33), at Re = 100.
For K = 0.0, the velocities fluctuation with respect to time is shown in Fig. 5a. For
K = 0.2 the velocities fluctuation with respect to time is shown in Fig. 5b. From the
figures, we can say that the magnitude of fluctuation is decreased due to increasing K

Fig. 4 Streamlines and vorticity for a K = 0.0, b K = 0.1 and c K = 0.2 at t = 295
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Fig. 5 u and v velocity fluctuation varies with time at a K = 0.0 and b K = 0.2

Fig. 6 uv-phase diagram

values. In Fig. 6, we plot the periodicity nature of velocities profile at particular point.
In Fig. 6a we plot the velocities at (0.74, 0.3), for different K values at Re = 100.
In Fig. 6b, we plot the velocities at (0.74, −0.3) for different K values at Re = 100.
From this figure, we can say that if K increases the periodicity time of velocities will
be decreased or in other words, we can say that the fluctuation of velocity profile
will be decreased when k increases.

3.3 Study of Bifurcation Analysis

In the qualitative part, we discuss the bifurcation analysis. Structural Bifurcation part
plays a major role in mathematics because it describes the structure of any system,
if we subject to a change in parameter values. So now, we shall find the first occur



358 R. Saxena and R. K. Ray

separation on the surface of the cylinder and find the time with the help of bifurcation
analysis. In this study, we have used boundary layer separation theory which is given
by Ghil et al. [4, 5]. Many times it has been seen that the bifurcation process in 2-D
unsteady incompressible shear flow past an square cylinder. This study is also done
by Ray and Kumar [7] on the square cylinder. From this study, we predict the exact
location and specific time of the separations occurs. So these are four conditions (5)
for the topological aspect based structural bifurcation analysis that should be satisfy.
If these conditions are satisfied then we can say that bifurcation occurs on the surface
of the cylinder, at the point P∗ and time T ∗.

ω(P∗, T ∗) = 0,
∂ω

∂τ
(P∗, T ∗) = 0,

∂2ω

∂τ 2
(P∗, T ∗) > 0

∂ω

∂t
(P∗, T ∗) < 0 (5)

ω represents the vorticity, t is the time and τ is the tangential direction to the wall.
Let us assume a bifurcation occurs at time T ∗ and has a point P∗ on the surface of
the cylinder with a flow coming from the lower side of the cylinder then it satisfies
the condition (5) and attends a local minima point and decreases with time. If a
bifurcation occurs on the upper surface of the inclined cylinder at time T ∗ and point
P∗, then sign will be a change of the condition (5). Our problem is based on shear
flow, i.e., first and second bifurcation occurs. We ignore the corner occurrence of
the inclined cylinder. So our first motive is to find the bifurcation point and when
it happens. We find our results of structural bifurcation for K = 0.1, and 0.2 at
Re = 100. First we discuss for Re = 100 and K = 0.1, We have already seen in the
part of vorticity, from which we can conclude that at K = 0.1 the flow behaviour is
asymmetric behind the inclined cylinder. So from this analysis, we can say that there
exists two bifurcation points which are first and second bifurcation; first bifurcation
occurs at the upper surface of the cylinder and second bifurcation occurs at the lower
surface of the cylinder. Figure 7a clearly shows us the vorticity reaches to zero at
point P∗

1 (x, y) = (0.17, 0.34) and also occur local maxima at this point. Figure 7b
clearly shows the vorticity reaches to zero at time T ∗

1 = 0.234. So from this analysis,
we can say that bifurcation occurs on the upper surface of the inclined cylinder
at time T ∗

1 . Figure 7 satisfies all the condition. P∗
1 (x, y) = (0.17, 0.34) occurs at

local maxima point and it satisfies ω(P∗, T ∗) = 0, ∂ω
∂τ

(P∗, T ∗) = 0, ∂2ω
∂τ 2 (P∗, T ∗) <

0 is the condition and increases with time which is clearly shown in Fig. 7b and it
satisfies this condition ∂ω

∂t (P
∗, T ∗) > 0. So all the conditions are satisfied.The second

bifurcation is also occurring because the flow is asymmetric. Figure 8a clearly shows
the vorticity reaches to zero at point P∗

2 (x, y) = (0.16,−0.33) and also occur at local
minima at this point. Figure 8b clearly shows the vorticity reaches to zero at time
T ∗
2 = 0.427. So from this analysis, we can say that second bifurcation occurs on the

lower surface of the inclined cylinder at time T ∗
1 . Figure8 satisfies all the conditions.
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Fig. 7 a Surface vorticity at point P∗
1 and b vorticity variation with time for Re = 100, K = 0.1

Fig. 8 a Surface vorticity at point P∗
2 and b vorticity variation with time for Re = 100, K = 0.1

For P∗
2 (x, y) = (0.16,−0.33) localminimapoint occurs and it satisfiesω(P∗, T ∗) =

0, ∂ω
∂τ

(P∗, T ∗) = 0, ∂2ω
∂τ 2 (P∗, T ∗) > 0 is the condition and decreases with time which

is clearly shown in Fig. 8b and it satisfies this condition ∂ω
∂t (P

∗, T ∗) < 0. So all the
conditions are satisfied. Figure 9 shows a zoomed view of the circulation zones, just
before, after and at the time of the occurrence of bifurcation. In Table 1, we present
the exact location and the time of occurrence of first and second bifurcations on the
surface of the inclined cylinder for different K values at Re = 100. Table shows that
there is no fixed pattern of occurrence of bifurcations, but the first bifurcation always
occurs earlier as compared to the second bifurcation.

In Table1, we have done different values of K , from the table we can say that
there is no fixed order for bifurcation to occur and also the first bifurcation occurs
earlier as compared to second bifurcation (Fig. 9).
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Fig. 9 Zoomed view of the stream function and vorticity profile for the upper and lower portion of
the cylinder for K = 0.1

Table 1 Occurrence of first and second structural bifurcation points on the surface of the inclined
cylinder for Re = 100, at different K values

Re = 100 First bifuraction
[P∗

1 (x, y), T ∗
1 ]

Second bifurcation
[P∗

2 (x, y), T ∗
2 ]

K = 0.1 [(0.17, 0.34), 0.234] [(0.16,−0.33), 0.427]
K = 0.2 [(0.17, 0.34), 0.450] [(0.16,−0.33), 0.756]
K = 0.3 [(0.17, 0.34), 0.168] [(0.16,−0.33), 3.235]
K = 0.4 [(0.17, 0.34), 0.142] [(0.16,−0.33), 4.505]

4 Conclusion

In this paper, we have used higher order compact finite difference scheme to discretise
the governing equation. Simulations are performed with different K values (K =
0.0, 0.1 and 0.2) at Re = 100. From the numerical study, we can say that the vortex
shedding and velocity fluctuation depend on shear parameter values as well as on the
control plate.Apart from the numerical study,wehave also done structural bifurcation
analysis which gives us exact point and exact time, when and where first and second
bifurcation occurs.
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Numerical Analysis of the Pressure,
Temperature, and Aerodynamic Forces
on Hypersonic Blunt Hemispherical
Shaped Body

Krishnakumar V. Patel and Prem R. Patel

1 Introduction

Faster than sound speed is a fascinating area in aerospace engineering. To do research
in the hypersonic flight has become the vital and extremely interesting topic, because
of the complexity of the flow physics during the hypersonic speed. To define the tra-
jectory and altitude of the hypersonic flight, aerodynamic force governed by the
shape of the body plays a vital role. Hence, to design the hypersonic vehicle, con-
solidation of the forces acting on the body is critically important [1]. To accumulate
the force history for the flight, it is important to know the equations of motion [2],
that define the flight of the vehicle. Generating the equation of motion in the hyper-
sonic regime is a challenging task, since it involves the nature of the high-speed flow
complexities [3].

There are many experimental techniques of force balance that could be used for
measuring forces. One of the techniques is stress-wave force balance [4], in which
the history of the force on the model is determined from the measurement of strain
histories. Another method is Impulse force balance [5], in which the history of the
force on the model is determined by using the convolution method. However, this
technique involvedmechanical components and the assumption that the body is rigid.
To check the veracity of this technique implemented on the particular component or
model is the extremely important subject.

The objective of the present work is to quantify the pressure and temperature
variation along the surface of the body and find the trend of the aerodynamic forces
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when the body placed at a different angle of attack in hypersonic flow. The analysis
was done on a blunt hemispherical model. ObtainedAerodynamic forces results were
validated by comparing with the results from Newtonian and balance theory.

2 Methodology

2.1 Flow Conditions

Hypersonic flow characteristic involves Mach number independence and dissocia-
tion phinominan in high enthalpy flow. This complex flow conditions demand high
computational power and accurate mashing process. Therefore, the initial condition
in the analysis plays an extremely important role. In this research work, we address
Mach 8 flow and related flow property at this high-speed. Density-based solver has
been implemented in the project so that the compressible flow matrix enabled in the
Force analysis. Freestream condition for the model was calculated by using reservoir
condition and isentropic relation. Reservoir pressure is calculated from the pres-
sure trace plot, shown in Fig. 1, at the end of the shock tube during the experiment
(Table1).

Fig. 1 Pressure traces at the end of the shock tube during the experiment
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Table 1 Hypersonic reservoir conditions for the tests in the shock tunnel

Test gas Air (γ = 1.4)

P5 transducer sensitivity 0.1464 V/MPa

P2 transducer sensitivity 0.7406 V/MPa

Reservoir pressure P5 10.29 bar

Reservoir temperature T5 764.65 K

Nozzle is being calibrated for Mach 8 (M∞) at the exit. Freestream conditions
were calculated by the isentropic relations as mentioned in Eqs. 1 and 2

P5
P∞

=
(
1 + γ − 1

2
M2

∞

) γ

γ − 1 (1)

T5
T∞

=
(
1 + γ − 1

2
M2

∞

)
(2)

Freestream Pressure P∞ was 105.39 Pa and Temperature T∞ = 55.41 K has been
compute as an inlet condition. Form Eq. (3), velocity of the inlet flow V∞ = 1193.68
m/s was define as an boundary condition for inlet surface.

V∞ = M∞
√

γ R T∞ (3)

where, R is the air gas constant and T∞,M∞ and V∞ was the freestream conditions.
During the experiment, the high two-stage suction pump creates nearly 5–3Pa

pressure, therefore, the outlet pressurewas set as 3Pa in the outlet boundary condition.
No sleep stationary wall condition has been implemented on the model surface and
the boundary of the test section. In the density-based solver, energy or heat transfer
plays a significant role, therefore, the energy model was enabled during the setup for
analysis.

2.2 Domain and Boundaries

The domain of the test section was rectangular with the height of 45cm as shown
in the Fig. 2, after test section, divergent part was introduced to mitigate the effect
of far field conditions. The divergent section of the fluid domain has 1 m length
and the 45◦ divergent angle, this divergent part slow down the supersonic flow and
facilitate to capture the wake completely and also to prevent reverse flow to make
wake uniform behind the body. The test model has a hemispherical cap from the
front and cylindrical further. The position of the model in the test domain shown in
the Fig. 2. The 2-D geometry was built in the SolidWorks software and imported into
the ANSYS-SpaceClaim module.
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Fig. 2 Geometry of the fluid domain and model position in the test section

2.3 Mesh Generation

Meshing of the model, far field, inlet, outlet, and fluid domain has been done in
ANSYS workbench. In the hypersonic flow, the boundary layer growth rate and
the shock layer is extremely important for the force calculation. Therefore, these
paramount parameters must be computed most accurately. In this work, we imple-
mented inflation layer of meshing around the body, which shown in the Fig. 3. In the
inflation properties, the maximum layers are 12 and the growth rate is set as 1 so
that it can properly measure the boundary layer thickness. Accurately quantify the
Bow shock layer and the flow property after the shock wave, body sizing with 0.15
m Sphere of influence and 4 mm element sizing with global origin as Sphere origin
had been decided. 0.15 m radios cover the significant shock effect around the blunt
body.

Fig. 3 Meshing of the fluid domain around the model
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Table 2 Statistical data for the mesh quality

Mesh aspect ratio (<20) 1.4765

Skewness (0 < S < 0.25) 0.135

Jacobian ration: Gauss point (0.8 < D < 1) 0.938

Orthogonal quality (close to 1) 0.97

This meshing involves 6928 number of elements and 7057 number of nodes have
been generated for the fluid domain. Table2 shows the criteria which use to check
the veracity of the mesh quality.

3 Results and Analysis

The CFD analysis has been done on the hypersonic blunt hemispherical shaped body
in ANSYS fluent solver.

3.1 Shock Structure

Shock structure depends on theMachnumber and the geometry of the body.As shown
in the Fig. 4, the bow shock is formed in front of the hemisphere. This detached strong
bow shock converts the kinetic energy into the thermal energy; This sudden transition
eventually decrease theMach no form 8 to 0.49 at 0◦ angle of attack and flow became
subsonic after the shock wave. The flow remains subsonic between the shock wave
and stagnation point at the center of the hemisphere. However, as flow travel at the
downstream, the transition of the subsonic flow into the supersonic flow has been
observed. This transition is illustrated in Fig. 4, as the transition lines.

3.2 Pressure and Temperature Profile

Pressure and Temperature are the key flow properties in the hypersonic force mea-
surement. Figures10, 11, and 12, show these property at different angle of attack.

3.2.1 Variation Along Surface

Static pressure has been found out on the polyline created from the intersection of
body and XY plane (z = 0). This polyline direction has been shown in the Fig. 5. In
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Fig. 4 Shock structure and Mach number at 0◦ AOA

Fig. 5 Model surface

the Fig. 6, lines below the 0◦ AOA shows the pressure along the upper half of the
body. The pressure on the bottom half body illustrated by the lines situated above
the 0◦ AOA. The drop-down of the static pressure was observers till D = 0 for 0◦
AOA. After D = 0, the pressure remain constant. As AOA increased, the flatness in
the pressure along the bottom half of the body was shifted in negative X direction.

As the angle of attack increased, the static pressure along the upper half of the body
decreased. However, the opposite trend noted for the bottom part. The significant
improvement in the pressure on the bottom flat surface indicates the deceleration of
the supersonic flow. At the 30◦ AOA, the jump after the decrement indicates the flow
septation on the body.
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Fig. 6 Pressure along the surface of the model at different AOA

Fig. 7 Distance in front
of the model

3.2.2 Variation of Flow Properties in Front of the Body

The temperature and pressure change in front of the body (Fig. 7) at different AOA
shows in the Fig. 8. In these graphs, the sudden increment in the pressure and tem-
perature between the distance of −36.295 mm and −41.9 mm indicate the effect of
the bow shock. As this increment was aline for all AOA, we can say that the strength
of the bow shock is independent of the angle of attack. However, the minor change
in the pressure and temperature before and after the shock wave for a different angle
of attack has been observed.
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Fig. 8 Temperature (left) and pressure (right) before the model surface at different AOA

Fig. 9 Streamline at 30◦ AOA and flow separation visualization

3.2.3 Flow Separation Analysis

As the Fig. 6, indicates that the flow separation occured at the 30◦ angle of attack.
When the pressure starts to increase at D = 0 on the bottom half of the body, the flow
coming from the upstream direction gets detached. The streamline visualization of
this phenomena is shown in the Fig. 9. Because of this flow separation, the hypersonic
boundary layer increased significantly and its effect on the temperature is clearly seen
at the end of the model in Fig. 12 (Figs. 10 and 11).
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Fig. 10 Static pressure (left) and temperature (right) at 0◦ AOA

Fig. 11 Static pressure (left) and temperature (right) at 15◦ AOA

Fig. 12 Static pressure (left) and temperature (right) at 30◦ AOA

Fig. 13 Drag and lift force
at different angle of attack
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3.3 Trend of Aerodynamic Forces

The aerodynamic forces on the bodyweremeasuredby computing the surface integral
of the dynamic pressure on the body based on the Eq. (4). Dynamic pressure is the
key parameter which is responsible to exert the force on the body. When hypersonic
flow was suddenly imparted on the body at a different angle of attack apart from
0◦, it induces the pitching moment. However, in this research work, we focus on the
fixed model in hypersonic flow, therefore, the Lift and Drag forces were derived in
two parts: The force on the hemispherical part and the after body cylindrical part. By
combining these separated quantities, the resultant forces on the body were obtained.

Pressure Force =
∫

sur f ace

P(x) d A (4)

Lift resultant = Lift cylinder + Lift hemisphere (5)

Drag resultant = Drag cylinder + Drag hemisphere (6)

The Fig. 13, shows the Drag and Lift forces on the body. As AOA will increase
the Lift force shows linear increment with the slop of 0.33. At the 30◦ AOA, this Lift
force is nearly similar to the drag force. Therefore, one can say that, at 30◦ AOA,
resultant force act on the body is

√
2× (Lift/Drag) and the direction is 45◦ with

respect to positive x axis.
The variation in the Drag force is negligible during the increment of the AOA.

However, the minor gain in drag can be observed during the transition between 0◦–5◦
and 25◦–30◦ AOA. The total variation in the drag force is only 15% in the span of
0–30 Degree AOA.

3.4 Balance Theory

In this theory, Newton’s second law was applied for finding the steady aerodynamic
forces on the model. The acceleration signal of the system during aerodynamic
loading had been obtained as in Fig. 14. System’s acceleration during steady state
was 36.13 ms−2 for drag force and 12.69 ms−2 for Lift force were derived by using
the sensitivity of accelerometer sensor.

By using newton’s second law, Drag force is 11.52 N1 and Lift at 15◦ AOA is
4.05 N (see footnote 1) was computed.

1BT corresponds to balance theory.
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Fig. 14 Drag (left) and lift (right) experimentation output signal obtained by accelerometer

3.5 Newtonian Theory

From Newtonian theory, for a very high Mach number, the flowfield becomes inde-
pendent of Mach number. This phenomenon is commonly known as Mach number
independence principle. A direct result from Newtonian theory is that the coefficient
of drag and Lift is approximately equal to 1 and 0.3 for a body in hypersonic flow.
Aerodynamic force is defined for a body having frontal cross-section area of S and
which is in a flow having freestream conditions of M∞ and P∞ as:

F = 1

2
γP∞M2

∞S × (CD or CL) (7)

by using the Eq. (7), Drag and Lift forces are 11.65 N2 and 3.49 N (see footnote 2)
can be quantified, respectively.

Derived aerodynamic forces from numerical analysis are compared with Newto-
nian and balance theory as shown in the Fig. 15.

The free-flying conditions explained the variation between experimental and com-
putational results. The experimental model was supported by the soft material to
create an infinite degree of freedom. Due to this mechanism, the body experience
more downstream acceleration cause the increment in drag and the aerodynamic
force resultant for Lift was reduced due to pitching moment. On the converse side,
in this research work, we analyze the fixed model which experience the hypersonic
flow, due to this boundary conditions the surge in the Lift and the decrement in the
Drag forces were observed compared to experimental observations.

2NT corresponds to Newtonian theory.
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Fig. 15 Steady drag and lift values derived from various methods at AOA = 0◦ and AOA = 15◦
respectively.

4 Conclusion

The hypersonic hemispherical model has been analyzed at Mach 8 flow in ANSYS
fluent at a different angle of attack. Inflation and spherical body meshing was gener-
ated and the appropriate flow conditions which analogues to the experimental con-
dition has been implemented to the fluid domain. Pressure and temperature counters
were developed and compare them at different AOA at Mach 8 flow. The trend of the
Lift and Drag forces on the body at different AOA were derived. Obtained aerody-
namic force components, from numerical analysis, were compared with the results
of Newtonian and Balance theory, and the agreement has been found encouraging.
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Interior Acoustic Analysis
of Rectangular-Shaped Rigid Cavity
with Opening

Subhankar Pramanik, Sreyashi Das, and Arup Guha Niyogi

1 Introduction

In the present era of enormous industrial development around the globe, the need
for acoustic assessment cannot be overruled. The huge emphasis imparted on the
research activities in these fields of acoustics is chiefly due to the immense impact of
noise on the healthy existence ofmankind. Excessive exposure to high sound pressure
level (SPL) causes various health hazards along with deafness. It badly affects the
level of mental concentration, quality of work, learning and productivity too.

The transport sector is a unique field where the vehicles are most frequently
exposed to noise hazards produced by the reciprocating engines. The noise affects the
drivers, passengers, as well as the neighbors. Transmission of sound into a cavity due
to a sound wave incident on an open window is a very common problem worldwide.

Vehicle cabins and other interior acoustic domains are often provided with
windows that allow the acoustic energy to leave the region of interest. At suffi-
ciently low frequencies it can be assumed that the sound pressure is approximately
uniform over the opening. Hence, a radiation impedance can be used to represent the
opening.

In some of the past researches [1, 2], this condition was simulated by setting the
acoustic pressure equal to zero at the leakage surfaces. However, this is not absolutely
true in reality since the windows lead only to exterior acoustic fluid and the acoustic
pressure is therefore not zero altogether. In 1989, Suzuki [3] solves the cavity noise
problem with complicated boundary conditions, including the presence of leakage
zone using radiation impedance as described in [4]. Kinsler et al. [5] deduced the
expression for the radiation impedance of a circular pipe driven at one end and open at
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the other end, with wide flanges. In 1990, Seybert et al. [6] adopted general interior
and exterior acoustic method and compared the result with radiation impedance
method [5] and showed a good agreement of result in low-frequency zone.

In the present study, boundary element method (BEM) has been used to solve
the interior acoustic problem of rectangular cavity. Using BEM reduces the compu-
tational storage required and hence the time required to solve BEM. This method
reduces the order of the problem by one degree. The position of open window is
characterized by radiation impedance provided by Kinsler [5]. Variation in SPL at
the boundary and at the domain has been shown for different positions and sizes of
open window.

2 Theoretical Formulation

The governing equation of a time harmonic acoustic problem is given by the reduced
wave (Helmholtz) equation [7],

∇2 p + k2 p = 0 (1)

Here, p is the acoustic pressure and k is the wave number.
The equation can be rewritten as a truly boundary integral equation

C(P)p(P) +
∫

S

(
p
∂p∗

∂n

)
dS =

∫

S

(
p∗ ∂p

∂n

)
dS (2)

For the time harmonic cases, the pressure derivative can be replaced by the normal
particle velocity, which is a more useful quantity as

uan = − 1

iρo�

∂p

∂n
(3)

Assuming the surface is discretized into M number of eight-noded surface
elements, the discretized form of boundary integral equation [8] is given as

C(p)p(P) +
M∑

m=1

8∑
l=1

+1∫

−1

+1∫

=1

∂p∗
∂n

(P, Q)N1(ξ1, ξ2)p1 J (ξ1, ξ2)dξ1dξ2

=
M∑

m=1

8∑
l=1

+1∫

−1

+1∫

−1

[−iωρp∗(P, Q)]N1(ξ1, ξ2)v1 j (ξ1, ξ2)dξ1dξ2 (4)

Each node of the BE mesh is used once as an observation point, and a boundary
element equation is generated. Upon assembly of these equations the system equation
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for the acoustic enclosure is found in the form of a set of linear algebraic equations.

[H ]{p} = [G]{v} (5)

Upon assembly of these equations the system equation for the acoustic enclosure
is found in the form of a set of linear algebraic equations. The velocity terms {v} in
this equation are actually fluid particle velocity terms and not the structural velocity
terms.

2.1 Boundary Conditions of the Acoustic Cavity

Physically, there may be two types of boundary conditions for this interior rigid
acoustic problem. Let a surface, S, enclosing the region of interest, V, may be subdi-
vided into two segments, S1 and S2, where S = S1 ∪ S2. The boundary conditions
that may practically occur are shown in Fig. 1.

The velocity boundary condition at S1 is often termed as the Neumann boundary
condition,where thefluid particle velocity along the normal to the surface is specified.
The S2 boundary is actually a leakage zone, a window for example.

The radiation impedance function at S2 zone may be defined as follows:

Zr = Pressure at local node i o f element k ∗ Area of element k

Velocity at local node i of element k
(6)

V

S1

S2

Pulsating Source

Fig. 1 Different boundary conditions are shown for an interior acoustic domain, V. a Normal
particle velocity and frequency are specified on S1 (rigid boundary), b S2 is a window, through
which energy escapes into outer space
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According toKinsler et al. [5] the radiation impedanceZr , for the circular openings
is given by

Zr = ρcA
{
0.5(ka)2 + i0.85ka

}
(7)

Here, ρ, c, A, k and a stand for density of air, speed of sound, area of the leakage
surface, wavenumber and equivalent radius of the opening, respectively. This expres-
sion has been adopted bySeybert et al. [6],wherein for rectangular openings an equiv-
alent radius of the opening has to be used. Since analytical expression for rectangular
or square pistons is not available, therefore this simplification has become inevitable.
Since the impedance term is now known, a relation between the surface pressure and
the normal surface velocity can be established so that the surface velocity terms may
be replaced by pressure terms. The pressure quantities are evaluated at first, and then
the velocity terms are extracted from the radiation impedance relation.

After the solution is over, the pressure at any internal point inside the acoustic
domain is obtained using Eq. (4) while setting C(p) equal to unity.

3 Numerical Results

A MATLAB program has been developed for solving the interior acoustic problem
using boundary element method solver. Eight-noded serendipity element has been
used in the analysis.

3.1 Validation Example for BEM Formulation

In this problem, the air inside a rigid container of dimensions 1.8 m× 0.6 m× 0.6 m,
shown in Fig. 2, acts as an interior acoustic domain. The speed of sound, c, is taken
to be 340 m/s and the density of air, ρ, is 1.20 kg/m3. The medium is excited by a

1.8, 0.2, 0.2 (P)

0.6

1.8

0.6m

0.9, 0.3, 0.3 (Q)

Pulsating Face

Fig. 2 Geometry of the cavity
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Fig. 3 Analytic and calculated SPL at boundary and domain for closed cavity

sinusoidal motion of the left wall, acting as a rigid piston, with velocity amplitude
of 1 mm/s. An element size of 0.2 m × 0.2 m has been taken for the study.

The responses at boundary (P) and at domain (Q) are calculated at a forcing
frequency interval of 2 rad/s. Figure 3 shows the sound pressure level (SPL) in
decibels (dB) (with a threshold pressure of 2 × 10–5 N/m2), computed analytically
and by using boundary element method at the center of right wall (P), and also at
the center of the domain (Q). The analytical solutions and numerical results show
very close conformity. Analytically, the acoustic resonance at the right boundary
is scheduled to occur at � = ncπ/L , where L is the length of the duct, whereas
at the center of the domain, the resonance takes place at � = 2ncπ/L . For the
present purpose, analytically, the resonance at the right-side boundary should occur
at frequencies of 0, 593.412, 1186.824 rad/s, while that occurs at the center of the
domain is of 0, 1186.824, 2373.648 rad/s. This is evidently being observed in the BE
solution.

3.2 Case Study

3.2.1 Different Opening Position for Rectangular Box with Aspect
Ratio (A/R) 1/3

The rectangular cavity as shown in Fig. 4 has been analyzed with different arrange-
ment of openings. The opening size is taken as 0.2 m × 0.2 m. The following four
cases have been taken for the study.

i. No opening at the faces of cavity
ii. Central opening provided at the rightmost wall only
iii. Opening provided at the front and back face center of the cavity only
iv. No wall at the right end
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0.6m

1.8m

0.6m

Fig. 4 Opening at different face of size (0.2 m × 0.2 m)

Sound pressure level (SPL) at the boundary (1.8, 0.4, 0.4) and at the center of
domain (0.9, 0.3, 0.3) was found out to be 3.2.1 and 3.2.2 using boundary element
analysis (BEA). The same boundary conditions as mentioned in the validation study
have been used.

From Fig. 5, it is observed that when the opening is present at the rightmost end,
there is considerable reduction of SPL.When the opening is placed at both sidewalls,
there is no substantial reduction in SPL. Further, a peak is observed near 200 rad/s
for the cases where window is present. If the rightmost wall is fully open then the
variation in SPL is prominent compared to other cases. From Fig. 6, at domain center,
a dip in the SPL pattern is observed near 1200 rad/s if the opening is 0.2 m × 0.2 m
placed at rightmost wall or side walls. But when the right end is fully open the SPL
pattern at the center changed totally giving peaks near 300 and 900 rad/s. SPL reduces
to 25 dB at 1188 rad/s, whereas there is a peak of 114 dB near 1188 rad/s for no
opening condition.
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Fig. 5 SPL at boundary point (1.8, 0.4, 0.4) for different opening position
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Fig. 6 SPL at domain point (0.9, 0.3, 0.3) for different opening position

3.2.2 Comparison of SPL in dB for Cavities with Different Aspect Ratio

Here two cavities of different aspect ratio have been studied and SPL has been
calculated at boundary and domain point with different opening positions. The size
of the cavity is taken as 1.8 m × 0.6 m × 0.6 m (A/R = 1/3, rectangular) and 1.8 m
× 1.8 m × 1.8 m (A/R = 1, square). The same acoustic property has been used in
the study as given above. The following three cases have been taken for the study.

1. For rectangular box (A/R = 1/3) with full opening at right end
2. For square box (A/R = 1) with central opening at right end
3. For square box (A/R = 1) with full opening at right end

The SPL in dB at the boundary and domain points have been plotted in Figs. 7
and 8. At the boundary and domain points, the SPL pattern is very different when
a central window is present at the right wall. A kink is visible near 600 rad/s for
this case. From both the figures, it is observed that the opening size and its position
plays a very important role in variation of SPL. Also, a reduction in overall SPL has
been observed for presence of window. The SPL contour at the boundary surface for
600 rad/s has been shown in Fig. 9. It is noticed that the central part of the rectangular
box experienced higher SPL. At two ends the SPL value in dB is sufficiently small.

4 Conclusion

In this study the effect of opening on the sound pressure level at different positions at
the boundary and inside domain has been shown. Boundary element analysis of the
acoustic domain has been performed, thus reducing the dimensionality of the problem
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Fig. 7 SPL at window boundary for different aspect ratio
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Fig. 8 SPL at center of domain for different aspect ratio

by one. At the opening a radiation impedance has been used in the low-frequency
region. It is shown that the position of window and its size is very important in
determining the sound pressure level in the cavity. As experimentation with practical
models are expensive and produces huge non-biodegradable waste, it is better to use
numerical procedure first and then do practical experiments for selected cases.
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Fig. 9 SPL plot for rectangular box having full opening at the right end at 600 rad/s

References

1. Rajakumar, C., Ali, A.: Boundary element-finite element coupled Eigen analysis of fluid-
structure systems. Int. J. Numer. Meth. Eng. 39, 1625–1634 (1996)

2. Banerjee, P.K., Ahmad, S.,Wang,H.C.: A newBEMformulation for the acoustic eigenfrequency
analysis. Int. J. Numer. Meth. Eng. 26, 1299–1309 (1988)

3. Suzuki, S., Maruyama, S., Ido, H.: Boundary element analysis of cavity noise problems with
complicated boundary conditions. J. Sound Vib. 130(1), 79–91 (1989)

4. Takada, K.: On the radiation impedance of a conical shell of pistonic motion in an infinite baffle.
J. Acoust. Soc. Jpn. 71–75 (1982)

5. Kinsler, L.E., Frey, A.R., Coppens, A.B., Sanders, J.V.: Fundamentals of Acoustics, 3rd edn.
Wiley, Chichester (1982)

6. Seybert,A.F., Cheng,C.Y.,Wu,T.W.: The solution of coupled interior/exterior acoustic problems
using the boundary element method. J. Acoust. Soc. Am. 88(3), 1612–1618 (1990)

7. Crocker M.J. (ed.): Encyclopedia of Acoustics. Wiley (1997)
8. Brebbia, C.A.: The Boundary Element Method for Engineers. Pentech Press, London (1978)



Numerical Investigation of Effect of
Laser on Natural Convection in
Two-Dimensional Geometry

G. Chanakya and Pradeep Kumar

1 Introduction

The study of natural convection in square/rectangular cavities combined with radi-
ation provides a fundamental insight of fluid flow and heat transfer for many engi-
neering applications. From few decades, analysis of these multi-physics problems
became interest to the researchers.

Torrance and Rockett [1] had studied the pure natural convection in cylindri-
cal enclosure with the localized heating from bottom numerically for the range of
Grashoff numbers (Ga = 4 × 104 to 4 × 1010) for Pr = 0.71. Calcagani et al. [2]
had numerical and experimentally investigated the fluid flow in a two-dimensional
square cavity heated from the bottom with varied heat source lengths, for various
Rayleigh numbers 103 to 106. Researchers like, Ganzorolli and Milanez [3], Aydin
and Yang [4], studied the natural convection in cavities heated from below and
symmetrically cooled from the sides numerically. The authors observed formation
of symmetrical nature of vortices, and this strength increases upon increasing the
Rayleigh numbers, and the behaviour of isothermal lines also symmetrical about the
centroidal vertical axis of cavity.

Natural convection in vertical and inclined square cavity with uniformly dis-
tributed internal energy sources for the inclination angles of 30◦, 60◦, and 90◦ had
been studied by Acharya and Goldstein [5] for Rayleigh number range 0–107.

Webb and Viskanta [6] had studied the radiation-induced buoyancy flow in a rect-
angular enclosure irradiated from the side experimentally. They observed formation
thin thermal boundary layers at the vertical walls and the flow structure loses the
centrosymmetry characteristics of natural convection due to the deferentially heated
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walls. They also developed a theoretical model for the prediction of internal radiative
heating of the fluid and motion induced due to buoyancy.

Mezrhab et al. [7] had studied the combined natural convectionwith radiationwith
centrally located square body in a cavity, and observed that the radiation homogenized
the temperature inside the cavity and increased the Nusselt number. Similarly Sun
et al. [8] extended the study for the various Rayleigh numbers, sizes of the inner
body and the emissivity of the surfaces. The results showed, that due to the surface
radiation exchange, the strengthening of recirculation zones which intern stabilized
the flow fields.

Paramanda et al. [9] studied the critical assessment of square enclosure with
different geometric configurations for the interaction of thermal radiation with nat-
ural convection using three different approaches, like, incompressible (with Boussi-
nesq approximation), purely compressible and quasi-incompressible (i.e., lowMach-
number approximation) approach. Their results reveal, radiation effects are sensitive
in the bodies with corner edges.

Kumar and Eswaran [10] investigated numerically the combined natural con-
vection with radiation for the two different slanted cavities of angles. Saravanan
and Sivaraj [11] studied the natural convection and thermal radiation in cavity with
non-uniformly heated thin plate placed horizontal and vertical direction. Fusegi and
Farouk [12] investigated the combined natural convection with surface/gas radiation
in a cavity both experimentally and numerically.

The natural convectionwith the volumetric radiation in a square cavitywas studied
by Mondal and Mishra [13] by using the lattice Boltzmann method for the fluid flow
and finite volume method for radiative heat transfer equation.

The performance of DOM, FVM, P1, SP3, and P3 methods for RTE in two-
dimensional absorbing, emitting medium were studied by Sun et al. [14]. The results
of RTE for above methods have been compared by the solution of Monte Carlo Ray
tracing. Xing et al. [15] have studied the natural convection in cylindrical enclosure
with heated circular, elliptical, square, and triangular geometry inside the enclosure.
The effect of surface radiation was incorporated and concluded that the presence of
corners and larger upper space had effect on the heat transfer performance.

The diffuse radiation was considered in all above works, however, little work is
available on collimated radiation like work by Andnad et al. [16] and Ben et al. [17].
Both have tried to capture the collimated beam bending phenomenon in a graded
refractive index medium by discrete ordinate method for RTE. The numerical study
of a collimated beam in the refractive index medium was studied by Ilyushin [18].
Few authors studied the short pulse collimated irradiation [19, 20].

From the above literature, the authors observed there is no much work on the
laser (or collimated) beam radiation effects on the combined natural convection with
radiation, an attempt made numerically, to implement the collimated beam effects
with the natural convection to get the better understanding of the collimated beam
application like solar cavity receiver, geometrical optics, etc. In the present work,
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Fig. 1 Schematic diagram of square cavity with laser incidence analysis for present work

the simplified problem was taken for the study, having a square cavity subjected
to bottom heating with side cooling, where the collimated beam is entering into the
cavity at an angle of 45◦ from a semitransparent wall, the schematic diagram is shown
in Fig. 1.

2 Problem Statement

The combined natural convection with radiation for the various optical thickness
ranging from 0, 0.5, 1, 5, 10, and 50 is analysed for the Rayleigh number 105

and Prandtl number 0.71 with Boussinesq approximation. The square cavity for
the present problem is depicted in Fig. 1. The four walls (left, right, top, and bottom)
of the cavity are opaque to the radiation. Whereas a semitransparent wall (i.e., win-
dow) is located at a non-dimensional distance of 0.7 from the bottom wall having a
non-dimensional width of 0.05 on the left wall. The laser irradiation of 1000 W/m2

is applied on the semitransparent wall at an angle of 45◦. Whereas bottom wall is
heated by convective boundary, with free stream temperature of 305K and heat trans-
fer coefficient of 50W/m2 K. The top wall is subjected to adiabatic boundary, left
and right walls are subjected to isothermal boundary conditions.
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3 Mathematical Modelling

The present study takes into account that the flow is buoyancy induced laminar,
incompressible with thermophysical properties of fluid are constant. Whereas the
refractive index of the medium and walls are taken to be one. The walls of the square
cavity are treated as opaque with emissivity unity and gray medium is considered.
The governing equation based on the above assumptions for flow and temperature,
in the Cartesian coordinates given by

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂ p

∂x
+ ν

[
∂2u

∂x2
+ ∂2u

∂y2

]
(2)

u
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∂x
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∂v

∂y
= −1

ρ

∂ p

∂y
+ ν

[
∂2v

∂x2
+ ∂2v

∂y2

]
+gβ(T − Tre f ) (3)

u
∂T

∂x
+ v

∂T

∂y
= α

[
∂2T

∂x2
+ ∂2T

∂y2

]
− 1

ρCp
∇ · qr (4)

where ∇· qR is the divergence of the radiative flux, which can be calculated as

∇· qR = κ(4π Ib − G) (5)

where κa is the absorption coefficient, Ib is the black body intensity and G is the
irradiation, evaluated by integrating the radiative intensity, (I ), in all directions, i.e.,

G =
∫
4π

I dω

The radiative intensity obtained by solving the radiative transfer equation. The radi-
ation in the participating medium is governed by integrodifferential equation known
as radiative transfer equation (RTE), is given by

∂ I (r, s)

∂s
= κa Ib(s) − (κa + σs)I (r) + σs

4π

∫
4π

I (r, ŝi )φ(s, si )dΩi (6)

3.1 Boundary Conditions

The following boundary conditions employed for the present study.
cavity walls: u = v = 0
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Left wall at x = 0; T = 296 K
Right wall at x = 1; T = 296 K
Top wall at y = 1; qc + qr = 0
The bottom wall is heated by convection and given by

qconv = hconv(T f ree − Tw) (7)

The Radiative transfer Eq. (6) is subjected to the following boundary condition for a
diffusely emitting and reflecting wall

I (rw, ŝ) = εw Ib(rw) + 1 − εw

π

∫
n̂·ŝ>0

I (rw, ŝ)|n̂ · ŝ|dΩ.

for n̂ · ŝ < 0 (8)

The window, which is treated as semitransparent wall subjected to the following
boundary condition:

I (rw, ŝ) = εw Ib(rw, ŝ) + Ico + 1 − εw

π

∫
n̂·ŝ>0

I (rw, ŝ)|n̂ · ŝ|dΩ.for n̂ · ŝ < 0 (9)

The laser irradiation feature has been developed in open source computational
fluid dynamic (CFD) package OpenFOAM framework and integrated with other
heat transfer and fluid flow applications. Subsequently laser beam feature is tested
thoroughly. The combined diffuse radiation and natural convection feature has been
validated in section [5], where upon the new results for combined laser irradiation
and natural convection for geometry in Fig. 1 have been produced.

3.2 Non-dimensional Numbers

The results are presented in the non-dimensional numbers which govern the fluid
flow and heat transfer characteristics. The scales for velocity, temperature, length are
expressed in dimensionless foam as

U = u

uo
V = v

vo
X = x

L
Y = y

L
θ = T − Tc

T f ree − Tc

where uo = vo = √
Lgβ(T f ree − Tc)

Ra = gβ(T f ree − Tc)L3

να
Pr = ν

α
G = G

σT 4
re f

τ = κL
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Fig. 2 Validation results for
pure convection and
combined diffuse radiation
and natural convection

4 Validation

In the absence of any benchmark test case for current problem, the validation is
performed in three steps. The stand alone feature of collimated irradiation is validated
by present authors [21]. In the second step, the current case without collimated
and diffuse radiation is validated against Aswatha et al. [22]. The combined diffuse
radiation and natural convection in a cavity whose top and bottomwalls are adiabatic
opaque and vertical walls are opaque isothermal at different temperatures, has been
validated against Lari et al. [23] in step three. The validation present for step two
and three are presented in Fig. 2. The present simulation results are matching very
closely with the published results.

5 Results and Discussion

A simulation is performed in OpenFOAM for laser effect on natural convection in
a cavity which is heated from bottom. The laser strikes on the heated bottom wall,
the heat transfer and fluid flow characteristics inside the cavity have been studied for
different optical thickness of medium and presented below.

The travel of the laser beam inside the cavity can be best represented by irradiation
contours; and this non-dimensional irradiation contours formedia of optical thickness
(τ ) 0, 0.5, and 1 are shown inFig. 3a, b and c, respectively. The optical thickness τ = 0
corresponds to transparentmedium, i.e. no absorption byfluid, it is therefore, the laser
beam of same irradiation strength reaches to bottom wall, however, strength of laser
beam decreases medium having some non-zero optical thickness. This decrement is



Numerical Investigation of Effect of Laser on Natural … 391

(a)τ = 0 (b)τ = 0.5

(c)τ = 1

Fig. 3 Contours of non-dimensional irradiation inside the cavity

more for optical thickness 0.5 and 1 is depicted in Fig. 3b and c, respectively, which
is also true as medium absorb more radiation energy. This may affect the fluid flow
and heat transfer characteristics as can seen in the following paragraphs.

The non-dimensional stream function contours inside the cavity for optical thick-
ness 0, 0.5 and 1 are shown in Fig. 4a, b and c, respectively. This problemwithout laser
irradiation is symmetric about the vertical line at the middle of the cavity (X = 0.5)
[24] and asymmetricity is induced due to laser incidence. This asymmetricity is due
to two reasons (1) a hot spot is created on the bottom wall at the strike point of the
laser (2) absorption of laser energy by the fluid. This asymmetricity is clearly visible
in contours of the stream function Fig. 4 and non-dimensional temperature Fig. 5. The
current problem contains two symmetrical vortices inside the cavity without laser
incidence, however, laser incidence causes asymmetricity which vary with behaviour
of the medium. As the medium is transparent, all the laser beam energy strikes on
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(a)τ = 0 (b)τ = 0.5

(c)τ = 1

Fig. 4 Contours of non-dimensional stream function inside the cavity

the bottom wall at a non-dimensional distance of 0.7 from origin of the coordinate
system for geometry and creates hot spot on wall. In this case more upward buoyancy
force to right vortices, these right vortices become thinner and left vortices become
thicker, however, opposite behaviour has been observed with non-zero optical thick-
ness in the medium. This is owing to fact that laser beam is travelling through left
vortices and transfer the heat to left vortices, this increases in upward buoyancy force.
Whereas some heat is also transfered to right vortices through absorption and hot
spot: but results in decreases in the size of left vortices and increases in size of right
vortices. This phenomenon further enhances with increase in the optical thickness
of the medium as shown in Fig. 4c.

The effect of laser beam travel on the temperature characteristics inside the cavity
for optical thickness 0, 0.5 and 1 are shown in Fig. 5a, b and c, respectively. A total
symmetrical isotherm along the vertical line at X = 0.5 in absence of laser beam
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(a)τ )b(0= τ = 0.5

(c)τ = 1

Fig. 5 Contours of non-dimensional temperature inside the cavity

gets tilted either right or left to the vertical line depending upon the behaviour of the
mediumwith radiation energy. The isothermal are tilted towards right for transparent
medium, Fig. 5a, this is due to fact that right vortex is smaller than the left vortex and
reverse is true for non-zero optical thickness medium, Fig. 5b and c. The more tilt
and unsmooth isothermal are formed in core of the cavity for medium having optical
thickness, Fig. 5c. A hot zone is created near to bottomwall where two vortices meet.
This hot zone shifts, either right or left from the centre depending upon the size of
the both vortices.

The non-dimensional temperature variation on the bottom wall is depicted in Fig.
6 for different optical thickness. Each curve has two maximums are corresponds
to strike point of the laser beam another for stagnation point developed due to two
vortices. Although maxima corresponds to strike point of laser beam remain fixed,
but the maximum values are different for different optical thickness medium case.
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Fig. 6 Variation of
non-dimensional temperature
on the bottom wall

Truly, it is maximum for transparent case and minimum for optical thickness 1 case
because radiation energy get absorbed by the medium and less radiation energy
reaches to the bottom wall with further more. The second maxima is decided by
the size of two vortices. The right vortex is smaller to the left vortex for transparent
case, thus stagnation point shifts right, therefore, the second maximum point is non-
dimensional curve whereas, the maximum non-dimensional temperature crosses for
same length of bottom wall for transparent medium case indicating reversal of heat
transfer phenomenon.

The variation of non-dimensional vertical velocity along the horizontal line at
the mid-height of the cavity is shown in Fig. 7. The vertical velocity is non-
dimensionalised by convective scale as represented in Sect. 3.2. The vertical velocity
is downwards near to the active walls and reaches to minimum some distance away
from the wall, then starts going upwards, reaches to maximum some point inside the
cavity. Thus maximum velocity is achieved at different locations for optical thick-
ness 0, 0.5 and 1. medium, and this location is at junction of the two vortices inside
the medium. It is therefore, the location of maximum velocity is little bit towards
right for transparent medium and left for non-zero thickness medium from the centre
point of the cavity. The value of maximum velocity also decreases for the medium
with optical thickness 0.5 and 1. This is owing to fact that less energy is being
transferred to fluid from the bottom wall for case of optical thickness 1 then to case
of optical thickness 0.5, than to transparent medium because of increase in bottom
wall temperature in ascending order of transparent medium with optical thickness
0.5 and 1.
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Fig. 7 Variation of
non-dimensional vertical
velocity along the mid height
of the cavity

6 Conclusions

A plain laser of width 0.05 has been passed at an angle of 45◦ into the natural cavity
through semitransparent wall at a height of 0.7. The natural cavity is heated from
bottom and effect of radiative behaviour of the medium is analysed on the passage
of laser beam in natural cavity. The following conclusions have been drawn out of
above results

1. The two vortices problemwithout laser beam becomes asymmetric due to passage
of laser beam.

2. The left vortex become thicker in transparent medium whereas right vortex gets
thicker for participatingmedium and this thickness changes with the optical thick-
ness of the medium.

3. The isotherm is tilted towards right for transparent medium whereas it is tilted
towards left for radiation in participatingmedium.The isothermbecomes irregular
inside the cavity for optical thickness case.

4. The maximum vertical velocity is achieved at the junction of two vortices and this
maximum velocity decreases with increase of optical thickness of the medium.
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Finite Deformation of a Dielectric
Cylindrical Actuator: A Continuum
Mechanics Approach

Deepak Kumar, Subrat Kumar Behera, and Somnath Sarangi

1 Introduction

In current scenario, engineering materials families are currently expanding with the
different types of newly discovered smart materials [13–15]. In line with that, a
particular type of smart material whose elastic states and properties change with
an application of electric field is known as electro-elastic material [2, 7, 11, 12].
Electro-elastic materials demonstrate a shape change effect with an application of
electric field, and this phenomenon is known as electrostriction. This shape change
phenomenon with an application of electric field is a strongmotivation to develop the
different types of smart actuators and sensors made from the dielectric elastomeric
materials. Although, the generalmaterial properties of smartmaterials already known
through literature [5, 16] and references therein. But, the modeling of an electro-
elastic deformation of dielectric actuators restarted the journey due to its diverse
applications in the medical equipment, optical devices, and the energy harvesters
[17, 27]. Typical examples of the cylindrical dielectric actuator are an elastic nano-
tube and a pneumatic valve, etc., that may be used to make an artificial muscle and
to measure the fluid flow characteristics, respectively. Therefore, the recent success
in this area is to develop a new smart material device like DCA that employs in the
smart engineering and medical field applications.

In the literature, a well-known tube actuator was developed by Pelrine et al. [20]
made of a dielectric elastomer with two compliant electrodes. Therein, the tube wall
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is contracted due to electrostriction phenomenon with an applied electrical voltage
or field, causes an axial-elongation. In the parallel work,Wissler andMazza [26] per-
formed various electrostriction experiments on spring roll type cylindrical actuator
made of a VHB 4910 dielectric elastomer. In line with that, they [25] found the field
dependent electro-mechanical pressure known as an electrostrictive effect that play a
major role in the electro-elastic deformation phenomenon. Further, Carpi and Rossi
[3] presented an experimentally validated electro-mechanical model of a cylindrical
actuator made of dielectric elastomer. Therein, they [3] formulated the finite defor-
mations expressions by assuming linearly elastic stress-strain theory followed by the
Maxwell stress tensor. However, Zhao et al. [29] already pointed out the restriction
on the direct use of the Maxwell stress tensor under large deformations. They [29]
found that the Maxwell stress may account for voltage-induced deformation only for
a very special type of materials, which we call the ideal smart materials, wherein
the electric permittivity is deformation independent. In line with that, the direct
approach to obtaining the total stress for smart materials is also pointed out by other
researchers [4, 21] too on the use of Maxwell stress for the deformation analysis of
a continua. Therefore, besides enhancing the material properties and smart material
devices, modeling is also a useful step in the development of new smart actuators
and sensors, enabling its optimum and reliable engineering design. However, the
modeling of smart materials to the external electric field has so far been analyzed
mostly through the rigorous continuum electro-mechanical theory given by Toupin
[23] since the middle of the last century. But, Dorfmann et al. [7], Bustamante et al.
[1] most recently developed the theoretical background for the electro-elastic mate-
rial based on the general theory of nonlinear electro-elasticity. These developments
of nonlinear electro-elasticity were applied to solve the boundary-value problems,
which are also currently exemplified in [8] and the recent monograph by Dorfmann
and Ogden [6, 18] and references therein.

From the literature, we may conclude that the deformation response of an
electro-elastic continua of a DCA may be directly formulated through a continuum
mechanics-based approach alongside the second law of thermodynamics in order
to the modeling development. In the existing deformation approaches, the Maxwell
stress tensor does not provide an effective way for the analysis of smart materials. In
one of the many cases [24] wherein the Maxwell stress tensor is utilized to obtain the
total stress tensor for the smart materials, may lead to a conceptual inaccuracy. This is
because of the stress superposition is physically irrelevant in terms of the definition of
stress. In line with that, the present paper aims the development of an unified electro-
elastic deformation model through which we may define the deformation response
of a DCA analytically within the framework of second law of thermodynamics.

In the present paper, we first develop the general constitutive relationships for an
incompressible isotropic electro-elastic continua of a DCAwith an amended form of
energy density function. This amended energy function successfully overcomes the
direct use ofMaxwell stress tensor. In addition, we alsomade an effort to describe the
combined electro-elasticity with least material parameters. Further, we analytically
formulated an electro-elastic deformation model for a DCA based on the classical
continuum mechanics-based approach. Finally, the developed electro-elastic defor-
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mation model is then compared with their corresponding experimental data obtained
from the different studies presented byWissler and Mazza [26], Carpi and Rossi [3].
Herein, an alternative electro-elastic deformation approach within the framework of
second law of thermodynamics is the major contribution of this work.

The further part of the paper is organized as follows. In Sect. 2, an electro-elastic
deformation theory is developed for an isotropic electro-elastic material. In Sect. 3,
the formulated electro-elastic deformation theory in the preceding section is applied
to a DCA, and an electro-elastic deformation model for the cylindrical actuator is
obtained. Next, in Sect. 4, the obtained electro-elastic deformation model for DCA
is compared and validated with the corresponding experimental data. Finally, Sect. 5
explains about some concluding remarks.

2 An Electro-elastic Deformation

In current section, a brief overview of the fundamental field equations of physics and
the constitutive theories related to electro-elastic materials [9] are developed.

2.1 Kinematics

Consider an electro-elastic material continuum in the material space β0 with an
undeformed reference configuration. Herein, the material point in the reference con-
figuration β0 is labeled by the position vector X with respect to a fixed origin. Now,
the continuum deforms with an electro-elastic force and the material point X is then
takes the position x = κ(X); in the current configuration β. Wherein κ denotes an
one-to-one deformation mapping. Therefore, the deformation gradient tensor F for
an incompressible isotropicmaterial and its determinant J may be defined as follows:

F = Gradκ = ∂x
∂X

, J = detF = 1, (1)

wherein Grad is the gradient operator with respect to the position vector X in the
reference configuration β0.

2.2 Electro-elastic Field Balance Equations

2.2.1 Eularian Form

In order to analyse the deformation of an electro-elastic continua, we may consider
E, D and P; the electric field vector, the electric induction or electric displacement
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vector, and the polarization density, respectively, as the field variables for the current
configuration β. Now, for the condensed matter, these field variables are related as
follows:

D = ε0E + P, (2)

wherein ε0 is the electric permittivity of free space. In case of isotropic media, the
simple and widely used form of the Eq. (2) may be represented as follows:

D = ε0εrE, (3)

wherein εr represents the dielectric constant. Now, for the purely static condition
in absence of free currents, free electric charge, the electric field E and the electric
displacement D, these field variables satisfy the given Maxwell’s equations [22]
under the given assumptions

curlE = 0, divD = 0, (4)

wherein curl and div represent the curl and divergence operators with respect to the
position vector x in the current configuration β.

2.2.2 Lagrangian Form

In the preceding sub-section, the relations are formulated in Eulerian form with
the operators div and curl. However, in the current sub-section, we reformulate the
relations in the reference configuration to develop a compact form of the constitutive
relations.Herein, the operatorsDiv, Curl are definedwith respect to the space variable
X. In literature [7] too, the electric field variables in Lagrangian form El , Dl and Pl

were found advantageous to work with it as compared to Eulerian form. Now, the
relationships between these field variables may be obtained as follows:

El = FTE, Dl = F−1D, Pl = F−1P. (5)

The above relationships (5) ensure that Eq. (4) are equivalent to

CurlEl = 0, DivDl = 0. (6)

2.3 Constitutive Relations

In general, the constitutive relations for an incompressible isotropic electro-elastic
material may be obtained through the independent field variables F, E. In line with
that, in isothermal condition, the free energy density function for an incompressible
isotropic electro-elastic material may be defined as a function of these independent
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field variables in Eularian form given as follows:

ϕ = ϕ(F,E). (7)

Additionally, we may also consider F and El as independent variables for electro-
elastic material in Lagrangian form. Accordingly, the free energy function φ(F,El)

may also be redefined using relations (5) as follows:

φ(F,El) = ϕ(F,F−TEl). (8)

Now, following the previous works [7, 10, 19], the total stress tensor Twith the help
of Maxwell’s concept for electro-elastic material the Cauchy stress tensor S may be
obtained as follows:

T = S + P ⊗ E + ε0

[
E ⊗ E − 1

2
(E.E)I

]
. (9)

Herein, the total stress tensor T defined in the above Eq. (9) directly through the
superposition of stresses may lead to conceptual inaccuracy, especially for the large
deformation of a continua [4, 21]. This is because of the superposition principle
applied in the stresses is physically irrelevant in terms of the definition of stress. In
line with that, Zhao and Suo [28] and other researchers [4, 21] also raised an issue
related to physical interpretation of the Maxwell stress tensor in large deformation.
Accordingly, we made an effort to overcome this issue through an amended energy
density functionΩ = Ω(F,El), which incorporates the Maxwell stress contribution
for electro-elastic materials. The expression of the defined amended energy density
function is given as follows:

Ω(F,El) = ρφ(F,El) − 1

2
ε0El .(b−1El). (10)

This amended energy function Ω(F,El) represents the superposition of the possi-
ble form electrical energy and the interaction energy. The superposition of energies
from the mechanical and electrical domain is truly accepted unlike the superposi-
tion of stress contributions from the mechanical domain and the electrical domain
as described in (9). Additionally, the amended energy function Ω(F,El) also suc-
cessfully overcomes the issue related to the physical interpretation of Maxwell stress
tensor in smart material for large deformation [29]. For the detailed discussion on
the issues related to physical objectivity of Maxwell stress tensor we refer [4, 21]
and references therein.

Following the Clausius-Duhem inequality principle based on the second law of
thermodynamics, we may formulate the thermodynamically consistent constitutive
relations for an incompressible isotropic electro-elastic material. Assuming isother-
mal conditions, this dissipation inequality may be written in terms of Ω(F,El) as
follows:
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(
T − F

∂Ω

∂F

)
: Ḟ −

(
Dl + ∂Ω

∂E

)
: Ė ≥ 0. (11)

Now, the set of constitutive relations from the above Eq. (11) in generalized form for
an incompressible isotropic electro-elastic material may be written as follows:

T = −pI + F
∂Ω

∂F
, Dl = −∂Ω

∂El , (12)

wherein p is the indeterminate hydrostatic pressure arising from the incompressibility
constraint associated with Cauchy stress tensor.

Additionally, the amended energy density function Ω for an incompressible
isotropic electro-elastic material may also be formulated in the invariant form
Ω(I1, I2....I6). These invariants may be derived from the two isotropic tensors left
Cauchy green deformation tensor b = FFT and El ⊗ E

l
as follows:

I1 = trb, I2 = 1

2
[(trb)2 − tr(b2)], I3 = detb = 1,

I4 = [El ⊗ El] : I, I5 = [El ⊗ El ] : b−1, I6 = [El ⊗ El] : b−2.

(13)

From the relations (10), (12) and the definitions of the invariants in (13) the explicit
form of T, D may be written as follows:

T = −pI + 2Ω1b + 2Ω2[I1b − b2] − 2Ω5E ⊗ E

−2Ω6[b−1E ⊗ E + E ⊗ b−1E],
D = −2[Ω4b + Ω5I + Ω6b−1]E,

(14)

wherein the notation Ωi represents Ωi = ∂Ω

∂ Ii
for i = 1, 2, 3.., 6. The above rela-

tions (14) represent the standard constitutive relations based on the second law of
thermodynamics for a class of an incompressible isotropic electro-elastic material.

Finally, in this section, a theoretical framework for the analysis of an electro-elastic
continua is confined herein with a more physically relevant constitutive relationships
(14) within the framework of second law of thermodynamics. These general consti-
tutive relations (14) have sufficient potential to apply directly for the solution of a
number of representative boundary-value problems existing in the engineering and
medical field applications. Specifically, we are focusing a DCA-based boundary-
value problem which is the most generalized configuration used as an actuation and
sensing processes in the field of industrial robotics applications.
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3 Application to a Dielectric Cylindrical Actuator

In current section, a general electro-elastic deformation phenomenon for a dielectric
cylindrical actuator (DCA) is modeled analytically following the developed consti-
tutive relationships (14).

3.1 Electro-elastic Deformation of a Cylindrical Actuator

Consider a dielectric cylindrical actuator (DCA) with (R,Θ, Z) coordinate in the
reference configuration β0. Herein, with an application of radial electric field, the
same point is now at (r, θ, z) in the current configuration β. The cross section of the
cylindrical actuator in reference configuration is defined as follows:

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ H, (15)

wherein A and B are the inner and outer radii and H is the height of the DCA.
The deformed cross section of the cylindrical actuator after deformation in current
configuration is defined as follows:

a ≤ r ≤ b, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ h, (16)

wherein a and b are the inner and outer radii and h is the height of the DCA after
deformation. The deformation mapping for an incompressible isotropic cylindrical
actuator with the assumed circular symmetry under extension and inflation may be
expressed as follows:

r2 = a2 + λ−1
z (R2 − A2), θ = Θ, z = λz Z , (17)

wherein λz = h/H . Herein, an electrical voltage is applied to the flexible electrodes
on the surfaces r = a and r = b. This electrical voltage is associated with the equal
charges of opposite signs on the two surfaces, which generates a radial electric field
Er within the material. Now, the deformation gradient tensor F and the electric field
vector E for the above deformation mapping may be obtained as follows:

F = 1

λλz
err + λeθθ + λzezz, E = Erer , (18)

wherein λ = r/R is the stretch in radial direction. The stress components in the
corresponding directions may be obtained from the relation (14)1 as follows:
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Trr = −p + 2Ω1λ
−2λ−2

z + 2Ω2(λ
−2
z + λ−2) − 2Ω5E

2
r − 4Ω6λ

2λ2
z E

2
r ,

Tθθ = −p + 2Ω1λ
2 + 2Ω2(λ

−2
z + λ2λ2

z ),

Tzz = −p + 2Ω1λ
2
z + 2Ω2(λ

2λ2
z + λ−2).

(19)

Wemay also obtain the associated radial component of electric polarization from the
relations (2) and (14)2 given as follows:

Pr = −2(Ω4λ
−2λ−2

z − Ω5 + Ω6λ
2λ2

z )Er − ε0Er . (20)

The equilibrium equation divT = 0 in radial direction is given as follows:

∂Trr
∂r

= Tθθ − Trr
r

, (21)

and the integration of this equilibrium equation (21) provides the relation as

∫ Trr (b)

Trr (a)

dTrr =
∫ b

a
[2Ω1(λ

2 − λ−2λ−2
z ) + 2Ω2(λ

2λ2
z − λ−2)

+2(Ω5 + 2Ω6λ
2λ2

z )Er
2]dr

r
.

(22)

By applying the constant volume condition, we may obtain the relation given as
follows:

dr

r
= dλ

λ(1 − λ2λz)
. (23)

Using the above relation (23), the relation (22) may be rewritten as follows:

Trr (b) − Trr (a) =
∫ λb

λa

[2Ω1(λ
2 − λ−2λ−2

z ) + 2Ω2(λ
2λ2

z − λ−2) + 2(Ω5

+2Ω6λ
2λ2

z )Er
2] dλ

λ(1 − λ2λz)
.

(24)

Herein, the above relation (24) represents an electro-elastic deformation model for
a DCA which is modeled analytically following the second law of thermodynamics.

3.2 An Electro-elastic Material Model

The theory of the preceding sub-section is completely general for an isotropic electro-
elastic material and admits many possible specializations. Herein, we recall the gen-
eral expression of six invariants (13) related to amended energy density function,
and we may discard I3 = 1 (incompressibility constraint) essentially. Now, these
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invariants become as the five independent invariants. Therefore, following the con-
cept of amended energy density function (10), we may generalize a Mooney-Rivlin
type electro-elastic material model for an incompressible, isotropic electro-elastic
material. Our effort is focussed to obtain an amended energy function with least
material parameters for an isotropic electro-elastic material. Therefore, the energy
density function that includes elastic and electrical energy contributions is defined
as follows:

Ω = C1(I1 − 3) + C2(I2 − 3) + ε0

2
(C3 I4 + C4 I5), (25)

whereinC1,C2,C3, andC4 are thematerial constant parameters. Specifically, we use
the following values of thematerial constants, which were obtained by fitting data for
a VHB 4910 dielectric elastomer stress-stretch and electric permittivity-stretch plot
available in the literature [25, 26] with the use of relation (19) and (20) as follows:

C1(MPa) = 0.0450, C2(MPa) = 0.0412,

C3 = −1.34, C4 = −3.36.
(26)

Using the above energy function (25) in the relation (24), we may rewrite the relation
(24) as follows:

Trr (b) − Trr (a) =
∫ λb

λa

[2C1(λ
2 − λ−2λ−2

z ) + 2C2(λ
2λ2

z − λ−2)

+C4ε0Er
2] dλ

λ(1 − λ2λz)
,

(27)

wherein λa = a/A and λb = b/B.

3.3 Electrostatic Pressure Generated in Dielectric Cylindrical
Actuator

In absence of any external force (boundary traction and body force) the body will
deform with the application of electric field alone. This phenomenon of electrostric-
tion was modeled by Pelrine et al. [20] through an electrostatic pressure pel . They
[20] proposed that the electrostatic pressure pel is acted perpendicular to the applied
electric field, and this is the exact reason for transverse expansion of the VHB 4910
film. They [20] also developed a well-known Pelrine equation for free boundary
condition in which the applied electric field is related to electrostatic pressure given
as follows:

pel = ε0εr E
2. (28)

The above Pelrine equation (28) is an equilibrium state equation obtained followed
by the first law of thermodynamics. This Eq. (28) represents an effective pressure
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generated due to electro-mechanical coupling in an dielectric elastomeric actuator
with the application of an electric field.

In line with that, we present an alternativemethodwithin the framework of second
law of thermodynamics, which may illustrate an electrostatic pressure pel depen-
dency on applied electric field analogous to Pelrine et al. [20]. The analytical expres-
sion obtained following the second law of thermodynamics may help to understand
the electro-mechanical deformation in a more deeper manner as compareed to first
law of thermodynamics. In order to obtain the analytical expression for the elec-
trostatic pressure pel , we may use the obtained electro-elastic deformation relation
(27) for the different values of applied electric field Er and axial-strain λz . Now, the
electro-elastic deformation relation (27) with Trr (b) = 0 and Trr (a) = −pel may be
rewritten as follows:

pel =
∫ λb

λa

[2C1(λ
2 − λ−2λ−2

z ) + 2C2(λ
2λ2

z − λ−2)

+C4ε0Er
2] dλ

λ(1 − λ2λz)
.

(29)

Substituting the material parameters values from (26) for an electro-elastic material
model (25), the above relation (29)may be solved numerically for the different values
of applied electric field and axial-strain. Now, we may plot the numerical values
of the electrostatic pressure pel against λ for the different values of electric field
Er = 20, 40, 60V/µm and the fixed axial-strain λz = 1.2 as shown in the Fig. 1.
In addition, similar results were also obtained by Melnikov and Ogden [18] for an
electro-elastic circular cylindrical tube.

Finally, in this section we have formulated an electro-elastic deformation of a
cylindrical actuator with a new electro-elastic energy function (25). An equilibrium
state equation (29) is also interpreted following the second law of thermodynamics
which is analogous to Pelrine equation (28) obtained by Pelrine et al. [20] within the
framework of first law of thermodynamics. Additionally, the numerical values of an
effective electro-static pressure are also obtained from the numerical integration of
the relation (29).

4 Experimental Validation and Model Comparison

In current section, the analytical model (29) formulated in the preceding section is
compared and validatedwith the experimental results obtained byWissler andMazza
[26], Carpi and Rossi [3].
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Fig. 1 Plot of the electrostatic pressure pel versus λ for Er = 20, 40, 60V/µm and λz = 1.2

4.1 Comparison with Wissler and Mazza [26] Experimental
Data

Wissler and Mazza [26] designed a spring roll actuator that was cylindrical in shape
and VHB 4910 membrane was coated with a mixture of graphite powder (Superior
Graphite, ABG1005, 20 g) and silicone oil (Dow Corning, DC 200/50 cs, 45 g) as
electrodes. The schematic diagram of the experimental spring roll actuator is shown
in the Fig. 2. The experiment was performed at room temperature, and the electric
field was applied in radial direction with the help of a linear incremental voltage
amplifier (Trek, Model 5/80). Additionally, an electrostatic force due to electrostric-
tive effect was measured in axial-direction with a force transducer (HBM type S2)
by keeping the length of actuator unchanged. This means that the electrostatic forces
together with the variation of axial-stresses correspond to a hydrostatic stress state.
Therefore, the axial-force (or the corresponding stress component) could bemeasured
directly with a direct measurement of the electrostatic stress. The Pelrine equation
(28) was used for the experimental investigation of the electrostrictive effect. Due to
electrostrictive effect, a restrained VHB 4910 film will experience an electrostatic
force in restraint direction with an application of electric field.

In linewith that, wemay also analyze the spring roll actuator as shown in the Fig. 2
through the classical continuum mechanics-based approach. Herein, the cylindrical
actuator is not subjected to any external force except an application of electric field in
radial direction only. Next, the deformation induced by electric field in the cylindrical
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Fig. 2 Schematic
experimental set-up of spring
roll actuator designed by
Wissler and Mazza [26] for
electrostriction

actuator may be obtained from the deformation relation (22) through the electro-
elastic material model (25). Further, for a constraint axial-direction similar toWissler
and Mazza [26] spring roll actuator, we may introduce λz = 1 in electro-elastic
deformation relation (22). Therefore, the electro-elastic deformation relation (22)
with λz = 1 may be rewritten for Wissler and Mazza [26] spring roll actuator given
as follows:

Trr (b) − Trr (a) =
∫ b

a
[2(C1 + C2)(λ

2 − λ−2) + C4ε0E
2
r ]
dr

r
. (30)

The above Eq. (30) is analogous to the Pelrine’s equation (28) throughwhich the load
Fth required to maintain the reference configuration λ = 1 is obtained as follows:

Fth =
∫ b

a
(πε0C4)E

2
r rdr. (31)

By solving the above equation with b2 − a2 = B2 − A2 for λz = 1 and using A =
70.850 mm, B = 70.725 mm from the Wissler and Mazza [26] experimental set-up
dimensions of spring roll actuator, the above Eq. (31) may be rewritten as follows:
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Fig. 3 Comparison of the theoretical load (32) with the Wissler and Mazza [26] experimental data

Fth = kC4E
2
r , (32)

wherein k = πε0

2
(B2 − A2) is a constant. Now, we may plot the load Fth (32)

required to maintain the original geometry versus electric field plot as shown in
the Fig. 3. Additionally, we may also compare this theoretical load versus electric
field plot with the Wissler and Mazza [26] experimental load Fexp data. Herein, the
experimental load Fexp is obtained from the electrostrictive pressure versus applied
electric field Wissler and Mazza [26] experimental data. In Fig. 3, we may obtain the
best fit value of the constant parameter C4 = 3.41 by using the least square method.
On the other hand,Wissler andMazza [26] have considered the electrostatic pressure
to calculate the axial-force difference required to keep the length of actuator constant
with the help of force transducer (HBM type S2). In line with that, we also obtain the
same axial-force through the classical continuum mechanics-based approach, which
shows the identical results with more deeper understanding.

4.2 Comparison with Carpi and Rossi [3] Experimental Data

In general, an axial-strain of the dielectric cylindrical actuator (DCA) may be
observed with an application of electric field alone. This axial-strain induced by
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Electrically inactivated Electrically activated

Fig. 4 Schematic diagram of a dielectric cylindrical actuator

electrical loading plays an important role in the actuation mechanism of the actuators
and sensors. In line with that, the similar phenomenon was experimentally studied
by Carpi and Rossi [3]. Therein, they [3] have measured the axial-strain in the DCA
by placing it in the vertical position with its lower end constrained and its upper end
connected to an isotonic displacement transducer (Ugo Basile, Italy, 7006). Next,
the electric field was applied in radial direction with the help of applied potential
difference as shown in the Fig. 4. Further, the step-wise voltages of different value,
generated by a DC high-voltage supply, were separately applied to the actuator. Now,
the signals of the isotonic axial-displacement were successively recorded for each
voltage value between the 10-s time duration. This simple procedure also considers
the property of incompressibility constraint, which holds true for most of dielectric
elastomeric materials. At last, they [3] have reported an increase in axial-strain with
an applied electric field (Voltage/thickness).

In line with that, we may also represent an electrically induced axial-strain for a
DCA through the classical continuum mechanics-based approach. Herein, an elec-
trically induced axial-strain expression is formulated through the obtained electro-
elastic deformation relation (27) for a DCA. Next, by applying the boundary con-
ditions Trr (b) = Trr (a) = 0 similar to Carpi and Rossi [3], we may rewrite electro-
elastic deformation relation (27) given as follows:

∫ λb

λa

C4ε0Er
2dλ

λ(1 − λ2λz)
=

∫ λb

λa

[C1(λ
−2λ−2

z − λ2) + C2(λ
−2 − λ2λ2

z )]

.
2dλ

λ(1 − λ2λz)
.

(33)
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Fig. 5 Comparison of theoretical model (33) with the Carpi and Rossi [3] experimental data

Now, the above electro-elastic deformationmodel (33)may be numerically solved for
the axial-strain λz of cylindrical actuator with the different values of applied electric
field Er . Further, the inner and outer radii A = 0.781 mm and B = 0.976 mm have
been considered for the numerical solution of the above electro-elastic deformation
relation (33) similar to Carpi and Rossi [3]. At last, we plot the numerical solution of
theoretical electro-elastic deformationmodel (33) shown in Fig. 5, and also compared
with the Carpi and Rossi [3] experimental data. Herein, we derive the obtained the-
oretical model (33) followed by the classical continuum mechanics-based approach,
which shows a good agreement with the experimental results obtained by Carpi and
Rossi [3].

Finally, in this section we compared and validated the analytical models (22), (27)
with the experimental results obtained by Wissler and Mazza [26], Carpi and Rossi
[3]. In addition, a good agreement is also achieved between the analytical models
(22), (27) and the experimental data [3, 26].

5 Concluding Remarks

In the present paper, we presented a continuum mechanics-based electro-elastic
deformation theory through an amended form of energy density function. Next, we
applied the formulated electro-elastic deformation theory to a dielectric cylindrical
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actuator (DCA) to obtain the electro-mechanical deformation response for an incom-
pressible isotropic electro-elastic material analytically. Further, we also proposed a
new electro-elastic energy density function based on the amended form of energy
function that may represent the electro-elasticity with least material parameters. Fur-
ther, the developed electro-elastic deformation model for DCA is then compared
with their corresponding experimental results obtained from the different studies
presented by Wissler and Mazza [26], Carpi and Rossi [3]. Herein, we obtained the
identical results with more physical understanding through the classical continuum
mechanics-based approach that has resolved the physical interpretation of Maxwell
stress tensor under large deformations. Conclusively, it is shown based on the theoret-
ical model that besides enhancing the material properties of smart material devices,
modeling also plays a vital role in the electro-elastic deformation phenomenon in
smart materials.

Herein, the present study specifically focused on a DCA-based boundary-value
problem because it is the most generalized configuration used as an actuation and
sensing process in the field of industrial robotics applications. Themost useful exam-
ples of the cylindrical dielectric actuator are an elastic nano-tube and a pneumatic
valve that may be used to make an artificial muscles and to measure the fluid flow
characteristics, respectively. An immediate application of the present work lies in the
new field of soft robotics which imparts new functionalities as compared to the exist-
ing technology. In addition to extending the applicability of the presented work, fibre
structures involvement can be incorporated within the proposed constitutive laws for
a transversely isotropic electro-elastic deformation that requires an additional set of
invariants.
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Numerical Studies for Generalized
Modified Polarization Saturation (PS)
Model in Piezoelectric Media

Kuldeep Sharma and Sandeep Singh

Nomenclature

PS model Polarization Saturation Model
DDT Distributed Dislocation Technique
LIF Local Intensity Factor
COD Crack Opening Displacement
COP Crack Opening Potential
DB Dielectric Breakdown Model

1 Introduction

Smart materials such as piezoelectric materials have unambiguously proved their
utility as a key component of sensors, actuators, transducers, etc., in high-tech appa-
ratus of smart devices and structures. Due to the fatigue, cracks develop in them.
Therefore, it is crucial and essential to thoroughly investigate the fracture behavior
of such materials.

Gao and his co-researchers [7] were the first who considered the role of electric
displacement saturation in studying the fracture mechanics of piezoelectric mate-
rials and proposed a polarization saturation model. They justified this model by
considering piezoelectric materials as mechanically brittle and electrically ductile
and proposed the same in analogous to Dugdale’s model [4]. In this model, they
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considered an electrical yielding zone in front of the crack tip in the form of a strip
which is bounded by the normal saturated electric displacement value. Bhargava and
Jangid [2] extended PS model to study the semipermeable two collinear cracks in
an infinite 2-D piezoelectric media. They applied the complex variable technique
to obtain the analytical expressions for saturated zone length, COD, COP, and local
intensity factor. Apart from the extension of nonlinear (PS/DB and Dugdale) models
in 2-D to 3-D or multiple cracks, etc., Dugdale model was also modified by various
researchers [1, 8] after varying the condition of normal cohesive stress. Bhargava and
Hasan [1] modified the Dugdale model for multiple collinear cracks by quadratically
varying normal cohesive stress distribution over the rims of yield zones. Recently,
Singh et al. [11–13] applied the polynomial varying polarization saturation models
in center crack as well as two collinear cracks using complex variable approach.

Distributed dislocation technique (DDT) is based on the concept of expressing
the crack in a material as a continuous distribution of dislocations. By doing this,
the problem of crack(s) in the specimen is reduced into simultaneous singular inte-
gral equations in terms of dislocation density variable(s) at the crack. After solving
these integral equations, one can obtain the dislocation density variable(s) at the
crack tip, and hence the fracture parameters which are in terms of dislocation den-
sities at the crack tip. Bilbey et al. [3] analyzed the problem of strip plastic yielding
model using DDT where both the crack and the strip plastic zones are simulated
by an array of dislocations. Sharma et al. [10] applied the DDT to study the array
of equidistant semipermeable inclined cracks in 2-D piezoelectric media. Zhang
et al. [14] and Fan et al. [6] applied the DDT to study the impermeable dielectric
breakdown and semipermeable polarization saturation models, respectively. In their
approach, they simplified the problem of simultaneous integral equations into sepa-
rate mechanical and electrical dislocation density parameters based singular integral
equations defined in a domain, i.e., bi (x0), i = 1, 2, 3 for −a ≤ x0 ≤ a and b4(x0)
for −c1 ≤ x0 ≤ c1. However, they obtained only the analytical solution of the field
variables from these simplified integral equations.

But obtaining the analytical solution for generalized saturated electric displace-
ment conditions defined for a generalized modified PS model is difficult either by
the Fan et al. [6] approach or the complex variable approach followed in [11]. Addi-
tionally, Fan et al. approach is applied for simplifying the developed simultaneous
singular integral equations into individual integral equations with respect to these
mechanical and electrical dislocation density parameters. Therefore, in this paper, the
DDT with Gauss–Chebychev quadrature (numerical scheme) is applied for solving
the reduced Cauchy-type singular integral equations.

Once the generalized dislocation densities b have been obtained, the intensity
factors (IFs) at the crack-tips (a) and effective crack-tips (c1) can be evaluated and
further using iterative approach saturated zone lengths are obtained under a different
set of conditions.
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2 Statement of the Problem

An infinite piezoelectric domain (PZT-4) weakened by a center crack of length 2a
lying along the x-axis with center at origin is considered. Similar to Gao et al. [7]
approach, a saturated zone of length c1 − a is taken on both sides of the crack tip in
the form of a strip or a line segment, i.e., along the x-axis satisfying a < |x | < c1. The
problem is studied under electromechanical loading and arbitrary poling direction
considering impermeable and semipermeable crack-face conditions. The schematic
representation of the problem is presented in Fig. 1.

3 Numerical Solutions for Generalized Modified PS Models
Using DDT

The stress and electric displacement can be evaluated byusing the following relations:

[
t1
t2

]
=

[−φ1

−φ2

]
=

[
σ11,σ12,σ13, D1

σ21,σ22,σ23, D2

]
(1)

After employing the continuous distribution of dislocation and applying surface
traction charge conditions as defined inEq. (1), a systemof singular integral equations
for dislocation density, bi are obtained.

Fig. 1 Schematic representation of the problem
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∫ a
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1
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⎣b1
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⎤
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π(x − x0)
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2 b4dx0 +

⎡
⎣σ∞

21
σ∞
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σ∞
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⎤
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(2)∫ a

−a
L2

1

π(x − x0)

⎡
⎣b1
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b3

⎤
⎦ dx0 +

∫ c1

−c1

1

π(x − x0)
L4b4dx0 + D∞
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2 = 0, |x | ≤ a,

(3)
∫ a

−a
L2

1

π(x − x0)

⎡
⎣b1
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⎤
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∫ c1

−c1

1

π(x − x0)
L4b4dx0 + D∞

2 − Dc
2 = g(x)Ds − Dc

2, a ≤ |x | ≤ c1, (4)

where L =
[
L1 LT

2
L2 L4

]
= 2i BBT .

Solving Eqs. (2) and (3), we have

∫ a

−a
(L1L4 − L2L

T
2 )

1

π(x − x0)

⎡
⎣b1
b2
b3

⎤
⎦ dx0 = −

⎡
⎣σ∞

21
σ∞
22

σ∞
23

⎤
⎦ L4 + (D∞

2 − Dc
2)L

T
2 , |x | ≤ a,

(5)
Substituting x = aξ and x0 = aη, Eq. (5) becomes

∫ 1

−1
L∗ v∗(η)

π(ξ − η)
dη = −t∗(ξ), |ξ| ≤ 1, (6)

where L∗ = (L1L4 − L2LT
2 ), v∗ =

⎡
⎣b1
b2
b3

⎤
⎦ and t∗ = −

⎡
⎣σ∞

21
σ∞
22

σ∞
23

⎤
⎦ L4 + (D∞

2 − Dc
2)L

T
2 .

To obtain the solution of Eq. (6), Gauss–Chebychev quadrature [10] method is
applied.

As per this scheme, the discretized form for Eq. (6) can be written as

m∑
k=1

1

m
[ L∗

(sr0 − sk)
]ν∗(sk) = −tni (sr0), f or i = 1 to 5 (7)

and single-valued condition reduces to

m∑
k=1

ν∗(sk) = 0 (8)

where ν(ξ) =
∑m

k=1 wkν
∗(sk )√

1−s2k
, sk =

cos( (2k−1)π
2m ), k = 1, 2, ....,m and sr0 = cos( rπm ), r = 1, 2, ......,m − 1. Solving

Eqs. (7) and (8), the ν∗(sk) is evaluated at all the m quadrature points. To evaluate
electric dislocation density parameter b4(x0), defined in −c1 ≤ x0 ≤ c1, Eq. (4) is
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written into the following form.

∫ c1

−c1

1

π(x − x0)
L4b4dx0 + D∞

2 − Dc
2 = g(x)Ds − Dc

2 −
∫ a

−a
L2

1

π(x − x0)

⎡
⎣b1
b2
b3

⎤
⎦ dx0, a ≤ |x | ≤ c1, (9)

or

∫ c1

−c1

1

π(x − x0)
L4b4dx0 = g(x)Ds − D∞

2 −
∫ a

−a
L2

1

π(x − x0)

⎡
⎣b1
b2
b3

⎤
⎦ dx0, a ≤ |x | ≤ c1, (10)

Further, Eq. (10) can be converted into the domain of Gauss–Chebychev quadrature
scheme as

∫ 1

−1

1

π(ξ − η)
L4b4dη = g(x)Ds − D∞

2 −
∫ 1

−1
L2

1

π(ξ − η)

⎡
⎣b1(η)

b2(η)

b3(η)

⎤
⎦ dη,

a

c1
≤ |x | ≤ 1, (11)

Hence, the discretized form for Eq. (11) is

m∑
k=1

1

m
[ L4

(sr0 − sk)
]b4(sk) = −t∗4 (sr0) (12)

and single-valued condition reduces to

m∑
k=1

b4(sk) = 0 (13)

where b4(ξ) =
∑m

k=1 wkb4(sk )√
1−s2k

, sk = cos( (2k−1)π
2m ), k = 1, 2, ....,m and sr0 =

cos( rπm ), r = 1, 2, ......,m − 1 and t∗4 (sr0) = g(c1sr0)Ds − D∞
2 − ∑m

k=1
1
m [ L2

(sr0−sk )
]

ν∗(sk). Solving Eqs. (12) and (13), b4(sk) is evaluated at all the m quadrature points.
Hence, the local intensity factors (LIFs) at the crack-tips a and −a and electric dis-
placement intensity factor at the effective crack-tips c1 and −c1 are evaluated using
the following results:

[K L
I I K

L
I K L

I I I ]T =
√

π

4a
Gs[ν1(±a/c) ν2(±a/c) ν3(±a/c)]T (14)

and

[Kc1
I I K

c1
I K c1

I I I K
c1
I V ]T =

√
π

4c1
G4 ν4(±1), (15)

respectively; where L =
[
G1 GT

2
G2 G4

]
and Gs = G1 − (GT

2 G2)/G4.
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4 Evaluation of Unknown Saturated Zone Length

Since, the approach proposed by the authors is a numerical one so evaluation of sat-
urated zone length is one of the important tasks in this paper, fixing other parameters
such as crack length, loadings, etc. Moreover, it is an unknown quantity essential to
know prior to getting any numerical solution. Therefore, the authors implemented
the iterative approach by varying the zone length and at the same time imposing
a supplementary condition of finite electric displacement at the tips of the zone or
the zero electric displacement intensity factors at the outer tips of the zone. Further,
the saturated zone length is varying arbitrarily from zero to a suitable finite value
and correspondingly obtained the normalized electric displacement intensity factor
(K ∗

I V ) at each varying tip of the zone. Hence, an interval is obtained where the K ∗
I V

changes its sign. To find the solution accurate up to two decimal places, the authors
vary the arbitrary zone length by considering a small step size, i.e., 0.01 units and
further applied the bisection method to get the accuracy up to three decimal places.
Doing so, approximate outer saturated zone tip is evaluated where K ∗

I V is zero and
hence the saturated zone length is determined. Figure 2 validates the aforementioned
approach with established results of PS model considering both impermeable and
semipermeable crack conditions and subjected to D∞

2 /Ds = 0.5 and σ∞
22 = 10MPa

loading.

5 Numerical Solution for Generalized Modified PS Model

The aforementioned approach discussed in Sects. 3 and 4 is a numerical scheme
and can be applied very easily to any generalized varying saturated conditions
depending upon x/c1. For example in the polynomial varying modified PS mod-
els proposed in [9], the g(x) = (|x/c1|)n and for the same t∗4 (sro) = g(c1sro)DS −
D∞

2 − �m
k=1

1
m

L2
((sr0−sk ))

v∗(sk) defined in Eq. (12) can be reduced into t∗4 (sro) =
(|sro|)nDS − D∞

2 − �m
k=1

1
m

L2
((sr0−sk ))

v∗(sk). This is the only change required in the
numerical codes for evaluation of saturated zone lengths whereas remaining proce-
dure will be the same.

Similarly, the changes required in Eq. (12) can be made very easily for any gen-
eralized varying saturated conditions depending upon x/c1. Hence, this numerical
approach could be considered as the numerical solution for generalized PS models
with variable saturation condition of the form g(x) = f (|x/c1|), where f (|x/c1|) is
any arbitrary function of x/c1 and c1 is the extended crack length. The absolute value
of x/c1 is taken due to symmetric saturated conditions. To validate this approach,
numerical solutions are obtained for all the modified PS models presented in [9] and
comparedwith the analytical results as established. This numerical study is presented
in the next section. Moreover, numerical solutions are also presented for biquadratic
varying polynomial saturated conditions and compared with the other modified PS
models.
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Fig. 2 Variations in K ∗
I V w.r.t (c1 − a)/a for evaluation of zone length
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Fig. 3 Variations in normalized saturated zone length with respect to electric displacement loading
for all the modified PS models

6 Numerical Studies

In this section numerical studies of PS and generalized modified PS model are pre-
sented with respect to electrical loading, polarization angle, and crack-face condi-
tions by considering center crack problem in 2-D piezoelectric media. The study
is presented for PZT-4 material with electromechanical loadings σ∞

22 = 10MPa and
electric displacement loading D∞

2 = 0.08C/m2. Throughout the analysis, saturated
electric displacement loading is considered equal to Ds = 0.2C/m2.
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b variations in K ∗

I with increasing polarization angle

To verify the accuracy of the numerical solution and proposedmodeling, results of
normalized saturated zone length are obtained for PS and polynomial varying modi-
fied PSmodels (with degree 2, 3, and 4)with increasing electric displacement loading
under both crack-face conditions (impermeable and semipermeable) are plotted in
Fig. 3. These obtained results are then compared with analytical solutions for both
PS and modified PS models. A very good agreement of numerical results obtained
by this approach is found with analytical results. Also, the behavior of saturated zone
length validates the developed numerical approach for finding the solutions for gen-
eralized PS model with variable saturation condition of the form g(x) = f (|x/c1|),
where f (|x/c1|) is any arbitrary function of x/c1 and c1 is the extended crack length.

Moreover, the behaviors of saturated zone length andmodifiedpolynomial varying
saturated condition have been analyzed with respect to poling direction. Results of
(c1 − a)/a are obtained for different polarization angles varying from 0◦ to 90◦
and are shown in Fig. 4a. Similar behaviors of (c1 − a)/a are found for all the
modified PS models with increasing polarization angle, i.e., saturated zone length
decreases with increasing polarization angle. Results of normalized local intensity
factor K ∗

I = (K L
I )/(σ22

√
πa) are also plotted in Fig. 4b for PSmodel (as K L

I defined
at the actual crack tip and is independent of the saturated condition) with increasing
polarization angle and subjected to both impermeable and semipermeable crack-
face conditions. The behavior of K ∗

I with respect to increasing polarization angle
and crack-face conditions are found to be the same as concluded in [11] and [9].
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7 Summary of the Work Done

The DDT along with Fan et al. [5] approach (for separating the integral equations
as per mechanical and electrical dislocation density parameters) are successfully
implemented to find the numerical solution for the generalized PS model with vari-
able saturation condition of the form f (|x/c1|)Ds , where f (|x/c1|) is any arbitrary
function and c1 is the extended crack length. Numerical studies are presented for
constant, linear, quadratic, cubic, and biquadratic by varying modified PS models
with varying electrical loading and polarization angle. Excellent agreement of the
numerical results of saturated zone length and local intensity factor is found with
the analytical results established in [9]. Saturation zone length and local intensity
factor show same behavior as concluded in [9] with respect to variation in electrical
loading, crack-face conditions, polarization, angle and saturation condition.

8 Conclusions

The study presents the following conclusions:

1. DDT technique and the proposed approach are successfully implemented to
study the generalized PS model and can also be applied to study other kinds of
modified PS models.

2. The saturated zone length increases with respect to electric displacement loading
for all the PS/modified models. But for a particular electrical loading, saturated
zone has higher values as saturated condition varies from constant to biquadratic
and this difference increases with the increase in electrical loading.

3. The effect of crack-face conditions is confirmed here as numerical values for
normalized saturated zone lengths are found less in semipermeable conditions
than the impermeable case.

4. Effect of saturated condition is also observed here on saturated zone length as
for a particular polarization angle other than 90◦, the numerical values are higher
for a higher degree of polynomial varying saturated condition.

5. Both saturated zone length and LIF depend on the poling direction as they
decrease with increasing polarization angle.
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Thermal Conduction in One-Dimensional
Φ4 Chains with Colliding Particles

Sankhadeep Bhattacharyya and Puneet Kumar Patra

1 Introduction

Recent advancement in science and technologyhas enabled the researchers to develop
new-age materials such as graphene, carbon nanotubes (CNTs), nanowires, etc. In
many of these materials, the motion of the particles (atoms) is severely restricted
in one or more dimensions, making them examples of low-dimensional systems.
Because of their interesting thermal transport properties, low-dimensional systems
have generated significant interest among the researchers. Of specific importance is
to identify the link between the macroscopic Fourier’s law of heat conduction with
its low-dimensional counterpart. For a one-dimensional system, Fourier’s law may
be stated as follows:

J = −κ
∂T

∂x
, (1)

i.e., the heat current, J , is proportional to the temperature gradient, ∂T/∂x , with
the constant of proportionality given by the thermal conductivity of the system,
κ . This macroscopic statement of Fourier’s law is independent of the system size
and length. But, situation becomes complicated when dealing with atomistic-scale
low-dimensional systems. For example, CNTs exhibit length-dependent (as well as
temperature) thermal conductivity [1]. Similarly, graphene has an exceptionally high
thermal conductivity [2].

In a bid to explain these anomalous deviations away fromnormal thermal transport
properties, simplified one-dimensional models have been studied extensively. Two
of the most studied pedagogical models are the Fermi–Pasta–Ulam (FPU) chain [3]
and the Φ4 chain [4]. While the FPU chain exhibits anomalous thermal conduction
similar to CNTs with κ following a power law with system size, κ ∼ Lα with α �= 0,
Φ4 chains obey Fourier’s law [3]. The generalized Hamiltonian, H , governing the
two chains comprising of N particles can be expressed as

S. Bhattacharyya · P. Kumar Patra (B)
Indian Institute of Technology Kharagpur, Kharagpur 721302, India
e-mail: puneet.patra@civil.iitkgp.ac.in

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2021
S. K. Saha and M. Mukherjee (eds.), Recent Advances in Computational
Mechanics and Simulations, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-15-8315-5_36

429

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8315-5_36&domain=pdf
mailto:puneet.patra@civil.iitkgp.ac.in
https://doi.org/10.1007/978-981-15-8315-5_36


430 S. Bhattacharyya and P. Kumar Patra

H =
N∑

i=1

[
p2i
2m

+ VH (Δxi−1,i ) + VA(Δxi−1,i ) +U (xi )

]
, (2)

where pi is the momentum of the i th particle having a mass ofm, VH is the harmonic
part of the potential that depends on the distance between the two nearby particles
Δxi−1,i , VA is the anharmonic part of the potential that also depends on Δxi−1,i ,
andU (xi ) is the anharmonic tethering part of potential. FPU chain is obtained when

VA(Δxi−1,i ) = 1

4
c1Δx4i−1,i and U (xi ) = 0, while the Φ4 chain is obtained when

VA = 0 and U (xi ) = 1

4
cx4i .

The difference in the nature of theHamiltonian results in FPUchain beingmomen-
tum conserving and Φ4 chain being momentum non-conserving. Across several sci-
entificworks, it has been argued in the literature thatmomentum conservation is a key
reason for the FPUchain to display anomalous thermal conduction [5]. The argument,
however, does not hold true for all one-dimensional modes as has been identified by
Prosen and Campbell [6]. Over the years, several momentum non-conserving mod-
els have been proposed that show normal thermal transport properties. For example,
working with a chain of coupled rotators, Giardina et al. [7] have shown that the
system obeys Fourier’s law. Similarly, Xiong et al. [8] have shown through non-
equilibrium molecular dynamics that their one-dimensional chain with asymmetric
interparticle interactions has a convergent thermal conductivity in thermodynamic
limit.

Another possible origin of anomalous thermal transport inmomentum-conserving
one-dimensional chains has been attributed to the slow diffusion of energy carried
by the long-wavelength modes [9]. These long-wavelength modes act as undamped
energy transport channels, and result in long distance as well as time correlations
in the system. As a result, such momentum-conserving systems possess anomalous
thermal transport. Further, it has been suggested that in one-dimensional systems
having tethering potential, the energy transported by the long-wavelength modes
gets diffused quickly due to the tethering potential. Particularly for the Φ4 chain, it
has been argued that the localized modes having frequency greater than the linear
phonon regime are responsible for normal thermal conduction. However, explanation
of ballistic thermal conduction in the momentum non-conserving Φ4 chain, under
weakly nonlinear tethering potential, still remains elusive [10].

In the traditional models of FPU and Φ4 chains, two nearby particles may cross
each other. This is in contrast with realistic systems, where any two particles expe-
rience large repulsive forces when they come near each other. The presence of such
repulsive forces may have a significant bearing on the thermal conductivity proper-
ties owing to their ability to create new phonon modes. Keeping this in mind, in this
manuscript, we generalize the traditional Φ4 chain so that no two individual parti-
cles can cross each other. This is achieved by addition of a soft-sphere type potential
to the Hamiltonian associated with Φ4 chain. The resulting Hamiltonian is solved
numerically to answer the following questions: (i) how does the thermal conductivity
and heat flux change when particles are not allowed to cross each other, (ii) does
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enabling collision has any bearing on the temperature gradient being created across
the chain, and (iii) does collision alter the density profile within the chain and the
diffusive characteristics of the chain.

The manuscript is organized as follows: the next section details the model pro-
posed in this manuscript that prevents two particles from crossing over along with
a brief description of the traditional Φ4 chain, and subsequently we highlight the
numerical simulation strategy adopted in this study and the results obtained from
our simulations. Lastly, concluding remarks are presented that provides direction for
future research.

2 Φ4 and Φ4C one-dimensional chains

Consider N particles, each of mass m, lying on a one-dimensional line. Let the
equilibrium distance between any two particles be leq . As in Eq.2, let VH (Δxi, j ) and
VA(Δxi, j ) be the harmonic and anharmonic interparticle interactions between two
particles i and j . These interactions solely depend on the relative displacement of the
two particles from their equilibriumpositions,Δxi, j = xi − x j − ( j − i)leq . Further,
let each particle interact only with its nearest neighbor, i.e., V (Δxi, j ) → V (Δxi−1,i ).
In presence of an onsite tethering potential, U (xi ) , the Hamiltonian is given by

H =
N∑

i=1

[
p2i
2m

+
N−1∑

i=1

k

2

(
xi − xi−1 − leq

)2 + VA(Δxi−1,i ) +U (xi )

]
. (3)

Choosing k = 1.0, the traditional Φ4 chain is obtained from Eq.3 by substituting

VA(.) = 0 andU (xi ) = c (xi−xi,0)4

4 . Thus, the Hamiltonian of Φ4 chain, with c = 0.1,
is given by

HΦ4 =
N∑
i=1

[
p2i
2m

]
+

N−1∑
i=1

[
1
2

(
xi − xi−1 − leq

)2]

+
N∑
i=1

[
0.1
4

(
xi − xi,0

)4]
.

(4)

The reason for choosing c = 0.1 in Eq.4 is to ensure that the anharmonic energy con-
tribution is a fraction of harmonic energy for the majority of simulation time. In the
limit of large anharmonic contributions (c = 1), thermal transport characteristics of
φ4 chain have been extensively studied by Hu et al. [5], and Aoki and Kusnezov [11]
using deterministic thermostats. Hu et. al argued that as the momentum conserva-
tion breaks down due to the tethering potential, thermal conduction follows Fourier’s
Lawwhere J ∼ 1

N and dissipation ofmomentumdecays exponentially in time.Using
large-scale simulations, it was found that the thermal conductivity depends on tem-
perature according toκ = 2.724/T 1.382 [12]. Patra andBhattacharya [13] employed a
Φ4 chain to study thermal rectification and differential thermal conduction. Although
researchers have extended theΦ4 model to more than one dimensions [12], we focus
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only on one-dimensional chains in the present study. However, the existingΦ4 model
does not constrain two particles from crossing each other. In the present work, we
modify HΦ4 so that two particles are prevented from crossing each other.

The proposed Φ4C Hamiltonian contains an extra soft-sphere collision term
VC(.) = a 1

(xi−xi−1)6
which ensures that two particles, upon coming very close to each

other, experience a large repulsive force. The choice of the constant a is governed
by two factors: (i) the effective radius of the particles, r , so that when the distance
between the two particles is less than 2r , a large repulsive force is experienced by the
particles and (ii) the contribution of VC → 0 when the distance between the two par-
ticles is greater than 2r . In the present work, we choose a = 5 × 10−10 corresponding
to an effective radius of r = 0.025. The resulting Hamiltonian is

HΦ4C =
N∑
i=1

[
p2i
2m

]
+

N−1∑
i=1

[
1
2

(
xi − xi−1 − leq

)2]

+
N−1∑
i=1

[
5×10−10

(xi−xi−1)6

]

+
N∑
i=1

[
0.1
4

(
xi − xi,0

)4]
.

(5)
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Fig. 1 Different potential and force functions for a particle located at origin assuming a neigh-
bor particle at +1 units. Dotted line (parallel to y axis) shows 2r beyond which the soft-sphere
potential becomes insignificant. A:(0.065,0.88) is where net potential deviates from harmonic,
B:(0.135,0.868) is where net force deviates from the harmonic force
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Figure1 depicts the soft-sphere potential and its corresponding force vis-á-vis the
harmonic potential and harmonic force. Beyond 2r , the interparticle potential and
force is dominated by the harmonic potential and the corresponding force, respec-
tively.

3 Simulation Methodology

We now describe the simulation methodology adopted in the study. The particles of
bothΦ4 andΦ4C chains are initialized at their equilibriumpositions such that leq = 1.
Therefore, the initial position of i th particle is xi,o = i − 1. So, in a chain comprising
of N particles, the initial coordinates range from 0, 1, . . . .N − 1. Initial velocities
of the particles are randomly sampled from a uniform distribution between ±0.5.
Fixed-fixed boundary conditions have been implemented in the chains by means of
fictitious fixed particles present at the coordinates−1 and N . The first (last) boundary
particle interacts with only the first (last) particle of the chain through VH (.) + VA(.)

whose mathematical forms are given in Eqs. 4 and 5. A pictorial representation of
the chain is depicted in Fig. 2.

We create a thermal gradient in the chains by controlling the temperature of
the first and the last particles. While the first particle is kept in contact with a hot
heat reservoir (at temperature TH ), the last particle is kept in contact with a cold
heat reservoir (at temperature TC ). Among the different deterministic thermostats
[14–17], we choose Nosé–Hoover thermostat [18–20] for temperature control due to
its simplicity and wide adoption. The Nosé–Hoover thermostat’s mass for both the
hot and the cold thermostats is taken as unity. Particles present in between the first
and the last particles are governed by the standard Hamiltonian evolution equations.
Thus, the resulting equations of motions for all the particles are given by

q̇i = ∂H
∂ pi

ṗi = − ∂H
∂qi

− δ1ζH p1 − δN ζC pN
˙ζH = p21

TH
− 1

ζ̇C = p2N
TC

− 1
where :

δ1 = 1{i = 1}
δ1 = 0{i �= 1}
δN = 1{i = N }
δN = 0{i �= N }.

(6)

These equations of motion are solved using fourth-order Runge–Kutta method with
incremental time step equaling h = 0.0005. Each simulation run comprises twoparts:
(i) first 250 million steady-state runs: equations of motion are solved for 250 million
time steps under the prescribed boundary conditions so that chains reach steady-state
conditions and (ii) last 750 million output runs: in order to compute all time averages
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Fig. 2 Pictorial depiction of Φ4 and Φ4C chains with boundary conditions

equations of motion are solved for a further 750million time steps. To understand the
effect of chain length, simulations are run with different values of N : 16, 32, 64, 128,
256, 384, and 512. For each case, three different temperature values are imposed on
theboundaryparticles: (TH , TC) = (1.1, 0.9); (0.55, 0.45) and (0.11, 0.09) such that
the mean temperatures, TM = 0.5(TH + TC), are 1.0, 0.50, and 0.10, respectively.

3.1 Heat Flux Computation

Let us begin with a hypothetical case where a chain comprising of N → ∞ particles
is brought away from equilibrium through a thermal gradient. In such a case, the
chain becomes a continuous entity, and the different thermodynamic quantities may
be defined on a spatial point x . With local thermodynamic equilibrium [15] con-
ditions prevailing within the system, it is possible to define an instantaneous local
temperature field T (x, t) that varies slowly in x and time, t . In a similar way, the
local heat current density J (x, t) may be defined. For the chains under considera-
tion, where N is finite, we make an assumption that the temperature gradient is small
enough so that the chain is near-equilibrium and local thermodynamic equilibrium
hypothesis holds true. In such a scenario, we can now define locally both temperature
and heat currents for a particle. From among the different definitions of temperature
[21, 22], we restrict ourselves to kinetic temperature, which can locally be expressed
as

kBTi = mv2
i , (7)

where kB is the Boltzmann constant and taken as unity for the remainder of this
study, and Ti is the kinetic temperature of the i th particle. Local heat current may
be obtained by taking the time derivative of the local energy density associated with
the i th particle [23]:

ε̇i = pi
mi

ṗi − fivi
+ 1

2

[
fi,i−1(vi − 1 + vi ) − fi,i+1(vi + vi + 1)

]
,

(8)
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which can be written as

ε̇i = ∂εi
∂t + [

ji,i−1 − ji+1,i
]
, (9)

where ji, j is the energy current flowing from particle j to particle i . When steady
state is reached [23], 〈ε̇i 〉 = 0, 〈 ∂εi

∂t 〉 = 0 along with 〈 dV (xi−1−xi )
dt 〉 = 0, so that

〈 ji,i−1〉 = 〈 12 (vi + vi−1) fi,i−1〉 = 〈vi fi,i−1〉. (10)

This gives 〈 ji,i−1〉 = 〈 ji+1,i 〉 = 〈 j (x, t)〉 = J . So, the net heat flux, J , and its time-
averaged value, 〈J 〉, may be computed as

J =
∑N

i=1 ji,i−1

N
=⇒ 〈J 〉 =

〈∑N
i=1 ji,i−1

N

〉
. (11)

Thermal conductivity may now be calculated through

κ = 〈J 〉N
ΔT

. (12)

For large N , systems with normal thermal conductivity gives finite κ , while systems
with abnormal thermal conductivity gives

κ ∼ Nα, α �= 0. (13)

4 Results and Discussions

4.1 Verification and Check for Steady-State Conditions

Before proceeding further, the simulation code is verified. For this purpose, a Φ4

chain, having k = c = 1 in Eq.4 and N = 512 particles, has been considered.
The simulation methodology remains the same as discussed previously. Three val-
ues of TM have been considered: TM = 1.0, 0.5, and 0.1. The higher temperature,
TH = TM + 0.1 × TM , while the lower temperature, TC = TM − 0.1 × TM , so that
temperature difference, ΔT = 0.2 × TM . Thermal conductivity values, κ , obtained
from the simulation are compared with κth = 2.724/T 1.382 [12]. The values are com-
pared in Table 1. Simulation results are comparable with those reported earlier at
higher temperatures. At lower temperature, a difference may be observed and can be
attributed to the different boundary conditions used for computing κth .

We now check if steady-state conditions prevail within the simulated chains.
The check is based on the argument that 〈 j1,2〉 = · · · = 〈 ji,i−1〉 = 〈 ji+1,i 〉 = · · · =
〈 jN−1,N 〉. In steady-state conditions, the net heat current, J , must equal local heat
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Table 1 AΦ4 chainwith k = 1and c = 1 is subjected to thermal conduction as per themethodology
highlighted before. Our simulation results for thermal conductivity (κ) are compared with those
obtained by Aoki and Kusnezov [12]: κth = 2.724/T 1.382. The difference in the results arises
because of different boundary conditions adopted for finding κth

T 〈J 〉 J × N κ κth

1 0.0011 0.570 2.849 2.724

0.5 0.0013 0.647 6.470 7.100

0.1 0.0023 1.574 57.870 65.646

current flowing between any two adjacent particles. A significant deviation of
local heat current between any two adjacent particle pair indicates that the sys-
tem has not yet attained steady state. The check is performed for Φ4 chains with
N = 512 particles and stiffness parameters as described in the previous section.
Results in the format (J, |J − min〈 ji−1,i 〉|, |J − max〈 ji−1,i 〉|) for TM = 1.0, 0.5,
and 0.1 are (0.0221, 4.71 × 10−5, 5.88 × 10−5), (0.0237, 3.383 × 10−5, 2.366 ×
10−5), (0.009955, 1.4206 × 10−5, 7.7032 × 10−6), respectively. The small devia-
tion of local heat currents from the total heat current indicates that the chain has
steady-state conditions after 750 million time steps, and meaningful time averages
may be computed.

4.2 Temperature Profile

Under an imposed temperature gradient, assuming local thermodynamic equilibrium,
each particle of a chain has a well-defined kinetic temperature. Since three different
TM values have been considered, for each particle i , a scaled kinetic temperature,
TS,i , is defined:

TS,i = 1.0 + 0.2 × Ti − TM

TH − TC
, (14)

so that the temperature of a particle always varies between 1.1 and 0.9 and ameaning-
ful comparison can be made. The scaled temperature profile of Φ4 and Φ4C chains
with N = 512 is shown in Fig. 3. A typical Φ4 chain exhibits boundary jumps in
temperature profile [24] which becomes more prominent with decreasing TM . Intro-
duction of soft-sphere collisions drastically reduces the boundary temperature jumps
in the Φ4C chain. A stark contrast can be seen for the two chains especially at lower
values of TM . It must be noted that the exact reason for boundary jumps inΦ4 chains
is still open to research.

Researchers have argued that in between the temperature jumps, the temperature
profile of a Φ4 chain varies linearly. Neglecting the temperature jumps, we now
calculate the deviation of the profiles from a linear behavior (the green straight line
of Fig. 3), using the following distance measure:
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Fig. 3 Scaled temperature profile ofΦ4 andΦ4C chains with N = 512 subjected to three different
TM . Scaling is done so that TH = 1.1 and TC = 0.9. Ti values of the remaining particles are
interpolated. The green straight line indicates a perfectly linear plot. As can be seen from the figure,
deviation from a linear profile decreases forΦ4 chain as TM increases. ForΦ4C chains, the deviation
from linearity is comparatively lesser. Boundary jumps in temperature are more predominant for
Φ4 chains than in Φ4C chains

Table 2 A comparison of deviation from linearity, dL , for N = 512 particles and three values of
TM . As is evident, the deviation from linearity is minimum for Φ4C chain

TM Φ4 Φ4C

1 0.279 0.2568

0.5 0.603 0.1585

0.1 1.175 0.4876

dL =
N∑

i=1

√(
TS,i − Yi

)2
. (15)

Table2 shows the results of dL . The results indicate that the deviation from linear-
ity decreases when soft-sphere collisions are introduced in the chain. The reduction
in boundary jumps and deviation from linearity suggest that the Φ4C chain allows
for quicker thermalization andmimics macroscopic behavior better than the standard
Φ4 chain at lower temperatures.
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4.3 Heat Flux and Thermal Conductivity

Figure 4 shows thermal conductivity, κ , calculated using Eq.12, for bothΦ4 andΦ4C

chains with varying N and TM . Thermal conductivity ofΦ4 chains conformswith the
existing literature [25]—with increasing TM , κ decreases. At low TM , harmonic inter-
particle potential dominates the dynamics, and consequently, thermal conduction is
near ballistic (see the solid blue line of Fig. 4). In such scenarios, where anharmonic
effects are small, the different modes of vibrations (phonons) do not interact signif-
icantly, and the temporal evolution of energy of the lower modes occurs relatively
unimpeded. As TM increases, the particles get displaced further away from their
equilibrium positions, and the anharmonic tethering potential starts to dominate.
Phonon–phonon interactions increase, as a result, and energy of lower modes gets
channeled to other modes, causing a severe reduction in thermal conductivity.

The case of Φ4C chains is peculiar. At very low TM , one obtains relatively high
thermal conductivity (see blue dashed line in Fig. 4 ). This may be attributed to the
dominating effect of harmonic potential over the soft-sphere and tethering potentials.
However, there is a sudden trend reversal, as is evident from the red and black dashed
lines corresponding to TM = 0.5 and 1.0, respectively—κ for TM = 1.0 is more than
that of TM = 0.5. Thermal conductivity further increases as TM is increased from
1.0 to 2.0. This trend reversal—higher thermal conductivity at high temperatures—
is typically absent in most one-dimensional chains, and signifies the importance
of not allowing the particles to cross each other. The exact reasoning behind such
trend reversal requires further research, and at this moment we can only offer a

Fig. 4 Variation of thermal conductivity, κ , with N and TM forΦ4 andΦ4C chains.While in theΦ4

chain, κ increases with decreasing temperature owing to harmonic effects being predominant, the
behavior of Φ4C chain is not straightforward. It first decreases with temperature and then suddenly
increases
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conjecture—at higher temperatures, more particles collide, and as a result, energy
transfer between two particles increases, causing increased thermal conductivity. It
is evident from Fig. 4 that thermal conductivity converges much quickly with N for
Φ4C chains vis-á-vis Φ4 chain, so only a fraction of Φ4C particles is necessary to
study the limiting behavior.

5 Conclusions

This manuscript generalizes the Φ4 model such that no two adjacent particles cross
each other. In simpler terms, theΦ4 particles can now “collide” and repel each other.
This is achieved by adding an anharmonic soft-sphere potential to the standard Φ4

Hamiltonian. The effect of not allowing the particles to cross each other is inves-
tigated through molecular dynamics. Specifically, we focus on temperature profile
and thermal transport properties of the chain.

It is observed that the addition of soft-sphere potential significantly alters the
temperature profile while satisfying Fourier’s law without significantly altering the
diffusion characteristics. Theboundary jumpspresent inΦ4 chains becomenegligible
in Φ4C chains, with the difference being more pronounced at low temperatures. The
results suggest that the Φ4C model may be used to study multiscaling behavior with
ease at lower temperatures. Being closer to a realistic system, where two particles
cannot cross each other, an exhaustive study is in order to understand the behavior
of Φ4C model in depth.

Perhaps, the most interesting results arise for thermal conductivity. Like Φ4

chain, at very low temperatures, one observes large thermal conductivity for Φ4C

chain as well. However, unlike Φ4 chain, thermal conductivity does not always
increase with decreasing temperature. We suspect that heat flux due to the inter-
play between soft-sphere and harmonic potentials determines the magnitude of ther-
mal conductivity—with increasing temperature there is a marginal rise in thermal
conductivity—possibly because of increased heat flux due to more frequent “col-
lisions” between the particles at higher temperature. Again, an in-depth study is
required to ascertain the veracity of our explanation. One can split the contributions
of heat flux due to the different potentials along with monitoring the frequency of
collisions to understand the interplay. Alternatively, one can look at the Fourier space,
and continuously monitor the modal energies to identify if there is more interaction
between the phonons (phonon–phonon interaction) resulting in peculiar behavior of
thermal conductivity. As of now, the problem remains wide open to research com-
munity.

Lastly, we would like to highlight that the numerical solution to the equations
of motion relies upon Taylor series expansion. With the inclusion of soft-sphere
potential, the nonlinear behavior starts to dominate when two particles come very
close, and this requires a very small time step for solution. It is preferable to use
adaptive time integration methods for this problem.
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Sequence of Hydrodynamic Phenomena
During the Interactions of Drop
and Bubble in Vertical Conduit

Subhav Chauhan and Parmod Kumar

1 Introduction

Bubbles and drops comprise the heart of multi-phase flows. They have funda-
mental importance in many natural processes as well as in industrial processes [1]
which involve multi-fluid interactions. Natural phenomena like rainfall, fermenta-
tion, oxygen dissolution in lakes due to rain, electrification of atmosphere by sea
bubbles, clouds floating in air, bubbles formed by active galactic nuclei [2], and
industrial processes like spray drying, liquid–liquid extraction, boiling molten glass
globules in air at a glass marble manufacturing industry, air in molten glass in glass-
blowing factories, fuel droplets from a fuel injector, and so on [1] involve particle,
drop, and bubble motions/interactions.

Commonly, bubbles and drops are defined as blobs of fluid in another continuous
phase. However, mathematically, as mentioned by Tripathi [2], they can be defined
based on relative density ratio (ρr), which is defined as the ratio of the density of the
fluid blob to the outer fluid. If ρr < 1 then the blob is defined as a bubble; otherwise,
if ρr > 1 then it is termed as a drop. Another important term is ‘particle’, which can
be defined as a self-contained body with dimensions between 0.5 µm and 10 cm [2]
and is separated from the surrounding medium by a perceivable interface [1]. The
material of the fluid surrounding the particle is called ‘continuous phase’ and the
material that forms the particle is called ‘dispersed phase’ [1]. The particle is termed
as ‘solid particle’ if the dispersed phase is a solid matter. Similarly, if the dispersed
phase is fluid, the particle is termed as ‘fluid particle’.
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The study of particles’ behavior in a fluid is active in research for a long time.
There are several studies on kinematics [3–5] and dynamics [2, 6] of these parti-
cles in the fluid. There are also frequent interactions among these particles which
significantly affect the flow dynamics. Their behavior is governed by fluid prop-
erties like viscosity, surface tension and density, hence, is often characterized by
the dimensionless numbers like Galilei number(Ga = ρR

√
gR/μ), Weber number(

We = ρU 2R/σ
)
, Eotvos number

(
Eo = gR2�ρ/σ

)
, and soon,whereρ,μ,σ ,g,U,

and R denote density, dynamic viscosity, surface tension, acceleration due to gravity,
velocity, and radius, respectively, of the fluid particles. Many studies are available in
the literature on homogeneous interactions like bubble–bubble [7] and drop–drop [8]
dynamics as well as of heterogeneous interactions such as bubble–solid particle [9]
and drop–solid particle [10] associated phenomenon. However, interactions of drop
and bubble are rarely studied in the literature. In recent years, researchers [11, 12]
have studied the bubble–drop interactions for the application of water treatment in
the petroleum industry. The small oil particles suspended in the water are removed
with the swarm of bubbles. The rising bubble coalesces with the suspended oil such
that the oil spread on the periphery of the bubble. The combined bubble and oil
then rise to the surface of the water where the air escapes and the oil get deposited
in the form of film over the water surface. This process is known as air flotation
process [11]. Chakibi et al. [11] have studied the effect of water salinity and bubble
size on the efficiency of the flotation process. Dudek and Oye [12] have also shown
the spreading of oil droplet across the periphery of the air bubble in micro-fluidic
arrangements. It is to be mentioned that instead of its enormous occurrences, the
interactions of bubble and drop have not been studied much. Only the recent studies
[11, 12] have reported such interactions at micro-scale. Therefore, considering the
lacuna in the literature, efforts have been made in the present study to numerically
investigate the interactions between drop and bubble in a vertical conduit using the
volume of fluid framework.

2 Numerical Methodology

2.1 VOF Approach Using OpenFOAM

The three-dimensional simulations are carried out using the Eulerian approach-based
volume of fluid (VOF) framework. The fraction of volume occupied by a particular
fluid (primary fluid) in a discretized cell is denoted by volume fraction, α. In the
cells at the interface of fluids, this can take values between 0 and 1. Based upon these
values the interface between fluids is constructed.

The fluid flow is governed by the continuity and momentum equations, as stated
below [13]:

∇.U = 0, (1)
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ρb

[
∂U
∂t

+ ∇.(UU)

]
= −∇ p + ∇.T + Fb + Fs, (2)

where T = μb(∇U + (∇U)′), U and p denote the velocity and pressure fields of
the fluid; Fb and Fs denote the body force and surface force, respectively. The fluid
properties, viz., bulk density (ρb) and bulk viscosity (μb), for an n-phase system, are
calculated as follows [14]:

μb =
∑

αiμi (3)

ρb =
∑

αiρi (4)

where subscript i denoted ith fluid. Further volume of fluid framework requires an
additional advection equation for spatio-temporal evolution of volume fraction (αi-)
as [14]:

∂αi

∂t
+ ∇.(αiU) = 0 (5)

where

∑
αi = 1 (6)

The aforementioned Eqs. (1–6) are discretized using the finite-volume method
[13]. The discretized sets of equations are solved in the ‘multiphaseInterFoam’ solver
of the ‘OpenFOAM’ package. The PIMPLE algorithm is employed for the pressure–
velocity coupling along with adaptive time-stepping based on Courant Friedrichs
Lewy (CFL) condition.

2.2 Simulation Domain

A 100 mm long cylindrical domain (Fig. 1) having a diameter of 20 mm is used for
all the numerical simulations. The structured Cartesian mesh is used to discretize
the region around the axis of the domain, while the peripheral region is discretized
using the structured polar mesh as shown in Fig. 2. The no-slip condition has been
specified for all the faces of the domain. The water, air, and kerosene are used as
working fluids. A Taylor water drop is initialized at the top and a similar air bubble
is initialized at the bottom of the domain with kerosene as surrounding fluid. The
initial topology of the phases is depicted in Fig. 1. An initial velocity of 0.05 m/s is
also assigned to both drop and bubble. This is provided to make the fluid particles
in motion, which helps in achieving the terminal velocity of drop and bubble in less



446 S. Chauhan and P. Kumar

Fig. 1 Schematic
representation of the
simulation domain, depicting
the initial phase
configurations

Fig. 2 A cross-sectional
view of mesh, perpendicular
to the longitudinal axis of the
conduit

time. It further results in minimizing the required length of the domain to investigate
the interactions in the developed flow region and hence the computational time.
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Fig. 3 Velocity vs time plot for bubble and drop at different grid sizes. Curves with negative
velocities show the velocity of the drop while those with positive velocities are for the bubble. The
legends show the number of hexahedra used to discretize the domain

2.3 Grid Sensitivity Analysis

The grid sensitivity test is done using three grids of the same type. The velocity of
the center of mass of each fluid particle is plotted as a function of time to demonstrate
the grid sensitivity, as shown in Fig. 3. The complete domain is discretized using
hexahedron elements only. The triangular markers are used for a mesh with 5.35
million hexahedra. However, the square and circular markers are used for compara-
tively coarse meshes. In the case of a drop, all three curves superimpose, indicating
that even the coarsemeshwith 1.12million hexahedra can be used to demonstrate the
behavior of the drop. In the case of bubble, there is a slight variation in the velocities
among all the meshes. However, error in the velocity for the two finer meshes is not
much as evident from the figure. Therefore, in the present study, the simulations are
performed using the mesh with 3.6 million hexahedra.

3 Results and Discussions

3.1 Pre-collision Motion

Themotion of both the bubble and the drop is symmetrical before the collision. There
is a formation of a thin film of kerosene oil between the cylinder wall and periphery
of both the fluid particles. As the bubble moves upward, the thin film of oil glides
downward, maintaining the conservation of mass. Similarly, the oil film between the
drop and wall glides upward as the drop moves downward. The breakup of small
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0ms 60ms 100ms 220ms 260ms

Fig. 4 The motion of bubble and drop prior to the collision. The front cross-sectional view along
the axis of the tube is shown with a three-dimensional view of the phenomenon at each time step.
The water drop is shown in blue while the bubble is shown in red

satellite bubbles from the tail of the Taylor bubble can also be seen from Fig. 4.
However, no such breakup is observed in case of a drop. The tail of the bubble takes
concave shape as it rises, which is evident from the cross-sectional view given in
Fig. 4. At 260 ms, the nose of both the fluid particles started to flatten, which implies
that the interaction between the drop and the bubble started slightly before this point
in time. The detailed sequence of phenomena taken place during the interactions has
been depicted in the next section.

3.2 Drop–Bubble Interactions

The sequence of hydrodynamic phenomena during the interaction of a Taylor bubble
with a similar-sized drop is shown in Fig. 5. Somewhere between 0.26 and 0.27 s
marks the onset of physical interaction of the drop with the bubble, following which
the leading portions of both the drop and bubble flatten out. At 290 ms small outward
protrusion of the leading surface of the water can be seen in the cross-sectional view.
This protrusion has grown around the periphery and the water droplet starts to engulf
the bubble. This results in the formation of a thin film of water between the air bubble
and the sidewall as evident from the contour at 360 ms. The central cavity formed
in the drop continues to expand with the rise of the bubble through its core. The
subsequent contours show the complete engulfment of the Taylor bubble within the
drop cavity. At 460 ms the bubble started to rise out of drop cavity which results in
the formation of a complete annular drop, as can be seen from the cross-sectional
view. Another thing to notice from the snapshots following 400 ms is the bending of
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270ms 280ms 290ms 310ms 360ms

400ms 450ms 460ms 510ms 560ms

Fig. 5 Three-dimensional view depicting the interactions between a drop and a bubble at different
times. The front cross-sectional view along the length of the conduit is shown in insets

downward moving water toward the center of the bubble tail. This is caused due to
the circulations in the wake region of the Taylor bubble. Snapshot at 560 ms shows
that the physical interaction between bubble and drop is over but their behavior is still
affected by one another due to the surrounding flow field. The subsequent series of
hydrodynamic phenomena post interactions are presented in the following section.
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Fig. 6 The sequence of hydrodynamic phenomena after the bypass of drop and bubble

3.3 Post-interaction Behavior

After the bypass of the bubble, the drop coalesces filling the cavity. Due to the
motion of bulk fluid in wake of the bubble, the central part of the bubble became
stagnant, while the circumferential part continues to rise, leading to the formation
of two asymmetric lobes as shown in Fig. 6 at time 570 ms. With the further rise
of the bubble, the two lobes break and then recombine after some time to form a
Taylor bubble as illustrated at time 580–630 ms, respectively. Meanwhile, the drop
became almost stagnant during this time period as the gravitational force on it is
nearly balanced by the pull due to circulations behind the bubble. After this, the drop
has started to descend downward slowly. A detailed variation for the vertical velocity
of the drop and bubble during the entire sequence of hydrodynamic phenomena is
elucidated in the subsequent section.

3.4 Variation of Drop and Bubble Velocity

The velocity analysis of the complete phenomena is depicted in Fig. 7. The graph
has been divided into three parts according to previous sub-sections. The first section
shows the pre-collision motion of the bubble and drop. The bubble is initialized with
0.5 m/s velocity in an upward direction, while the drop is initialized with the same
velocity in the opposite direction. However, there is a sudden fall in magnitude of
velocities of both the fluid particles which can be explained to occur because of no
gradient in the surrounding pressure field at the initial stage. Then the bubble velocity
has risen rapidly till 0.05 s and reached terminal value at around 0.16 s. On the other
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Fig. 7 Variation in the vertical velocity of drop and bubble with time for the entire phenomena

hand, the speed of drop has grown slowly due to comparatively less difference in
densities of drop (water) and kerosene as compared to density difference in air and
kerosene. The drop reached the terminal velocity at around 0.22 s. The bubble and
the drop have come in physical contact after 0.26 s. However, both have started to
retard before 0.26 s due to the flow field ahead of these fluid particles.

In the collision regime, the rapid fall in bubble velocity can be observed from 0.27
to 0.34 s. The rise in the droplet speed during the same time is gradual and small. After
0.34 s there has been again a rise in the velocity of the bubble which corresponds
to its motion through the drop cavity. Its velocity has continued to rise till 0.39 s.
After this time, its velocity again decreased due to additional drag because of the
water entrapped in the wake region of the bubble. While the speed of drop continued
to rise till 0.45 s, in this time period the magnitude of the drop’s velocity has gone
even above the terminal speed of Taylor drop. This rise in speed has occurred due to
the motion of water through the narrow gap between the bubble and the wall. After
0.45 s, the speed of water again decreased due to the lift applied by the flow field
behind the bubble.

The region of the graph after 0.56 s marks the onset of the post-collision regime.
From 0.57 to 0.60 s, the velocity of the drop has become positive with maximum
velocity achieved at 0.59 s. After 0.59 s, the gravity again became dominant and
the drop has started to fall. In the same time period, the velocity of the bubble has
picked up again. The oscillations in the velocity of the bubble can be observed which
has occurred due to the merging of different lobes of the bubble. During this coales-
cence process, the bubble also had some velocity in the transverse direction which
has caused sudden variations in the shape of the bubble. The further continuation
of the phenomenon will result in the dissipation of surrounding flow fluctuations.
Hence, this will lead to the formation of a steady interfacial profile and corresponding
constant velocity fields.
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4 Conclusion

The hydrodynamic behavior of the drop and bubble interactions has been studied
through numerical simulations. The present study is divided into three regimes, viz.,
pre-collision, collision, and post-collision regimes. The important phenomena occur-
ring in each regime are highlighted. The visual depiction of numerical results helped
in understanding the outcome of interaction while the velocity plot provided addi-
tional insight into the behavior of fluids during the interaction. It has been observed
from the present simulation that the bubble penetrated the core of the tube and drop
has taken the annular shape. Moreover, after the interaction region both the fluidic
entities have attempted to acquire their original shapes. The extended research of
drop–bubble interaction behavior may include the study of the velocity and pressure
field in the complete domain. It would further provide a detailed understanding of
the various hydrodynamic behaviors observed in the simulations.
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Investigating Fluid-Structure Interaction
Behavior of a Chord-Wise Flexible
Filament in the Wake of a Bluff Body
Using Partitioned Strong Coupling
Approach

Chandan Bose, Rajanya Chatterjee, Sayan Gupta, and Sunetra Sarkar

1 Introduction

Large-scale flow-induced deformation of thin flexible filament-like structures can be
potentially utilized in various engineering applications, such as flow energy harvest-
ing. The idea of producing electrical energy for powering sensors in self-powered
devices by exploiting different kinds of flow-induced phenomena, such as, vortex-
induced vibrations, flutter, buffeting, and galloping etc. has received considerable
attention in the recent past [1]. A common configuration of these flow energy har-
vesters require placing a flexible flapper with piezoelectric converters embedded in
it in the wake of a bluff body to harvest energy from its flow-induced deformations
[2–5]. Allen and Smits [2] were one of the first to experimentally show that a flexible
piezoelectric membrane undergoes resonance when the oncoming vortex frequency
of a von Kármán wake has the same value as the natural frequency of the struc-
tural first mode which can be exploited for energy harvesting. Akaydin et al. [3, 4]
designed a flow energy harvester consisting of a flexible cantilever beam structure
placed at the downstream side of a rigid cylinder. In the presence of uniform inflow,
this device was able to harvest electrical energy from the periodic motion of the
flexible PVDF (polyvinylidene fluoride) beam. In this regard, the flexible filament
is often kept at an arbitrary gap from the cylinder in most of the existing literature.
However, the fluid-body interactions will be significantly altered if the finite gap is
changed between the rigid cylinder and the flexible flapper. Akaydin et al. [3] stud-
ied the effect of different locations of the piezoelectric beam on the output electric
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power and observed that the maximum power is not generated while the beam is
very close to the cylinder since the large vortical structures are not fully formed at
these locations. They obtained the peak value of power at a gap of two times the
cylinder diameter. In designing the placement of these piezoelectric patches, it is
typically assumed that these flappers oscillate only in the first mode [2]. However,
recent studies by Kumar et al. [6], have shown that more energy can potentially be
harvested if the flapper oscillates in higher modes. As has been shown in [6], this can
be achieved by introducing an optimum gap between the cylinder and the flapper,
which in turn, changes the vortex interactions with the flapper resulting in a change
in the dominant mode of the flapper oscillations.

Apart from flow-induced energy harvesting applications, a proper understanding
of the FSI behavior of thin elastic structures can directly benefit the efficient design
of futuristic biomimetic devices which are inspired by the natural bio-propulsion sys-
tems of insect flight or swimming of fishes. Both insect wings and fish fins deform
significantly while interacting with the surrounding viscous flow during their loco-
motion. Generation of desired propulsive forces is greatly dependent on the optimum
flexibility of the wing/fin structure [7, 8]. Moreover, swimming efficiency is seen to
be benefited in the wake of another surrounding structure. It has been reported that a
swimming fish can exploit vortex structures formed by surrounding physical struc-
tures to reduce their locomotion efforts [9, 11]. Investigations that study the effects
of these perturbations in the flow due to the presence of neighboring structures typ-
ically model these perturbations as the wake of a rigid cylinder in a uniform flow
[9, 10]. Liao et al. [9] investigated the swimming of a trout in the wake of a D-section
cylinder and reported a notable amount of energy saving through the modulation of
their flapping behavior depending on the vortex shedding wavelength and frequency.
The swimming dynamics get considerably altered in this case as only the anterior
axial muscles of fishes are only activated [11]. Even a passive flexible body can
generate the desired thrust to propel upstream exploiting the energy of the oncoming
vortex street overcoming its own drag [12, 13]. Park et al. [10] also observed that
a self-propelled flexible fin could overcome the net drag in the wake of a circular
cylinder by resonating its body in synchrony with the incoming vortices. Therefore,
it is important to clearly understand the fluid-body interactions of a flexible structure
that emerged in an oncoming vortex street.

The high fidelity simulations of FSI problems can be based on either monolithic
or the partitioned approach [14]. In the monolithic approach, both the structural and
fluid governing equations are solved in a single mathematical and computational
framework with implicit interfacial conditions. On the other hand, two different
existing solvers are coupled in the partitioned approach to solve the two separated
sub-systems of fluid and solid models. Again in the partitioned approach, there exist
two different coupling strategies [14]: weak and strong coupling. The weak coupling
scheme requires solving each sub-system once per time step and no convergence
check is carried out. Although this could be an affordable choice in terms of computa-
tional cost, it can lead to a time-lagged solution and numerical instabilities especially
when the fluid and solid densities are comparable for a very flexible structure with
large deformation leading to unphysical instabilities. The strong coupling scheme
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demands solving the sub-systems multiple times until the convergence criterion at
the interface is satisfied.

Thus, this present paper employs a strongly coupled FSI solver to investigate the
dynamics of a flexible filament immersed in the von Kármán wake of a stationary
rigid cylinder. This study focuses on understanding the interaction mechanism of the
oncoming vortices with the flexible body resulting in changes in its mode-shapes
and the consequent effect on the surrounding flow dynamics. In this context, the
effect of the finite gap between the cylinder and the filament, length, and thickness
of the filament on the dynamics is studied in this paper. The remainder of the paper
consists of the following sections. First, the governing equations are presented. Next,
the numerical algorithms employed in this paper are described alongwith a validation
study. Subsequently, results and discussions have been presented. The salient features
arising from this study are reported in the concluding section.

2 Computational Methodology

2.1 Governing Equations

The high fidelity FSI framework [15], is composed of an incompressible Navier-
Stokes (N-S) solver, strongly coupled by a partitioned approachwith a nonlinear elas-
tic structural model. The viscous flow-field, governed by an incompressible Navier-
Stokes equation, can be cast into arbitrary Lagrangian–Eulerian (ALE) formulation
[16] as

∇.u = 0, (1)

∂u
∂t

+ [(u − um).∇]u = −∇ p/ρ + ν∇2u. (2)

Here, u is the velocity of the flow, um is the grid point velocity, p is the pressure, ρ
is the fluid density, and ν is the kinematic viscosity.

The flexible flapper is modeled as an elastic continuum with its leading edge
restrained as a fixed support. The trailing edge is referred to as tip of the flapper.
Mathematically, conservation of linear momentum is given by

∂

∂t

∫
ρsv dV =

∮
n.σ d� +

∫
ρsb dV, (3)

where, V is the volume of the flapper bounded by the surface � with unit normal n,
v is the velocity vector,σ is the Cauchy stress tensor, ρs is the density of the material
of the structure, and b is the body force per unit mass. Assuming large strain, the
material behavior of the flapper has been modeled using St. Venant-Kirchhof hyper-
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elasticity theory. The linear momentum equation can, therefore, be written in terms
of the second Piola-Kirchhoff stress tensor (S) as: σ = 1

J F.S.FT; F = I + �w is
the deformation gradient, I is the identity tensor, and w is the deformation vector.
According to the constitutive model for the St. Venant-Kirchhoff material, S can be
defined as:S = λ(trE)I + 2μE, whereE = 1

2 (F
TF − I) andλ,μ areLaḿe constants

(‘tr’ denotes the trace of a matrix).

2.2 Numerical Algorithms

The incompressible N-S equation has been discretized in ALE approach [16], on a
moving grid with a Laplacian mesh motion strategy [15]. The flow solver uses a sec-
ond order accurate spatial discretization and the temporal discretization is performed
using a second order implicit backward differencing scheme. A variable time step-
ping technique based on a maximal Courant number has been adopted. The pressure
velocity coupling is implemented through PISO (Pressure Implicit with Splitting
of Operator) algorithm [16]. The absolute error tolerance criteria for pressure and
velocity are set to 10−6. The structural part has been solved by a large strain elas-
tic stress analysis solver based on Lagrangian displacement formulation [17]. The
absolute tolerance criterion of the structural solver is also taken to be 10−6. A quasi-
Newton coupling algorithm with an approximation for the inverse of the residual’s
Jacobian matrix from a least-square model (IQN-ILS) [14], has been adopted in the
strong coupling method.

2.3 Computational Domain and Mesh

A two-dimensional rectangular computational domain, as shown in Fig. 1a, has been
considered. The dimensions of the domain are shown in Fig. 1b, in terms of the
diameter of the cylinder D. Simulations are performed for varying gap (G), length
(L), and thickness (T ) of the structure. Standard boundary conditions have been
applied: a zero pressure gradient and a constant free-streamat the inlet; a zero velocity
gradient and atmospheric pressure condition at the outlet; no slip and zero normal
pressure gradient condition on the horizontal walls and traction boundary condition
on the flexible flapper. The computational domain is discretized using structured
grids as shown in Fig. 1b. The mesh containing 89052 grid points has been finalized
through a grid independence test at Re = 500.
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(a) Domain (b) Structured mesh

Fig. 1 Computational domain (not to scale) and mesh

3 Validation of the FSI Solver

The present FSI solver has been quantitatively validated with the benchmark case of
a flexible splitter plate attached with a rigid cylinder given by Turek and Hron [18].
The parameters corresponding to ‘FSI2’ case presented in [18], have been considered
for the benchmark validation. It can be clearly seen from Fig. 2, that vertical tip
displacement time history of the flexible plate shows an excellent match with the
results presented by Turek and Hron [18], in the self-sustained periodic oscillatory
state. Themesh, chosen after grid independence study at Re = 500, has been used for
the validation case at a lower Re. Although the validation study has been performed
at Re = 100, the present FSI solver reflects accurate physics at Re = 500 since the
coherent vortex structures are seen to remain intact behind the cylinder at Re = 500.

4 Results and Discussions

The parameters considered are as follows: Reynolds number(ReD) = 500; structure
to fluid density ratio (μ = ρs/ρ f ) = 1; non-dimensional Young’s modulus (Ē =

Fig. 2 FSI solver validation
with the benchmark case of
Turek and Hron [18] at
Re = 100
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Fig. 3 Various wake patterns behind the flexible filament

E/(ρ f ∗ u2m)) = 5600; non-dimensional length (L/D) = 2.5 and 4; non-dimensional
gap between the cylinder and the filament (G/D) = 2.0 and 3.0; the non-dimensional
thickness of the filament (T/D) = 0.05 and 0.10. Here, ρs and ρ f are the solid and
fluid density, respectively; E is the dimensional Young’s modulus of the structure; L ,
T , D, andG are the length and thickness of the filament, diameter of the cylinder, gap
between the cylinder and the filament, respectively. um is the mean uniform velocity
at the inlet.

Simulations have been carried out considering different finite gaps and length
scales of the elastic structure to compare its FSI behavior while interacting with
oncoming wake vortices. Different wake patterns generated at the trailing edge of
the flexible filament is compared in Fig. 3. The variation of flow topology and bend-
ing mode-shapes of the filament depends on the Strouhal frequency and the location
of vortex impingement. In the case of the lower gap (G/D = 2.5), the shear layers
behind the rigid cylinder are seen to roll up and form the vortex cores which evolve
with time, growing in strength. Subsequently, the vortex cores convect over the flex-
ible structure triggering vibrations and are shed in the downstream of the flapper.
The cylinder-filament system acts as a whole-body together in this case, and vortex
formation does not happen in the intermediate space as the gap was less than the
formation length of the vortices; see Fig. 3a, b. In case of a thinner filament with
T/D = 0.05, the wake is characterized by an array of alternate shedding vortices
representing a von Kármán vortex street (Fig. 3a). However, when the beam thick-
ness is increased to 0.1D, the bending mode-shape is changed from a mixed-mode
oscillation to a dominant first mode oscillation engendering a 2P wake characterized
by two pairs of vortices shed in a single flapping cycle (Fig. 3b). On the other hand,
when the finite gap between the cylinder and the filament is increased to 3D, the vor-
tex shedding takes place in the intermediate region itself as the gap becomes longer
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Fig. 4 Different bending mode-shapes of the flexible filament

than the vortex formation length. Interestingly, while convecting downstream, the
vortex cores are seen to be intersected by the leading edge of the filament giving rise
to complex flow interactions which will be discussed in detail in the latter part of
the paper. The organized pattern of the wake is seen to be lost due to these aperiodic
interactions; see Fig. 3c, d.

The interaction of the vortex cores on the flexible flapper results in passive pitching
of the elastic structure in terms of its different natural bending modes. Being a
spatiotemporal problem, the nature of the vibrating mode of the structure depends
on the frequency of vortex shedding, as well as the location of vortex interaction.
Moreover, the formation length of the wake vortices behind the cylinder plays a key
role in exciting different modes in the flapper vibration. In the case of a shorter and
thinner filament (L/D = 1, T/D = 0.05), it appears to oscillate predominantly in its
first natural mode-shape (The results are not shown here for the sake of brevity). This
can be attributed to the fact that the wake vortices form at the tip of the structure and
makes it bend in the upward and downward direction periodically in its first natural
mode. However, it attains a mixed-mode vibration of first and second mode-shape
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Fig. 5 Time histories and phase portraits of tip displacement of the flexible filament

for L = 2.5D as the length of the flapper becomes greater than the formation length
of the wake vortices. As a result, the vortices impinge in the middle of the longer
elastic structure for L/D = 2.5, T/D = 2.5. Figure4a shows the typical bending
mode-shapes of the self-sustained periodic mixed-mode oscillation involving first
and second mode-shapes. Interestingly, as the thickness of the filament is increased
from 0.05D to 0.10D, resulting in higher stiffness, a dominant first mode oscillation
is observed; seeFig. 4b.On the contrary, themixed-modeoscillation is again observed
as the gap between the cylinder and the filament is increased to 3D, keeping the same
thickness (Fig. 4c). Finally, the filament is seen to exhibit a second type of mixed-
mode oscillation involving second and third modes as the length of the filament is
increased to 4D keeping the gap and the thickness unchanged as can be seen in
Fig. 4d. Note that the periodicity of the tip oscillation is seen to be lost for G/D = 3
as presented through the time histories and the phase portraits of the y-directional tip
oscillations of the filament in Fig. 5. It brings out an interesting regime of aperiodic
body-wake interactions which is discussed next.

Tounderstand the aperiodic fluid-body interactions inmore detail, the flowphysics
is analyzed through a sequence of vortex contour snapshots at different time instances
for G/D = 3, L/D = 2.5, T/D = 0.10; see Fig. 6. At t = 2.20 s, two opposite
sense vortices (‘1’ and ‘2’) are seen to shed alternatively behind the cylinder. At the
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Fig. 6 Aperiodic wake: vortex interactions with the flexible plate (G/D = 3, L/D = 2.5, T /D = 0.10)

same time, one vortex couple ‘C2’ is seen to interact with the filament and another
couple ‘C1’ is seen to covect downstream behind the filament. The spontaneous vor-
tex couple ‘C1’ traverses with its self-induced velocity and interacts with the existing
downstream flow structures. While convecting downstream, counter-clockwise vor-
tex ‘2’ gets intersected by the leading edge of the filament (t = 2.28 s). Consequently,
one portion of it (2′) forms a vortex couple ‘C3’ with the nascent leading edge vor-
tex (LEV) ‘3’ on the upper surface of the structure, whereas, the other portion (2′′)
rolls over the lower surface of the structure (t = 2.36 s). In the subsequent stages,
clockwise vortex ‘1’ also gets intersected by the leading edge and gets divided into
two parts similar to ‘2’. In this case, the lower counterpart (1′) forms a couple ‘C4’
in the lower surface along with the LEV and the upper counterpart (1′′) rolls over
the upper surface (t = 2.52 s). Therefore, vortex couples are seen to convect over
the filament on the alternative surfaces almost in a periodic manner, causing the
filament to bend at its tip in the first mode-shape while they shed from the trailing
edge. However, the flow-field becomes complex due to the spontaneous interactions
between the vortex couples in the presence of trailing edge vortex downstream. Such
an interaction is highlighted next. At t = 2.60, ‘C3’ and ‘C4’ are seen to collide in
a opposite trajectory by sandwiching counter-clockwise vortex 2′. During this colli-
sion, the counter-clockwise component of ‘C4’ and 2′ undergoes a partial merging
and the resultant stronger vortex attempts to form a new couple with the clockwise
component of ‘C3’ with upward self-induced velocity. At the same time, a trailing
edge vortex ‘5’ emerges and tries to capture a part of the counter-clockwise compo-
nent to form another couple with downward self-induced velocity (t = 2.68–3.08 s).
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As a result, the clockwise counterpart of ‘C4’ gets shredded by the opposite sense
vortices. These interactions take place spontaneously and get altered in every cycle
destroying the periodicity of the wake pattern.

5 Conclusions

The flow-induced dynamics of a chord-wise flexible flapper has been simulated in
the wake of a rigid cylinder situated upstream using a strongly coupled FSI solver at a
lowReynolds number. It has been observed that the dynamics get altered significantly
with the change in G/D, L/D , and T/D. The shorter, as well as stiffer filaments,
appear to oscillate dominantly in its first natural mode; whereas the longer and more
flexible filaments exhibit a mixed-mode oscillation involving first and second or
second and third natural mode-shapes. A steady periodic high amplitude oscillation
was observed due to the periodic interaction of the wake vortices into the flexible
flapper at lowerG/D values. Contrastingly, the flow-field becomes aperiodic through
complex vortex interactions in case of higher G/D values. Further studies are being
carried out to understand the effect of the Strouhal frequency of the input flow
fluctuation and the flexural rigidity of the structure on the FSI dynamics.
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Optimal Design of Rotary
Magneto-Rheological Drum Brake
for Transfemoral Prosthesis

Radhe Shyam Tak Saini , Hemantha Kumar , Sujatha Chandramohan ,
and Sujatha Srinivasan

1 Introduction

Smart materials, particularly MR fluids have gained a lot of popularity in the past
few decades and have been applied in many areas where controllability, adaptability,
and fast response are desirable. Of these applications, vehicular suspension seems to
be one area which has seen some major research contribution regarding the imple-
mentation ofMR fluids in dampers, brakes, etc. The quest for variable walking speed
control in prosthetic knee attracted the use of these smart fluids in this domain too.
RD-1036MR damper, originally designed for truck seat applications by Lord Corpo-
ration, USA, was the first MR damper to be used by Biedermann Motech GmbH for
prosthetic applications [1]. Further advancements in this field suggest that the use of
knee-specific damper results in much better performance of prosthetic devices [2].
Studies combining semi-active MR dampers with active elements such as DC motor
also has been performed to realize an active knee. Gao et al. [3] used an MR damper
in the stance phase of the gait cycle and a DCmotor to control swing phase actuation.
Their study reported an optimal MR design and no experimental trails of the active
prosthesis were conducted.

Knee damping has also been achieved by using rotary MR brakes. Herr and
Wilkenfield [4] designed a multi-plate rotary MR brake which can generate an off-
state damping of 0.5 Nm and an on-state damping torque of 40 Nm. Gudmundsson
et al. [5] designed a multi-plate MR brake with a total of 71 plates. They have
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formulated a multi-objective problem with the field induced braking torque, off-
state rotary stiffness, and weight of brake as the objectives. The design produced a
total of 60 Nm braking torque but the complex design with 71 plates separated by a
micron level gap requires high precision manufacturing and thus increased costs.

Broadly classified, continuous rotationMR brakes are of two types: disc and drum
types. In disc typeMR brakes, the radial faces influence the braking torque produced
while in drum typeMR brakes, the annular gap coinciding axially with the rotational
axis produces the braking torque [6]. The geometric optimization performed by
Nguyen et al. [7], resulted in an optimum outer casing diameter of 100 mm with a
braking torque of 10 Nm. To produce a braking torque sufficient to mimic the normal
gait, the geometric dimensions of the single disc brake will exceed the physiological
knee cross-section areas. Further, a drum brake design will generate a nonuniform
magnetic field over the activated length and thus results in a lesser braking torque. The
shear rates involved in knee braking are very less compared to vehicular applications
since the knee has a maximum speed of 60 rpm in an average normal human walking
[5]. Therefore, to obtain a high braking torque in a constrained volume, it is necessary
to have large shear areas, which justifies the use of multi-disc brakes. In the present
study the brake outer dimensions are constrained and thus limiting the shear area, the
requirement of high braking torque depends on other parameters likemagnetic flux in
the gap. Although the braking torque depends on other geometric dimensions along
with the fluid gap, the magnetic flux in gap affects the yield strength of MR fluid
which is directly proportional to on-state braking torque.Other geometric dimensions
affect the off-state braking torque too, which is undesirable. Considering the above
limitations, in the present study an inverted drum type MR brake with multi-coil is
designed which can generate the torque sufficient for swing phase knee motion.

The following section describes the geometry of the multi-coil brake design and
thegeometric variables. Later, the designparameters are defined in termsof geometric
variables. Four influencing variables are selected and a design of experimentsmethod
is used to formulate a set of combinations of these variables.Magnetostatic analysis at
each design point is performed to calculate the average magnetic field in the annular
and radial gaps which are then used to calculate design parameters. Regression
analysis is used later to obtain braking torque as a function of geometric variables.
A genetic algorithm optimization is performed to obtain the optimum geometric
dimensions of the brake.

2 Geometry

Themulti-coil inverted drumbrake consists ofmore than one coil areaswound around
the rotor. In the present study, a total of 11 coil areas are considered to get an even
distribution of the magnetic field on the active pole length around the axial face of
the rotor. Further, the whole casing is considered to be made of magnetic material,
which helps in achieving the magnetic field on both the radial and axial faces of the
rotor. MR fluid is occupied in the narrow gap of 0.5 mm in between the rotor and
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Fig. 1 Cross-section of multi-coil inverted drum brake

the casing. The shaft is assumed to be made of aluminum material to reduce any flux
leakages through it. The cross-section of the drum brake along with the geometric
variables are shown in Fig. 1.

3 Design Parameters

In this study, MRF-140CG fluid is considered for analysis. The fluid is modeled
using a Hershel-Bulkley model given by Eq. (1) [8].

τ = τy + K γ̇ n (1)

Here, τy is field dependent yield stress, K is the fluid consistency index and n
is the flow behavior index. All the variables in the model are considered to be field
dependent and can be calculated using Eq. (2).

Y = Y∞ + (Y0 − Y∞)
(
2e−Bαsy − e−2Bαsy

)
(2)

Here,Y can represent the variables τy ,K and n. The value ofY is considered to vary
from zero applied value, Y0 to saturation value, Y∞. Also, B represents the magnetic
flux at the respective location and αsy is the saturationmoment index. The parameters
for MRF 140CG are: K0 = 0.65Pa.sn , K∞ = 5400Pa.sn , αsk = 5T−1, αsn = 35T−1,
τy0 = 25Pa, τy∞ = 39000Pa, αsτy = 2T−1, n0 = 0.915 and n∞ = 0.24 [8].

When the brake is not supplied with any current, the off-state torque generated
by the brake can be calculated using Eqs. (3) and (4) [9].
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T0 =

⎧
⎪⎨

⎪⎩

4πμeq0r41
(n0+3)d

[
1 −

(
di
2r1

)n0+3
]
Ω + 4πτ0

3

(
r31 − r30

)

+2πr21wd

[
τ0 + K0

(
Ωr1
d

)n0]

⎫
⎪⎬

⎪⎭
(3)

μeq0 = K0

(
r1Ω

d

)n0−1

(4)

Here, Ω is the angular velocity at the knee joint. Current supply produces a
magnetic field which passes through the core, crosses the MR fluid gap expands
through the casing and returns back into the core. It should be noted that the adjacent
areas of the coil should be wound alternating between clockwise and anticlockwise
direction so as to produce themagnetic field shown in Fig. 1. The total on-state torque
generated by the brake can be calculated using Eqs. (5) and (6) [8].

TB =

⎧
⎪⎨

⎪⎩

4πμeqr41
(ne+3)d

[
1 −

(
di
2r1

)ne+3
]
Ω + 4πτye

3

(
r31 − r30

)

+2πr21 La

[
τya + Ka

(
Ωr1
d

)na]

⎫
⎪⎬

⎪⎭
(5)

μeq = Ke

(
r1Ω

d

)ne−1

(6)

Here, τye is the torque in the end (or radial) surface of brake and τya is the torque
in the annular surface of brake. The total torque generated is the sum of both on-state
and off-state torques.

T = T0 + TB (7)

The magnetic flux in the gap varies with distance and thus in Eqs. (3)–(7), an
average magnetic flux in annular and radial gaps given by Eqs. (8) and (9), is
considered.

Ba = 1

La

La∫
0
Bdl (8)

Br = 1

(r1 − 0.5di )

r1∫
0.5di

Bdr (9)

4 Design of Experiments

The outermost dimensions of the rotary brake namely maximum height, h and the
radius of the casing, r2 are constrained such that thewhole knee joint can be contained
within the geometrical limits of a normal adult human knee. Therefore, themaximum
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Table 1 Parameters and their levels

Coil depth, Cd
(mm)

Coil height, Ch
(mm)

Casing radial
thickness, tr (mm)

Casing axial
thickness, ta (mm)

Low level 10 2 3 3

Medium level 15 3 5 5

High level 20 4 7 7

height is restricted to 90mmwhile themaximum radius of casing is limited to 35mm.
Further, a fluid gap size of 0.5 mm and a shaft diameter of 8 mm is considered in
the analysis. The remaining parameters show a nonlinear variation in the total torque
generated by the brake. Increasing the coil height may help accommodate more
number of turns of the coil but reduces the pole length, thus effecting the torque.
The axial and radial casing thicknesses also show a major effect on the braking
torque. Therefore, the brake is designed considering coil height, coil width, casing
radial thickness, and casing axial thickness as design variables and three levels are
considered for each parameter as listed in Table 1.

All the combinations of design parameters will result in 81 combinations and
performing magnetostatic analysis for each will take up a lot of CPU time. Thus,
an L27 orthogonal array method is used to determine the various combinations of
design variables. For each combination of design variables, an axisymmetric quarter
model is used to perform magnetostatic analysis. Low carbon SAE1020 steel is
chosen for both casing and rotor because of its high relative permeability and a
magnetic saturation flux of 2.3 T [5]. The number of turns in each coil cross-section
is determined using Eq. (10).

N = p f (CdCh)(
π
4 d

2
c

) (10)

Here, p f is the packing factor and dc is the coil diameter. Copper coil of 24
AWG gage is chosen with a packing factor of 0.7. The analysis is performed at
12 V and a current supply of 2 A. Fluid properties of MRF140CG referred from the
datasheet [10], were given as inputs to ANSYS, while the rest of material properties
were obtained from its own library. A one fourth of brake model is analyzed for
each combination of dimensions and average magnetic fields are determined in both
annular and radial gaps using Eqs. (8) and (9). Further, the total torque generated
by the brake is calculated using Eq. (7). A design speed of 8.4 rpm was selected for
the analysis [5]. The combinations of geometric parameters along with their output
torque calculated using the above mentioned procedure are listed in Table 2.
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Table 2 Response parameters for different geometric variable combinations

Sl. No. Coil depth, Cd
(mm)

Coil height, Ch
(mm)

Casing radial
thickness, tr
(mm)

Casing axial
thickness, ta
(mm)

Total braking
torque (Nm)

1 10 4 5 5 8.638019

2 10 3 3 5 9.045624

3 15 2 3 5 12.0034

4 15 3 5 5 9.852269

5 15 4 3 5 9.888702

6 15 3 3 7 8.577636

7 20 2 5 5 7.914665

8 10 3 5 3 8.398466

9 10 3 5 7 7.493893

10 20 3 7 5 5.689815

11 20 3 3 5 8.773237

12 15 2 5 7 8.710436

13 15 3 3 3 10.35281

14 15 3 5 5 8.332232

15 15 4 5 7 5.897144

16 15 3 7 7 6.239161

17 15 2 7 5 7.747744

18 15 4 7 5 6.787517

19 20 3 5 7 6.261766

20 15 4 5 3 9.01323

21 10 3 7 5 7.123916

22 15 2 5 3 10.20791

23 20 3 5 3 7.612614

24 10 2 5 5 9.912466

25 20 4 5 5 5.826426

26 15 3 5 5 8.333187

27 15 3 7 3 7.40763

5 Optimal Design

The calculated weight of the brake for all design points varied in the range of 2.7–
2.9 kg. This small variation is because of the restrictions in the outermost dimensions.
Owing to this small variation and to simplify the optimization process,weightwas not
considered as an objective function. Therefore, the optimal design is the one which
will yield the maximum total braking torque for the given geometric dimensions.
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Sincemagnetostatic analysis was performed for only discrete values of the dimen-
sions, theremay exist an optimum design value in the considered range. To determine
this optimum, a regression analysis is performed to obtain total braking torque as a
function of the four design variables. The variation of torque with design variables
is given by Eq. (11).

T =
⎧
⎨

⎩

3.88 + 1.357Cd − 1.48Ch − 0.64tr + 1.54ta − 0.0392C2
d

+0.252C2
h − 0.028t2r − 0.1362t2a − 0.0407CdCh − 0.029Cdtr

−0.0112Cdta + 0.144Chtr − 0.202Chta + 0.0379tr ta

⎫
⎬

⎭
(11)

A genetic algorithm optimization is performedwith an objective function ofmaxi-
mizing braking torque for the given dimensional constraints using MATLAB. The
optimum geometric dimensions obtained are coil depth of 14.59 mm, coil height of
2 mm, casing radial thickness of 3 mm, and casing axial thickness 3.98 mm. The
optimum braking torque obtained for this design is 11.78 Nm. It can be observed
that this value is less than the maximum braking torque shown in Table 2, which
is 12 Nm. This difference in value can be attributed to the accuracy with which the
regression equation was fit. Magnetostatic analysis using the optimal designs will
predict more accurate braking torque value.

6 Results and Discussion

The advantage of multi-coil design over a single coil design is that the former gives a
more uniformmagnetic field over the activated length. To prove this, a magnetostatic
analysis of a 2D axisymmetric model is performed considering only a single coil
of the total area of cross-section similar to the multi-coil design. The individual
coil area in multi-coil design is (Ch × Cd) which implies a coil cross-section of
(11 × Ch × Cd) for the single coil design. Therefore, the activated lengths of both
the designs are similar. Models of the multi-coil and single coil designs considered
in Finite Elements Magnetics Methods (FEMM) are shown in Fig. 2.

It can be seen from Fig. 2b, that the coil cross-sections are supplied with 2 A
and—2 A current alternatively. The number of turns in the coil cross-section is
calculated using Eq. (10), and a constant current of 2 A is used in both the analysis.
Magnetostatic analysis is performed on both the models. Magnetic flux distribution
of both models is shown in Fig. 3. It can be clearly seen that the multi-coil design has
much uniform flux density distribution compared to the single coil design. Further, in
both the designs, the maximum flux density is less than the saturation field strength
of 2.3 T [5].

The magnitudes of the normal magnetic flux density plotted for both the config-
urations is shown in Fig. 4. As seen in the figure, the multi-coil design resulted in
a much uniform magnetic field in the activated pole length region, while the single
coil drum brake resulted in a varying one.
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(a) (b)

Fig. 2 a 2D axisymmetric model of single coil brake and b 2D axisymmetric model of multi-coil
brake

(a) (b)

Fig. 3 Magnetostatic analysis of a Single coil rotary brake and bMulti-coil rotary brake

The magnetic field distribution of multi-coil brake in both the annular, as well
as radial faces results in a total braking torque of 13.4 Nm. In a normal gait, the
maximum swing phase braking torque required is around 14 Nm [11]. The analysis
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Fig. 4 Normal magnetic flux distribution in single coil and multi-coil brake

was performed at a design current of 2 A, an increase of current produces a much
higher field satisfying the torque requirements of a normal swing phase motion.

7 Conclusion

In this paper, a multi-coil inverted drum brake was designed for prosthetic applica-
tions. The single coil and themulti-coil designs were compared keeping the total pole
length, outer casing dimensions, coil area, design current as constant. The multi-coil
drum brake produced a uniform distribution of magnetic flux in the activated pole
length. The optimized inverted drum brake is capable of generating a braking torque
up to 14 Nm. Although, normal human gait requires a torque of up to 30 Nm, the
designed brake can satisfy the swing phase knee requirements of an average human.
Moreover, the multi-coil brakes have a much reduced off-state braking torque when
compared to the multi-disc brakes because of their lower shearing area.
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Single Variable New First-Order Shear
Deformation Plate Theory: Numerical
Solutions of Lévy-Type Plates Using
Fourth-Order Runge-Kutta Technique

Himanshu Sawhney, Kedar S. Pakhare, Rameshchandra P. Shimpi,
P. J. Guruprasad, and Yogesh M. Desai

1 Introduction

Classical plate theory (CPT ) is one of the oldest and widely accepted plate theories
for thin plates. Since it does not take into account effects of transverse shear in
plate deformation, it gives reasonably good results only for thin plates. Whereas it
underestimates deflections for shear-deformable plates (Wang et al. [1]).

To overcome drawbacks of CPT, Mindlin (Mindlin [2]) proposed displacement-
based first-order shear deformation plate theory (FSDT ). Mindlin’s plate theory
assumes constant transverse shear strains through the plate thickness. Hence, in order
to approximately satisfy constitutive relations between transverse shear stresses and
strains, FSDT requires shear correction factor.

Recently, Shimpi et al. [3] have developed a variationally inconsistent, single
variable new first-order shear deformation plate theory (SVNFSDT ). It is based on
new first-order shear deformation plate theory by Shimpi et al. [3]. The authors have
presented analytical solutions for shear-deformable isotropic square plates for various
values of plate thickness-to-length ratio and having different boundary conditions.
Unlike Mindlin’s plate theory which consists of three coupled partial governing
differential equations, SVNFSDT involves only one partial governing differential
equation of fourth-order having one unknown function.

In this paper, numerical results pertaining to flexure of shear-deformable isotropic
square plates with two opposite edges simply supported and remaining two edges
having simply supported, clamped or free boundary conditions for different values
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of plate thickness-to-length ratio by utilizing fourth-order Runge-Kutta technique
for SVNFSDT are presented. These results are compared with corresponding results
reported in the literature so as to demonstrate the efficacy of the presented numerical
solution technique.

2 Plate Under Consideration

The plate analyzed (as shown in Fig. 1) has the following properties:

1. The plate is of uniform thickness h.
2. The material of the plate is linear elastic, isotropic, and homogeneous. Hence,

the relationship G = E/[2(1 + μ)] holds true where G is shear modulus, E is
Young’s modulus, and μ is Poisson’s ratio.

3. The Cartesian coordinate system (right handed) O − x − y − z is used in the
paper. With regard to this coordinate system, following points should be noted:

(a) The mid-surface of undeformed plate coincides with xy-plane.
(b) The origin O can be placed at a convenient point on the mid-surface of the

undeformed plate.

4. The loading q(x, y) acts on the surface z = −h/2 of the plate. The sign con-
vention for the loading is assumed to be positive when it acts in the positive
z-direction.

Fig. 1 Geometry of the plate
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3 Governing Differential Equation and Boundary
Conditions

3.1 Governing Differential Equation

As per Shimpi et al. [3], the transverse displacement w has bending component wb

and shear component ws , such that

w(x, y) = wb(x, y) + ws(x, y) (1)

Bending component wb is related to shear component ws through the following
expression:

ws = − h2

6 k (1− μ)

(
∂2wb

∂x2
+ ∂2wb

∂ y2

)
(2)

Here, “k” is a shear correction factor which is same as that of Mindlin [2].
Hence, transverse displacement w can be expressed only in terms of bending com-
ponent wb as follows:

w = wb − h2

6 k (1− μ)

(
∂2wb

∂x2
+ ∂2wb

∂ y2

)
(3)

Fourth-order partial governing differential equation of SVNFSDT can be given as
follows:

∂4wb

∂x4
+ 2

∂4wb

∂x2 ∂ y2
+ ∂4wb

∂ y4
= q

D
(4)

where D is the plate rigidity. Equation (4) has a striking resemblance with the gov-
erning differential equation for CPT with the only difference of bending component
wb appearing instead of transverse displacement w.

3.2 Boundary Conditions

Shimpi et al. [3] have also stated physically meaningful plate edge conditions. For
illustrative purpose, these conditions for the plate edge y = b/2 are as follows:
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3.2.1 Simply Supported Edge Conditions

For simply supported edge, transverse displacement w and bending moment My are
zero.

[w]y=b/2 =
[
wb − h2

6 k (1− μ)

(
∂2wb

∂x2
+ ∂2wb

∂ y2

)]
y=b/2

= 0 (5)

[
My

]
y=b/2 = −D

[
∂2wb

∂ y2
+ μ

∂2wb

∂x2

]
y=b/2

= 0 (6)

Eventually expressions (5) and (6) lead to following boundary conditions for simply
supported edge:

[wb]y=b/2 = 0 (7)

[
∂2wb

∂ y2

]
y=b/2

= 0 (8)

3.2.2 Free Edge Conditions

For free edge, following boundary conditions are valid:

[
My

]
y=b/2 = −D

[
∂2wb

∂ y2
+ μ

∂2wb

∂x2

]
y=b/2

= 0 (9)

[
Qy + ∂Mxy

∂x

]
y=b/2

= −D

[
∂3wb

∂ y3
+ (2− μ)

∂3wb

∂x2 ∂y

]
y=b/2

= 0 (10)

3.2.3 Clamped Edge Conditions

Shimpi et al. [3] have proposed two types of plate clamped edge boundary conditions
which are as follows:

1. Clamped edge type 1:

[w]y=b/2 =
[
wb − h2

6 k (1− μ)

(
∂2wb

∂x2
+ ∂2wb

∂ y2

)]
y=b/2

= 0 (11)

[
∂wb

∂y

]
y=b/2

= 0 (12)
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2. Clamped edge type 2:

[w]y=b/2 =
[
wb − h2

6 k (1− μ)

(
∂2wb

∂x2
+ ∂2wb

∂ y2

)]
y=b/2

= 0 (13)

[
∂w

∂y

]
y=b/2

=
[
∂wb

∂y
− h2

6 k (1− μ)

∂

∂y

(
∂2wb

∂x2
+ ∂2wb

∂ y2

)]
y=b/2

= 0

(14)

4 Illustrative Examples, Solution Procedure, Results
and Discussion

4.1 Illustrative Examples

To show the efficacy of the numerical solution technique for SVNFSDT, following
examples are solved:

1. Plate with all the edges simply supported (SSSS).
2. Platewith two opposite edges simply supported and remaining two edges clamped

(SCSC). Results are presented for two types of clamped edge boundary conditions
(Eqs. 12–14).

3. Plate with two opposite edges simply supported and remaining two edges free
(SFSF). Results are presented at center of the plate as well as at center of one of
the free edges of the plate.

These numerical results are compared with corresponding results reported in the
literature. Percentage difference is also presented in Tables1, 2, and 3 which is
obtained using following expression:

% difference =
∣∣∣∣1− Result reported by the particular theory

Corresponding result by numerical technique

∣∣∣∣×100

(15)

4.2 Solution Procedure

Fourth-order partial differential equation (Eq. 4) is converted into an ordinary differ-
ential equation (ODE) usingLévy’smethod (Reddy et al. [5]). This fourth-orderODE
is then reduced into a set of first-order ODEs which will consist of four unknowns
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Table 1 Comparison of non-dimensional parameter for SSSS plate (example 1) under the action
of uniformly distributed transverse load (Poisson’s ratio μ = 0.3)

Non-dimensional plate transverse displacement

w = w D

qo a4
at x = a/2, y = 0 with a/b = 1

(Values in parentheses indicate % difference †)

Theory h/a = 0.01 h/a = 0.05 h/a = 0.10 h/a = 0.20

Present$ 0.00406 0.00412 0.00427 0.00490

SVNFSDT$ [3] 0.00407 0.00412 0.00427 0.00490

(0.25%) (0.00%) (0.00%) (0.00%)

CPT$ [3] 0.00406 0.00406 0.00406 0.00406

(0.00%) (1.46%) (4.92%) (17.14%)

Mindlin plate
theory$ [4]

0.00406 0.00411 0.00427 0.00490

(0.00%) (0.24%) (0.00%) (0.00%)

Non-dimensional bending moment

Mx = Mx

qo a2
atx = a/2, y = 0with a/b = 1

(Values in parentheses indicate % difference †)

Theory h/a = 0.01 h/a = 0.05 h/a = 0.10 h/a = 0.20

Present$ 0.0479 0.0479 0.0479 0.0479

SVNFSDT$ [3] 0.0479 0.0479 0.0479 0.0479

(0.00%) (0.00%) (0.00%) (0.00%)

CPT$ [3] 0.0479 0.0479 0.0479 0.0479

(0.00%) (0.00%) (0.00%) (0.00%)

Mindlin plate
theory$ [4]

0.0479 0.0479 0.0479 0.0479

(0.00%) (0.00%) (0.00%) (0.00%)
† % difference is calculated by utilizing Eq. (15)
$ Shear correction factor of 5/6 is utilized

and hence will require four boundary conditions. For a particular case, two boundary
conditions are available at each edge. Such type of problem falls under the category
of boundary value problem (BVP). BVP is converted into an initial value problem
(IVP). This IVP is then solved using fourth-order Runge-Kutta method which is one
of the most prominently used numerical analysis techniques. The transformation of
BVP to IVP is done by transferring the boundary conditions at the final edge to the
initial edge such that there are now four known boundary conditions at the initial
edge. This procedure is explained in detail by LomtePatil et al. [6].
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Table 2 Comparison of non-dimensional plate transverse displacement for SCSC plate (example 2)
under the action of uniformly distributed transverse load (Poisson’s ratio μ = 0.3)

Non-dimensional plate transverse displacement

w = w D

qo a4
at x = a/2, y = 0 with a/b = 1

(Values in parentheses indicate % difference †)

Theory h/a = 0.01 h/a = 0.05 h/a = 0.10 h/a = 0.20

Present clamp
type 1$

0.00192 0.00199 0.00222 0.00308

Present clamp
type 2$

0.00192 0.00193 0.00196 0.00210

SVNFSDT clamp
type 1$ [3]

0.00192 0.00199 0.00222 0.00308

(0.00%) (0.00%) (0.00%) (0.00%)

SVNFSDT clamp
type 2$ [3]

0.00192 0.00193 0.00196 0.00210

(0.00%) (0.00%) (0.00%) (0.00%)

CPT$ [3] 0.00192 0.00192 0.00192 0.00192

(0.00%) (3.52%) (13.51%) (37.66%)

Mindlin plate
theory$ [4]

0.00192 0.00199 0.00221 0.00302

(0.00%) (0.00%) (0.45%) (1.95%)
† % difference is calculated by utilizing Eq. (15).
$ Shear correction factor of 5/6 is utilized

4.3 Results and Discussion

Following observations can be made from Tables1, 2, and 3:

1. For SSSS plate (example 1, Table1), it is evident that w and Mx obtained using
numerical technique exactly match with corresponding analytical results of SVN-
FSDT and Mindlin plate theory.

2. For SCSC plate (example 2, Table2), it is evident thatw obtained using numerical
technique exactly match with corresponding analytical results of SVNFSDT (for
both types of plate clamp edge conditions). These results are also in good agree-
ment with corresponding results of Mindlin plate theory (maximum percentage
difference of 1.95% for h/a = 0.20).

3. For SFSF plate (example 3, Table3), it is evident that w obtained using numeri-
cal technique exactly match with corresponding analytical results of SVNFSDT.
These results are also in good agreement with corresponding results of Mindlin
plate theory (maximum percentage difference of 0.90% for h/a = 0.20 at the
center of the plate, maximum percentage difference of 4.58% for h/a = 0.20 at
the center of one of the edges of the plate).
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Table 3 Comparison of non-dimensional plate transverse displacement for SFSF plate (example 3)
under the action of uniformly distributed transverse load (Poisson’s ratio μ = 0.3)

Non-dimensional plate transverse displacement

w = w D

qo a4
at x = a/2, y = 0 with a/b = 1

(Values in parentheses indicate % difference †)

Theory h/a = 0.01 h/a = 0.05 h/a = 0.10 h/a = 0.20

Present$ 0.01310 0.01318 0.01342 0.01441

SVNFSDT$ [3] 0.01310 0.01318 0.01342 0.01441

(0.00%) (0.00%) (0.00%) (0.00%)

CPT$ [3] 0.01309 0.01309 0.01309 0.01309

(0.08%) (0.68%) (2.46%) (9.16%)

Mindlin plate
theory$ [4]

0.01310 0.01319 0.01346 0.01454

(0.00%) (0.08%) (0.30%) (0.90%)

Non-dimensional plate transverse displacement

w = w D

qo a4
at x = a/2, y = b/2 with a/b = 1

(Values in parentheses indicate % difference †)

Theory h/a = 0.01 h/a = 0.05 h/a = 0.10 h/a = 0.20

Present$ 0.01501 0.01508 0.01530 0.01616

SVNFSDT$ [3] 0.01501 0.01508 0.01530 0.01616

(0.00%) (0.00%) (0.00%) (0.00%)

CPT$ [3] 0.01501 0.01501 0.01501 0.01501

(0.00%) (0.46%) (1.90%) (7.12%)

Mindlin plate
theory$ [4]

0.01504 0.01522 0.01560 0.01690

(0.20%) (0.93%) (1.96%) (4.58%)
† % difference is calculated by utilizing Eq. (15)
$ Shear correction factor of 5/6 is utilized

5 Conclusion

Concluding remarks with regard to the work presented in this paper are as follows:

1. Effectiveness of the fourth-order Runge-Kutta numerical technique used for the
flexure of shear-deformable isotropic plates is presented through illustrative exam-
ples. The results obtained using this technique are in good agreement with corre-
sponding results reported in the literature.

2. The successful use of numerical solution technique for this theory opens the
possibility of using it for the cases for which analytical solutions are difficult to
obtain.
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Investigation of Some Recently Proposed
Explicit Time Integration Schemes for
Nonlinear Problems

Abhijeet Singh, Rishiraj K. Thakur, Vishal Agrawal, and Sachin S. Gautam

1 Introduction

Since the last couple of decades, numerical solutions of partial differential equations
(PDEs) that arise from the governing equations of motion have attracted consider-
able attention. Also, the increase in the computational power of computers in the
past few years has enabled the researchers to deal with more and more complex
problems. Transient problems like impact, crash, bird strike, etc. constitute some
of the most challenging problems. For solving the transient problems, an accurate
and efficient solution of corresponding PDEs is required. To solve the PDEs up to
a desired accuracy and appropriate computational cost, a suitable time integration
scheme is needed [1]. Special attention and care should be given while selecting
an analysis suitable time integration scheme for a particular problem. Selection of
time integration scheme becomes more difficult in the presence of nonlinearities like
geometrical, material, contact, etc [2].

Usually, time integration schemes are classified as (1) direct time integration and
(2) mode superposition [3]. Further direct time integration schemes are categorized
as (1) explicit schemes and (2) implicit schemes [3]. Explicit schemes are com-
putationally efficient but are limited by time step size for stability [3], while the
implicit schemes are unconditionally stable (at least for linear problems) but are
computationally expensive due to the repeated computation of the tangent matrix.
Therefore, for the multiple degree-of-freedom systems having various nonlineari-
ties, explicit algorithms are used due to the inherent requirement of small time steps
to effectively capture the phenomenon. For certain kind of problems like contact-
impact problems where the solution is required for a very short span of time, explicit
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algorithms are used. Inaccuracies are also very intrinsic to time integration schemes
which makes certain schemes more suitable over others. In recent years, a number
of explicit time integration schemes have been proposed with improved/desirable
stability/accuracy [4–8]. When a problem is numerically solved over a discretized
domain, various nonphysical modes get excited which gives rise to spurious oscilla-
tions. Traditional schemes like the central difference scheme [3] are unable to resolve
these oscillations due to their non-dissipative nature. To cater to such problems, vari-
ous schemes have been proposed to induce numerical dissipation and hence dampen
the nonphysical modes. However, the performance of most of these schemes has not
been compared with each other for nonlinear problems. Hence, the objective of the
present work is to investigate the performance of some recently proposed explicit
time integration schemes for transient problems with the focus on nonlinear prob-
lems. The remainder of the paper is structured as follows. Section2 briefly presents
the different time integration schemes used for investigation in this paper. Section3
presents the results for the schemes for two nonlinear problems. Section4 concludes
the paper.

2 Time Integration Schemes

A general system is said to be in dynamic equilibrium if it satisfies Newton’s second
law of motion which, in the finite element discretized form [3], can be written for a
nonlinear system as

MA + P = F, (1)

whereM is themassmatrix, A is the acceleration vector, P is the internal force vector
which has contribution from internal stresses, and F is the external force vectorwhich
has contributions from externally applied traction and contact forces. The internal
force vector is generally a function of velocity vector V as well as displacement
vector U . In some special cases, the internal force independently depends on V
and U which then proceeds to establish the relationship given by Eq. (1) for linear
systems as

MA + CV + KU = F, (2)

where C and K denote the damping matrix and the stiffness matrix of the system,
respectively.

To solve the system of set of equations given by Eqs. (1) or (2) over a time
t ∈ (0, Tend) for displacement vector U , velocity vector V , and acceleration vector
A, an appropriate time integration scheme is needed which essentially finds the
solution of the equations after everyΔt . In the present work, explicit time integration
schemes are selected. The advantage of an explicit scheme is that the computation of
material tangent matrix is generally not needed in every time step Δt . This results in
significant saving of the computational time and thus faster per time step calculation
as compared to the implicit schemes. However, the choice of the time step is now
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restricted by the famous Courant–Friedrichs–Lewy (CFL) condition [1, 3]. Next, the
details of the explicit time integration schemes used in the presentwork are presented.

2.1 Standard Central Difference Scheme (SCDS)

In the central difference scheme [3], the approximations for the displacement and
velocity vectors at time t + Δt are given by

U t+Δt = U t + ΔtV t + 0.5 (Δt)2 At , (3)

V t+Δt = V t + 1

2
Δt (At + At+Δt ) , (4)

where the quantities at time t are written with subscript t , i.e., (·)t . The advantage of
the central difference scheme is that it is very simple to implement and is computa-
tionally very efficient.

2.2 Corrected Explicit Method of Double Time Steps
(CEMDTS)

Yang et al. [4] proposed an explicit scheme which is obtained after correcting the
explicit method of double time steps (EMDTS) [4] which is called corrected explicit
method of double time steps (CEMDTS) [4]. Its dissipative and stability properties
are same as SCDS. The approximations for displacement and velocity at time t + Δt
are given as

U t+Δt = U t + ΔtV t+Δt − η (Δt)2 At , (5)

V t+Δt = V t + (1 + η)Δt At − ηΔt At−Δt , (6)

where η is a variable parameter which varies from 0 to 1. The value of η is suggested
as 0.25 for obtaining good results.

2.3 Stabilized Central Difference Scheme (SzCDS)

Groβeholz et al. [5] proposed an explicit scheme that aims to stabilize the SCDS by
slightly perturbing Eq. (1) as

[
M + a (Δt)2 DP|U

]
A + P(U) = F. (7)
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The displacement and velocity discretization procedure is carried out similar to
SCDS. The term DP|U denotes the Jacobian matrix of P(U), evaluated at U , and
a = 0.25 tanh

(
αΔtω f

)
is a positive scalar function that serves as a limiter. Here,

ω f can be taken as the highest natural frequency of the differential equation. As sug-
gested by Groβeholz et al. [5], the value of α is taken as 0.25, which is determined
from the stability analysis of the scheme.

2.4 Explicit Scheme by Chang et al. (CTES)

Chang et al. [6] proposed a one-parameter explicit scheme which possesses uncon-
ditional stability under certain conditions. The approximations for displacement and
velocity at time t + Δt are given as

U t+Δt = [
I − (Δt)2 B1

(
M−1K

)]
U t + ΔtB2V t + (Δt)2 B3At , (8)

V t+Δt = V t + Δt

[
3p − 1

2 (p + 1)
At + 3 − p

2 (p + 1)
At+Δt

]
, (9)

where D, B1, B2, and B3 are given as

D = 2

p + 1
M + 3 − p

2 (p + 1)
ΔtC0 + 1

(p + 1)2
(Δt)2 K 0 , (10)

B1 = 1

(p + 1)2
D−1M , (11)

B2 = D−1

[
2

p + 1
M − p2 − 2p − 1

2 (p + 1)2
ΔtC0

]
, (12)

B3 = D−1

[
2

(p + 1)2
M − (p − 1)2

4 (p + 1)2
ΔtC0

]
. (13)

Here, C0 and K 0 denote initial damping matrix and initial stiffness matrix, respec-
tively. Acceleration at time t + Δt can be obtained by modifying Eq. (2) as

(
2

p + 1

)
MAt+Δt +

(
p − 1

p + 1

)
MAt + CV t+Δt + KU t+Δt = Ft+Δt . (14)

For values of parameter |p| ≤ 1, the scheme is unconditionally stable. The value
of p = 1 gives least amplitude decay and as the value of p is decreased, amplitude
decay increases.
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2.5 Pajand and Rad Predictor–Corrector Explicit Scheme
(PRPCES)

Pajand and Rad [7] proposed an explicit scheme having two sub-steps in which first
step is the predictor step while the second step is the corrector step. For the first
sub-step (predictor step), the approximations for displacement and velocity at time
t + Δt are given by

Ũ t+Δt = U t + Δt

40
(33V t + 7V t−Δt ) + (Δt)2

80
(61At − 7At−Δt ) (15)

Ṽ t+Δt = Vt + Δt

20

(
11 Ãt+Δt + 8At + At−Δt

)
. (16)

The approximation for predicted acceleration at time t + Δt

2
is written as

Ãt+ Δt
2

= Ṽ t+Δt − V t

Δt
. (17)

For the second sub-step (corrector step), the approximations for displacement and
velocity, respectively, at time t + Δt can be written as

U t+Δt = U t + Δt

40
(33V t+Δt + 7V t ) + (Δt)2

40

(
7At − 25 Ãt+ Δt

2

)
(18)

V t+Δt = Vt + Δt

40

(
33 Ãt+Δt − 26 Ãt+ Δt

2
+ 33At

)
. (19)

2.6 Pajand and Rad Explicit Scheme (PRES)

Pajand and Rad [8] proposed an explicit scheme having two sub-steps. It is numeri-
cally dissipative in nature that helps to suppress unwanted high-frequencymodes. For
the first sub-step, the approximations for displacement and velocity at time t + Δt

2
are given by

U t+ Δt
2

= U t + Δt

2
V t (20)

V t+ Δt
2

= V t + Δt

2
At . (21)

Acceleration at time t + Δt
2 can be obtained by modifying Eq. (2) as

MAt+ Δt
2

+ CV t+ Δt
2

+ KU t+ Δt
2

= 1

2
(Ft+Δt + Ft ) . (22)
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For the second sub-step, the approximations for displacement and velocity, respec-
tively, at time t + Δt can be written as

U t+Δt = 4

3
Û t − 1

3
U t + Δt

3
V t+Δt (23)

V t+Δt = V t + Δt At+ Δt
2
, (24)

where Û t is given as

Û t = U t + Δt

2
V t + (Δt)2

4α
At+ Δt

2
+ (α − 2) (Δt)2

8α
At . (25)

In this scheme, least relative period error occurs in the range of 0.8 ≤ α ≤ 1. For
current work, α = 0.85 is considered.

3 Results and Discussion

In the present section, the performanceof the schemesdiscussed inSect. 2 is presented
for two nonlinear problems.

3.1 Multiple Degree-of-Freedom Nonlinear System Subjected
to Harmonic Ground Acceleration

In thefirst problem, seeFig. 1, ann-degree-of-freedomspring–mass system [6] is sub-
jected to a harmonic ground acceleration = 100 [sin (2t) + sin (10t)]m/s2 as shown
in Fig. 1. The problem has been solved for displacement of the nth mass (un) against
time. For obtaining the solution, n = 500 is considered. The plot of displacement
of 500th mass m500 with time, obtained using SCDS with a very small time step
of Δt = 1 × 10−8 seconds, is shown in Fig. 2. Since all the schemes would give

Fig. 1 Multiple
degree-of-freedom nonlinear
system subjected to
harmonic ground
acceleration
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Fig. 2 Displacement (u500)
as a function of time for first
problem
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the similar results for this small time step they are not shown. However, since the
system is conservative, a prime concern is the conservation of energy of the system
in absence of any dissipative forces. To show the performance of various schemes
for energy conservation, a quality called the “Mean absolute error (MAE)” in energy
is defined. Mean absolute error (MAE) of any quantity z (z can be any quantity but
in the present work it is chosen to be energy of the system) having exact solution
zex (i) and a numerical solution znum (i) at i th data point and having a total of N data
points can be defined as

MAE (z) = 1

N

N∑

i=1

∣∣∣∣
znum (i) − zex (i)

zex (i)

∣∣∣∣ . (26)

The exact solution corresponds to the solution obtained using a very small time step
which here is taken as one obtained using Δt = 1 × 10−8 s. Essentially this means
that the errors at each time step are added and a cumulative effect is obtained. Figure3
shows the plot of MAE in energy for all the schemes for three different time steps.

It can be seen that the SCDS scheme has the lowest error among all the schemes
except for two cases where PRPCES has the minimum error. However, it is clear that
SCDS outperforms all the other schemes. The PRES is least accurate among all the
schemes.

3.2 One Degree-of-Freedom Adhesive Contact Problem

Next, a highly nonlinear single degree-of-freedomadhesive contact problem is solved
with different explicit time integration schemes [9]. The problem is conservative
whichmeans that there is no energy dissipation. Hence, the total energy of the system
remains constant. Figure4 shows the problem setup. The problem consists of one
fixed rigid mass and another rigid free mass. Both the masses are acted upon by van
der Waals adhesive force which is derived from the Lennard–Jones potential. The
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Fig. 3 Mean absolute error (MAE) of energy at different values of Δt for all six time integration
schemes under study for first problem

Fig. 4 One
degree-of-freedom adhesive
contact problem

equilibrium distance for the Lennard–Jones potential φ(x) = ε
(r0
x

)12 − 2ε
(r0
x

)6

is given by r0. Here, ε is the material constant related to energy scale. The free
mass is left from initial position x I . The free mass is attracted toward the rigid
mass due to attractive force component of the van der Waals force till it crosses the
equilibrium distance and is repelled by the repulsive part of the van der Waals force.
In this system, there are two force contributions, namely, inertia and contact forces
which mutually balance out each other to attain dynamic equilibrium. For complete
details, the reader is referred to Gautam and Sauer [9]. The complete formulation
of the problem including the non-dimensionalization of the governing equation of
the system is given in Gautam and Sauer [9]. The resulting non-dimensionalized
equation is given by

X ′′ − α0

γ8
L

(
γ−6
L X−13 − X−7

) = 0 , (27)

where X is the non-dimensionalized distance and (·)′′ denotes the double derivative
with respect to non-dimensionalized time ω. The value of the constant α0 is given

by α0 = (
1
3

) (
13
4

) 4
3 . For analyzing the system, γL is chosen as 1 [9].
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Fig. 5 Plot of energy fraction versus time for second problem
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Fig. 6 Mean absolute error (MAE) of energy at different values of Δt for all six time integration
schemes under study for second problem

Figure5 shows the plot of energy fraction with non-dimensionalized time ω. The
total time for the analysis is kept at ω = 200 which corresponds to two impacts.
The peaks denote the time instance when the moving mass crosses the equilibrium
distance and is repelled from the fixed mass and crosses back the equilibrium dis-
tance. The SCDS scheme is used as the time integration scheme withΔt = 1 × 10−7

seconds and as the kinetic energy increases the contact energy decreases so that the
total energy remain constant. The plot of mean absolute error (MAE) of total energy
at different values of Δt for all six time integration schemes till ω = 200 is shown
in Fig. 6. It can be seen that the SCDS, the SzCDS, and the PRPCES schemes give
almost the same error in energy while the other schemes give much higher error. For
all the schemes, the error in energy decreases with time step which is as expected.
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Table 1 Computational cost for first problem

Scheme 1 × 10−4 s 1 × 10−5 s 1 × 10−6 s

SCDS 0.3280 × 102 s 0.3246 × 103 s 0.3264 × 104 s

CEMDTS 0.3402 × 102 s 0.3400 × 103 s 0.3334 × 104 s

SzCDS 7.9889 × 102 s 8.0145 × 103 s 7.9983 × 104 s

CTES 2.0604 × 102 s 1.9566 × 103 s 2.0253 × 104 s

PRPCES 1.8660 × 102 s 1.7566 × 103 s 1.8366 × 104 s

PRES 0.6700 × 102 s 0.6673 × 103 s 0.6819 × 104 s

Table 2 Computational cost for second problem

Scheme 1 × 10−2 s 1 × 10−3 s 1 × 10−4 s 1 × 10−5 s

SCDS 1.2290 × 10−2 s 1.2512 × 10−1 s 1.2482 s 12.370 s

CEMDTS 2.6865 × 10−2 s 1.6527 × 10−1 s 1.6172 s 16.399 s

SzCDS 44.6880 × 10−2 s 47.1470 × 10−1 s 46.2370 s 463.240 s

CTES 1.2318 × 10−2 s 1.2367 × 10−1 s 1.2860 s 12.480 s

PRPCES 2.2540 × 10−2 s 1.8778 × 10−1 s 1.8779 s 18.713 s

PRES 3.0020 × 10−2 s 1.9170 × 10−1 s 1.8761 s 18.484 s

3.3 Computational Cost Analysis

Next, the computational cost associatedwith each scheme is presented. Tables1 and 2
show the time taken by each scheme for different time steps for problems 1 and 2,
respectively. In each table, the upper row indicates the value of the time stepΔt used
for evaluating the solution. The remaining rows show the time taken by a particular
time integration scheme to obtain the solution for a given value of Δt for a particular
problem. It can be seen that the central difference scheme (SCDS) takes least amount
of time whereas the stabilized central difference scheme (SzCDS) takes maximum
time among all the schemes. This is due to the fact that the Jacobian matrix (see
Eq.7) needs to be evaluated for each time step in the stabilized central difference
scheme (SzCDS).

4 Conclusion

In the present work, the performance of a number of explicit time integration schemes
is compared for nonlinear problems. It is shown that the central difference scheme
gives least error combined with least computational time for any time step among all
the schemes. Hence, it can be concluded that although a number of explicit schemes
have been proposed in the literature, the central difference scheme performs best for
nonlinear problems.
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Performance Evaluation of Some Novel
Composite Time Integration Schemes for
Dynamic Problems

Jasti Mahesh Kumar, Vishal Agrawal, and Sachin Singh Gautam

1 Introduction

The behavior of dynamic systems is often described by partial differential equations
(PDEs). It is not always possible to obtain a closed-form analytical solution of the
PDEs. In those cases, one has to resort to numerical methods to obtain the solu-
tion. Usually, for this, the PDEs are to be first converted into a system of ordinary
differential equation (ODEs) and the ODEs are then transformed into a system of
algebraic equations, mostly nonlinear, using a suitable finite difference scheme in
time often referred to as time integration schemes. Time integration schemes can
be classified into implicit and explicit schemes. Explicit schemes are computation-
ally less expensive but are only conditionally stable whereas the implicit schemes
are unconditionally stable, at least for linear problems, allow large times but are
computationally expensive per iteration due to the cost of computing the tangent
matrix at every time step. Explicit schemes are used for wave propagation problems
and implicit methods are mostly used for the analysis of short duration structural
vibration problems. The implicit schemes are further classified into single substep
and multi-substep schemes. In multi-substep schemes, to obtain the solution at the
next time step, the current time step is further divided into smaller substeps and
a combination of different schemes are used in each substep. These schemes are
referred to as composite time integration schemes. Although composite schemes are
more computationally expensive as compared to the single substep schemes, they
give accurate and stable results even when the single substep implicit schemes fail
to do so. After the seminal paper by Bathe and Baig [1], some more composite time
integration schemes have been proposed in the literature. Often the performance of
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a new composite time integration scheme is done with Bathe and Baig scheme [1].
However, no work exists to compare the performance of most of the recently pro-
posed composite time integration schemes. Hence, the objective of the present work
is to carry out a comparative study of these schemes.

In the present work, a number of composite schemes by Bathe and Baig [1],
TTBDF (Trapezoidal-Trapezoidal-Backward-Difference-Formula) method by
Chandra et al. [2], Wen method by Wen et al. [3], and NTTBDF1 method by Huang
and Fu [4] are investigated for their performance for a number of nonlinear dynamic
problems. The remainder of the paper is structured as follows. Section2 presents the
formulation of various composite time integration algorithms. Section3 presents the
performance of the composite schemes for two sets of problems. Conclusions are
drawn in Sect. 4.

2 Time Integration Schemes

2.1 The Bathe Method [1]

In this algorithm, the time step Δt = tn+1 − tn is divided into two substeps of time
intervals γΔt and (1 − γΔt), where γ ∈ (0, 1). Here,U, V, A denote the displace-
ment, velocity, and acceleration, respectively. The subscripts n, n + 1, and n + 1

2
indicate that the quantity is evaluated at time tn , tn + 1, and tn + 1

2
. The approximations

for the first substep are

Vn+ 1
2

= Vn + γΔt

2
(An + An+ 1

2
) (1)

Un+ 1
2

= Un + γΔt

2
(Vn + Vn+ 1

2
) (2)

The approximations for second substep are

Vn+1 = c1Un + c2Un+ 1
2
+ c3Un+1 (3)

An+1 = c1An + c2An+ 1
2
+ c3An+1 (4)

where c1 = 1 − γ

γΔt
, c2 = −1

(1 − γ)γΔt
, and c3 = 2 − γ

(1 − γ)Δt
. Generally, γ = 1

2
is

used and the optimum value based on least period error and maximum amplitude

decay is γ = 2 − √
2. In the current work, we use γ = 1

2
.

1Huang and Fu [4] do not mention in their paper the full name for the scheme but from the present
author’s viewpoint it stands for New (N) Trapezoidal-Trapezoidal-Backward Difference-Formula.
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2.2 The TTBDF Method [2]

In this algorithm, the time step Δt is divided into three equal substeps. The approx-
imations for the first substep are

Un+ 1
3

= Un + Δt

6

(
Vn + Vn+ 1

3

)
(5)

Vn+ 1
3

= Vn + Δt

6

(
An + An+ 1

3

)
(6)

The approximations for second substep are

Un+ 2
3

= Un+ 1
3
+ Δt

6

(
Vn+ 1

3
+ Vn+ 2

3

)
(7)

Vn+ 2
3

= Vn+ 1
3
+ Δt

6

(
An+ 1

3
+ An+ 2

3

)
(8)

The approximations for third substep are

Δt

3
Vn+1 = A (θ1)Un+1 + B (θ1)Un+ 2

3
+ C (θ1)Un+ 1

3
+ D (θ1)Un (9)

Δt

3
An+1 = A (θ2) Vn+1 + B (θ2) Vn+ 2

3
+ C (θ2) Vn+ 1

3
+ D (θ2) Vn (10)

where the A, B, C , and D are functions of variable θ and are given as

A (θ) = 11

6
− θ

3
,

B (θ) = θ − 3 ,

C (θ) = 3

2
− θ ,

D (θ) = −1

3
+ θ

3
.

where θ = θ1 and θ = θs in Eqs. (7) and (8), respectively. Here, θ1 and θ2 are the
algorithmic parameters introduced by the Backward Difference Method and can be
varied to control the dissipation characteristics of the scheme. The optimal values

based on stability and minimization of numerical dissipation are θ1 = θ2 = 3

4
and

will be used for further calculations.
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2.3 The Wen Method [3]

In this algorithm, the time step is divided into three substeps of time intervals γΔt ,

(1 − γ) Δt and γΔt where the parameter γ ∈
(
0,

1

2

)
. The subscripts n + 1

3 and

n + 2
3 indicate that the quantity is evaluated at time tn + 1

3
and tn + 2

3
, respectively.

The approximations for the first substep are

Vn+ 1
3

= Vn + γΔt

2
(An + An+ 1

3
) (11)

Un+ 1
3

= Un + γΔt

2
(Vn + Vn+ 1

3
) (12)

The approximations for second substep are

Vn+ 2
3

= 1

Δt

[
b1Un + b2Un+ 1

3
+ b3Un+ 2

3

]
(13)

An+ 2
3

= 1

Δt

[
b1Vn + b2Vn+ 1

3
+ b3Vn+ 2

3

]
(14)

where b1 = 2γ − 1

γ (γ − 1)
, b2 = 1 − γ

γ (2γ − 1)
, and b3 = 2 − 3γ

(γ − 1) (2γ − 1)
. The approx-

imations for third substep are

Vn+1 = 1

Δt

[
a1Un + a2Un+ 1

3
+ a3Un+ 2

3
+ a4Un+1

]
(15)

An+1 = 1

Δt

[
a1Vn + a2Vn+ 1

3
+ a3Vn+ 2

3
+ a4Vn+1

]
(16)

where a1 = −1, a2 = 1

(γ − 1) (2γ − 1)
, a3 = 1

γ (2γ − 1)
, and a4 = γ2 − γ − 1

γ (γ − 1)
.

2.4 The NTTBDF Method [4]

In this algorithm, the time step is divided into three substeps of time intervals
γΔt, γΔt , and (1 − 2γΔt). The approximations for the first substep are

Un+ 1
3

= Un + γΔt

2

(
Vn + Vn+ 1

3

)
(17)

Vn+ 1
3

= Vn + γΔt

2

(
An + An+ 1

3

)
(18)

The approximations for second substep are
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Un+ 2
3

= Un+ 1
3
+ γΔt

2

(
Vn+ 1

3
+ Vn+ 2

3

)
(19)

Vn+ 2
3

= Vn+ 1
3
+ γΔt

2

(
An+ 1

3
+ An+ 2

3

)
(20)

The approximations for third substep are

Un+1 = Un + Δt
(
c1Vn + c2Vn+ 1

3
+ c3Vn+ 2

3
+ c4Vn+1

)
(21)

Vn+1 = Vn + Δt
(
c1An + c2An+ 1

3
+ c3An+ 2

3
+ c4An+1

)
(22)

where

c1 = − (a + 1) γ2 + 4γ − 1

4γ
,

c2 = 1 + (a − 1) γ

2
,

c3 = (1 − a) γ2 − 2γ + 1

4γ
, and

c4 = γ

4
where a ∈ [0, 1] .

The stability conditions and dissipation characteristics for different values of a and
γ can be found in the work presented by Huang and Fu [4]. In the current work,
we choose a = 0.5 and γ = 0.8. These values are chosen so to have a three substep
schemewith higher numerical dissipation than Bathe method, unlike TTBDF [2] and
Wen [3] that have very low numerical dissipation.

3 Numerical Examples

In this section, three different numerical examples are considered to investigate the
effects of numerical dissipation as well as to compare the relative performance of
the four different composite time integrations schemes.

3.1 One-Dimensional Wave Propagation

In the first example, the performance of the composite time integration algorithms is
evaluated for a linear one-dimensional wave propagation problem that is borrowed

Fig. 1 One-dimensional bar
subjected to time dependent
end load
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Fig. 2 Stress plot for tcr at
the middle of the bar
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Fig. 3 Stress plot for tcr at
the middle of the bar
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Fig. 4 Cumulative error in
stress at midpoint of bar for
different schemes

0 0.2 0.4 0.6 0.8 1
Time [ms]

0

2

4

6

8

10

C
um

ul
at

iv
e 

E
rr

or

104

Bathe Wen TTBDF NTTBDF

from the monograph by Cook et al. [5]. The length, area, density and Youngs modu-
lus are L = 0.508 m, A = 6.45 × 10−4 m2, ρ = 7984 kg/m3, E = 206.84 GPa,
respectively. A constant load P = 444.82 N is applied as shown in Fig. 1. The criti-
cal time step for the given material is given by Δtcr = 2.495 × 10−6 s. The stress is
evaluated at distance of x = 0.248 m from the free end. Figures 2 and 3 represent the
analytical and numerical value of stress after a few oscillations to better capture the

accuracy of algorithms. The time step Δt = Δtcr is used in Fig. 2, and Δt = Δtcr
4

in Fig. 3. In general, smaller time step should give better solution. However, here,
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larger time step gives better solution. The reason being the spurious high frequency
modes generated due to spacial discretization of domain. These modes have to be
dissipated for better accuracy and decreasing the time step decreases the numerical
dissipation. To check the relative performance of schemes we define a cumulative
error as

Ecumu =
∑N

i=1 abs (Xact − Xnum)

N
(23)

where N is the number of data points until time t . It can clearly be seen fromFig. 4 that
the high dissipative schemesBathe andNTTBDFhave better performance andBathe,
although a two substep scheme, has better performance as compared to NTTBDF
which is a three substep scheme.

3.2 Stiff Pendulum

Many time integration algorithms that are stable for linear systems often fail when
applied to nonlinear systems. The pendulum presented by Kuhl and Crisfield [6] is a
paradigm to test the stability of algorithms for nonlinear systems. As shown in Fig. 5,
the top end of the pendulum is pinned and the free end is given an initial velocity
of 7.72 m/s and radial acceleration of 19.577 m/s2 to balance the centrifugal force.
The length, mass per unit length, and axial stiffness are L = 3.0443 m, ρA = 6.57
kg/m, and E A = 1010 N, respectively.

Fig. 5 The pendulum model

Fig. 6 Plot of energy with
time for stiff pendulum
(Δt = 0.1 s)
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Fig. 7 Plot of displacement
with time for Δt = 0.1 s
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ConsideringΔt = 0.1 s, the numerical results for energy and the x−coordinate of
free end are shown in Figs. 6 and 7. The dissipation and period elongation of schemes
can be seen clearly.

3.3 Elastic Pendulum

The same problem as in Sect. 3.2 is considered, but with axial stiffness E A = 104

N and the initial radial acceleration is assumed to be 0 m/s.
Here, we have two different frequency modes, the rotation of pendulum (low-

frequency mode) and the vibration of pendulum along the length (high-frequency
mode). For a time step of Δt = 0.1 s, we have the high-frequency mode as shown
in Fig. 8 by Bathe method and Fig. 9 by TTBDF. We can see that the high-frequency
mode is almost dissipated after 12 s, whereas TTBDF preserves the high frequency
and gives better solution for longer periods. This problem can be avoided by choosing
a smaller time step as it reduces numerical dissipation.

The plot of x-coordinate of the pendulum with time is shown in Fig. 10. Initially,
all the methods give the same results but as time passes we can clearly observe

Fig. 8 Plot of change in
length with time for
Δt = 0.1 s
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Fig. 9 Plot of change in
length with time for
Δt = 0.1 s
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Fig. 10 Plot of
displacement with time (0 to
30 s) for Δt = 0.1 s
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Fig. 11 Plot of
displacement with time
(25 to 30 s) for Δt = 0.1 s

25 26 27 28 29 30
Time [s]

-4

-2

0

2

4

6

D
is

pl
ac

em
en

t [
m

]

Bathe Wen TTBDF NTTBDF

the shift in the phase of the solution by different methods as shown in the Fig. 11.
TTBDF and Wen schemes have a lower shift and give a more accurate solution. For
the relative performance of schemes, we look at the conservation of energy of the
system as shown in Fig. 12. TTBDF and Wen can better conserve the energy of the
system giving a more accurate solution.
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Fig. 12 Plot of energy with
time for elastic pendulum
(Δt = 0.1 s)
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4 Conclusion

For a given class of problems, it is crucial to choose the appropriate time integra-
tion scheme with the desired characteristics for the problem to get a highly accurate
solution for the same computational cost involved. For problems involving spuri-
ous high-frequency modes as in Sect. 3.1, dissipative schemes like Bathe, NTTBDF
with high dissipative parameters should be used. For problems where dissipation is
undesirable as in Sects. 3.2 and 3.3, TTBDF and Wen would be a better choice. The
superiority of Bathe scheme can be seen in almost all the problems. Even with a
larger substep size compared to NTTBDF, Bathe gave better results in comparison to
NTTBDF. The high flexibility of damping characteristics of NTTBDF scheme can
also be very advantageous. With the right parameter tuning much better results may
be obtained.
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Development of Efficient Stress Return
Algorithms for Simulating Geomaterial
Response

Divyanshu Kumar Lal and Arghya Das

1 Introduction

Significant efforts are required to reproduce the stress-strain behavior of soil under
different conditions of loading. On the basis of continuum mechanics framework, a
great number of constitutive models have been developed to describe the behavior of
soil. These mathematical models provide a feasible tool to analyze and simulate the
behavior of the materials under different conditions and external stimulus, without
actually subjecting the system to those stimuli. Implementation of those models
require complex algorithms. One has to make compromise between accuracy and
complexity of algorithm. To develop simpler algorithm with high precision is a
challenging task.

The solution of elastoplastic boundary value problems typically proceeds by
computing a displacement increment on the basis of the current state of the system.
The stress increments are computed by solving the local constitutive relations and
an improved estimate of the elastoplastic stiffness modulus at the selected points,
known as Gauss points. The possible deviation between the initially assumed stiff-
ness and the actual one may yield a residual in the form of a global out-of-balance
forcewhich is subsequently soughtminimized by aNewton type procedure that alter-
nates between the global equilibrium iterations and the local constitutive updates.
The main difference between the various methods lies in how the local stress update
is performed and how the required parameters are updated. Generally, methods of
solving local constitutive relations can be classified as explicit and implicit and
sometimes combination of both is termed as semi-implicit.
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Implicit stress integration algorithms have been demonstrated to provide a robust
formulation for finite element analyses in computational mechanics but are diffi-
cult to formulate for complex nonlinear constitutive laws. Implicit methods find the
state of system using both the current state of the system and the later one. The
implicit methods, which have received by far the most attention, usually employ
the Backward-Euler method for local integration. Using Newton-Raphson iteration,
implicit solutions can be converged to get solution. Generally, for this type of integra-
tion return mapping schemes are used to find more accurately the plastic corrector.
The calculations are performed essentially in two steps: (1) calculating the incre-
ment in variables; (2) updating it as predictors. If the trial state lies outside the yield
surface, then the trial variables will be relaxed on the yield surface and referred to as
the plastic corrector. Methods like closest point projection method (CPPM) devel-
oped by Simo and Taylor [1] and Cutting plane method (CPM) suggested by Simo
and Taylor [2], based on return mapping are used quite frequently in constitutive
modeling, including geotechnical analysis. The concept of numerical stability and
accuracy plays a central role in numerical integration for controlling the convergence
and consistency of the equation. CPPM is accurate up to second order. However, it
is implicit in nature and hence difficult for complex and nonlinear models. So, there
is a need of developing simpler and stable algorithm which predicts results close to
the one predicted by CPPM or to reduce truncation error.

Explicit methods calculate the next state of a system using the value from the
previous state. Compared to implicit, it is simple and easy to implement. However, if
some numerical technique is not applied to control the error, the error will propagate
during integration. Methods like numerical sub-stepping, line search technique, and
error control are proposed by Sloan [3]. Also, one can use numerical techniques like
Romberg integration method and Runge-Kutta method to obtain more precise result.

The Present study aims to develop a semi-implicit type Midpoint algorithm by
modifying CPM in order to obtain accuracy and stability similar to CPPM. The
efficiency of the algorithm is tested stress point analysis and solving boundary value
problem using finite elements.

2 Proposed Midpoint Algorithm

Conventionally, Midpoint algorithm is formulated by enhancing explicit stress inte-
gration to achieve second order accuracy [4]. However, this approach does not guar-
antee unconditional stability, especially with large increments. Therefore, an attempt
is made to formulate Midpoint algorithm starting from cutting plane method (CPM).
Following section briefly discusses the steps involved in CPM and other associated
procedure for Midpoint algorithm.
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2.1 Cutting Plane Method (CPM)

CPM is a predictor-corrector type scheme which initially predicts an elastic trial
stress state and then estimates a plastic corrector to reach the final stress state if the
predictor state lies outside the yield stress. In CPM, the total incremental strain tensor
�εti j at the nth step is initially assumed to be fully elastic. The trial state is estimated
in the following manner:

�σi j = De
i jkl�εtkl (1)

σ tr ial
i j = σi j,n + �σi j (2)

Here, σi j,n is the stress tensor at nth step, σ tr ial
i j is the elastic trial stress tensor,

and De
i jkl is the forth order elastic stiffness tensor. If the stress state lies within the

yield surface (f ), then one can write,

f
(
σ tr ial
i j , H

) ≤ 0 ⇒ σi j,n+1 = σ tr ial
i j (3)

wereH represents the hardening variable. However, if the stress state lies outside the
yield surface, the elastic increment derived from the total strain is taken as a predictor
and a correction is applied using the consistency condition, relaxing on the updated
yield surface by correcting the plastic strain increments iteratively. Following the
consistency condition and linearizing the yield function f at kth iteration in the nth
incremental step to evaluate the value of the plastic multiplier we can get,

f k+1 = f k +
(

∂ f

∂σ tr ial
i j

)k

�σi j +
(

∂ f

∂H

)k
∂H

∂α
�α = 0 (4)

In the above expression α in the internal variable that dictates the hardening
evolution. The plastic corrector is given by the following expressions using flow
rules:

�σi j = De
i jkl

(
�εti j − �ε

p
i j

)
= De

i jkl

(
−�λ

∂g

∂σ tr ial
kl

)
(5)

�α = �λξ (6)

In Eq. (6), ξ denotes the derivative of the stress conjugate of the internal variable
α that controls the strain hardening. Note that in Eq. (5) �εti j taken as zero (0) since
it is fully utilized in the predictor stage at Eq. (1). Substituting back the value from
Eqs. (5)–(6), into Eq. (4), we get
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�λ = f k

∂ f
∂σi j

De
i jkl

∂g
∂σkl

− ∂ f
∂H

∂H
∂α

ξ
(7)

Calculate the stress correction and hardening parameter for kth step

δσi j = −�λDe
i jkl

∂g

∂σ tr ial
kl

(8)

δHk = �λ
∂H

∂α
ξ (9)

Update the stress and hardening parameter as follows:

σi j,n+1 = σ tr ial
i j + δσi j (10)

Hk+1
n+1 = Hk

n + δHk
n (11)

The iteration continues until f
(
σi j,n+1, H

k+1
n+1

) ≤ 0.

2.2 Contact Stress

Formulation ofMidpoint algorithm requires to estimate a stress state, namely contact
stress σ c

i j , that exists in-between the initial and trial state and also lies on the yield
surface, such that

f
(
σ c
i j , H

) = 0 (12)

Sloan [3] proposed an approach in which by obtaining the σ c
i j on the initial hard-

ening surface, followed bymodified Euler integration to finally get correct stress state
for a given strain increment. At the integration point, the behavior is either elastic
or elastoplastic during loading. If the predicted stress state crosses the yield surface,
we need to evaluate the elastic portion of stress increment that is required to assess
contact stress. Let β be a scalar such that σ c

i j = σi j,n + β�σi j , with 0 ≤ β ≤ 1. For
linear yield function the value of β can be obtained by linear interpolation which is

β = fi
fi − f f

(13)

where fi = f
(
σi j,n, H1,n

)
and f f = f

(
σ tr ial
i j , H2,n

)
.
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2.3 Midpoint Algorithm

A more general class of stress integration method, known as generalized Midpoint
[4] was developed, in which new stress return was expressed in terms of both the
old and the new trial states. However, in this paper the stress update equation uses
contact stress σ c

i j instead of initial stress σi j,n . The final stress increment after plastic
correction and updated hardening term as per the midpoint algorithm is shown here

δσi j = D
(

(1 − θ)�λc
∂g
∂σ c

i j
+ θ�λ2

∂g
∂σ tr ial

i j

)
(14)

where �λc and �λ2 are obtained by substituting σi j = σ c
i j and σi j = σ tr ial

i j in the
consistency condition Eq. (4). Ortiz and Popov [4] proposed that for θ = 0.5, it is
second order accurate and for θ ≥ 0.5, it is unconditionally stable. Since the proposed
midpoint algorithm is formulated from semi-implicit type CPM, unlike conventional
midpoint rule, θ = 0.0 does not lead to an explicit solution. However, stress update
with θ = 1.0 converges to semi-implicit (CPM) solution. Corrected stress at n + 1th
step follows Eq. (10). Finally, the hardening variable are obtained in the following
manner:

H1,n+1 = H1,n + �λc
∂H

∂α
ξc (15)

H2,n+1 = H2,n + �λ2
∂H

∂α
ξ2 (16)

Hn+1 = (1 − θ)H1,n+1 + θH2,n+1 (17)

3 Finite Element Simulation

3.1 Extended Mohr-Coulomb Model

The elastic-perfectly plastic Mohr-Coulomb model is widely used in Geotechnical
constitutive models. However, it provides only a very crude match to the actual
shearing behavior of soils and fails to capture the realistic nonlinear stress-strain
response and volumetric response. This is because the incremental stiffness of soil
changes significantly even for small strain level. Muir Wood [5] introduced a hyper-
bolic hardening law which accounts for the nonlinearity in the elastoplastic stiffness
of the soil. In this constitutive model, hardening parameter evolves with shear plastic
strain. This type of hardening is found to be useful for modeling sands, where the
rearrangement of particles dominates the response at typical engineering stress levels,
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Table 1 Overview of
extended Mohr–Coulomb
model

Constitutive relation Formulation

Yield function f = q − ηy p

Plastic potential function g = q − Mpln(p/pr)

Hardening parameter (H) ηy = ∈p
s

a+∈p
s
ηp

and irrecoverable volume strains are essentially linked to this rearrangement. The
governing constitutive equations of the model is specified in Table 1.

3.2 Modeling Detail

The efficacy of the Midpoint algorithm is tested via solving boundary value problem
using finite elements. Extended Mohr-Coulomb model given in Table 1 is imple-
mented in ABAQUS (ver. 6.16, [6]), as a user defined material model. In addition,
linear elastic soil response is assumed within the yield condition. For the purpose
of comparison stress integration algorithm is written using both Midpoint algorithm
and CPPM. Deformation response of a rigid strip footing on loose sand is analyzed
here. The constitutive parameters of loose sand are given in Table 2.

A rectangular geometry, representing loose sand, as modeled assuming plane
strain conditions in finite elements (Fig. 1). Bottom boundary of the model is
restrained from the vertical movement, while the side boundaries are restrained from
the lateral movement. To simulate rigid strip footing settlement, a displacement-
controlled compression is incrementally applied on a 1 m wide loading zone, which
is located centrally at the top boundary of the model. In order to avoid any numerical
instability at the free surface, a surcharge pressure of 30 kPa is applied at the top
boundary and the initial value of hardening parameter.

Table 2 Constitutive
parameters

Parameters Value

K 2000 kPa

G 923.07 kPa

ηp 1.0

M 1.2

a 0.001
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0.1 m compression
30 kPa30 kPa

10
 m

15 m

Fig. 1 Finite element model showing mesh and boundary conditions

3.3 Results and Discussions

The accumulated plastic (deviatoric) strain at the end of simulation is plotted in Fig. 2,
for two different algorithmic treatments. It is noticed from the contour that spatial
distribution of plastic strain determined using Midpoint algorithm is near identical
to that of CPPM. Note that in Fig. 2, only a part of the entire model is plotted.

The settlement plot shown in Fig. 3, indicates that the evolution of vertical load
estimated via Midpoint algorithm is in close agreement to that of CPPM. Two
different displacement increments are considered for Midpoint analysis, 0.6 mm and
1.2 mm. The algorithm converges for both the cases. Besides accuracy, the proposed
Midpoint algorithm is computationally efficient since the simulation takes lesser

Fig. 2 Deviatoric plastic
strain contour during footing
settlement

0.040.0

Midpoint CPPM
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Fig. 3 Comparison of strip
footing settlement estimated
with different stress
integration algorithms
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time to complete as compared to the simulation with CPPM. The simulations are
performed on a single CPU of a 3.40 GHz Intel Core i7 computer. The simulation
using Midpoint algorithm consumes CPU time 215 s, while the CPPM algorithm
takes 365 s to complete the analysis. Such computational efficiency of the Midpoint
algorithm is a result of its non-iterative formulation at the local stress point.

4 Conclusions

In the present study, we develop a stress integration algorithm that is simple yet accu-
rate enough to that of robust fully implicit methods like CPPM. For this purpose,
cutting plane method, which is a simple but conditionally stable scheme, is enhanced
to develop a Midpoint type algorithm. The proposed Midpoint algorithm is of semi-
implicit in nature and does not involve any formulation beyond the first order differ-
ential of constitutive equations. The algorithm is tested for soil constitutive model
(extendedMohr-Coulomb) on a finite element platform for simulating the settlement
of strip footing. The results indicate that the proposed algorithm responses at par to
CPPM even with large step sizes. In addition, the algorithm is faster than CPPM
from computational aspect since it does not have any iterative steps.
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Kernel Gradient Free Smoothed Particle
Hydrodynamics for Transient Boundary
Value Problems

K. C. Charan and Siva Prasad AVS

1 Introduction

Smoothed Particle Hydrodynamics (SPH) is the oldest meshfree method developed
and is completely meshless when it comes to evaluation of the integrals. The method
has been applied to fluid flows, and solid deformation and fragmentation extensively
because of its ability to handle the material flow in a more natural manner [1].

One of the major drawbacks of the method is tension instability, which results in
clustering of material points or nodes under the tensile state of stress [2]. The onset
of tension instability is related to the second derivative of the smoothing function.
Several remedies have been suggested to avoid the tension instability [1, 3, 4]. The
SPH formulation developed by [5] (Symmetric SPH) and [6] (KGF−SPH), do not
require the gradient of the smoothing function. These formulations are exactly the
same, although developed independently, and provide better accuracy compared to
the previous formulations.

In this work, a FORTRAN code based on KGF−SPH has been developed and
validated against benchmark transient problems in heat conduction and elastodynam-
ics. The KGF−SPH formulation is derived in Sect. 2. Following this, the KGF−SPH
solutions of heat transfer and elastodynamics problems are discussed inSects. 3 and4.
The results show good accuracy even with a coarser discretization of the domain and
a simple time-stepping scheme is adopted in this work. It has been identified that the
size of the neighbourhood of a node (or stress point) and the time-stepping scheme
may improve the accuracy of the solution.
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2 Derivation of KGF−SPH Formulation

TheKGF−SPH formulation is presented in this section for a 2−D case. To derive the
approximation for spatial derivatives of a field f (x) at x, a Taylor series expansion
of the function about x is written as,

f (x + ξ) − f (x) = ∂ f

∂x1
ξ1 + ∂ f

∂x2
ξ2 + 1

2

∂2 f

∂x21
ξ21 + 1

2

∂2 f

∂x22
ξ22 + ∂2 f

∂x1x2
ξ1ξ2, (1)

where, ξ is the position vector relative to x, of any neighbouring point within a
distance of δ from x. Multiplying Eq.1, with w (|ξ|) ξ and w (|ξ|) (ξ ⊗ ξ) and inte-
grating over the circular domain of size δ, gives a system of 5 equations which
can be written in the matrix form AF = T . Here w is a smooth weight function
that depends on the distance, |ξ|, of a neighbouring point from x. The matrix A
can be written as A = ∫

w (|ξ|)��T dV, where {�} = {ξ1 ξ2 ξ21 ξ22 ξ1ξ2}T . Fur-
ther, T = ∫

w (|ξ|)�dV and F is a column matrix of unknown variables, i.e.

{F} = { ∂ f
∂x1

∂ f
∂x2

1
2

∂2 f
∂x21

1
2

∂2 f
∂x22

∂2 f
∂x1x2

}T . Solving this matrix equation simultaneously
gives the approximation for first and second order spatial derivatives of a field f (x).
This form was separately derived by [5] and [6], and differs from [4], in that the
matrix A is symmetric in the former works. Thus, the approximation for ∇2 f in two
dimensions is obtained as

∇2 f = 2

(
4∑

I=3

5∑

J=1

BI J TJ

)

, (2)

where, B = A−1.
In this work, discretization for heat transfer problems involves only nodes, while

for elastodynamics, the domain is discretized into stress points and nodes, following
the approach in [3]. The discretized forms of the integrals involved in computation
of matrices A and T at a node or stress point P can be written as

AP ≈
NP∑

Q=1

w
(|ξQ |)�Q�T

QVQ and (3)

T P ≈
NP∑

Q=1

w
(|ξQ |)�QVQ, (4)

where, Q = 1, 2, ..., NP are the neighbouring points of the point P , NP the number
of neighbours of P within a distance of δ, |ξQ| = |xQ − xP | and VQ is the volume
associated with the point Q. In this work, the form of the weight function is chosen
to be Gaussian as given below.
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w (ξ) =
⎧
⎨

⎩

An

(
√

πδ)
D

(
e−4|ξ|2/δ2 − e−4

)
, for 0 ≤ |ξ| ≤ δ

0, for |ξ| > δ,
(5)

where, the factor An is determined such that
∫

wdV = 1 and D is the dimension of
the problem. The values of An for 1−D and 2−D problems are 2.09646 and 4.40324,
respectively.

3 Transient Heat Transfer Simulations

The above KGF−SPH formulation has been applied to three benchmark transient
heat transfer problems and their results are discussed in this section.

3.1 1−D Problems

The first two problems are one-dimensional, involving temperature boundary condi-
tion and flux boundary condition, respectively, at the left end (x = 0) of the problem
domain (0 ≤ x ≤ 1) in cm. In both the 1−D problems the boundary condition at
x = 0.1 is T (x = 1) → T0, where, T0 is the initial temperature, taken to be T0 = 273
K. Assuming Fourier law of heat conduction for heat flux, the governing equation
for one-dimensional transient heat transfer is

∂2T

∂x2
= ρcp

k

∂T

∂t
, (6)

where, k is the thermal conductivity of the material, cp, the specific heat and ρ, the
density. The values of these parameters are chosen such that the thermal diffusivity

α
(
= k

ρcp

)
= 1.

In the first 1−D problem, the boundary condition is T (x = 0) = TL = 500 K.
The analytical solution of Eq.6, with this boundary condition can be determined as

T (x, t) = TL + (T0 − TL)erf

(
x

2
√

αt

)

, (7)

where, erf
(

x
2
√

αt

)
= 2√

π

∫ x
2
√

αt

0
e−s2ds, is called the error function.

In the second 1−Dproblem, a heat flux of q0 = 1000W/cm2 is imposed at x = 0.
The boundary condition is ∂T

∂x (x = 0) = − q0
k . The analytical solution of Eq.6, with

this boundary condition can be determined as
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T (x, t) = T0 + 2q0
√

αt√
πk

exp

(

− x2

4αt

)

− q0x

k

(

1 − erf

(
x

2
√

αt

))

. (8)

For KGF−SPH simulations of these two problems, the 1−D domain is dicretized
into 41 points with a spacing of Δx = 0.025 cm. A simple, explicit forward-
difference time marching scheme is chosen with a conditionally stable time step
of Δt = 156.25 μs. Figures1 and 2 show the distribution of temperature along x at
t = 0.025 s for both the above 1−D problems. It can be seen that when the number
of neighbours is increased by increasing the δ to 4Δx , the accuracy of the solution
improves. This observation mandates a more rigorous study on the influence of the
parameter δ on the solutions to a partial differential equation.

Fig. 1 Temperature
distribution for the 1−D
problem with
T (x = 0) = 500 K
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Fig. 2 Temperature
distribution for the 1−D
problem with
∂T
∂x (x = 0) = − q0
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3.2 2−D Problem

For two-dimensional transient heat conduction problem, a square domain defined
by (x, y) ∈ (−0.05 m, 0.05 m) × (−0.05 m, 0.05 m) is considered with T = 1.0 on
all the boundaries for t > 0 and an initial condition, T (x, y, t = 0) = 0. Due to the
symmetry of the problem about x− and y− axes, only quarter region of the domain
((x, y) ∈ (0, 0.05 m) × (0, 0.05 m)) is considered for both analytical and numerical
solutions. The governing equations and boundary conditions for this quarter domain
are

∂T

∂t
= k

ρcp

(
∂2T

∂x2
+ ∂2T

∂y2

)

, (9a)

∂T

∂x
(0, y, t) = ∂T

∂y
(x, 0, t) = 0, (9b)

T (0.05, y, t) = T (x, 0.05, t) = 1.0. (9c)

The analytical solution for Eq.3.2, can be derived as

T (x, y, t) =
∞∑

n=1

∞∑

m=1

(−1)m+n 16 (T0 − TL)

(2m − 1) (2n − 1) π2
cos (Nx) cos (My) e(−Cαt), (10)

where, M = (2m−1)π
2L , N = (2n−1)π

2L , C = (
M2 + N 2

)
, L = 0.05 m, T0 is the initial

temperature and TL is the temperature specified on the boundaries x = 0.05 m and
y = 0.05 m.

The approximation for the laplacian of temperature is obtained using Eq.2.
Temperature boundary conditions are imposed explicitly at the end of every timestep.
This requires a sufficiently small timestep to be used in order to get more accurate

Fig. 3 Variation of
temperature along y on
x = 0 at times 150 μs,
300 μs and 450 μs
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results. The timestep used in these simulations is 0.1 μs. The domain is discretized
uniformly into 51 × 51 particles, in x− and y− directions, and the thermal diffu-
sivity α = 1.0. Figure3 shows the temperature variation along y on x = 0 obtained
from analytical and numerical solutions at times 150 μs, 300 μs and 450 μs. The plot
seems to suggest that the deviation of the numerical results from analytical solution
keeps increasing with time. A detailed and systematic study on the effects of time-
stepping algorithm and the value of δ, the size of the neighbourhood of a SPH point,
is necessary to analyze the accuracy of these results.

4 Elastic Wave Propagation in a Long Bar

In this section, the application of KGF−SPH to elastic wave propagation in a long
bar is discussed. Figure4 shows a long bar (l/d ∼ 20)which is given a velocity pulse
of the form

v (x = 0, t) = ψ (t) = V0

[

H (t) − H
(

t − l

2C

)]

, (11)

at the left end (x = 0) and fixed at the right end, i.e. (v (x = l) = 0). Here, C is
the 1−D elastic wave speed in the material, related to the Young’s modulus E and
density of the material, ρ, by C = √

E/ρ. The problem is of one-dimensional in
nature and its solution can be derived from 1−D wave equation as

v (x, t) =
{

ψ
(
t − x

C

)
, for 0 ≤ t ≤ l/C

ψ
(
t − x

C

) − ψ
(
t + x

C − 2l
C

)
, for l/C ≤ t < 2l/C.

(12)

The displacement and stresses can be determined from the above velocity solution.
We solved this 1−Dproblem on a 2−Ddomain, with the Poisson’s ratio ν = 0. As

mentioned earlier, the dual-point approach [3] is adopted to discretize the domain. An
initial uniform particle spacing of 0.1 mm is chosen so that there are 50000 velocity
points and 51051 stress points in the domain. The stress points carry stresses and
strain rates, while the velocity points carry velocities and accelerations.

We implemented linear elastic constitutive relations within finite deformation
framework, so that the Cauchy stress tensor, σ, is related to the strain rate tensor, d,
as

Fig. 4 Schematic of elastic
wave propagation problem in
a long bar
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∇
σ= L : d, (13)

where, for an isotropic solid, Lαβγζ = (K0 − 2μ/3) δαβδγζ + μ
(
δαγδβζ + δαζδβγ

)

in the Cartesian space, δαβ is the Kronecker delta, while
∇
σ (= σ̇ − wσ + σw) is the

Jaumann rate of σ and w, the spin tensor. The constants, K0 and μ are the bulk and
the shear moduli, related to the Young’s modulus and Poisson ratio of the material by
K0 = E/ (3 (1 − 2ν)) and μ = E/ (2 (1 + ν)), respectively. The material properties
are taken to be those of mild steel, so that, Young’s modulus, E = 211 GPa and
ρ = 7800 kg/m3.

Figures5 and 6 shows the KGF−SPH solutions (dashed line) of velocity and
stress, plotted with time, at x = l/2. It can be seen that the KGF−SPH solutions
from our simulations compare very well with the analytical solutions.

Fig. 5 Comparison of
analytical and KGF−SPH
solutions of velocity-time
history at the midpoint of the
bar
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Fig. 6 Comparison of
analytical and KGF−SPH
solutions of stress-time
history at the midpoint of the
bar
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The need for artificial viscosity term has been avoided by the use of a dual-point
approach. Since velocity points are neighbours of stress points and vice-versa, the
quantities not available on one type have to be interpolated from those computed
on other types. This interpolation, probably, has the same effect as the conservative
smoothing filter proposed by [1].

5 Summary and Conclusions

1. The Kernel Gradient Free—Smoothed Particle Hydrodynaimcs (KGF−SPH)
formulation was implemented in FORTRAN to simulate transient heat transfer
and elasticity problems.

2. The numerical solutions of elastic wave propagation problem obtained using
KGF−SPH are quite accurate and match with the analytical solutions.

3. In the heat transfer simulations, it has been found that the numerical solution
tends to deviate from the analytical solution with time. The effects of time-
stepping scheme and the influence of the δ value on the solutions have to be
investigated systematically.

4. The method can be extended to simulate highly nonlinear transient problems in
both heat conduction and solid mechanics.
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A New Edge-Based Meshless Scheme
for High-Speed Inviscid and Viscous
Flows

H. S. Krishna

1 Introduction

Many important flow simulations exclusively involve internal flows in which drastic
changes in flow properties occur as inwind tunnel blow down test section, gas turbine
blade inlet and exit flowpassages, combustion chambers of aerospace vehicles, intake
ducts, nozzle flows and so on. Complex internal flow analyses involve strongmultiple
shocks interaction and reflection from wall, shear layers, singular point, stagnation
flows, wake region, suction, entrainment and so on. In the past, some well-known
test problems devised to simulate these phenomena included carbuncle phenomenon
of blunt body problem, NACA airfoil flow characteristics from wind tunnel-derived
test data, forward-facing stepped duct flow and the double Mach reflection problem.
Some of these highly diffusive flows are amenable to inviscid flow solutions, and
the development of their shock structure in the close proximity of the solid wall may
be analyzed for gross or averaged effects of flow parameters through appropriate
wall-reflecting boundary conditions. But still, errors due to numerical discretiza-
tion of flow may become the source for spurious oscillations or secondary weak
shocks. Conventional CFD solvers employing single time-step marching schemes
have inherent limitations of achieving rapid flow stability. For instance, Euler codes
require rather time-consuming implicit residual smoothing and enthalpy damping for
achieving full flow development and also induced artificial dissipation for obtaining
stable Euler flow solution. Furthermore, accurate computation of convective fluxes
requires either splitting of fluxes or use of higher order schemes for acceleration
of convergence of flow solution. Higher resolution characteristics of shear flows are
desirable for greater computational efficiency. This is realized through the flux vector
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splitting schemes that decompose flux into convective and pressure or acoustic part.
Diffusion schemes derived from gas dynamics relations [1] were developed to induce
artificial viscosity in regions of discrete shock structure in order to accurately capture
shockwaves and contact discontinuities. Early researchers included dissipation terms
in the finite volume Euler equations formulation to suppress odd–even point oscilla-
tions due to pressure–velocity coupling. It was found that second difference diffusion
terms with second and fourth difference pressure coefficients rendered wiggle-free
computation. The higher-order schemes produce accurate results in smooth flow
regions but oscillate at shocks or discontinuities. This problem is partially over-
come through Roe linearization, with or without characteristic decomposition and
by observing Jameson’s local extremum diminishing (LED) criterion for positivity
preserving schemes: local extremum cannot change its extreme value. Based on
positivity, shock structure model and the number of coefficients in the diffusive
flux, different classes of schemes such as CUSP, AUSM and Upwind schemes were
developed for inviscid CFD code solution. In this paper, the influence of diffusion
on shock structure including the effects of regular shock reflection and meshless
code development are illustrated by two classic internal flows at supersonic speeds:
a forward-facing step ductflow and oblique shock-reflecting surfaces.

Work on meshless method began in early 1990s with John Batina reporting his
pioneering work on meshless Euler flow computation [2] over complete aircraft
through least square gradient (LSQ) reconstruction procedure for computing the
meshless point coordinates. The time saved by way of less stringent connectivity
information, near random distribution of grid points and the ease of modification
of code to reconstruct the least square technique make meshless solvers a viable
alternative to conventional grid-based solvers. Besides, if stable schemes could be
constructed then greater accuracy could be attained through the application of higher
order schemes. The diffusion scheme grid-based Euler codes are easily modifiable
into meshless or hybrid codes by merely supplementing a routine to existing grid-
based solver for construction of least square coefficients. The connectivity between
neighboring points is determined by the directional derivatives or gradients of flux
vector. Generally, a second-order space discretization is adopted for flow field solu-
tionwhich stipulatesC2 continuity betweengrid points. Thefluxgradient is expressed
as a linear combination of least square coefficients of edge vector to obtain the direc-
tion of flux. The LSQ reconstruction procedure for meshless method is accomplished
either by Taylor series expansion of flux function about center of point cloud or by
curve fitting of discrete data using polynomial basis function. The edge-based mesh-
less method ensures reciprocity of nodes for proper connectivity and permits the use
of approximate Riemann solvers for single midpoint flux computation. The hybrid
codes as a by-product of meshless solver are gaining popularity as industry standard
codes since they mitigate the problem of generating high-resolution geometry.
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2 Modifications for Meshless Solver

Broadly speaking, two categories of meshless method may be identified depending
on themethod of point distribution: random point cloud and Cartesian grid-free point
distribution as depicted in Figs. 1 and 2, respectively. For a Cartesian grid-free solver
discussed in this paper, a five-point (due North, South, East and West) stencil in
Fig. 2 is used for LSQ reconstruction procedure. The Cartesian meshless solver is
ideally suited for geometries having no irregular boundaries. Further, computational
accuracy can be improved if the stencil is chosen to lie along the coordinate directions.

2.1 Meshless Convective Fluxes

Table 1 gives the comparison between governing equations, convective meshless
fluxes and complete boundary conditions used in inviscid and viscous codes [3, 4].
The procedure for modifying an existing grid-based Euler code to meshless [5, 6]
or hybrid code involves evaluating LSQ coefficients, aij and bij, along coordinate
directions, finding the sum of spatial derivative of linearized convective fluxes, FN

or FE (af + bg) and then integrating the discretized Euler or Navier–Stokes(N-
S) equations to steady-state solution by four-stage Runge–Kutta time integration
scheme.

The linearized convective flux is obtained as follows:

∑
Fij =

∑(
∂f

∂x
+ ∂g

∂y

)
(1)

Fig. 1 Arbitrary 5-point
stencil at node i

Fig. 2 Cartesian 5-point
stencil at node i  3  

j+1 
b 

4 a   i   i1 2 j
y 

x 5 j-1
i-1 i  i+1 plane
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Table 1 Euler and Navier–Stokes code formulation

Sl.
no.

Description Euler solver N-S solver

1 Governing equations in
conservation law form

∂U
∂t + ∇F = Q = 0
assuming adiabatic flow and body
force, f b = 0

∂U
∂t + ∇FN = Q = 0

FN = F − Fv

2 State vector U = [ρ, ρu, ρv, ρE]T U = [ρρuρvρE]T

3.1 Convective fluxes: f
and g and viscous
fluxes, f V and gV.
Flow variables are
pressure p, velocities u
and v, density ρ and
enthalpy H

∇F = ∂f
∂x + ∂g

∂y

f = [
ρu, p + ρu2, ρuv, ρuH

]T

g = [
ρu, p + ρu2, ρuv, ρuH

]T

fv = 0, gv = 0

∇FN = ∇F − ∇FV

∇FV = ∂fV
∂x + ∂gV

∂y

fV =
[
0, τxx, τxy, uτxx + vτxy

]T

gv =
[
0, τyx, τyy, uτyx + vτyy

]T

3.2 Meshless linearized
convective fluxes
a and b are least square
coefficients along
coordinate directions x
and y

FE = af + bg

a = ω�x
∑

ω�y2−ω�y
∑

ω�y2
∑

ω�x2
∑

ω�y2−(
∑

ω�x
∑

ω�y)
2

ω = 1√
�x2+�y2

, inverse distance

weighing. Interchange x and y in a to
obtain b

FN =
a
(
f − f V

) + b
(
g − gV

)

4 Shear stresses τxx = τyy = τxy = τyx = 0 τxx = 2μ∂u
∂x + λ

(
∂u
∂x + ∂v

∂y

)

τyy = 2μ∂v
∂y + λ

(
∂v
∂x + ∂v

∂y

)

τxy = τyx = μ
(

∂v
∂x + ∂u

∂y

)

5 Boundary conditions:
wall
outlet
inlet

v = 0
Supersonic flow
constant u = 3, v = 0, p = 1, ρ = 1.2

u = v = 0 (no-slip)
Supersonic flow
constant u = 3, v = 0, p =
1, ρ = 1.2

6 Time step �t = CFL
∑∞

j=1

[
‖aiu+bjv‖+

√(
a2i +b2i

)
c

] �t =
CFL

∑∞
j=1

[
‖aju+bjv‖+

√(
a2i +b2i

)
c

]

7 Discretization explicit
time marching R-K
Method

dU
dt = −Ri(U )

Ri(U) = ∑
Fi�S

dU
dt = −RNi(U )

RNi(U) = ∑
Fi�S

∂f

∂x
=

∑
aij�fij (2i)

∂g

∂y
=

∑
bij�gij (2ii)
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for cloud j = 1, 5 and i is the node under consideration. The point flux FE at any
node is given by

FE = af + bg (3)

where a and b are LSQ coefficients along x and y directions, respectively. The convec-
tive fluxes should be computed by complete LSQ reconstruction technique [6] while
diffusive flux may be computed as a product of point flux and LSQ coefficients or
space coordinates, �x and �y.

2.2 Two-Step Time Marching Scheme

In order to ensure proper connectivity between point cloud stencils and flow develop-
ment, it is essential to smoothen the state vector in a two-step scheme [7] at every node
n. The first step differencing of the governing fluid flow equations in conservation
law form is:

qk+1
n = qkn − CFL

∑

i

(
�Fij + D

)
�t (4)

where linearized convective fluxes for N-S solver, ��Fij = FN is given in Table 1,
Sl. No. 3.2:

�(.)ij = (.)j − (.)i (5)

and D is the diffusive flux. For Euler solution, viscous fluxes are zero, that is, FN =
FE when f V = gV = 0.

In the second step, discretization, smoothing and averagingwith previous iteration
values of state vector are introduced along with an artificial diffusion term to control
expansion shock and to eliminate its distortion as under:

Qn =
(
qn + qp + ςqt

2

)
− CFL × �t × RS (6)

qI = Ψ

qi+1,j+qi,j+1

2 − qi,j
3

(7i)

qt = qI + qII + qIII + qIV
4

(7ii)

Here, Qn represents the smoothened state vector at node n, qn is the current value
of state vector, qp is its previous iteration value, qt is the average value of the state
vector of four triangles of a quadrant (following the usual convention of coordinate
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geometry) denoted as qI, qII, qIII and qIV that make up the stencil at point (i, j) as
shown by dashed line in Fig. 2, ζ is a diffusion constant which is assigned a value of
unity for highly diffusive flows such as expansion shock and a small fractional value
(say 0.1) for all other flows, Rs is the residual, ψ is the van Albada limiter and LSQ
coefficient, bij, is obtained from aij [6] by interchanging x and y. Note that qt tends to
integrate the first step numerical solution of Eq. 6 to steady-state condition, thereby
improving stability. The reason for splitting point cloud stencil into four triangular
elements in Fig. 2 is that triangular mesh produces best results for two-dimensional
flow problems. A subtractive corrective term, κ ·qn with constant coefficient κ of
the order 10−5 in the smoothing formula (6) controls the development of expansion
shock in a step ducted flow by introducing artificial compressibility into the solution.
The stopping criterion for highly diffusive flows is realized by bypassing the second
step computation beyond the time step at which the flow fully develops. But for low
diffusion flows, this scheme is self-regulating and stable under steady-state condition
and as such no controller or regulator is required.

Wall Boundary Conditions Two sets of reflecting wall boundary conditions are
found in the literature for viscous and inviscid flows. With usual notations, the wall
reflecting boundary conditions [8, 9] for flow velocity along tangential ( ) and normal
( ) directions to wall are:

V ‖ = nyui − nxvi (8i)

V⊥ = nxui − nyvi (8ii)

V ‖ghost = nyV ‖ − nxV⊥ (9i)

V⊥ghost = −nxV ‖ − nyV⊥ (9ii)

Also, U = U× isx, isx = −1 for outflow on right plane otherwise 1; U = U ×
isy, isy = −1 for outflow on bottom plane otherwise 1, where U represents velocity
component, either streamwise u or normal, v. The remaining boundary conditions
of pressure and density are specified as zero normal gradients. For solid wall, the
no-slip wall boundary condition replaces zero relative velocity condition normal to
the wall in the viscous code.

The newmodified four-point boundary conditions for pressure or density that may
be applied at the reflecting wall to eliminate Mach reflection is given below:

Wn+1
i,j = Wn

i,j +
(
3Wn

i,j − 4Wn−1
i,j + Wn−1

i−1,j

)
(10)

Wi,j =
(
3Wi,j+1 − Wi,j+3

)

2
(11)
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Wi,j =
(

λ

2

)(
Wi−1,j + Wi,j+1 + Wi+1,j + Wi,j−1 + Wi,j

)

4
(12)

whereW (i, j) stands either for pressurep(i, j) or densityρ(i, j) anddiffusive constant,λ
=0.8–0.9.Here, Eq. (10) contributes to connectivity of the developingflowbymixing
the state vector of the previous iteration and also improves stability. Equation (11)
applies four-point formula normal to the wall while Eq. (12) does stencil averaging
of pressure to reduce steep pressure gradients in flow.

3 Validation of Case Study

A concrete model for shockwave development does not exist. Among variousmodels
[10] put forth by researchers during the last 100 years, the three-shock theory (3ST)
by von Neumann describes reasonably well the commonly encountered shock wave
phenomena. According to 3ST, non-regular shock reflection called Mach reflection
(MR) is produced by three intersecting shock waves: incident wave, reflected wave
and Mach stem. Their point of intersection called triple point (T) may move away
or parallel to the reflecting surface, giving rise to direct, stationary or inverse Mach
reflection as shown in Fig. 3. If local subsonic pockets of flow exist at the wall, then
a Mach stem [11] may be formed at the point of reflection O. Two standard test
cases described in the ensuing paragraphs validate the two-step scheme for high-
and low-diffusion flow phenomena.

3.1 High Diffusion Problem

The shock propagation in a wind tunnel with a forward-facing step at high Mach
numbers represents a high diffusion problem. The corner at the step represents the

Fig. 3 Inverse reflection at
wall O
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singular point in the flow because it is the center of rarefaction fan. This point is
the origin for all kinds of instabilities, arising from numerical and physical shock
interaction. The solution to this problemwas first provided byWoodward and Collela
[12] in 1984 and is popularly known as expansion shock wave problem. The step
in a wind tunnel represents a two-dimensional flow problem due to slab symmetry
in direct analogy with symmetric airfoil of an airplane wing. Figure 4 shows the
schematics of the forward-facing step. Initial and inlet flow conditions of pressure,
P = 1, density, ρ = 1.4 and velocities, u = 3.0 and v = 0.0 are enforced as shown in
Fig. 4. The outlet boundary condition is taken to be supersonic since free expansion of
flow occurs at exit plane. A 300 × 100 uniform point cloud generated by a Cartesian
grid generator forms the computational domain of test problem with uniform point
spacing of 0.01. The effectiveness of modified boundary conditions for flow solvers
given by Eqs. 10, 11 and 12 can be seen clearly in the density contour plots obtained
from generic Euler and N-S codes in Fig. 5, 6 and 7 where the occurrenceMach stem
has been successfully eliminated [12].

Fig. 4 Schematics of forward-facing step

Fig. 5 Density contours with and without Mach stem using generic Euler code

Fig. 6 Pressure and density contours without Mach stem using N-S code
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Fig. 7 High diffusion problem: Stepped duct density contour levels

3.2 Low Diffusion Problem

The implementation of the newly developed boundary condition for low-diffusion
flow is now illustrated through classic examples of oblique shock reflection between
reflecting surfaces [13]. A shock wave incident at 29° to the left top corner undergoes
regular reflection between parallel reflecting surfaces of length 4.1 and height 1.0
at Mach 2.9 and emerges as reflected wave at nearly 24° at the right end as shown
in Fig. 8. The rigid surface is maintained at constant inlet conditions of P= 1/1.4,
ρ = 1, u = 2.9, v = 0 and the flow M2, behind the shock is rendered parallel to
the reflecting surfaces by deflecting the flow through angle θ1 = θ2 = 10.94° =
tan−1(v/u) by imposing (u, v, ρ, p)(x,1,t) = (2.61934, −0.50632, 1.6999, 1.5281)
on the upper surface with prescribed supersonic outflow condition. The excellent
agreement between oblique shock wave theory [13] and results from generic Euler
meshless code for pressure and density in the plane y = 0.5 is illustrated in Fig. 9.
In Fig. 10, the location (1.8 mm) and angles subtended at the reflecting surface (29°
and 24°) by the density shock wave match exactly with the theoretical computations
obtained from the θ–β–M relationship [14] for oblique shock wave reflection.

Fig. 8 Schematics of oblique shock reflection
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Fig. 9 Comparison of pressure and density between theory and computed value for oblique shock
reflection in the plane at y = 0.5

Fig. 10 Low diffusion problem: Reflecting shock density contour levels

4 Conclusion

A new edge-based two-step meshless scheme has been developed and validated
for both inviscid and viscous two-dimensional flows. The distinct advantages of
this solver are its ease of implementation in coding, applicability to hybrid codes
and modular computation of linearized meshless convective fluxes which can be
easily supplemented to the existing program as a routine. The versatility of the new
meshless solver is amply demonstrated by validation exercises for high and low
diffusion problems. Scope for extending the technique of state vector-controlled
flow simulation described in this paper to three-dimensional problems remains to be
explored.
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A Numerical Framework for the Solution
of Bivariate Population Balance
Equation—Model Implementation and
Verification

Deepak Kumar Singh and Gaurav Bhutani

1 Introduction

Population balance equation (PBE) describes the temporal behaviour of particulate
systems, which include phenomena such as aggregation, breakage, nucleation and
growth. The common application of the PBE is limited to the monovariate systems,
which assumes that the evolution of the particle number density function (NDF)
depends only on a single internal variable, which is the particle size in most applica-
tions. However, there are a number of industrial problems whose description requires
the formulation of a multivariate PBE, where two or more internal coordinates of the
particles are required to investigate the system. Aerosol systems, powders granula-
tion, synthesis of nanoparticles, mass transfer and chemical reactions in multiphase
systems, and extraction columns are common examples of suchmultivariate systems.

Considering the importance of multivariate PBE, in recent years, PBE solution
methods have been extended to solve multivariate problems; the solution methods
include Monte Carlo technique, classes and sectional method, and the method of
moments (MOM). The bivariate population balancemodel, which includes two inter-
nal variables, has been simulated in commercial andnon-commercial codes in the past
[5–7], however, the implementation is not available as a standard feature in any CFD
code. In general, moment-based methods have been found efficient in implemen-
tation and computational cost. Quadrature-based moment methods (QBMM) have
been developed as a particular class of very successful moment methods. QBMM is
able to overcome the closure problem of source term by using quadrature approx-
imations. Direct quadrature method of moments (DQMOM) is a popular variation
of QBMM that sustains its traits of simplicity and computational efficiency when
applied to bivariate (and multivariate) PBE, and it can estimate the dependency
of the particle velocities on the internal variables [4]. Considering these qualities,
DQMOM appears as the most effective choice for the solution of bivariate PBE.
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Although a MATLAB implementation of DQMOM exists in the literature [2], there
is no open-source implementation of DQMOM in any CFD code as a standard fea-
ture; an implementation of DQMOM through the use of user-defined functions in
Ansys Fluent was demonstrated though [3, 8].

Fluidity is an open-source finite element code formodelling fluid flows, which has
significant advantages over other software products. It allows the use of anisotropic
adaptive unstructured meshes resulting in the reduced computational cost of a simu-
lation compared to fixed-mesh simulations. The code is highly parallelised allowing
for multinode simulations on high-performance computing (HPC) clusters along
with the use of mesh adaptivity. To the best of the authors’ knowledge, no compre-
hensive study on the implementation of the DQMOM for the solution of bivariate
PBE problems in a finite element framework has been reported to date. In the present
paper, implementation of the DQMOM is presented in Fluidity for solving bivariate
PBE. The implementation is verified against analytical solutions, a few of which
have been developed as a part of this work.

2 Model Details

2.1 Bivariate PBE and DQMOM

The general form of bivariate PBE is given as

∂n(ξ , x, t)

∂t
+ ∂

∂xi
〈ui |ξ〉n(ξ , x, t) − ∂

∂xi

(
Dx (x, t)

∂n(ξ , x, t)

∂xi

)
= Sξ (ξ , x, t),

(1)
where x is the position vector and ξ = (ξ1, ξ2) represents the internal coordinate vec-
tor for the bivariate PBE, which models the evolution of the number density function
n(ξ , x, t). 〈ui |ξ〉 represents mean velocity field of dispersed phase conditional to
internal coordinates; particles move in the physical space with this velocity field. Dx

is the spatial diffusion tensor, and Sξ (ξ , x, t) is the source term containing deriva-
tives and integral with respect to ξ . These include all possible transformations in the
dispersed phase such as aggregation, breakage, nucleation and growth.

The DQMOM approximation for the bivariate NDF can be written as [4]

n(ξ , x, t) ≈
N∑

α=1

wα(x, t)δ(ξ1 − 〈ξ1〉α(x, t))δ(ξ2 − 〈ξ2〉α(x, t)), (2)

where α denotes the DQMOM quadrature node, with the weights as wα and 〈ξ1〉α
and 〈ξ2〉α as the quadrature abscissas. Weights and quadrature abscissas are scalar
fields in the external coordinate space. Using Eq. (2), the moments of the NDF can
be estimated as follows:
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mkl =
∫ +∞

−∞

∫ +∞

−∞
ξ k
1 ξ l

2n(ξ , x, t)dξ ≈
N∑

α=1

wα〈ξ1〉kα〈ξ2〉lα (3)

The quadrature approximation of NDF, as shown in Eq. (2), when substituted in
the bivariate PBE (Eq. (1)), followed by taking its (k, l)th moment gives

N∑
α=1

[
(1 − k − l)〈ξ1〉kα〈ξ2〉lαaα + k〈ξ1〉k−1

α 〈ξ2〉lαb1α + l〈ξ1〉kα〈ξ2〉l−1
α b2α

]

=
N∑

α=1

[
k(k − 1)〈ξ1〉k−2

α 〈ξ2〉l−1
α C12α + l(l − 1)〈ξ1〉kα〈ξ2〉l−2

α C22α
] + S̄(N )

kl ,

(4)

where Cαβγ = Dx
∂〈ξβ 〉α

∂xi

∂〈ξγ 〉α
∂xi

wα and S̄(N )
kl = ∫ +∞

−∞
∫ +∞
−∞ ξ k

1 ξ l
2sξ (ξ , x, t)dξ1dξ2.

The linear system shown in Eq. (4) is solved for aα , b1α and b2α , which are then
used as source terms to evaluate the weights (wα) and weighted abscissas (ζ1α =
wαξ1α and ζ2α = wαξ2α) using the following transport equations:

∂wα

∂t
+ ∂

∂xi
(〈ui 〉αwα) − ∂

∂xi

(
Dx

∂wα

∂xi

)
= aα, (5)

∂ζ1α

∂t
+ ∂

∂xi
(〈ui 〉αζ1α) − ∂

∂xi

(
Dx

∂ζ1α

∂xi

)
= b1α, (6)

and
∂ζ2α

∂t
+ ∂

∂xi
(〈ui 〉αζ2α) − ∂

∂xi

(
Dx

∂ζ2α

∂xi

)
= b2α. (7)

Details on the above can be found in Marchisio and Fox [4]. Since the number of
unknowns in the vector { aα , b1α , b2α } is 3N , hence an equal number of equations
are required in the linear system in Eq. (4). This is achieved by taking 3N moment
sets in Eq. (4) as different (k, l) sets.

2.2 Finite Element Formulation

The strong form of the partial differential equation is transformed into a weak form
by multiplying it with a test function and integrating over the complete volume 	.
For instance, the weak form of the transport equation for weights is obtained using
a test function ϕ and integrating over the domain 	:

∫
	

ϕ

(
∂wα

∂t
+ ∂

∂xi
(〈ui 〉αwα) − ∂

∂xi

(
Dx

∂wα

∂xi

)
− aα

)
= 0. (8)



542 D. K. Singh and G. Bhutani

The above equation is discretised using a finite approximation forwα , given aswα =∑Nnodes
j=1 w

j
αϕ j , where ϕ j are basis functions for weight and w

j
α are the coefficients,

which need to be determined. The known source term is also projected on the FE
space as aα =

∑Nnodes
j=1 a j

αϕ j . The final discretised equation, written in matrix form, is
given as

M
dwα

dt
+ A(ui )wα + Kwα + Saα = 0, (9)

whereM is themassmatrix, A as the advectionmatrix, K as the diffusionmatrix, and
S as the source term matrix. The unknown weight vector wα is determined through
the solution of this matrix equation. A similar finite element formulation is applied
to the solution of transport equations for the weighted abscissas ζ1α and ζ2α .

3 Results and Discussion

3.1 Homogeneous Aggregation

Homogeneous bivariate PBE can be written as

∂n(ξ1, ξ2, t)

∂t
= Sξ (ξ1, ξ2). (10)

The source term for homogeneous aggregation of bivariate PBE is

Sξ (ξ1, ξ2) = β0

2

∫ ∞

0

∫ ∞

0
n(ξ ′

1, ξ
′
2)n(ξ1 − ξ ′

1, ξ2 − ξ ′
2)dξ ′

1dξ ′
2

−β0n(ξ1, ξ2)

∫ ∞

0

∫ ∞

0
n(ξ ′

1, ξ
′
2)dξ ′

1dξ ′
2,

(11)

where a constant aggregation kernel β0 has been considered.
Applying (k, l)th moment transform on Sξ (ξ1, ξ2), gives

S̄kl = β0

2

∫∫∫∫ ∞

0
[(ξ1 + ξ ′

1)
k(ξ2 + ξ ′

2)
l − ξ k

1 ξ l
2 − (ξ ′

1)
k(ξ ′

2)
l]

×n(ξ ′
1, ξ

′
2)n(ξ1, ξ2)dξ ′

1dξ ′
2dξ1dξ2.

(12)

Substituting the DQMOM approximation for the NDF, as shown in
Eq. (2), in Eq. (12) results in

S̄(N )
kl = β0

2

N∑
α=1

N∑
γ=1

wαwγ [(〈ξ1〉α + 〈ξ1〉γ )k(〈ξ2〉α + 〈ξ2〉γ )l − 〈ξ1〉kα〈ξ2〉lα − 〈ξ1〉kγ 〈ξ2〉lγ ].

(13)
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Two cases, polydisperse and monodisperse initial NDF, were used to verify the
implementation of this homogeneous aggregation case, which are presented next.

3.1.1 Case 1—Polydisperse Initial NDF

In this case, the bivariate DQMOM implementation in Fluidity, performed as a part
of this work, is verified for a homogeneous aggregation PBE with polydisperse
initial NDF. The initial NDF in the present case was represented as a DQMOM
approximation with N = 2 with w1(0) = 0.75 and w2(0) = 0.25, and 〈ξ1〉1 = 3.0,
〈ξ1〉2 = 2.0, 〈ξ2〉1 = 4.0, and 〈ξ2〉2 = 1.0, which resulted in a non-singular linear
system. The constant aggregation kernel β0 = 1 was assumed in this case. Figure1a
and b show the evolution of moments m00 and m10. A very good agreement can be
seen between the Fluidity results and the analytical solution, which is detailed in
Appendix 1. The prediction of moment m20 and error in the numerical solution are
shown in Figs. 2a and 2b, respectively. The accuracy of the numerical solutions is
excellent, which is confirmed by the low percentage relative error in the solution.

The evolution of a moment of global order three—m30—is presented in Fig. 3.
During the construction of the linear system in Eq. (4) with 6 unknowns, the fol-
lowing (k, l) set was used: {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2)}, which correspond to
pure moments. Since 6 equations are required, three options for the sixth member
of the (k, l) set were tried, which included (2, 1), (2, 2) and (3, 2), correspond-
ing to moments of global order three, four and five, respectively. A comparison of
the numerical solution for the evolution of m30 is presented for these three cases.
Numerical solution with (2, 1), i.e. third order, predicts the solution most accurately.
In comparison, the predicted numerical solution with fourth and fifth order (k, l)
sets over-predict the value of m30. In general, it was noticed that the prediction of a
moment (m30 in the present case) is excellent if the order of the sixth member of the
(k, l) set is equal to the order of the moment of interest; the result is over-predicted
if the order of the sixth member is higher than the order of the moment of interest.

3.1.2 Case 2—Monodisperse Initial NDF

To show the effectiveness of Fluidity in handling singular initial conditions, a
monodisperse initial NDF n(ξ1, ξ2, 0) = δ(ξ1 − 1)δ(ξ2 − 1), was considered [4]. To
surpass singularity, arbitrary perturbations were applied to abscissa values. Figure4
shows an excellent agreement between Fluidity results and the analytical solutions
for the moments m11, m00 and m10.

To demonstrate the effect of perturbation, three sets of perturbations to provide
initial abscissa values were used, as shown in Fig. 5. For the Fluidity solution best
matching the analytical solution, perturbation set was chosen in such a way that
initial values of moments m10 and m01 do not change after perturbing the abscissa
values. Initial values of moments m10 andm01 were close to 1, but not equal to 1, for
other sets of perturbations.
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Fig. 1 Plots for the time
evolution of m00 and m10 for
homogeneous aggregation
(Case 1) with N = 2

(a) Plot of m00

(b) Plot of m10

3.2 Homogeneous Breakage

The source term for homogeneous breakage with constant breakage kernel (a0) is

Sξ (ξ1, ξ2) = a0

∫∫ ∞

0
n(ξ ′

1, ξ
′
2)b(ξ |ξ ′)dξ ′

1dξ ′
2 − a0n(ξ1, ξ2), (14)

where b(ξ |ξ ′) is daughter distribution function. Applying the moment transform on
the Sξ (ξ1, ξ2) gives
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Fig. 2 Plots for the time
evolution of m20 and error in
m20 for homogeneous
aggregation (Case 1) with
N = 2

(a) Plot of m20

(b) Errors in m20

S̄
(N )

kl = a0

∫∫∫∫ ∞

0
ξ k
1 ξ l

2b(ξ |ξ ′)n(ξ ′
1, ξ

′
2)n(ξ1, ξ2)dξ ′

1dξ ′
2dξ1dξ2

−a0

∫∫ ∞

0
ξ k
1 ξ l

2n(ξ1, ξ2)dξ1dξ2.

(15)

Using DQMOM approximation in the above:

S̄
(N )

kl = a0

N∑
α=1

[
b̄klα − 〈ξ1〉kα〈ξ2〉lα

]
wα, (16)
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Fig. 3 Prediction of m30 with N = 2 using the following (k, l) set: {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2)}.
Three options of the sixthmember of this set were tried: (2, 1), (2, 2) and (3, 2), which corresponded
to third, fourth and fifth-order moments

Fig. 4 Moment plot for homogeneous aggregation with N = 2 for monodisperse initial NDF
(Case 2). Initial conditions are w1(0) = 0.65 and w2(0) = 0.35, and 〈ξ1〉1(0) = 〈ξ1〉2(0) =
〈ξ2〉1(0) = 〈ξ2〉2(0) = 1. Fluidity results are compared against analytical solution
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Fig. 5 Effect of perturbation on the prediction of m20 for a monodispersed NDF. The moment is
estimated accurately for the perturbation set in which the initial values of moments m10 and m01
remain same after perturbing the initial values of abscissas

where b̄klα = ∫∫ ∞
0 ξ k

1 ξ l
2b(ξ |ξ ′)dξ1dξ2.

To verify the implementation of homogeneous breakage case in Fluidity, con-
stant breakage kernel (a0), and symmetric fragmentation with daughter distribution
b(ξ |ξ ′) = 2δ(ξ1 − ξ ′

1/2)δ(ξ2 − ξ ′
2/2) were used.

Example 1 Figure6a and b demonstrate the agreement between the analytical solu-
tions and numerical solutions of m00 and m10 for N = 3 with nine moments (m00,
m10, m01, m20, m11, m02, m03, m30, m22). Constant breakage kernel, (a0) = 1.0 was
used for this case. Initial values were w1 = 0.5, w2 = 0.1, w3 = 0.4, and 〈ξ1〉1(0) =
2.5, 〈ξ1〉2(0) = 3.5, 〈ξ1〉3(0) = 3.5, and 〈ξ2〉1(0) = 2.0, 〈ξ2〉2(0) = 10 and 〈ξ2〉3(0) =
2.70.

Example 2 Figure7 shows the variation of accuracy in numerical solutions of m11

using Fluidity with N = 2 and N = 3. Six moments (m00, m10, m01, m20, m02, m21)
with initial values w1(0) = 0.6, w2(0) = 0.4, and 〈ξ1〉1(0) = 1.5, 〈ξ1〉2(0) = 2, and
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Fig. 6 Plots of m00 and m10
for homogeneous breakage
for Example 1 with N = 3

(a) Plot of m00

(b) Plot of m10

〈ξ2〉1(0) = 1.0, 〈ξ2〉2(0) = 2 for N = 2 were used. Moments and initial conditions
were the same as described in Example 1 for N = 3. a0 = 1.0 was used for both N
= 2 and N = 3. An improvement in accuracy can be seen clearly by using DQMOM
approximation with more number of quadrature points.

Example 3 To demonstrate the relation between choice of moment sets and accu-
racy of numerical solutions, in Fig. 8 three numerical solutions of moment m22 are
compared to the analytical solution. The first five pure moments (m00, m10 , m01,
m20,m02) were used in all three cases and the last four moments were of global order
three (m21, m12 , m30, m03), global order four (m22, m31 , m13, m40) and global order
five (m23, m32 , m41, m14) for cases 1, 2 and 3, respectively. N = 3 was used in this
analysis. Initial conditions were w1 = 0.5, w2 = 0.1, w3 = 0.4 and 〈ξ1〉1(0) = 2.5,
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Fig. 7 Plots of m11 for
Example 1 with N = 2 and N
= 3 for homogeneous
breakage. Accuracy of m11
increases with N = 3 for a
proper set of nine moments

(a) Plot of m11 for N = 2

(b) Plot of m11 for N = 3

〈ξ1〉2(0) = 3.5, 〈ξ1〉3(0) = 3.5 and 〈ξ2〉1(0) = 2.0, 〈ξ2〉2(0) = 10 and 〈ξ2〉3(0) = 2.70.
a0 = 1.0 was used for this case. Figure8 shows that the prediction of m22 is quite
accurate if moments of global order four are used for last four moments, while m22

is over-predicted and under-predicted for using moments of global order five and
moments of global order three for last four moments, respectively.
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Fig. 8 Predictions ofm22 using the first five puremoments (m00,m10 ,m01,m20,m02 ) and different
higher global order moments for the last four moments—global order three, global order four and
global order five. N = 3 was used in this case

4 Conclusion

Implementation of theDQMOM to solve bivariate PBE in a finite element framework
is presented in this work. The analytical solutions to moments were used for verifica-
tion of bivariate DQMOM implementation in this open-source code—Fluidity. The
verification was performed for a bivariate PBE with homogeneous aggregation and
homogeneous breakage terms. In both these cases, the Fluidity results converged to
the analytical solutions. An important advantage of using Fluidity is that, even in the
implementation of DQMOM for bivariate applications, it is capable of maintaining
the accuracy of numerical solutions and effectiveness of handling singularity. The
effect of the choice of moment set and the number of DQMOM nodes is demon-
strated clearly in the present implementation of the DQMOM solution to bivariate
PBE. Based on the results obtained in the present work, it can be concluded that
the open-source Fluidity code provides an efficient alternative to the other available
CFD packages for solving population balance equation, which is not available as a
standard feature in any other code.
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Appendix 1: Analytical Solutions

Homogeneous Aggregation Problem

Bivariate PBE for homogeneous aggregation with constant aggregation kernel is

∂n(ξ1, ξ2, t)

∂t
= β0

2

∫∫ ∞

0
n(ξ ′

1, ξ
′
2)n(ξ1 − ξ ′

1, ξ2 − ξ ′
2)dξ ′

1dξ ′
2

−β0n(ξ1, ξ2)

∫∫ ∞

0
n(ξ ′

1, ξ
′
2)dξ ′

1dξ ′
2,

(17)

and thus the transpo*rt equation for the moment of order {k, l} is
dmkl

dt
= β0

2

∫∫∫∫ ∞

0
[(ξ1 + ξ ′

1)
k(ξ2 + ξ ′

2)
l − ξ k

1 ξ l
2 − (ξ ′

1)
k(ξ ′

2)
l]

×n(ξ ′
1, ξ

′
2)n(ξ1, ξ2)dξ ′

1dξ ′
2dξ1dξ2.

(18)

For the moment of order {k, l} = {0, 0}, {1, 0}, {2, 0}, the following equations are
obtained:

dm00

dt
= −β0

2
m2

00,

dm10

dt
= 0,

dm20

dt
= β0m

2
10,

(19)

and similar equations can be obtained for the other moments. Analytical solutions
for the moments can be obtained by integrating the above equations.

Analytical Solution to the Homogeneous Breakage Problem
for the Verification of Bivariate DQMOM Implementation

Bivariate PBE for homogeneous aggregation with constant aggregation kernel is

∂n(ξ1, ξ2, t)

∂t
= a0

∫∫ ∞

0
n(ξ ′

1, ξ
′
2)b(ξ |ξ ′)dξ ′

1dξ ′
2 − a0n(ξ1, ξ2). (20)

and thus the transport equation for the moment of order {k, l} is
dmkl

dt
= a0

∫∫∫∫ ∞

0
ξ k
1 ξ l

2b(ξ |ξ ′)n(ξ ′
1, ξ

′
2)n(ξ1, ξ2)dξ ′

1dξ ′
2dξ1dξ2 − a0mkl . (21)
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Using b(ξ |ξ ′) = 2δ(ξ1 − ξ ′
1/2)δ(ξ2 − ξ ′

2/2), for the moment of order {k, l} we can
write

dmkl

dt
= a0(2

1−k−l − 1)mkl . (22)

Analytical solution for the moment of order {k, l} can be obtained by integrating the
above equation.
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Application of Novel Radial Thresholding
Method for the Segmentation of Different
Phases from X-Ray Microtomographic
Images of Concrete

Vishwas Chhimpa, Subhasis Pradhan, and Sudhirkumar V. Barai

1 Introduction

In general, concrete can be segmented into three major components, that is, voids,
aggregates andmortar. Aggregates and air voids are surrounded by themortar matrix.
The mechanical and morphological characteristics of these components govern the
macro-level performance of concrete. The distribution of aggregates and voids acts as
a key factor for characteristic strength, crack propagation and long-term performance
(durability) of concrete [1].

X-raymicrotomography (XRT) is an advanced non-destructive imaging technique
using which very high-resolution images of cross-sectional and three-dimensional
(3D) internal structures of a concrete specimen can be analysed. However, to obtain
themorphological description of concrete, it is necessary to segment the three compo-
nents effectively of generated XRT images. Generally, a binarization process is used
to segregate the three discrete components.

Tashman et al. [2] used IPBasic sub-programming language of Visual Basic to
write the macros for the image analysis and study the horizontal and vertical distribu-
tion of air voids in asphalt mixes by applying image analysing techniques on X-ray
computed tomography images of the same. Gallucci et al. [3] analysed the three-
dimensional images obtained from synchrotron microtomography to quantify the
anhydrous cement content, porosity and connectivity and tortuosity of pore network
of cement paste. It was observed that the variation in spatial resolution and contrast
resolution of the scanned images due to the age of the concrete influence the determi-
nation of the degree of pore connectivity. Zelelew and Papagiannakis [4] discussed an
automated digital image processing (DIP) algorithm called volumetric-based global
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minima (VGM) thresholding algorithm for processing asphalt concrete (AC) XRT
images. Zelelew et al. [5] presented a comparative evaluation of two image segmen-
tation techniques: adaptive enhancement-based thresholding algorithm (AETA) and
volumetric-based thresholding algorithm (VTA) for processing asphalt concrete
microstructure images obtained from X-ray computed tomography. Kapitány and
Barsi [6] proposed an efficient method to determine the presence of dense objects
(aggregates) inside a composite material (asphalt and concrete core samples) of the
computed tomography slices using fast Fourier transformation. Fonseca and Scherer
[7] presented a method to quantify the volume, spacing and size distribution of the
air bubbles in mortar or concrete using automatic image analysis. Otsu’s method
of thresholding was adopted by Fonseca and Scherer to process the binary images.
Hashemi et al. [8] discussed the difficulties in segmenting the various phases in X-ray
tomographic images because of the presence of noise in the obtained tomographic
representation. They used simultaneous region growing method to reconstitute the
three-dimensional segmented image of granular materials.

2 Research Significance

It is a challenge to segregate the three components of concrete accurately with less
computational effort. The present study deals with addressing this problem. In this
context, the images are obtained by scanning the concrete specimen in X-ray micro-
tomography. The objective is to segregate the three phases with less computation
effort and quantify the same.

3 Background

3.1 X-Ray Microtomography

Beer-Lambert law which depicts a relationship between the absorption of light and
the properties of the material through which it is passing is the fundamental principle
of X-ray microtomography (XRT). XRT is functionally identical to the computed
tomography (CT) scan especially used in medical science. In X-ray microtomog-
raphy, the sample is irradiated with X-ray beams, and a cross-sectional image or a
sequence of such images is generated by using mathematical models. Basically, the
2D X-ray absorption images are obtained by relative rotation between the sample
and the X-ray source.
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3.2 Bit Depth of an Image

A digital image is a collection of pixels array. Each pixel stores the information
regarding the brightness/darkness (tone) of the image at that portion in the form of
an integer, known as the grey value of the pixel. This grey value ranges from 0 to
255 (28 tonnes) for an 8-bit image and 0–65535 (216 tonnes) for a 16-bit image and
represents different shades of grey. For an 8-bit image, a grey value of 0 represents
the pure black colour (tone of grey); on the other hand, a grey value of 255 represents
the pure white colour.

3.3 Filtering/De-noising

De-noising/filtering is the removal of unwanted noisy pixels from an image to restore
the original image. Pre-processing of the raw images is an essential step before the
analysis of the images.However, the uncontrolled pre-processingmay result in loss of
necessary information from the image. There are number of filtering techniques; such
asmean filtering, median filtering andGaussian filtering. The principle of themedian
filter is to run through each pixel entry, replacing each pixel value with the median
of the neighbouring entries. The property of median filtering allows preserving the
edges while removing noise, which is the primary reason for its use.

3.4 Threshold Grey Value

In an image, the grey value at a point is a representative of the material density at that
point. Grey value thresholding is the simplest of themethods for image segmentation.
Threshold grey value is a characteristic grey value such that all the pixels having grey
value lower than its value will be characterized as one phase.

3.5 Beam Hardening

Beam hardening is the phenomenon occurring when an X-ray beam comprising
polychromatic energies passes through an object, resulting in selective attenuation
of lower energy photons. The effect is conceptually similar to a high-pass filter, in that
only higher energy photons are left to contribute to the beam, and thus mean beam
energy is increased. The low-energy X-ray photons are attenuated more easily, and
the remaining high-energy photons are not attenuated as easily. As a result, regions
interior to an object are traversed with higher energy X-rays than regions towards
the edge, making the edges effectively more attenuating than interiors.
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Masked ImageOriginal XRT image Circular Mask Denoised Image

Nl-means 
denoising

Fig. 1 Pre-processing steps of raw image

4 Methodology

The X-ray microtomography test was performed in an environmentally controlled
chamber of ‘GEPhoenixV|tome|x s’,which is an industrial high-resolution computed
tomography and X-ray system. The cylindrical concrete specimen was placed on a
rotating stage. The X-ray source was set at a voltage of 150 kV and a tube current of
100 µA. For image analysis, two-dimensional 8-bit greyscale images of the scanned
specimens were collected. In the present study, the images of the bottom to top plane
were considered for the analysis. Hence, the collected images are circular in shape.

4.1 Pre-processing of the Raw Images

The sample raw image consists of various noise and backgroundwhich are not impor-
tant for the segregation of phases. Thus, pre-processing plays an important role in
analysis of image. But sometimes pre-processing can remove some necessary infor-
mation, so we should apply it bare minimum for less possible error. The following
steps are followed in the pre-processing to obtain the denoised image and the steps
are illustrated in Fig. 1.

(a) Cropping: Original size of raw image consisting of 5000× 3452 pixels is then
reduced to 600 × 600 pixels image of circular section.

(b) Background Removal: The original XRT image contains unnecessary edges
and surface voids. To remove these, a mask of small diameter is taken, which
is manually calculated and used to create a perfect masked sample image.

(c) Noise Removal: A non-local means (Nl-means) denoising filter is used to
remove the unwanted noise from the masked image.

4.2 Void Segregation

After pre-processing, the source images are converted to several binary images by
thresholding the source image with thresholds starting at minimum threshold. These
thresholds are incrementedby threshold stepuntilmaximumthreshold to successfully
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segregate all the voids. So, the first threshold is (minimum threshold), the second
is (minimum threshold+ threshold step), the third step is (minimum threshold+ 2×
threshold step), and so on. Moreover, while determining the threshold, a histogram
of the de-noised image is plotted and any sudden jump in the number of pixels for
certain greyscale value is analysed manually. In each binary image, the connected
white pixels are grouped together and called as binary blobs. The centres of the binary
blobs in the binary images are computed, and blobs located closer than minimum
distance between blobs are merged. The centres and radii of the new merged blobs
are computed and returned.

4.3 Aggregates Segregation

Aggregates cannot be segregated using simple thresholding. Thresholding for the
aggregates required the knowledge of distribution of beam hardening effect. The
following methods are applied earlier for the segregation of aggregates from the
mortar;

• Using the greyscale value correction by employing the following equation:

GVnew(r) = GV (r) − GV p(r)

GVa(r) − GV p(r)
(1)

• Using machine learning algorithm to segregate mortar and aggregate pixels.

Both methods consist of collection of training sample for better efficiency.
Greyscale value correctionmethodwill have to take care of changed greyscale values
of selected pixels of aggregates and mortar if sample is different. Similarly, for
machine learning algorithm, a huge collection of training data is required for proper
working in different sample images. The versatility decreases with the use of training
data from images of same sample.

With the current rise and demand of speed in industrial field, we require a method
which will provide efficiency in different types of samples with less computational
time. So, in the present study, a method known as contrast threshold is used, which
works on the principle similar to our own eyes to detect and distinguish the phases
in one go, that is, the change in contrast. The contrast threshold can be used even
when the filter is passed through radially, which will reduce the requirement of
computational power while moving the filter through row-by-row. However, the
efficiency of aggregate detection will be higher in latter case due to the inefficient
segregation at outskirts of radius as rotation will skip Xc × r pixels, where X is the
least angle of rotation (in radian) and r is the radial distance of a point from centre.

A graph of greyscale vs radius is observed in one specific direction (Fig. 2).
It shows some sudden jumps which represent a sudden change of contrast, that
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Fig. 2 Greyscale distribution in a horizontal line through a sample image

is, a phase change. The changes are detected using a simple function: |GVA(n) −
GVM(n − 1)|−L〉0, where L is an average jump value which is taken 12 in our case.
GVA is the grey value of aggregate andGVM is the average greyscale value of mortar
found from the present study. The initial value of GVM is considered as 60.

If the aforementioned condition satisfies, then a phase change occurred and the
pixels are detected as aggregate until other change exists. As a change of 1 degree
is taken per cycle then the total run cycle will be 300 × 300 × 450 which is smaller
than 600 × 600 × 450. This proved that only small computational time is required
than previous methods. But efficiency will be lower; hence we used the row-by-row
moving with contrast threshold filter.

5 Results and Discussion

The void content was estimated by segregating the voids using simple threshold
method, as discussed in Sect. 4.2. The detected voids in the pre-processed image can
be seen in Fig. 3, where the accuracy in capturing the size and shape of the voids by
the present method is justified. From this study the threshold grey value to detect all
the voids was found to be 76. The void content using threshold method is estimated
to be 0.91% for the 28 days cured specimen. The result obtained from VGStudio
MAX 2.2 commercial software [9] is 0.96%. The difference in detecting the voids
by the present method is about 5.5%, which infers the appropriateness of the used
method.

The contrast threshold method discussed in Sect. 4.3 was applied in the radial
direction to segregate aggregates and mortar. The detected aggregates, mortar and
voids are shown in false colour in Fig. 4 for a sample image. The aggregate content
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Denoised image Grey void distribution

Fig. 3 Detected voids in binary image

Fig. 4 a Original image, b detected aggregates and voids

estimated in this method is 49.19%. The error in determining the aggregate quantity
is approximately 0.6% as compared to the actual aggregate content.

6 Conclusions

The primary objective of this study was to segregate three phases, that is, voids,
aggregate andmortar of concrete usingXRT images. First, the XRT images were pre-
processed to avoid the presenceof anynoise. Subsequently, data is used to detect voids
using simple threshold-based methodology and the detected voids content exhibited
a good correlation with the results obtained from the commercial software VGStudio
MAX 2.2. The segregation of aggregates and mortar by this method is not reliable
owing to the association of beam hardening effect. In this context, a contrast thresh-
olding method is proposed in the present study. The developed contrast threshold
technique detected the aggregates to a decent level of accuracy. Consequently, the
segregation of all the three phases of concrete in the XRT images using thresholding
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approach and novel method of contrast and radial threshold techniques is achieved
with satisfactory accuracy. The study will be helpful to investigate further on the
durability aspects of concrete.
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Design of a Nonlinear Energy Harvesting
Dynamic Vibration Absorber

Soumi Bhattacharyya and Shaikh Faruque Ali

1 Introduction

Structural vibrations are undesirable from safety and serviceability considerations.
Several research works have been carried out over the past decades by engineers on
different vibration control techniques such as isolation, passive energy dissipation
devices, and active control systems to safeguard structures [1]. To ensure proper appli-
cation of these technologies, an efficient round the clock structural health monitoring
system plays a key role in which sensors are deployed all through the structure, some-
times at remote, inaccessible locations, which are exposed to extreme environmental
conditions. Presently, wireless sensors work on battery power which is hazardous to
the environment and also their replacement at remote locations is not cost-effective.
One cost-effective and environment friendlyway out of this problem is tapping power
from ambient energy resources and using it for powering sensors which is known as
energy harvesting [2].

Harvesting energy from the ambient vibration has garnered prominence since the
last decade owing to its advantages in powering the wireless sensors [3, 4]. Three
basic vibration energy harvesting mechanisms have been reported in the literature,
namely, the electromagnetic [3, 5], electrostatic [6], and piezoelectric transduction
[4, 7]. This paper focuses on the piezoelectric harvesters (PEHs) in which piezo-
electric material is used to transform the mechanical strain, generated by ambient
vibration around the power harvesting device, into electrical charge. This method of
piezoelectric transduction has received much attention because of its simplicity in
design and ability to have higher power densities [8, 9]. PEHs are best suitable for
high-frequency application and where voltage is a primary concern.
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Piezoelectric energy harvesting exploiting linear devices has been investigated
widely and explicit expressions for optimal parameters are available in the literature
[8–10]. One of the major drawbacks of linear energy harvesters is that they are effi-
cient only when the excitation frequency is around the resonance frequency [11].
However, harvesters with a broadband or adaptive response [10, 12] and multiple
harvesters [13, 14] are likely to be beneficial in case ofmistuned condition or nonhar-
monic excitations. In broadband energy harvesters, nonlinear structural systems are
used to maximize the harvested energy over a wide range of excitation frequencies
[9, 10, 12, 15], which is under study in this paper.

In literature, detailed investigations have been carried out on structural control as
well as energy harvesting. However, very less number of studies have been found on
nonlinear controller-harvesting combined system. The main objective of this paper
is to design a nonlinear device, which can control the vibration of a primary sin-
gle degree of freedom (SDOF) system as well as generate energy from ambient
vibration. For this purpose, a device is designed combining a conventional nonlinear
dynamic vibration absorber (DVA) and the mechanism of piezoelectric transduction.
DVA is a well-established passive vibration control device that undergoes large dis-
placements in order to dissipate the energy from the primary structure. This large
displacement is utilized to generate energy by using piezoelectric material. To be
specific, in this paper, a nonlinear energy harvesting dynamic vibration absorber
(EHDVA) is proposed and designed to control the vibration of a base-excited SDOF
primary structure. The modeling of the SDOF-EHDVA system and the time-domain
formulation of the same are done. A detailed numerical study with nondimensional
equations of motions is carried out. The important design parameters are identified
and the optimal values of those parameters are evaluated. The design procedure for
EHDVA system is elaborated for an example SDOF primary system. Finally, the
performance of the designed EHDVA system is evaluated numerically.

2 Modeling of SDOF-Nonlinear EHDVA System
and Formulation

The mathematical model for the SDOF-nonlinear DVA system with piezoelectric
harvester is shown in Fig. 1, where the mass, stiffness, and viscous damping of the
primary SDOF system are represented by m0, k0 and c0, respectively. The EHDVA
system of equivalent mass mh and equivalent viscous damping ch is considered to
be attached with the primary system by a nonlinear hard spring which is modeled
as Duffing oscillator. The linear and nonlinear components of the spring force are
represented as kh1 and kh2, respectively, and the force-displacement relationship is
described by Fs = kh1x + kh2x3, kh1 > 0 and kh2 > 0. The piezoelectric element of
capacitance Cp and load resistance RL is attached to the nonlinear DVA system.
The coupling between electrical and mechanical part of the harvester is represented
by θ. x0(t), and xh(t) are the absolute displacements of the primary SDOF and
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Fig. 1 Schematic diagram
of the energy harvesting
dynamic vibration absorber
attached to a host vibrating
system (primary structure)

DVA system, respectively, considering the primary system to be subjected to a base
acceleration of z̈(t). The voltage across the load resistor is represented by v.

The equations of motion of the primary SDOF-EHDVA system subjected to base
acceleration z̈0 are as follows:

m0(ẍ0 + z̈0) + c0 ẋ0 + k0x0 − ch(ẋh − ẋ0) − kh1(xh − x0) − kh2(xh − x0)
3 = 0 (1)

mh(ẍh + z̈0) + ch(ẋh − ẋ0) + kh1(xh − x0) + kh2(xh − x0)
3 − θv = 0 (2)

v̇ + v/(RLCp) + θ(ẋh − ẋ0)/Cp = 0 (3)

A sinusoidal base excitation of displacement amplitude a, force amplitude F and
frequency ω rad/s is considered. Introducing nondimensional coefficients, damp-
ing ratio of the primary system, ζ0 = c0/2m0ω0, natural frequency of the primary
system, ω0 = √

k0/m0, damping ratio of the DVA system, ζh = ch/2mhωh , nat-
ural frequency of the linear part of the nonlinear DVA system, ωh = √

kh1/mh ,
mass ratio,μ = mh/m0, tuning ratio, ν = ωh/ω0, nonlinear coefficient,α = kh2/kh1,
nondimensional frequency, Ω = ω/ω0, nondimensional time, τ = ω0t , f = F/k0,
q1 = x0/ f , q2 = xh/ f and q3 = vθ/F , the following equations are obtained.

q ′′
1 + 2ζ0q

′
1 + q1 − 2ζhμν(q ′

2 − q ′
1) − ν2μ(q2 − q1) − α f 2μν2(q2 − q1)

3 = cos(Ωτ )

(4)

q ′′
2 + 2ζhν(q ′

2 − q ′
1) + ν2(q2 − q1) + α f 2ν2(q2 − q1)

3 − q3/μ = cos(Ωτ ) (5)

CpRLω0q
′
3 + q3 + RLθ

2ω0(q
′
2 − q ′

1)/k0 = 0 (6)



566 S. Bhattacharyya and S. F. Ali

Here, the derivatives of q1, q2, and q3 with respect to the nondimensional time τ
are presented as q ′

1, q
′′
1 , q

′
2, q

′′
2 , and q ′

3, respectively. Load resistance is evaluated by
RL = 1/(ωhCp).

3 Nonlinear EHDVA—Tuning Criterion

To design the EHDVA system, it is necessary to know the effect of nonlinearity on
DVA responses and the output voltage generated. In order to obtain the responses
of DVA-harvester system, a frequency sweep study is carried out by numerical sim-
ulation considering α = 0.8, kh1 = 0.0187 N/m [16], ωh = 1 rad/s, and ζh = 0.02.
The formulation presented in Sect. 2 is modified for DVA-harvester system and used
for this study. The nondimensional equations of motion for EHDVA system are as
follows:

q ′′
2 + 2ζhq

′
2 + q2 + α f 2h q

3
2 − q3 = cos(Ωhτh) (7)

CpRLωhq
′
3 + q3 + RLθ

2ωhq
′
2/kh1 = 0 (8)

where fh = Fh/kh1, nondimensional frequency,Ωh = ω0/ωh = 1/ν and nondimen-
sional time, τh = ωht . Fh is amplitude of force at the base of EHDVA induced by
motion of the primary SDOF system which is considered as 0.25 N.

A d31 macro fiber composite (MFC) of type M8557-P2 is considered as piezo-
electric material for this study. The values of the parameters of DVA system and
MFC used for the simulation study are Cp = 342.93 nF, width of MFC patch
b = 0.064 m, Young’s modulus Ey = 15.857 × 109 N/m2, piezoelectric strain coef-
ficient d31 = 170 × 10−12 C/N, distance between MFC bottom surface to neutral
axis of supporting beam hm = 0.0002 m. The value of electromechanical coupling
is evaluated by θ = bEyd31(2hm + 0.0003)/2 [17].

The amplitude of the nondimensional displacement of EHDVA is plotted over a
range of nondimensional excitation frequency,Ω , as shown in Fig. 2. FromFig. 2, the
hardening effect of the Duffing type nonlinear spring is clearly visible. For forward
sweep the jump is occurring at Ωh = 6, and for reverse sweep the jump frequency is
Ωh = 4 roughly. It is also observed that the displacement response is higher over a
wide range of frequency, namely, betweenΩh = 0.6 andΩh = 3.6. Higher displace-
ment of EHDVA ensures more harvested energy and better control. Hence, to imple-
ment this nonlinear EHDVA system to a primary SDOF system, an equivalent range
of tuning ratio from ν = 0.278 to ν = 16.667 can be adopted asΩh = ω0/ωh = 1/ν
(see Eqs. 4 and 7). It is also to be noted that, this nonlinear EHDVA provides the
flexibility in selection of tuning ratio with the primary SDOF structure and unlike
the linear DVA it will work in mistuned condition.

The displacement time history of nonlinear EHDVA is plotted in Fig. 3 considering
Ωh = 1 and compared with that of nonlinear DVA. The presence of the nonlinearity
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Fig. 2 Amplitudes of nondimensional displacement of EHDVA over a range of nondimensional
excitation frequency (Ωh)

Fig. 3 Nondimensional time histories of nondimensional displacement responses of nonlinear
EHDVA and nonlinear DVA

is observed from Fig. 3 for both the cases of EHDVA and DVA. It is also observed
that after reaching the steady state the response amplitude of DVA is higher than that
of EHDVA. This is the effect of an additional damping induced due to the presence of
the harvesting system. The time history for the actual power generated by the EHDVA
system is presented in Fig. 4 which shows that power of a steady-state amplitude 0.11
W is achieved for the given parametric values.
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Fig. 4 Time history of power generated by nonlinear EHDVA

4 Design and Performance Evaluation of EHDVA

The focus of this section is to design a nonlinear EHDVA, which can control the
vibration of a SDOF system and also generate power. For this study, a primary SDOF
system of mass m0 = 1 kg, natural frequency ω0 = 1 rad/s, and equivalent viscous
damping ratio ζ0 = 0.01 is considered. The force amplitude of sinusoidal excitation
at the base of theSDOFsystem is considered as F = 0.05N.The control performance
of EHDVA system is evaluated in terms of percent reduction in displacement of pri-
mary SDOF structure, which is the ratio of difference between steady-state response
amplitude of uncontrolled and controlled SDOF system to steady-state response
amplitude of uncontrolled SDOF system. To design the EHDVA for a SDOF system,
first the value of tuning ratio, ν, is selected from the range obtained from Fig. 2 as per
the required output responses of EHDVA (described in Sect. 3). Then the frequency
of the EHDVA is evaluated from ωh = νω0. As the linear component of the spring
force, kh1, is fixed as 0.0187 N/m, the mass of the EHDVA system is evaluated by
mh = kh1/ω2

h . Hence the mass ratio is μ = mh/m0. The values of these parameters
and the responses of the SDOF-EHDVA system is evaluated for a range of ν values,
obtained in Sect. 3, using the formulation presented in Sect. 2.

The variation in percent reduction in displacement of primary SDOF system with
the variation in ν value are presented in Fig. 5, which reveals the presence of an
optimum tuning ratio, νopt = 0.7, where the response reduction has the maximum
value of 87.95%.This is a satisfactory performance provided by the designedEHDVA
as a vibration absorber. At ν = νopt , the value of the mass ratio is μ = 0.038 and the
mass of the EHDVA system is 0.038 kg.
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Fig. 5 Variation in percent reduction in displacement of SDOF system over a range of tuning
ratio (ν)
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Fig. 6 Nondimensional time histories of uncontrolled and controlled nondimensional displacement
of primary SDOF system

For these optimum values of the design parameters, the time history analysis
is carried out for SDOF-EHDVA system. The uncontrolled and EHDVA-controlled
displacement time histories of the SDOF primary system are presented in Fig. 6. A
satisfactory controlling performance of the EHDVA is visible in Fig. 6. The time
history for actual power generated by the EHDVA is presented in Fig. 7, from which
it is observed that a steady-state power of amplitude 7.9 mW is generated by the
EHDVA system.
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Fig. 7 Time history of power generated by EHDVA attached to primary SDOF system

5 Conclusions

A design procedure is described for a nonlinear EHDVA system to mitigate the
vibration of a SDOF system while harvesting electrical energy from the vibration of
the primary system. A time-domain method is proposed for nondimensional analysis
and design for the coupled electromechanical nonlinear system.TheSDOF-nonlinear
EHDVA system is modeled considering a hardening type Duffing nonlinearity. The
numerical simulation study with harmonic base excitation shows the effect of non-
linearity in the responses of the EHDVA system which is used to harvest a higher
value of generated power over a broader range of excitation frequency. The effect
of the additional damping provided by the harvesting system attached to the DVA
is also observed. Tuning ratio is found to be the most important design parameter
for EHDVA. A sine sweep study with nondimensional frequency excitation pro-
vides the basis of selecting the value of tuning ratio from a broadband response
of EHDVA system. However, a sensitivity study on tuning ratio shows that while
designing, the optimal tuning ratio should be evaluated from the performance aspect
of EHDVA to control the vibration of primary system. The procedure to obtain the
values of other important design parameters such as mass ratio and mass of EHDVA
are described. Representative time histories of designed nonlinear EHDVA attached
to primary SDOF system show that a displacement reduction of 87.95% could be
achievedwhile generating a steady-state power of amplitude 7.9mW.Hence, the per-
formance of a designed nonlinear EHDVA system is satisfactory from both control
and harvesting aspects.
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Harvesting Energy from a Series
of Harvesters

Mohammad Reyaz Ahmad Vali and Shaikh Faruque Ali

1 Introduction

The idea of energy harvesting is to extract energy from the ambient sources that are
available in various forms [1]. In this paper, focus is onmechanical energy harvesting,
where energy is harvested from amechanical system that undergoes vibration. Vibra-
tional energy is omnipresent in nature and it is abundant in nature. It can be tapped
easily for harvesting energy. The harvested energy can be used for low-powered self-
sustaining sensors replacing battery-powered sensors for various wireless operations
such as structural healthmonitoring, environmental control, andmilitary applications
[2]. The maintenance costs related to replacement, recharge of batteries of battery-
powered sensors and manpower required for their maintenance are eliminated by
making use of this type of energy harvesting. Vibrational energy harvesting can be
achieved by means of electromagnetic, electrostatic, and piezoelectric transductions
[3–6]. This manuscript looks into a study related to electromagnetic energy har-
vester but nonetheless the study is a generic one and can be very well extended to
piezoelectric harvester or any set of energy harvesters.

A lot of early research on energy harvesting was on linear harvesting devices
[7, 8]. Linear harvesting devices can generate maximum power only at resonance. A
slight variation or mismatch between the ambient vibrating frequency and the natu-
ral frequency of the harvester can reduce the power harvested to a large extent [9].
Broadband energy harvesting gained importance because of this limitation. Broad-
band energy harvesting is achieved using various means [10]. Broadband is expected
when the harvester show nonlinearity with variation of excitation frequency [11–14].
Mistuning of the harvesters is another way of broadening harvester operating fre-
quency [15–17]. The system shows multiple peaks in its frequency response curve
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due to different natural frequencies of harvesters. This principle is used in the present
work by testing the system to different ranges ofmistuning percentages and then find-
ing out the bandwidths and peak power. Response of mistuned structure is observed
to be better than those of perfectly tuned structure. When series of pendulums are
considered and length of each pendulum is identical, natural frequency of each pen-
dulum is same.Mistuning is where it is expected the pendulums arewith same natural
frequency, but due to operational reasons they are slightly varying and not largely
varying. This gives rise to broadband energy harvesting.

Malaji et al. [15, 16] proposed parametric study on effect of mistuning on a 2 pen-
dulum system. Malaji et al. [15, 16] did the necessary groundwork and established
through experiments that mistuning is indeed an important factor to be considered
in analysis of multiple harvesters. In [17], parametric effect on frequency bandwidth
and magnitude of harvested power is studied through experiments and simulations.
Simulation is restricted to 20 pendulums and experiments are restricted to 5 pen-
dulums. It is shown through experiments and simulations that strong mechanical
coupling between harvesters enhances frequency bandwidth of operation compared
to a set of independent harvesters. It is also shown that the maximum total power
harvested by a set of harvesters saturates after a particular number of harvesters.

In this work, 100 pendulums are considered in a set of harvesters. Responses of
the harvester set in four different configurations are studied. Frequency response
functions of voltage and power are plotted, analyzed, and compared. In this analy-
sis, special focus is given to mistuned cases where harvester lengths are randomly
generated such that they form a Gaussian distribution. Studies are conducted for dif-
ferent values of standard deviation, coupling stiffness. Plots representing the mean
and standard deviation of bandwidths are obtained.

This paper is organized as follows. Section2 describes the different arrangements
in which the system is studied and gives mathematical equations governing different
arrangements of the system. Section3 describes various simulation results obtained
based on numerical study. Finally conclusion of the present study is described in
Sect. 4.

2 Different Arrangements of the Harvesters

Figure1 shows the schematic of the system which has been considered for study
in this manuscript. It consists of a series of electromagnetic pendulum harvesters
connected to the same source of excitation. Each pendulum harvester has a magnet
attached to its free end and an electric coil is placed beneath it. Further, each pendulum
is connected with another pendulum by a spring of stiffness K at a distance of a from
the hinge of the pendulum. Support excitation generates a relative motion between
the coil and the magnet attached with pendulum and the change in magnetic field
due to pendulum motion generates electricity in the coils. Voltage is received across
each coil through a load resistor (R) connected to it. In Fig. 1, Xg denotes amplitude
of support motion which has been assumed to be harmonic in the current study.
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To generate higher power, an array of tuned electromagnetic pendulum (lengths
are same) harvesters are used to generate more electrical power compared to the
standalone harvester. In practice, manufacturing a set of tuned harvesters is difficult.
Further due to operational non-similarity tuning may get lost. There may be power
loss from the designed power due to loss in tuning. To understand the performance
of tuned, mistuned, coupled, and uncoupled systems, four different configurations
are considered for numerical study. They are

case(a): Series of independent tuned harvesters: We get case (a) by making the
stiffness, K of the springs in between the pendulums to be zero and keeping the
length of all pendulums same. So, K = 0, l1 = l2 = · · · = ln .

case(b): Series of independent mistuned harvesters: We get case (b) by making the
stiffness, K of the springs in between the pendulums to be zero and keeping the length
of all pendulums different. So, K = 0, l1 �= l2 �= · · · �= ln .

case(c): Series of interacting tunedharvesters:Weget case (c) bymaking the stiffness,
Kof the springs in between the pendulums to be non-zero value andkeeping the length
of all pendulums same. So, K �= 0, l1 = l2 = · · · = ln .

case(d): Series of mistuned interacting harvesters: We get case (d) by making the
stiffness, K of the springs in between the pendulums to be non-zero value and keep-
ing the length of all pendulums different. So, K �= 0, l1 �= l2 �= · · · �= ln .
Where l1, l2, . . . , ln denotes the length of pendulums starting from left in the
configuration.
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2.1 Equations of Motion for Different Cases

The mathematical models for the above mentioned cases are developed here. The
magnetic interaction among the neighbouring pendulums are assumed to be small
and are, therefore, neglected.

2.1.1 Case(a): Series of Independent Tuned Harvesters

As the system is uncoupled, equations of motion are independent. The equation of
motion for each pendulum can be written as

ml2i θ̈i + cl2i θ̇i + mgli sin θi + mli ẍg cos θi = 0; i = 1, 2, . . ., n (1)

wherem ismass of themagnet andn is the number of pendulums. li = l1, l2, l3, . . . , ln
are the length of the pendulums. In this case, length of pendulums are equal
(i.e.,. l1 = l2 = l3 = . . . = ln = l). θ′

i s are the angular displacement of pendulums. c
is damping coefficient which consists of both structural and electromagnetic damp-
ing. g is acceleration due to gravity. ẍg denotes support acceleration.

2.1.2 Case(b): Series of Independent Mistuned Harvesters

The equations of motion for mistuned independent harvesters can be written as

ml2i θ̈i + cl2i θ̇i + mgli sin θi + mli ẍg cos θi = 0; i = 1, 2, . . ., n l1 �= l2 �= · · · �= ln;
(2)

2.1.3 Case(c): Series of Interacting Tuned Harvesters

As the system is coupled, the equations ofmotion are dependent. Equations ofmotion
for each pendulum is written as

ml21 θ̈1 + cl21 θ̇1 + mgl1 sin θ1 + ml1 ẍg cos θ1 + Ka2 cos θ1(sin θ1 − sin θ2) = 0

ml2i θ̈i + cl2i θ̇i + mgli sin θi + mli ẍg cos θi + 2Ka2 cos θi sin θi

+Ka2 cos θi (sin θi+1 − sin θi−1) = 0

ml2n θ̈n + cl2n θ̇n + mgln sin θn + mln ẍg cos θn + Ka2 cos θn(sin θn − sin θn−1) = 0

i = 2, 3, . . . , (n − 1)
(3)

Since it is a tuned case, the length of all pendulums are equal.



Harvesting Energy from a Series of Harvesters 577

2.1.4 Case(d): Series of Mistuned Interacting Harvesters

In this case, the harvesters are mistuned but they are connected with springs in
between such that an interaction is possible.As system is coupled throughmechanical
spring the governing differential equations of motion are coupled and are written as

ml21 θ̈1 + cl21 θ̇1 + mgl1 sin θ1 + ml1 ẍg cos θ1 + Ka2 cos θ1(sin θ1 − sin θ2) = 0

ml2i θ̈i + cl2i θ̇i + mgli sin θi + mli ẍg cos θi + 2Ka2 cos θi sin θi

+Ka2 cos θi (sin θi+1 − sin θi−1) = 0

ml2n θ̈n + cl2n θ̇n + mgln sin θn + mln ẍg cos θn + Ka2 cos θn(sin θn − sin θn−1) = 0

i = 2, 3, . . . , (n − 1); l1 �= l2 �= . . . �= ln
(4)

This is a mistuned case and the length of the pendulums are not same.

2.2 Electrical Equation for the Harvester

Under the external excitation at the support, the magnets oscillate over the electric
coil and generate voltage due to change in magnetic flux. Using Faraday’s law, the
voltage generated in each electromagnetic harvester can be obtained as [15]

vi = ζBsLli θ̇; i = 1, 2, 3, . . ., n (5)

where ζ denotes coil filling factor, Bs is residual magnetic flux, L represents coil
length and li is length of pendulum (including magnet), θ̇ is the relative velocity
between magnet and coil.

Power harvested from each harvester is given as

pi = v2
i

R
; i = 1, 2, 3, . . ., n (6)

where R is the coil resistance. Finally, the total harvested power through the series
of electromagnetic harvester system is given as

P =
n∑

i=1

pi (7)
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Table 1 Harvester parameters and their values used in simulation studies

Parameter Value

Filling factor (ζ) 0.3

Residual magnetic flux (Bs ) 0.6T

Coil length (L) 7m

Tuned pendulum length (l) 0.06m

Damping coefficient (c) 0.006N-s/m

Coil resistance (R) 160Ω

3 Results and Discussions

This section provides results obtained from the numerical simulations. The param-
eters used in numerical simulations are given in Table1. For simulations [18], 100
harvesters are considered in a set.

3.1 Response of System to Harmonic Excitation

Harmonic base excitation with frequency (ω) = 3.5π, amplitude (Xg) = 2.3mm
(this amplitude is chosen such that it is physically realizable) is given to the system
considered and the response of system is observed. System in all the four config-
urations (cases) discussed previously are considered. In tuned configurations, the
length of each harvester considered is 0.06m. In the mistuned configurations, 100
harvesters with Gaussian distribution of mean (μ) = 0.06m and standard deviation
(σ) = 5% of μ = 0.003m are randomly generated. Same set of pendulum lengths
are used for both the mistuned cases (b) and (d). The time histories of 50th pendulum
for different cases are as shown in Fig. 2. Displacement on the Y-axis is correspond-
ing to rotational displacement. The response of case(a) and case(c) are same. As
there is no mistuning of length in case(c), there will be no forces developed in the
spring due to excitation, and response of system will be same as case(a). In Case(d),
K = 212.55N/m. It is chosen by considering non-dimensional quantity Kl/mg as
100 randomly. It can be seen from cases (b) and (d) that amplitude of response is
slightly less in (d) when compared with (b). Similarly simulations are carried out
for this system by increasing the value of K to 10 times for each step. It is seen that
the amplitude of response of the system kept on decreasing with increase in stiffness
value.

Some interesting aperiodic response came into picture when the excitation fre-
quency is close to natural frequency of individual tuned harvester (we can also say at
natural frequency of tuned independent harvester system). Response of 50th pendu-
lumnear-natural frequency for tuned configurations is shown in Fig. 3with increasing
value of stiffness. It can be seen from Fig. 3 that system shows periodic motion for
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Fig. 2 Time histories of 50th pendulum for different cases (a), (b), (c), (d)

uncoupled configuration and aperiodicity kept ondecreasingwith increase in stiffness
for coupled configuration. Phase portraits of 50th pendulum near-natural frequency
for the mistuned configuration (case(d)) are shown in Fig. 4 with increasing value of
K . It is seen from Fig. 4 that with increase in value of coupling stiffness, aperiodicity
in the system kept on increasing.

3.2 FRF of Voltage and Power

The variation of amplitude of voltage and power with change in frequency ratio is
discussed in this section to analyze the operating bandwidth and peak power. For
mistuned cases, harvester lengths are generated as Gaussian distribution with μ =
0.06m and σ = 5% of μ = 0.003m and for coupled cases stiffness is considered as
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Fig. 3 Time histories for the tuned configuration at excitation frequency of 4π with increasing
value of K

21.255N/m (by taking Kl/mg = 10). Letω1 be denoted as natural frequency of each
pendulum. In each case, harmonic sweep of frequency is swept from 0.8ω1 to 1.2ω1

Hz (because the amplitudes of response out of this range came out to be negligible).
Variation of voltage amplitude of each harvester and total power amplitude of system
is obtained by changing the frequency ratio (Ω = ω/ω1). ω is excitation frequency.
Voltage FRF of 70th pendulum for each case is shown in Fig. 5. It can be seen that
cases (a) and (c) will have same FRF because of same response for both cases and
in case(d) plot is not smooth because of coupling effect.

Power FRF for each case is shown in Fig. 6. From Fig. 6, it can be observed that
Peak power is more in tuned cases and bandwidth of FRF is more in mistuned cases.

When the system is excited close to natural frequency then tuned cases can be used
for energy harvesting. When system is operating in band of frequency then mistuned
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Fig. 4 Phase portraits for the mistuned configuration at excitation frequency of 4π with increasing
value of K

cases are very useful. As ambient vibrations fall in frequency band, mistuned cases
have to be explored for energy harvesting.

3.3 Study of Bandwidths for Mistuned Cases

In this section, sets of 100 harvesters are randomly generated such that their lengths
follow Gaussian distribution with mean (μ) = 0.06m. Standard deviation (σ) is left
as choice. σ = 1% of μ = 0.0006m and σ = 5% of μ = 0.003m are considered for
this study. Choosing σ = 1% of μ, 30 such sets are created randomly. For each set,
frequency is swept from 0.8ω1 to 1.2ω1 Hz and peak power, bandwidths (at 0.15W,
0.1W, 0.05W) are calculated. From this data, mean and standard deviation of peak
power and bandwidths are calculated. Same procedure is repeated for σ = 5% of μ.
With change in value of coupling stiffness these values changes. α = Kl/mg is the
non-dimensional quantity used for considering different values of K . α = 0, 0.1
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Fig. 5 FrequencyResponseFunction (FRF) for voltageof 70thpendulumcorresponding todifferent
cases

(< 1), 10 (> 1) are considered for analysis. Now mean and deviations of bandwidth
for different α values are plotted seperately for σ = 1% of μ and σ = 5% of μ in
Fig. 7 and Fig. 8, respectively. In these figures, X-axis is normalized power which is
ratio of power (P) and mean of peak power (Pmax) at particular values of α and σ.

From these plots it can be seen that bandwidth is decreasing with increasing value
of power level at particular value of α and also deviations in bandwidths is more
for σ = 5% of μ than σ = 1% of μ. Normalized mean peak power value is 1 and its
bandwidth is 0 for all values of α and σ.

From these kind of plots, based on the power and bandwidth required for appli-
cation, we can select the value of σ and K .

4 Conclusion

The system under four different configurations is mathematically modeled. Pendu-
lums with tip magnets are considered as electromagnetic harvesters. Simulations are
carried to know the response of the system and to know the power, voltage charac-
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Fig. 6 Frequency Response Function (FRF) of total power for different cases
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teristics of the system under different configurations. It is found out that mistuned
configurations give wider power bandwidths. Later mistuned cases are focused for
energy harvesting by taking the harvester lengths such that they formGaussian distri-
bution with mean equal to tuned pendulum length. The mean and standard deviation
of peak power, bandwidths of system are plotted for α = 0, 0.1, 10 at 2 values of
standard deviations. Similarly, this study can be exploited for various other values
of σ and α to suit our need.
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Design of a Flow Control Device Using
a Special Class of Hybrid Symmetric
Bistable Laminates in Clamped
Boundary Condition

Aghna Mukherjee, Akash Mundwaik, Shaikh Faruque Ali,
and Arunachalkasi Arockiarajan

1 Introduction

Traditionally, the buckling of structural elements has been considered detrimental to
the design process. However, with the increase in our knowledge base and advance-
ment in the computational capabilities, structures in the post-buckled regime have
gained immense importance as design elements. For instance, Hampali et al. [1]
developed a multi-stable shell element to design an assistive chair for the elderly.
Daynes et al. [2] used a system of prestressed post-buckled laminates to design a
bistable composite flap for wing morphing application. In this work, a special class
of hybrid bistable laminates is explored for their potential as design elements in flow
control devices.

In recent years multi-stable laminates have captured the attention of the research
community becauseof their capability of assumingmore thanone equilibriumshapes,
which can be switched reversibly by a mere application of an external force which
is sufficient to cross the potential barrier between the stable states. Multi-stability
in thin unsymmetric laminate was first observed and analyzed by Hyer et al. [3].
Ever since there has been a growing interest regarding these multi-stable laminates
among the research community for their potential in morphing and energy harvesting
applications. One important aspect of using these laminates is their integrability. The
layup introduced by Hyer could not be used as a part of a compliant structure since it
lost itsmulti-stable characteristics on integration. Toward that,Mattioni et al. [4] gave
a layup that could be clamped at one end. Arrieta et al. [5] introduced a special class
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Fig. 1 Schematic diagram of the multi-sectioned hybrid bistable laminate layup

of variable stiffness multi-stable structural element that could be clamped at both
ends. On similar lines, Li et al. [6] introduced a class of multi-sectioned metal hybrid
symmetric laminates that had two symmetric curved equilibrium shapes. Later, it
was shown these hybrid bistable symmetric laminates could be clamped at one end
without losing bistability [7].

The motivation of this manuscript is to design a concept flow control device using
multi-stable structural elements. A multi-sectioned symmetric layup is introduced
that includes a combination of uni-directional carbon-epoxy plies and bi-directional
glass epoxy layer, as shown in Fig. 1. A finite element analysis using ABAQUS®

is done to show the existence of two stable equilibrium shapes, which is validated
using a Rayleigh-Ritz based potential energy minimization scheme: a technique
which was introduced in [3]. This special class of bistable laminates is used as a
part of a flow control device. The load-displacement characteristics and the design
space is then studied under the action of a free-flowing stream using XFoil and FEA
software ABAQUS®. The potential of such bistable laminates in the design of a
passive flow control device is highlighted in the study. The manuscript is divided
into three sections. The first section details the special class of bistable laminates,
which is used as the central member in the design. The subsequent section details
the flow control device and the performance of the laminate under the action of a
flowing stream. Finally, the manuscript ends with a conclusion.
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2 Multi-section Bistable Structural Member

In this section, the multi-stable structural element is detailed. Li et al. [6] introduced
a hybrid bistable symmetric laminate, which used a combination of aluminum and
carbon epoxy. He achieved two stable states which could be integrated with the
cantilever boundary condition. However, in using metals as a part of the layup, there
is an issue of slippage [7, 8]. In this work, a hybrid layup is introduced which uses
a combination of glass epoxy and carbon epoxy prepregs, as shown in Fig. 1. The
layup used in thismanuscript comprises of three sections: a central symmetric section
having a layup [902/02/902]T and two outer sections symmetrically placed having
a layup [902/BD1/902]T . The glass epoxy and the carbon epoxy prepregs use the
same epoxy, so as to ensure that the bonding is good and there is minimum issue of
delamination and slippage. The material properties of the bi-directional glass epoxy
and the uni-directional carbon epoxy used in the layup are detailed in Table1.

The proposed laminate is analyzed using the commercial finite element software
ABAQUS®. To obtain the stable equilibrium shapes the laminates are subjected to
a temperature field with a change of temperature of �T = 120 ◦C. Since the layup
is symmetric, the lamina settles into a flat, unstable equilibrium shape. To obtain the
stable equilibrium states, the central node of the lamina is arrested, and a small load is
applied at the four ends of the lamina. The loads are then removed in the subsequent
steps. The lamina settles to one of the equilibrium shapes depending on the direction
of the perturbation. Figure2 shows the equilibrium shapes obtained using FEA. The
equilibrium shapes obtained are validated against the ones obtained using Rayleigh-
Ritz minimization of the potential energy function, where the potential energy is
defined as

Utot =
∫
V

( [
εo

κo

]T [
A B
B D

] [
εo

κo

]
−

[
εo

κo

]T [
NT

MT

] )
dV − Wext (1)

Table 1 Properties of the carbon epoxy uni-directional (UD) and glass epoxy bi-directional (BD)
lamina used in the layup

Lamina E1 (GPa) E2 (GPa) ν12 G12 (GPa) α1 (◦C−1) α2 (◦C−1)

Carbon
epoxy (UD)

137.47 10.07 0.23 4.4 0.37e-6 24.91e-6

Glass epoxy
1 (BD)

29 29 0.189 4.75 14.31e-6 14. 31e-6

Glass epoxy
2 (BD)

22.2 22.2 0.192 4.41 19.78e-6 19.78e-6

Glass
Epoxy 3
(BD)

21.3 21.3 0.166 3.19 20.47e-6 20.47e-6
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Fig. 2 a The first
equilibrium shape obtained
using ABAQUS® in
“free-free” boundary
condition. b The second
equilibrium shape obtained
using ABAQUS® in
“free-free” boundary
condition

Fig. 3 a The center-line deflection of the first equilibrium shape obtained using FEA software
ABAQUS® and Rayleigh-Ritz based analytical scheme [6]. b The center-line deflection of the sec-
ond equilibrium shape obtained using FEA software ABAQUS® andRayleigh-Ritz based analytical
scheme
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Fig. 4 a The first
equilibrium shape obtained
using ABAQUS® in
“clamped” boundary
condition. b The second
equilibrium shape obtained
using ABAQUS® in
“clamped” boundary
condition

where
[
εo

]
and

[
κo

]
are mid-surface strains and curvatures and

[
A], [B], and [

D] are
stiffness matrices [9].

[
Nt

]
and

[
Mt

]
are the thermal force and moment vectors that

capture the curing process. For the validation, using the Rayleigh-Ritz minimization
scheme, the strain and the displacement fields are assumed as in Li et al. [6]. Figure3
compares deflected profiles of the center-line obtained using the FEA analysis and
Rayleigh-Ritz based analytical scheme. It can be seen that the results obtained using
the two methods are in close agreement with each other.

To use these multi-stable laminates as a part of larger compliant structures, it is
required to analyze them in clamped boundary conditions. Since the layup used in
this manuscript is symmetric, after the curing step, the laminate assumes an unstable
flat shape. In the subsequent steps, all the degree of freedom of one of the edges is
restricted using “Encastre” option inABAQUS®, and two-point test loads are applied
at the endpoints of the other edge. On removing the test load, the structure assumes
one of the equilibrium states depending on the direction of the test load. Figure4
shows the stable shapes obtained in the clamped configuration.

Apart from the equilibrium shapes, another aspect to be studied for their deploy-
ment is the load-displacement characteristics. Figure5 shows the load-displacement
diagram for hybrid laminate where the choice of the bi-directional lamina is Glass
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Fig. 5 Load-displacement
diagram of the
multi-sectioned bistable
element under the action of a
concentrated load
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Fig. 6 Load-displacement
diagram of the
multi-sectioned bistable
element under the action of a
point load for the three
layups
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Epoxy 1 (Layup 1), whose properties are given in Table1. It is observed that the load-
displacement curve is symmetric about the x-axis. This is expected as the laminate is
symmetric. Since the load-displacement curve is symmetric for the other laminates
(i.e., one with the choice of bi-directional lamina being Glass Epoxy 2 (Layup 2)
and other being Glass Epoxy 3 (Layup 3)), only one half load-displacement cycle is
simulated using ABAQUS®. Figure6 shows the load-displacement plots for the three
layups. It can be observed that with the change in the layup, there is a substantial
change in the snapping characteristics of these multi-stable elements. Note that in
this study, a point load is applied at the central node of the far edge of the bistable
plate.

3 Design of the Passive Flow Control Device

The schematics of the proposed flow control device is shown in Fig. 7. Figure7a
shows the flow device when the bistable member is in its first stable configuration.
As the flow rate increases the pressure distribution on the laminate changes. Beyond a
particular value of the flow rate and corresponding pressure distribution, the bistable
lamina snaps from the first equilibrium shape to the second. In doing so, the flow
stream gets another lower resistance pathway, which is redirected to the flow source,



Design of a Flow Control Device Using a Special Class of Hybrid Symmetric … 593

Fig. 7 Schematic of the adaptive flow control device. a The flow control device with the bistable
element in the first equilibrium condition. b The flow control device with the bistable element in
the second equilibrium condition

and the flow rate to the attached device is attenuated. The flow rate at which the
bistable laminates snaps to the second equilibrium shape can be controlled by con-
trolling the different design parameters of the laminate, i.e., the relative dimensions
and the thickness of the individual layers.

To study the performance of these bistable members as part of the flow control
device shown in Fig. 7, the pressure distribution on the laminate is obtained using
Xfoil. In literature, Xfoil has been used to analyze airfoils, turbine blades, and flaps.
For a given Reynolds number or the flow velocity, Xfoil is capable of evaluating the
pressure distribution around an airfoil. In this work, the pressure distribution on the
lower surface under the assumption of free stream for the configuration shown in
Fig. 7a is evaluated for three different flow velocities using Xfoil. Figure8 shows the
pressure distribution on the lower face of the bistable element, under the assumption
of viscous free flow, as evaluated using Xfoil, for three different flow velocities, i.e.,
1, 5 and 10 m/s. It is observed that the pressure distribution for the different flow
velocities is qualitatively similar, only changing in magnitude.
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Fig. 8 a The pressure distribution along the surface of the bistable laminate for a flow velocity of
1 m/s. b The pressure distribution along the surface of the bistable laminate for a flow velocity of
5 m/s. c The pressure distribution along the surface of the bistable laminate for a flow velocity of
10 m/s

3.1 The Load-Displacement Characterization of the Bistable
Element

In Sect. 2, it was shown that the multi-sectioned bistable structural element, which
is used as a part of the flow control device has two equilibrium shapes. It was also
shown that it is possible to snap back and forth from one state to another by a simple
application of force. To analyze the performance of these special class of bistable
laminates, the load-displacement characteristics of the laminate is obtained under the
action of pressure distribution. The pressure distribution across the element under
the action of a free streamwas obtained in the previous section using the viscous flow
analysis capabilities of Xfoil. Since the pressure distribution remains the same for the
different flow velocities, a sixth-order polynomial function is used to fit the pressure
distribution corresponding to the flow with the flow velocity of 1 m/s. To obtain
the distribution corresponding to different flow velocities, a multiplication factor is
used along with the sixth-order polynomial. Figure9 shows the load-displacement
diagram for the three layups introduced in the study.



Design of a Flow Control Device Using a Special Class of Hybrid Symmetric … 595

Fig. 9 Load-displacement
diagram of the
multi-sectioned bistable
element under the action of
pressure field for the three
layups
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It can be seen that depending upon the layup, the magnitude of the pressure
distribution for which the laminate snaps to the other equilibrium state changes.
Furthermore, comparing the pressure profile for the different flow rates and the
snap-through pressure, the range of flow velocities for which the laminate retains the
first equilibrium shape (refer Fig. 7) can be ascertained. For instance, corresponding
to a flow rate of 5 m/s, the maximum pressure on the lower surface of the bistable
element is 16.4Pa, as shown in Fig. 8b. In Fig. 9, it is seen that the critical snapping
pressure for an element with layup 1 subjected to a pressure distribution similar to
Fig. 8b is 20.85Pa. So layup one would not snap under a flow of 5 m/s. As the flow
rate increases the maximum value of pressure profile increases and when it reaches a
critical value of 20.85Pa, the multi-sectioned bistable element snaps, hence reducing
theflow rate, as a part of the fluid coming from the source is directed back to the source
as shown in the schematic diagram Fig. 7b. Furthermore, it can be seen from Fig. 9
that depending on the layup, the critical snap-through pressure load changes, hence
changing the critical flow velocity beyond which the flow control device releases
pressure.

4 Conclusion

In this manuscript, a class of symmetric multi-sectioned hybrid laminates is intro-
duced, which uses uni-directional carbon epoxy and bi-directional glass epoxy
prepregs. When cured, these laminates exhibit two symmetric equilibrium shapes.
The equilibrium shapes are then obtained usingFEA inABAQUS® which is validated
against a Rayleigh-Ritz based numerical scheme in “free-free” boundary condition.
Furthermore, it has been shown that the laminates retain its bistability when clamped
along one of its shorter edges. The equilibrium shapes in clamped boundary con-
ditions are then obtained using pseudo-dynamic FE analysis. The analysis is then
extended to obtain the load-displacement characteristics of these laminates in the
clamped boundary condition.
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These laminates are then integrated as a part of a concept flow control device.
To evaluate the performance of these bistable laminates numerically, the pressure
distribution on the lower surface of the laminate is evaluated using Xfoil, under dif-
ferent flow rates. Subsequently, using the pressure distribution, the load-displacement
characteristics are obtained for three selected layups. It is shown that the laminates
maintain the first equilibrium state below a critical value of the flow rate and conse-
quently, pressure. Beyond the critical pressure load, the laminate snaps to the second
equilibrium state, and the flow pressure is released, as a part of the flowing fluid is
carried back to the source. Hence it is shown that it is possible to achieve a passive
flow control mechanism using this special class of integrable bistable laminates.
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Dynamic Stability of Spent Fuel Trays
Stack Submerged in Water Pool
Incorporating Coupled Fluid Structure
Interaction

Binu Kumar, R. S. Singh, O. P. Singh, G. R. Reddy, K. M. Singh,
and N. Gopala Krishnan

1 Introduction

The spent fuel from nuclear reactors is stored in water pools (Fig. 1) which are
providedwith SS-lined thickRCCwalls and floor. These spent fuel bundles are stored
for 3–10 years for cooling and decay of thermal heat before reprocessing. The seismic
behavior of these submerged freestanding fuel trays in spent fuel storage water pool
(SFSWP) is highly nonlinear due to sliding, impact of trays stack and hydrodynamic
effect of sloshing water. The stacks of trays are required to be stable during seismic
event for safe storage. Earlier, only rigid, uncoupled or simplified methods were
implemented to consider the hydrodynamic effect of water on submerged trays stack
system.

The problem of computing the behavior of fluid in response to structural vibra-
tions and vice versa has a wide range of applications. Earlier, a lot of researchers
have attempted to model the fluid to study the slosh behavior of fluid in a moving
container using acoustics wave, potential and Navier–Stokes equation. However,
these studies are limited to rigid water tank, or with rigid fixed submerged structure.
There is a limited study to understand the dynamic behavior of spent fuel storage pool
containing trays stack kept freely on the floor with or without locators and to provide
proper design procedures. Also, there is no provision in code [1] for earthquake anal-
ysis/design of stacks incorporating gap, friction, sliding and hydrodynamic effects.
Efforts have been put only to study the seismic behavior of liquid containers and on
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Fig. 1 Storage arrangement of spent fuel trays in fuel pool (sectional view)

the earthquake-resistant design methods of liquid storage tanks without submerged
freestanding objects.

Furthermore, from years back to 1960, Houser [2, 3] and many other researchers
have studied the behavior of 2D liquid tank under seismic condition, using mechan-
ical spring-mass model. Mustafa [4] in his paper emphasized on the development of
finite element (FE) formulation to study the sloshing of liquid in a partially filled rect-
angular container with rigid baffle under the horizontal base excitation and found
a remarkable reduction in the hydrodynamic force by using baffles. Choun [5, 6]
presented a method to determine sloshing frequencies and mode shapes in a rectan-
gular tank with an internal rigid block of arbitrary size by using the linear potential
wave theory and studied the effect of rigid fixed block on slosh pressure distribution.
Similarly, Mitra [7] developed 2D pressure-based finite element computer code to
analyze the slosh dynamics of a two-dimensional partially filled rigid container with
bottom submerged rigid block and found that the height and width of the submerged
structure have very strong influence on the slosh dynamics. Koh [8] and Abramson
[9] presented finite element procedure for slosh dynamics analysis of water tank
without any submerged block. Nayak [10] used Galerkin-based two-dimensional
fully nonlinear finite element model for investigation of the seismic behavior of
partially filled rigid rectangular liquid tank with submerged internal components
incorporating Mixed Eulerian–Lagrangian (MEL) method. Furthermore, Liu [11]
concentrated on the seismic response of spent fuel rack including phenomena like
sliding, overturning, and impact between rack and spent fuel pool wall, however,
water is modeled using added mass principle which undermines the exact slosh
behavior. Furthermore, Muthumani [12] and many researchers have investigated the
problem experimentally. Hence, it can be observed that coupled stability analysis
of stacks incorporating gap, friction, sliding and hydrodynamic effects is not well
understood and analyzed. For understanding the behavior of submerged stacks, a
simplified methodology was adopted by Kumar [13–15] in which the rigid and fixed
stack boundary was considered for estimating hydrodynamic pressure and the esti-
mated pressure is applied along with seismic motion for coupled analysis. 20–27%
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(a) Response spectra (b)   Horizontal Earthquake time history

Fig. 2 Earthquake response of SFSWP site

differences were observed in trays displacement compared to experimental values.
The study has been carried out for different site-specific time histories and different
peak ground acceleration (PGA). It is also observed in the study that 0.2 g PGA site-
specific seismic time history has the most catastrophic effect as compared to other
seismic time history. Hence in the present paper 0.2 g PGA seismic time history is
considered for the analysis.

Structural stability of pool, stability of stacks and structural integrity of fuel bundle
are of major concerns during earthquake. Sloshing behavior (sloshing height) and the
hydrodynamic pressure exerted on the wall of a spent fuel storage pool is different
when the stacks of fuel bundle are present and when they are not. The spent fuel
storage pool structure should assure the safety of the stored spent fuels and its struc-
tural integrity against design earthquake load. In addition, it should prevent toppling,
undesired sliding of the stacked trays and the overflow of contaminated cooling
water over the working area by providing sufficient freeboard. Hence for the safety,
a good understanding and accurate estimation of sloshing characteristics is a must
which will be helpful for calculating the required freeboard, and for the estimation
of hydrodynamic pressure on the pool wall and stored spent fuel. The present paper
is being emphasized to study the behavior of submerged freestanding sliding stacks
of fuel bundle using coupled ALE numerical model. The numerical analysis and
modeling of the cases considered are discussed in detail. It is found that convec-
tive parts of hydrodynamic pressure induce more instability to the freestanding trays
stack system. The results like, slosh frequency, displacement of tank and slosh height
are in very close agreement with experimental results and discussed in detail.
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2 Input Time History

As discussed above, Fig. 2 shows the design basis seismic ground response spectra
(DBSGRS) of 0.2 g PGA for SFSWP site and its compatible earthquake time history
is generated from DBSGRS as per the guidelines of IEEE-344 [16]. The generated
time history is used for base excitation of finite element model of SFSWT. It has
maximum acceleration of 2.1 m/s2 along horizontal direction. The vertical direction
excitation (Z-direction) is 0.66 times of horizontal component (X and Y-direction)
excitation.

3 Numerical Method

Arbitrary Lagrangian–Eulerian (ALE) based finite element (FE) model accounting
gap, contact, and friction and sliding between trays and bottom surface with coupled
hydrodynamic effect on the trays is developed. The water mass is simulated using
Navier–Stokes equation. The numerical model of the two systems, that is, free-
standing trays stack structure and contained water mass are solved simultaneously
using coupled ALE method to resolve high mesh deformation issues which can lead
to non-convergence in the solution. Firstly, the finite element model is validated with
available codal provision and acoustic wave code [13]. The details of the numerical
formulation and modeling are given below.

3.1 FSI-ALE Formulation

In FSI-ALE, the structure is modeled by Lagrangian approach while fluid domain is
modeled by ALE approach. In ALE an arbitrary reference coordinate is introduced
in addition to the Lagrangian and Eulerian coordinate. Equation 1 describes the
material derivative w.r.t. the reference coordinate. On substituting a relation between
material time derivative and reference configuration time derivative, ALE equations
are formed.

∂ f (Xi , t)

∂t
= ∂ f (xi , t)

∂t
+ wi

∂ f (xi , t)

∂xi
(1)

where

Xi Lagrangian coordinate
xi Eulerian coordinate
wi Relative velocity = v-u
u Velocity of mesh
v Velocity of material
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Equations 2, 3 and 4 represent the governing equations for mass, momentum and
energy (E) conservation, respectively, used in ALE formulation.

∂ρ

∂t
= −ρ

∂vi
∂xi

− wi
∂ρ

∂xi
(2)

ρ
∂vi
∂t

= σi j, j + ρbi − ρwi
∂vi
∂xi

(3)

σij is the stress tensor defined by σij = −p + τ , where τ is the shear stress from
the material constitutive law and p is the pressure.

ρ
∂E

∂t
= σi j vi, j + ρbi vi − ρwi

∂E

∂xi
(4)

These ALE governing equations reduce to Eulerian governing equations by
considering the velocity of reference configuration equal to zero, that is, u = 0 and
hence relative velocity between thematerial and the reference configuration becomes
equal to material velocity, w = v. The term containing relative velocity in the above
equation is known as advective term, which represents the transport of the material
across the mesh. In the two-way coupling, first the Lagrangian step is applied. In this
step, mesh moves with the material and also the effect of internal and external forces
on variation in velocity and internal energy is calculated. Eqs. 5 and 6 represent the
equilibrium equations.

ρ
∂vi
∂t

= σi j, j + ρbi (5)

ρ
∂E

∂t
= σi j vi, j + ρbi vi (6)

In Lagrangian step, no material deforms with the element, and the material does
not cross the boundary of the element; hence mass is automatically conserved. In the
second step (advection phase), flow of mass, momentum and energy are calculated.
Explicit dynamics-based central difference scheme is used for time integration. For
successive step, velocity and displacement are updated by the following Eqs. 7 and 8.

un+1/2 = un−1/2 + t · M−1 · (Fext + Fint) (7)

xn+1 = xn−1 + tun+1/ 2 (8)

where F int represents the internal vector force and Fext represents the external vector
force associated with coupling force, body force and pressure boundary condition.M
is diagonal lumped mass matrix. For sloshing problem with water in a moving tank
where the velocity of the tank is time-dependent, the fluid mesh follows the tank and
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moves like a rigid mesh. With this ALE feature the mesh remains regular, and also
the time step, which is dependent on mesh distortion, remains stable. This algorithm
is generally used for problem where the fluid container falls, rotates or moves as in
the present case. The integrity of fluid mesh remains intact and fluid mesh moves as
a rigid mesh in the coordinate system attached to the container.

4 Numerical Modeling and Analysis

ALE based finite element modeling (FE) of SFWST containing trays stack with
and without water mass is carried out. A typical FE model and mesh of SFWST
containing freestanding trays stacks with or without water is shown in Figs. 3 and 4,
respectively.

Each tray in a stack has beenmodeled using solid elements. The tray is made of SS
304L having density 8000 kg/m3 and 2× 1011 N/m2 as modulus of elasticity. There
are four locators in a tray. The gap between the locators and its corresponding holes
have been modeled using gap element. Resting surface between bottom-most tray
and pool floor has been simulated by defining contact elements. Contact element has
the capability to simulate the friction and to capture the sliding of trayswith respect to

Fig. 3 ALE-FE model of
SFSWT trays stack
submerged in water
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Fig. 4 FE model of trays
stack in SFSWT without
water

resting surface. The contact element is also used to simulate the contact and friction
between the trays in a stack. The available horizontal gap (i.e. operational clearance
of 3 mm) between the locator and the corresponding locating hole has also been
simulated. The freestanding stack of 27 trays has been analyzed for 0.1 as friction
coefficient (μ).

Firstly, Mesh convergence and optimization study with varying mesh size and
time step for model has been carried out. Then after, FE model of SFWST without
internal trays is validated with Housner [2] and in-house finite element fluid acoustic
code (FEFAC) [13]. The comparisons of various parameters observed during analysis
are shown in Table 1. Dynamic analysis is carried out for 0.2 g PGA time history.

Slosh frequency obtained usingALE-FEmethod has a value of 0.533Hz, which is
marginally varied by 5.06% with the analytical value calculated by Housner [2], and

Table 1 Comparison of
results for SFSWF tank
without stack

S. no. Code First sloshing
frequency (Hz)

Slosh
displacement (m)

1 Present ALE-FE
analysis

0.533 0.267

2 FEAFAC code
[13]

0.559 0.23

3 Housner [2] 0.56 0.29
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a difference of 4.48% with the value obtained by acoustic code. Also the obtained
maximum slosh displacement of 0.267 m differs by 8.61% from the Housner [2]
analytical value of 0.29 m and by 16.08% from the FEAFAC code value of 0.23 m.

Modal analysis is performed to get slosh frequency and mode shape. It can be
observed form Figs. 5 and 6 that analysis produces agreeable slosh mode shape with
very less distortion of the mesh using ALE formulation.

Fig. 5 First slosh mode
shape

Fig. 6 Third slosh mode
shape
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5 Results and Discussion

After validation of the present method with available codes and literature, ALE-
based FE model of trays stack submersed in SFSWT is simulated and analyzed
using site-specific seismic time history. The results obtained are compared with the
experimental observation and from in-house FEAFAC code and are discussed in
detail.

Figs. 7 and 8 show the slosh displacement of water at 10 and 20.30 s, respectively.
Similar slosh behavior is observed during shake table experiment.

Table 2 shows the comparison of responses of trays stack system submerged
in SFSWT. The response obtained is compared with shake table experiment and
in-house FEAFAC code [13]. For 27 trays stack submerged in water, maximum
displacement of 80.21 and 78.49 mm is observed in shake table test and ALE-
FE analysis, respectively. Therefore, only 2.14% difference is observed between
experimental and ALE-FE method trays stack displacement results.

Hence, it is observed that the ALE-FE analysis gives more accurate displacement
with respect to in-house FEAFAC code. It is also found from numerical analysis and
experiment that maximum 4.8 and 5 mm lifting is observed for 0.2 PGA seismic
excitation, respectively. Hence trays will not come out from beneath trays guides.
Although the tray stack has maximum relative displacement of 80.21 mm w.r.t.

Fig. 7 Slosh displacement
at 10 s
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Fig. 8 Slosh displacement
at 20.30 s

Table 2 Comparison of responses of trays stacks and tank for 0.2 PGA seismic excitation

S. no. Response Experiment FEAFAC code ALE-FE analysis

1 Maximum slosh height (m) 0.82 0.62 0.76

2 Frequency of stacks (Hz) 1.43 1.21 1.34

3 Frequency of tank (Hz) 16.00 – 16.10

4 Slosh frequency (Hz) 0.61 0.55 0.57

5 Hydrodynamic pressure (Pa) at the
top

7454.12 6179.70 7360.34

6 Relative displacement at 27th tray of
stack (mm) w.r.t. tank

80.21 69.89 78.49

7 Maximum relative vertical lifting of
tray (mm)

5 – 4.8

tank wall and the gap between the two trays stack is 150 mm, but as trays stack
move in the same direction, hence both does not strike each other. Furthermore,
experimentally evaluated sloshing frequency of water is around 0.61 Hz for 27 trays
stack submerged inwater, which is in very close agreementwith bothALE-FE and in-
house numerical results. Thefirstmode frequencyof thewater tank is 16.10Hz,which
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is approximately the same as observed in the experiment. The natural frequency
for 27 trays stack test setup is equal to 1.43 and 1.23 Hz, respectively, for trays
stack system without water and with water condition, respectively. The reduction in
response frequency of stacks is due to coupling effect of water on trays stacks.

The various stack height is also analyzed using ALE-FE method and the results
of tray relative displacement is compared with the shake table experimental data and
in-house FEAFAC code. Figure 9 shows the maximum relative displacement of 10,
14 and 27 trays stack under earthquake excitation of 0.2 g peak acceleration. It is also
observed that maximum displacement of top tray in a stack increases with increase
of stack height. It can be understood that displacement of trays are highly nonlinear
and results from ALE-FE matches very close to the shake table experiment results.
Therefore, it may be concluded that the ALE-FE method gives results very close to
the shake table experiment observations.

Maximum 7.31% difference in slosh height is observed between the experimental
and the ALE-FE method. Also, the ALE-FE method is capable of finding various
essential parameters like convective and impulsive frequencies, mode shape, hydro-
dynamic pressure and stack displacement for design of pool and stacking patterns.
However, the mesh size and time step has major influence on convergence and

Fig. 9 Comparison of maximum displacement of stacks under earthquake excitation of 0.2 g peak
acceleration
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stability of results, which requires high computational time and processing. Consid-
ering high computational process requirement, the in-house FEAFAC code requires
very little computational time and gives results with maximum 25% of difference
with the shake table experimental observation. Furthermore, in the present study the
interaction of bundles is not considered. Hence, bundles interaction with trays during
seismic event is required to be investigated in future to predict bundle failure modes
and behavior.
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Frequency Domain Based Robust Flutter
Analysis of Swept Back Wing Using μ
Method

A. Arun Kumar and Amit Kumar Onkar

1 Introduction

Aeroelastic flutter is defined as the mutual interaction between elastic forces, inertial
forces, and aerodynamic forces caused by the unsteady fluid flow around the flexible
structure. It is a dynamic aeroelastic phenomenon which can lead to catastrophic
structural failure. Further, it is highly sensitive to small variations in the structural
and aerodynamic parameters. Since the flutter computational analysis is based on
assumptions and approximations, there exist inherent differences between the com-
putational model and the actual flight vehicle. Also, the parameters involved in the
computational analysis such as material properties, flight conditions, etc., may be
subjected to errors and uncertainties. Thus computational flutter predictions may not
be totally reliable and hence conservative safety margins are applied to the analysis
results [1]. Also, confident results from the computations are necessary for reliable
flutter clearance.

Traditionally, variations and uncertainties associated with the flutter computa-
tional model are analyzed using the nominal flutter analysis techniques by enumer-
ating all possible combinations of uncertainties [2]. The drawback of this procedure is
that it requires enormous computational hours and also the possibility of missing the
worst-case combination [3]. In the present work, robust flutter analysis using μ − k
method [4] is adopted to study the worst-case flutter boundary of sweptback wing
in the presence of various structural and aerodynamic uncertainties. This method is
based on the application of structured singular value (μ) technique (from the control
theory) into aeroelastic analysis. In this method, uncertain flutter analysis is posed
as the robust stability problem with variations in the uncertain parameters. Linear
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Fig. 1 LFT representation
of an uncertain system

Fractional Transformation (LFT) representation and structured singular value (μ)
analysis form the basis for this approach. The maximum value of μ < 1 determines
the robust stability of the aeroelastic system under prescribed uncertainty set [4]. Ini-
tially, the method is validated for the 3DOF airfoil system under various parametric
uncertainties. Later, themethod is applied toAGARD445.6 sweptbackwing to study
its worst-case flutter characteristics in the presence of structural and aerodynamic
uncertainties.

2 Theoretical Background

2.1 μ Method

Robust flutter analysis deals with the stability of an aeroelastic system subjected to
uncertainties. Its aim is to quantify the gap between the computational flutter pre-
dictions resulting from the nominal aeroelastic model (model without uncertainties)
and uncertain aeroelastic model in which the entire uncertainty set is contemplated.
From the given family of uncertain aeroelasticmodels, robust flutter analysis predicts
the model having the worst-case stability characteristics.

The theory behind the robust flutter analysis based on the structured singular value
was introduced by Lind [5] for robust aeroservoelastic analysis in 1997. μ measures
the robustness of a linear, stable system with respect to specified uncertainties within
it. For a given bounded family of uncertain linear systems, μ finds the system hav-
ing the worst-case stability characteristics. μ method has the advantage of utilizing
both theoretical models and actual flight data for the determination of robust flutter
boundary.

The application of μ method requires the representation of uncertain aeroelastic
system in LFT form. In this representation, the uncertain aeroelastic model is sep-
arated into nominal and uncertain parts and then interconnected into LFT feedback
loop as shown in Fig. 1. In the figure, P contains the nominal aeroelastic model
and terms associated with uncertainties. The uncertainty operator, Δ, contains the
uncertainties associated with the inaccuracies present in the model. The uncertainty
operator is a norm bounded set, which, with the help of weighting matrices, becomes
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unity norm bounded given by [6]:

Δ = {Δ : ‖Δ∞‖ ≤ 1} (1)

Now, to measure the robust stability of the system P with respect toΔ set, structured
singular value (μ) is used whose definition is given as [6]:

μ(P) = 1

min
Δ∈Δ

{σ̄ (Δ) : det(I − PΔ) = 0} (2)

withμ = 0 if noΔ ∈ Δ exists such that det(I − PΔ) = 0. The system P is robustly
stable for the setΔ ifμ(P) < 1. This condition is tested for the uncertain aeroelastic
model by computing Eq. (2) on a grid of frequency range of interest. The velocity at
whichμ(P) ≈ 1 is called the robust flutter velocity. Thus, the robust flutter boundary
for an aeroelastic system can be computed using this stability criterion.

2.2 Governing Equations

The governing aeroelastic equations of motion in dimensional Laplace variable s is
given by [1]: (

Ms2 + Cs + K − q Q(s̄)
)
X (s) = 0 (3)

where M, C , and K represent mass, damping, and stiffness matrices, respectively, in
the generalized coordinates of size n × nwhere n is the number ofmodes considered,
q is the dynamic pressure, s = iω is the dimensional Laplace variable, and X (s) is the
vector of generalized coordinates of size n. Q(s̄) represents generalized aerodynamic
forces and s̄ = ik represents the non-dimensional Laplace variable. Here, k and ω

are defined as the reduced frequency and circular frequency, respectively, which are
related by k = ωb/U where b is the reference semi-chord and U is the freestream
velocity.

For the robust flutter studies, uncertainties need to be introduced in the parameters
of the nominal aeroelastic system. Thus the structural and aerodynamic properties of
the nominal aeroelastic system are introduced with parametric uncertainties whose
definition is given as follows [4]:

M = M0 + VMΔMWM (4)

C = C0 + VCΔCWC (5)

K = K 0 + V KΔKW K (6)

Q = Q0 + V QΔQW Q (7)
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where V ’s and W ’s are the scaling matrices and the subscript 0 represents nominal
value of the system parameters.

By introducing the above uncertainties in the nominal aeroelastic system given
by Eq. (3), the following uncertain flutter equation is obtained.

(
M0s

2 + C0s + K 0 − q Q0

)
X (s) + (

VMΔMWMs
2+

VCΔCWCs + V KΔKW K − qV QΔQW Q
)
X (s) = 0 (8)

For the application of μ method to find the robust flutter velocities, the uncertain
flutter equation needs to be converted into Linear Fractional Transformation (LFT)
representation. This is achieved by separating the uncertainties from the nominal
system and then reintroduce it in a feedback manner. Let the input signals to the
uncertainty matrix is given by:

zM = WM X (s) (9)

zC = WC X (s) (10)

zK = W K X (s) (11)

zQ = W QX (s) (12)

The above equation in vector form can be written as:

z = WX (s) (13)

By defining the uncertainty matrix Δ as:

Δ =

⎡

⎢⎢
⎣

ΔM 0 0 0
0 ΔC 0 0
0 0 ΔK 0
0 0 0 ΔQ

⎤

⎥⎥
⎦ (14)

The output signals from the uncertainty matrix are given by:

w = Δz (15)

wherew = [
wM wC wK wQ

]T
. By using Eq. (15) in Eq. (8), the LFT representation

of the uncertain aeroelastic system in compact form is then given by:

P0X = Vw (16)

where P0 is the nominal flutter matrix given by:

P0 = [M0s
2 + C0s + K 0 − q Q0] (17)
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Fig. 2 LFT representation
of the uncertain flutter
equation

and V is the total perturbation transfer function matrix given by:

V = [−VMs2, −V Ds, −V K , qV Q
]

(18)

Using Eqs. (13) and (16), the output signals from the nominal flutter matrix is given
by:

z = WP−1
0 Vw = Pw (19)

where P is the flutter loop transfer function matrix which relates the signals w and
z. Figure 2 shows the LFT representation given by Eqs. (15) and (19). Robust flutter
analysis is then performed by computing the structured singular values (μ) of the
above-generated LFT model at various grid points in the frequency range of interest.
Robust Control Toolbox of MATLAB [7] is used for this purpose. The velocity at
which the peak value of μ ≈ 1 is considered to be the worst-case flutter velocity.

3 Results and Discussions

In the present work, two aeroelastic problems are considered for the robust flutter
studies, namely, a 3DOF airfoil system [1] for validation and AGARD 445.6 swept-
back wing for application [8]. The analysis and results for each of these cases are
discussed in the following sections.

3.1 3DOF Airfoil System (Validation Case)

Figure 3 shows a 3DOF airfoil system along with its geometric, structural, and
aerodynamic descriptions. The motion of the airfoil is described by the plunge h, the
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Fig. 3 A 3DOF airfoil system

pitchα, and the flap angleβ. h ismeasured positive downward,α ismeasured positive
nose up from the x-axis and β is measured positive down from the airfoil reference
chord. Kh , Kα , Kβ represent plunge, pitch, and torsional stiffness, respectively, Ch ,
Cα , Cβ represent plunge, pitch, and torsional damping, respectively. b is the semi-
chord of the airfoil, a is the non-dimensional distance between the mid-chord and
the elastic axis, xα is the non-dimensional distance between the elastic axis and the
center of gravity, c is the location of the flap hinge point from the airfoil mid-chord,
xβ is the distance of the flap CG from the flap hinge point. L , Mα and Mβ are the
aerodynamic lift, airfoil pitching moment, and flap hinge moment, respectively. The
expressions for mass, stiffness, damping, and aerodynamic matrices are given in [1].

The values of various parameters used in the present analysis are [1]: b = 1m; a =
0.4; c = 0.6; S = 2b2; ms = 153.94 kg/m; xα = 0.2; xβ = −0.025; Kh = 8.66 × 105

N; Kα = 3.85 × 105 N; Kβ = 3.85 × 105 N, and ρ = 1.225 kg/m3. The dimensionless
radius of gyration of the airfoil section rα and of the control surface section rβ are
0.497 and 0.0791, respectively.

3.1.1 Nominal Flutter Analysis

Nominal flutter analysis is carried out using the p-k method implemented in MAT-
LAB. The theoretical description of this method is given in [9]. The mass, stiffness,
and aerodynamic matrices are computed using the parameters defined above. For
the velocity range of interest, the state matrix of the p-k method is solved for each
mode by monitoring the convergence of the reduced frequency. This results in the
converged root for each mode from which coupled frequency and damping will be
computed for a given velocity. The velocity at which the computed damping of a
particular mode becomes positive from negative indicates nominal flutter velocity.
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Fig. 4 Variation of damping and frequency for variousmodeswith velocity for 3DOF airfoil system

Table 1 Nominal flutter comparison

Flutter velocity (m/s) Flutter frequency (Hz)

Present 303 11.25

Ref. [1] 303.3 11.25

Figure 4 shows the damping and frequency trends for each mode for a range of
velocities. AtU = 303 m/s, zero crossing is observed in the damping curve of Mode
2 thus indicating the occurrence of flutter. From the V-f graph, the coalescence of
plunge and pitch mode can be clearly observed.

Table 1 shows the comparison of the present computed flutter velocities with the
literature. From the comparison, it can be seen that there exists a goodmatch between
the present result and those given in Ref. [1].

3.1.2 Robust Flutter Analysis

For the robust flutter validation studies, three cases are considered as reported in
[1], namely, structural uncertainty alone, aerodynamic uncertainty alone, and the
combination of both. A sub-critical velocity of 270 m/s is chosen for all the cases as
reported in [1]. The validation results for each case will be discussed in the following
paragraphs.

3.2 Structural Uncertainty

In this case, uncertainties are assumed in the mass and stiffness matrices of the 3DOF
system. The percentage of uncertainties assigned are [1]: M11 = 10%, M22 = 10%,
K22 = 10%, M12 = 5%, and K11 = 5%, where the subscripts i, j in both mass and
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stiffness matrices denote the location of the element in the matrix. Figure 5a shows
the comparison of present μ values in the presence of real structural uncertainties
with those given in [1]. It can be observed that there exists a overall good match
between the present and literature results. The present peak μ value 1.398 and the
respective frequency 72Hz are in good agreement with the literature values 1.38 and
72.2Hz, respectively.

3.3 Aerodynamic Uncertainty

In this case, uncertainties are prescribed in the aerodynamic matrix computed using
Theodorsen’s method. Complex form of uncertainty is assumed for the terms Q12,
Q21 and Q22 of the AIC matrix. These complex uncertainties are defined as a disk in
the complex plane whose nominal values form the center of the disk and the radius
of the disk equals 10% of the magnitude of the nominal values [1]. Figure 5b shows
the comparison of the computed μ values with those given in [1]. There exists an
overall good match between the two results.

3.4 Structural and Aerodynamic Uncertainties

Here, the uncertainties defined in the previous two cases are combined, resulting
in the mixed real/complex uncertainties for the μ calculations. Figure 5c shows the
comparison of the present μ values with those given in [1] and a good match is
observed between them.

3.5 AGARD 445.6 Sweptback Wing (Application Case)

In the previous section,μmethodwas successfully validated for 3DOF airfoil system
with the literature results. In this section, the method is applied to find the worst-case
flutter velocities for AGARD 445.6 wing in various flow regimes. Figure 6 gives
the geometric details of the AGARD wing. The wing has a NACA 65A004 airfoil
cross section. The other geometric properties are 45◦ quarter chord sweep, aspect
ratio = 1.65, and taper ratio = 0.66. Various test models are available in [8] but in
the present work, weakened wing model is chosen for the uncertainty study. The
analysis conditions considered for the study are given in Table 2.

Initially, the free vibration studies are carried out to verify the computed natural
frequencies with the available experimental results. For this purpose, 3D finite ele-
ment model is generated for the AGARD wing in MSC Nastran and the orthotropic
material properties are assigned.The properties of the material are as follows: ρ =
381.98 kg/m3, Ex = 3.1511 GPa, Ey = Ez = 0.4162 GPa, νxy = νyz = νzx = 0.31 and
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Fig. 6 AGARD 445.6 wing
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Table 2 Analysis conditions [8]

Cases Mach No. Density (kg/m3)

1 0.499 0.4278

2 0.678 0.2082

3 0.901 0.0995

Table 3 Comparison of natural frequencies of AGARD 445.6 wing

Modes Present (Hz) Experiment (Hz) [8] Difference (%)

Mode 1 9.611 9.5992 0.12

Mode 2 40.0 38.1650 4.81

Mode 3 50.257 48.3482 3.95

Mode 4 96.284 91.5448 5.18

Mode 5 124.852 118.1132 5.71

Gxy = Gyz = Gzx = 0.4392 GPa. The modal mass and stiffness matrices are then
extracted from MSC Nastran using DMAP subroutines [10]. The matrices are then
used to calculate the natural frequencies whose comparison with the experimental
values are given in Table 3.

3.5.1 Nominal Flutter Analysis

Nominal flutter analysis is then carried out to compute the flutter velocities of
AGARD wing in the absence of uncertainties. The analysis is carried out in the
modal coordinates using the first five fundamental modes of vibration. For the com-
putation of unsteady aerodynamics, a list of reduced frequencies is chosen ranging
from 0.001 to 1. At all the considered reduced frequencies, the generalized aerody-
namic forces are computed using doublet lattice method (DLM) and extracted using
DMAP subroutines of MSCNastran [10]. These matrices along with the modal mass
and stiffness are then used as the input to the p-k method. For all the analysis con-
ditions given in Table2, the flutter analyses are carried out and the computed flutter
velocities along with the experimental values are given in Table 4.

Table 4 Comparison of nominal flutter velocities of AGARD 445.6 wing

Mach Present (m/s) Experiment (m/s) [8] Difference (%)

0.499 184.23 172.46 6.83

0.678 253.0 231.37 9.35

0.901 320.42 296.69 8
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Table 5 Comparison of robust flutter velocities of AGARD 445.6 wing

Mach Present (m/s) Experiment (m/s) [8] Difference (%)

0.499 173.2 172.46 0.43

0.678 236 231.37 2.0

0.901 272 296.69 −8.32

It can be observed that there exists a considerable amount of difference between
the flutter velocities computed using p-k method and the experimental results. The
variation of damping and frequency with respect to velocity for all the cases are
shown in Fig. 7.

3.5.2 Robust Flutter Analysis

For the robust flutter studies, the differences observed in the first five natural fre-
quencies between the experiment and the present computations are introduced as
uncertainties in the modal stiffness matrix of the aeroelastic equation of motion.
The respective percentages are 0.24, 9.85, 8.05, 10.62, and 11.74%. To model the
uncertainties in aerodynamics, the following percentages are assumed for general-
ized aerodynamic forces for each Mach number: 1% for 0.499 case, 2% for 0.678
case, and 5% for 0.901 case. The increase in the percentage error values as Mach
number increases is due to the fact that, at high Mach numbers, the flow becomes
nonlinear and hence DLM accuracy falls short. The μ analysis is then carried out by
including both aerodynamic and structural uncertainties for all the Mach numbers
considered and the respective worst-case velocities are computed based on the cri-
teria μ ≈ 1. Figure 8 shows the variation of μ with frequency computed at robust
flutter velocity for all the considered Mach numbers given in Table 2.

Table 5 shows the comparison of the computed robust flutter velocities with the
experimental results. It can be observed that, by the introduction of structural and
aerodynamic uncertainties, the robust flutter velocitiesmove toward the experimental
results for all the Mach numbers considered. Also, the % difference between the
robust velocity and experimental values is less at low subsonic Mach numbers and
increases with increase in Mach number. This difference can be brought down by
defining the uncertainty magnitudes associated with the aerodynamics using CFD
and/or experimental results.
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Fig. 7 Variation of damping and frequency for different modes with velocity for AGARD 445.6
wing at various Mach numbers
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Fig. 8 μ bound for AGARD445.6wing in the presence of structural and aerodynamic uncertainties
at various Mach numbers

4 Conclusions

In this study, the robust flutter analysis using structured singular value (μ) method is
successfully carried out to determine the worst-case flutter speed for AGARD 445.6
sweptback wing. Initially, a 3DOF airfoil system is robustly evaluated at a sub-
critical velocity of 270 m/s for various structural and aerodynamic uncertainties and
the present μ values are successfully validated with the available literature results.
Themethod is then applied toAGARDwing by considering structural (resulting from
the differences observed in the first five natural frequencies) and aerodynamic uncer-
tainties. From the μ analysis, it is observed that the present robust flutter velocities
are quite close to the experimental values as compared to nominal flutter velocities
at all the Mach numbers studied. Thus by incorporating uncertainties in the aeroe-
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lastic system, there is a good improvement in the flutter boundary prediction. The
predictions in the present work can be further improved by defining the aerodynamic
uncertainties in a rigorous way using experiment or CFD data.
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Optimal Parameters Identification
of Quarter Car Simulink Model
for Better Ride Comfort and Road
Holding

N. P. Puneet, Abhinandan Hegale, Hemantha Kumar,
and K. V. Gangadharan

1 Introduction

With advancement in technology each and every moment of time, human tendency
to lean toward comfort zone has been seen in recent decades. Hence, every invention
has been witnessing day-by-day modification in the field of research. Automobile
industry is one among those sectors which is truly working for ‘more than need’ of a
person. The happiness of a passenger inside a vehicle has been termed ‘ride comfort’
in vehicle industries. This is generally done by isolating the passenger from road
disturbances. One main element which is essential to serve this purpose is damper. A
very smooth damper can provide better ride comfort. But the intension of providing
the ride comfort alone may result in losing the road holding of a vehicle [1]. This
created a new challenge in the vehicle suspension design, and a greater level of
research is going on in this field.

Els et al. [1] with the help of three case studies explained the opposite extremes
of ride comfort and road handling in terms of spring and damper characteristics. The
experiments were conducted on/off road vehicles and proposed semi-active suspen-
sion to sustain compromising nature of ride comfort and road handling. An attempt
to control the vibration transferred from the road disturbance to the passenger in the
cabin was made by Roumy et al. [2]. Experiments were conducted in a quarter car
test rig equipped with an active damper integrated with control logic. A multibody
dynamics simulation code (Vehsim2d) was linked to leap frog optimization algo-
rithm by Naude and Snyman [3] in a constrained problem to optimize the parameters
of passive suspension system. Results indicated the changes in performance with
variation in terrain. Sun [4] made an attempt to optimize the suspension system
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design suitable for rough pavement surfaces. Walking beam suspension system was
employed to demonstrate the vehicle suspension design. A passive vehicle suspen-
sion system was used to analyze the ride comfort of a vehicle by Mostaani et al. [5].
Experiments considered different road roughness conditions and different vehicle
velocities. The study used design of experiment (DOE) method to optimize the
conditions for better ride comfort employed on 7DOF vehiclemodel. Reddy et al. [6]
used genetic algorithm (GA) in optimizing the parameters of quarter car suspension
system for better ride comfort. Quarter car was modeled using Matlab/Simulink.
Response surface method was used to model the equation for ride comfort and was
used as objective function for GA. Mitra et al. [7] used design of experiment and
response surface method to determine the optimal setting of spring and damper for
better ride comfort. Quarter car Simulink model was used for simulation purpose
and the Box-Behnken method of DOE was used in the study. Shirahatt et al. [8]
made a simulation study of a passenger car model and used genetic algorithm to
optimize the control parameters of a suspension design. These results were again
compared with the results of simulated annealing (SA) technique. This comparative
study between active and passive suspension systems showed the upper hand of active
system in providing better ride comfort. Gangadharan et al. [9] presented a study on
ride comfort evaluation of railway coach both analytically and experimentally. Ride
comfortwas evaluatedbasedonSperling’s ride index and ISO2631.Response surface
method andTaguchimethod had been used to find the optimal parameter and effective
parameter, respectively, by Reddy et al. [10]. The simulation using Matlab/Simulink
was conducted for finding the optimal seat suspension parameters using quarter car
model. Gurubasavaraju et al. [11] used response surface method to understand the
variation of responses against various parameters inmagneto-rheological damper and
optimized the magneto rheological fluid particle concentration for greater damping
force.

In this work, an attempt has been made to characterize the commercially available
passive damper of a light motor vehicle and to implement this damper data in the
quarter car simulation model. Many previous works have seen quarter car simulation
by assuming the value of damping coefficient and other parameters. But in this work,
value of actually available damper after characterization has been implemented to
know the effectiveness of this damper. Also, multiobjective optimization has been
done for better ride comfort and road holding using response surface optimization.

2 Experimental Setup and Procedure

Experiments were conducted on a commercially available passive damper of a light
motor vehicle using damper testing machine (DTM) and is shown in Fig. 1. The
damper testing machine (make-HEICO) with a hydraulic capacity of 10 kNwas used
for conducting experiments. Thismachine consists of potentiometer for displacement
measurement and a load cell for measuring force. The measured data can be acquired
through a data acquisition system (DAQ) and the input conditions can be varied using
MOOG controller. A desktop computer is also available for monitoring purpose.
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Fig. 1 Damper testing
machine for damper
characterization

2.1 Characterization of Passive Damper

In this work, a passive damper of a lightmotor vehiclewas used for conducting exper-
iments. The characterization tests were performed using damper testing machine by
choosing three distinct frequency and amplitude conditions. The experiments were
conducted for frequencies of 0.5, 1 and 1.5 Hz and each with variation in displace-
ment amplitudes of 10, 15 and 20 mm, respectively. The characterization tests with
combination of each frequency and amplitude provide force–displacement curve.
Area enclosed by the force–displacement curve gives energy dissipated per cycle
and this concept can be utilized to arrive at damping coefficient for a particular cycle
by using Eq. 1.

E = πCωA2 (1)

where E = Energy dissipated per cycle (Nm), ω = Frequency (rad/s), C = Damping
coefficient of damper (Ns/m), A = Amplitude (m).

Equation 1 helps to calculate the damping coefficient of damper in a particular
cycle. The combination of three frequencies and amplitudes provides nine cycles and
hence nine damping coefficients. Among these, three values, that is, low, medium
and high values of damping coefficients were selected for the design of experiments
and hence to be used in quarter car model using Matlab Simulink.
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2.2 Design of Experiment (DOE)

Currently, design of experiments (DOE) is one of the salient techniques used by
several researchers before conducting the actual experiments and this can provide
number of experiments to be carried out based on DOE method preferred. The time-
saving characteristic of the DOEmade it popular where the number of input parame-
ters involved is more. In this work, central composite design (CCD) has been used to
design the experiments by using Minitab software. In this work, controlling param-
eters considered are sprung mass (kg), vehicle velocity (m/s), damping coefficient
(Ns/m) and the spring stiffness (N/m). To design the experiment, three levels of each
parameter have been considered in this work which could be able to provide 31 sets
of experiments, as per CCD design. The level of parameters and their magnitude
along with DOE table are discussed in later section. These 31 sets of experiments
are conducted with the help of quarter car model using Matlab Simulink model by
varying the parameters in each set.

2.3 Quarter Car Model

Quarter car model is exclusively used to understand the effect of certain vehicle
parameters on the four-wheeler by simply using 1/4th of the vehicle model. A quarter
car model involves sprung and unsprung mass, spring, damper and tire. Quarter car
model can be mathematically represented with the help of Newton’s second law of
motion and are represented by Eqs. 2 and 3.

m2 ÿ2 − c2(ẏ2 − ẏ1) − k2(y2 − y1) = 0 (2)

m1 ÿ1 − c2(ẏ2 − ẏ1) − k2(y2 − y1) + c1
(
ẏ1 − Ṙd

) + k1(y1 − Rd) = 0 (3)

where m1 = unsprung mass, m2 = sprung mass, Rd = road displacement, k1 =
tire stiffness, k2 = spring stiffness, c1 = tire damping coefficient, c2 = damping
coefficient of damper, y1 = unsprung mass displacement, y2 = sprung mass
displacement.

In this work, a sine profile has been considered as the road input to be given for
quarter car model with amplitude of 6 cm and 10 m wavelength.

A relation between wavelength (υ), vehicle velocity (v) and angular frequency
(ω) can be used to input the vehicle speed in quarter car model and is given in Eq. 4.

ω = 2πv/υ (4)

With the help of all the mentioned control parameters, a quarter car model has
been constructed using Matlab Simulink for simulation and is depicted in Fig. 2.
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Fig. 2 Quarter car simulink model

A total of 31 experiments were carried out using the quarter car Simulink model
as per DOE to evaluate ride comfort and road holding in every case. In this work,
the standard ISO 2631-1:1997 is applied to evaluate ride comfort and road holding.
Referring to this standard, ride comfort can be quantified as RMS acceleration of
sprung mass. Also, the relative displacement between the unsprung mass and road
can be used to quantify road holding.

2.4 ANOVA and Response Surface Optimization

Response surface method (RSM) is an important statistical tool used to understand
the relationship between the control variables and responses. Obtaining an optimal
surface with the help of designed experiments is a basic idea behind RSM. Analysis
of variance (ANOVA) is another useful statistical tool to check the significance of the
result by separating the total variance. ANOVA helps in the estimation of interaction
between parameters and in identifying the desirable parameter. This also explores the
significance and influence of one parameter over the response. One of the important
tests in ANOVA is ‘p-test’ or probability test. For 95% confidence level, if p-value
is lesser than or equal to 0.05, then the null hypothesis will be rejected for total
population and the parameter is said to significant and if p > 0.05, then the parameter
is not significant.

To optimize the response, it is necessary to set the boundarieswith upper and lower
limits of control variables. The goal for response can be set in terms of ‘response
maximization’ or ‘target the response’ or ‘response minimization’. Based on the
problem definition and requirements the goals can be set for single response or
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multiple responses. In this problem, it is desired to minimize the magnitudes of
ride comfort and road holding, by optimizing the control variables. A multiobjective
optimization approach is required in this case tominimize the quantity of ride comfort
and road holding together.

3 Results and Discussion

The results from passive damper characterization for different amplitudes and
frequencies, DOE, quarter car simulation using Simulink model, ANOVA and
multiobjective optimization using response surface method are discussed in this
section.

In the first stage, a passive damper of a light motor vehicle (which is commercially
available)was characterized in the damper testingmachine (DTM). Frequency condi-
tion for experiments were 0.5, 1 and 1.5 Hz with each frequency subjected to ampli-
tude variation of 10, 15 and 20 mm, respectively. The nature of force–displacement
curve is shown in Fig. 3a–c.

The characteristic curve for force–displacement data provides information on
damping force achieved at different cycles, but more importantly explores the energy
dissipation per cycle. The energy dissipation is nothing but area covered by the curve.
The damping coefficient can be estimated using Eq. 1. The damping coefficient
calculated for each cycle is given in Table 1.

Thus, the damper characterization provides useful information on damping force
achieved in different cycles, along with damping coefficient. If this experimental
data be used with some other parameters, it may provide the behavior of vehicle
suspension system under certain conditions. Hence, an attempt has been made to
utilize these damping coefficient values into the quarter car simulationmodel. Control
parameters considered in the simulation were sprung mass (kg), vehicle velocity
(m/s), damping coefficient (Ns/m) and spring stiffness (N/m). For the simulation
purpose, three values of damping constants have been considered from Table 2.
These three values are nothing but least-medium-high values among all the damping
constant values (1348, 1718 and 2079, respectively). Different control parameters
and their levels considered for the simulation are given in Table 2.

Other influencing parameters like unsprung mass, tire stiffness and tire damping
coefficients are also needed for simulation in quarter car and these parameters were
maintained constant for all the test runs. The values maintained for these parame-
ters were unsprung mass = 55 kg, tire stiffness = 254,800 N/m and tire damping
coefficient = 12050 Ns/m.

The factors and levelsmentioned inTable 2wereused to formdesignof experiment
and central composite design (CCD)was used to design the experiment usingMinitab
softwarewhich developed 31 sets of experiments. The control variables asmentioned
in Table 2 were set in the quarter car simulation model using Matlab/Simulink. The
output of each experiment was RMS acceleration of sprung mass (which is quanti-
tative measure of ride comfort) and RMS relative displacement between unsprung
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Fig. 3 Load displacement curves for a 10 mm, b 15 mm and c 20 mm amplitudes for different
frequencies

Table 1 Damping
coefficients for different
cycles

S. no. Amplitude (mm) Frequency (Hz) Damping
coefficient
(Ns/m)

1 10 0.5 1943.952

2 10 1 1347.979

3 10 1.5 1406.172

4 15 0.5 2079.294

5 15 1 1800.863

6 15 1.5 1747.215

7 20 0.5 1850.28

8 20 1 1718.524

9 20 1.5 1588.812
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Table 2 Variables for quarter
car model and their levels

Level 1 Level 2 Level 3

Sprung mass (kg) 280 330 380

Vehicle velocity (m/s) 10 20 30

Damping coefficient (Ns/m) 1348 1718 2079

Spring stiffness (N/m) 24,000 28,000 32,000

mass and the road (to measure road holding). Design of experiment based on CCD
and the result of each simulation has been tabulated in Table 3.

Using the response (ride comfort and road holding) and the control variables, a
relationship between them can be established using regression equations. But before
doing so, it is very important to check the significance level of parameters, interaction
between them and the desirable parameters. This can be achieved by using analysis
of variance (ANOVA) for both the responses. Tables 4 and 5 show the results of
ANOVA, for both ride comfort and road holding, respectively.

As mentioned in the earlier section, the individual parameter or interaction of
parameters with p value < 0.05 are said to be significant. The closeness of the model
with the actual values can be identified with the R2 values. In this work, full quadratic
model has shown higher R2 values when compared to linear or linear+ interaction
or square+ interaction model.

The R2 value observed for full quadratic value was 97.05%. Adjusted R2 (R2 adj.)
was observed as 94.46% and predicted R2 (R2 pred.) was observed to be 86.83%.
Based on this, a regression equation for ride comfort was developed and is given in
Eq. 5.

RC = − 2.6 + 0.933 ∗ Vel − 0.0018 ∗ Mass − 0.000082 ∗ Sti f f

− 0.00034 ∗ Damp− 0.01833 ∗ Vel ∗ Vel + 0.000054 ∗ Mass ∗ Mass

− 0.001365 ∗ Vel ∗ Mass + 0.000009 ∗ Vel ∗ Sti f f

+ 0.000093 ∗ Vel ∗ Damp− 0.000003 ∗ Mass ∗ Damp (5)

where RC = Ride comfort, Vel = velocity, Mass = sprung mass, Stiff = spring
stiffness and Damp = damping coefficient.

In a similar manner, ANOVA was performed over road holding also, the results
of which are given in Table 5 which provided the significance parameters and terms
over road holding model.

When checked for effectiveness of the model, the R2 for the road holding was
found to be 94.73%. Similarly, adjusted R2 was found to be 90.12% and prediction R2

was 76.7%. Based on this, similar to ride comfort model, a full quadratic regression
model was developed for road holding also. This is given in Eq. 6, where RH is road
holding.

RH = − 0.0045 + 0.000891 ∗ Vel + 0.000041 ∗ Mass

− 0.000002 ∗ Damp− 0.000022 ∗ Vel ∗ Vel
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Table 3 Design of experiment and simulation result

S. no. Sprung mass
(kg)

Vehicle
velocity
(m/s)

Damping
coefficient
(Ns/m)

Spring
stiffness
(N/m)

Ride comfort
(m/s2)

Road holding
(m)

1 330 20 1718 28,000 6.3202 0.007

2 380 30 1348 32,000 5.1998 0.0047

3 330 20 1718 28,000 6.3202 0.007

4 380 20 1718 28,000 5.2919 0.0066

5 280 20 1718 28,000 7.7177 0.0075

6 330 20 2079 28,000 6.3675 0.0073

7 330 20 1718 28,000 6.3202 0.007

8 280 30 1348 32,000 7.5152 0.0054

9 380 10 2079 32,000 3.0698 0.0048

10 330 20 1718 28,000 6.3202 0.007

11 330 20 1718 28,000 6.3202 0.007

12 380 10 1348 24,000 3.9121 0.0059

13 330 10 1718 28,000 3.0697 0.0042

14 280 30 1348 24,000 5.9888 0.0045

15 280 30 2079 32,000 8.4513 0.0071

16 380 30 1348 24,000 4.2271 0.0041

17 380 30 2079 32,000 5.9886 0.0064

18 330 20 1348 28,000 6.3552 0.0068

19 330 20 1718 28,000 6.3202 0.007

20 330 20 1718 24,000 5.3867 0.006

21 330 20 1718 28,000 6.3202 0.007

22 380 10 1348 32,000 3.3685 0.0052

23 330 20 1718 32,000 7.4074 0.0083

24 380 30 2079 24,000 5.2128 0.0059

25 280 10 1348 24,000 3.0817 0.0037

26 280 10 2079 32,000 2.6126 0.0032

27 380 10 2079 24,000 3.2008 0.0049

28 330 30 1718 28,000 6.0038 0.0055

29 280 10 1348 32,000 2.7526 0.0034

30 280 30 2079 24,000 7.2401 0.0063

31 280 10 2079 24,000 2.7532 0.0033
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Table 4 ANOVA for ride comfort

Source df Adj SS Adj MS f -value p-value

Model 14 83.4916 5.9637 37.55 0.000

Linear 4 49.6406 12.4102 78.14 0.000

Vel 1 43.5496 43.5496 274.21 0.000

Mass 1 4.1475 4.1475 26.11 0.000

Stiff 1 1.5975 1.5975 10.06 0.006

Damp 1 0.3460 0.3460 2.18 0.159

Square 4 22.3617 5.5904 35.20 0.000

Vel × Vel 1 8.7188 8.7188 54.90 0.000

Mass × Mass 1 0.0474 0.0474 0.30 0.592

Stiff × Stiff 1 0.0019 0.0019 0.01 0.913

Damp × Damp 1 0.0001 0.0001 0.00 0.979

2-way interactions 6 11.4290 1.9048 11.99 0.000

Vel × Mass 1 7.4504 7.4504 46.91 0.000

Vel × Stiff 1 1.9813 1.9813 12.48 0.003

Vel × Damp 1 1.8484 1.8484 11.64 0.004

Mass × Stiff 1 0.0891 0.0891 0.56 0.465

Mass × Damp 1 0.0591 0.0591 0.37 0.550

Stiff × Damp 1 0.0007 0.0007 0.00 0.948

− 0.000001 ∗ Vel ∗ Mass + 0.000000 ∗ Sti f f ∗ Damp (6)

It is a general assumption that the model can be said to be valid if the adjusted R2

value is closer to R2 of the model and this is true in this case also, both in terms of
ride comfort and road holding. Hence, these models can be considered to establish
relationship between the responses (ride comfort and road holding) and the control
variables.

3.1 Results of Optimization

Asexplained byEls et al. [1], certain parameters seek opposite nature of settingswhen
considering ride comfort and road holding. Hence it is very difficult to design the
suspension variables so that both ride comfort and road holding meet the passenger
satisfaction. Therefore, an attempt has beenmade in this work to optimize the quarter
car suspension parameters, for greater ride comfort and road holding simultaneously.
This is nothing but a multiobjective approach. This was achieved through response
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Table 5 ANOVA for road holding

Source df Adj SS Adj MS f -value p-value

Model 14 0.000056 0.000004 20.54 0.000

Linear 4 0.000011 0.000003 13.46 0.000

Vel 1 0.000007 0.000007 36.15 0.000

Mass 1 0.000001 0.000001 4.77 0.044

Stiff 1 0.000001 0.000001 4.31 0.054

Damp 1 0.000002 0.000002 8.59 0.010

Square 4 0.000034 0.000008 43.34 0.000

Vel × Vel 1 0.000013 0.000013 64.08 0.000

Mass × Mass 1 0.000000 0.000000 0.00 0.996

Stiff × Stiff 1 0.000000 0.000000 0.14 0.717

Damp × Damp 1 0.000000 0.000000 0.00 0.985

2-way interactions 6 0.000012 0.000002 9.97 0.000

Vel × Mass 1 0.000006 0.000006 28.21 0.000

Vel × Stiff 1 0.000001 0.000001 5.11 0.038

Vel × Damp 1 0.000005 0.000005 25.87 0.000

Mass × Stiff 1 0.000000 0.000000 0.32 0.580

Mass × Damp 1 0.000000 0.000000 0.21 0.651

Stiff × Damp 1 0.000000 0.000000 0.12 0.729

surface optimization. The intension of the optimization was to minimize the magni-
tude of ride comfort and road holding. The response optimization plot is shown in
Fig. 4.

The response optimization plot provided the optimal condition for all the four
control variables for ‘compromised’ minimum conditions of ride comfort and road
holding. It can be observed that the desirability value achieved was 1 for road holding
and it was close to unity in case of ride comfort. The optimum conditions indicated,
and the corresponding response values are tabulated in Table 6.

The optimum conditions indicate that combinedminimization of ride comfort and
road holding preferably require minimum vehicle velocity and maximum damping
coefficient value. The other parameters such as sprungmass and spring stiffness were
intermediate values of provided input magnitude. To check the validity of the result,
the optimum values were substituted back in the quarter car Simulink model. The
result of this simulation and the deviation of this result with the result of response
optimization is given in Table 7 in terms of percentage error.

The results in Table 7 indicate that the regression model for both ride comfort and
road holding obtained using response surface method efficiently served the purpose.
The percentage error between the predicted and validation through simulation is well
within the acceptable limit. Even though RSM is one of the old statistical methods
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Fig. 4 Result of RSM optimization

Table 6 Results of optimization

Optimum conditions Response output

Sprung mass Velocity Damping constant Spring stiffness Ride comfort Road holding

282.0202 10 2079 26262.62 2.7283 0.0032

Table 7 Result of validation
simulation

RSM optimization Validation test % error

Ride comfort 2.7283 2.7280 0.01

Road holding 0.0032 0.0033 3.03

and considering the fact that the study is involving multiobjective optimization, the
method was able to model the conditions well.

4 Conclusion

The current work explores the dynamic characterization of the passive damper of a
light motor vehicle, implementation of the damper characteristics into quarter car
simulation model and multiobjective optimization for better ride comfort and road
holding. In the first stage, commercially available passive damper was characterized
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using damper testing machine (DTM) for three different frequency and amplitude
conditions. The force–displacement data was utilized to estimate the damping coef-
ficient values with the help of energy equation of a damper. The damping coefficient
values thus obtained were further utilized in the quarter car simulation model in
Matlab/Simulink. Control variables such as sprung mass, vehicle velocity and spring
stiffness were also considered for the quarter car simulation. The set of simula-
tion was decided based on CCD method of design of experiment. The simulation
was performed in the quarter car model to understand the ride comfort and road
holding for the considered variables. The effect of each variable over the response
was analyzed using ANOVA and regression equations were modeled with good R2

value. Proceeding further, an attempt was done to optimize the control variables
for minimum magnitudes of ride comfort and rod holding using response surface
optimization. The optimized conditions were validated by quarter car simulation for
the optimum values. Very low deviation of the validation result with the optimiza-
tion result indicated the effectiveness of response surface method in modeling the
conditions, in this work.
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Parametric Study of Lithium-ion Battery
Module for Electric Vehicle Application

R. Umesh, Basant Singh Sikarwar, Ayush Goyal, and Sachin Singh Gautam

1 Introduction

Electric and hybrid vehicles (EVs and HVs) are playing a pivotal role in curbing and
tackling the rising fuel prices and pollution caused by gasoline-powered vehicles [1].
EVs are considered to be one of the emerging markets in the automotive industry to
meet the world demand for clean alternative transportation [2]. Lithium-ion (Li-ion)
batteries are considered as one of the emerging alternative sources to power electric
and hybrid vehicles. Li-ion cells have many advantages due to its, (1) high specific
energy, (2) high power density, and (3) high nominal voltage and low discharge cycle
[3]. However, Li-ion batteries have performance issues due to heating problems that
are not desired for practical application [4]. The desired operating temperature range
for Li-ion batteries is 0 − 40 ◦C [5]. In practical application, if the non-uniform
temperature profile exists within the battery module, it causes a severe effect on the
battery performance and the vehicle. If the overheating and non-uniform temperature
of Li-ion ions is not controlled, it can further cause failure and degradation of Li-ion
cells. Therefore, a thermal management system is needed, which can maintain the
desired operating temperature in the battery module for optimal battery performance
and prevent it from further degradation.
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The different thermal management system has been used to cool the Li-ion battery
module such as (1) thermal control using water cooling, (2) air cooling, and (3) phase
change material thermal cooling [6, 7]. Thermal cooling using air has many added
advantages over another cooling method due to its simple design, low cost, and easy
maintenance [6]. Various techniques have been used by researchers to model the
battery, such as the finite element method [8, 9], artificial neural network [10], and
CFD models [11–13]. The present work is based on CFD-based thermal modeling
of Li-ion cells to study its thermal characteristics.

The thermal performance of Li-ion cells can be affected by different boundary
conditions such as inlet velocity, ambient temperature, and duct sizes (inlet and
outlet). In the open literature, Wang et al. [14] investigated the thermal profile of
different array arrangements using forced air convection methods. They studied the
thermal profile of different configuration for inlet velocity 1 m/s, and 25 ◦C ambient
temperature. However, their numerical results did not give further insight into the
thermal profile of Li-ion cells at different boundary conditions such as different
ambient temperatures and inlet velocities. Lu et al. [15] numerically investigated the
thermal characteristics of densely packed 252 cylindrical Li-ion cells. They studied
the effect of the flow path, airflow rates on temperature uniformity of battery pack
with 15 and 59 vents. However, they limited the duct size to 12 mm (inlet and outlet)
for 15 and 59 vents, which could not predict the temperature distribution for different
duct sizes.

To best of authors’ knowledge in the open literature, very few studies have been
carried out to study the thermal profile of 3× 8 Li-ion cell arrangement, and limited
boundary conditions have been applied. Hence, the motivation of the present work is
to provide innovative thermal management using a forced air convection method for
3× 8 Li-ion cell arrangement. This can further provide insight into thermal profiles
of 3 × 8 Li-ion cells, which can aid in designing an efficient battery management
system for the given arrangement.

The objective is to study the thermal profile of 3 × 8 Li-ion cells at different
boundary conditions. This paper focuses on the thermal modeling of 3 × 8 Li-ion
cells rather than the electrochemical process. In the open literature, Wang et al. [14]
limited the CFD model of 3 × 8 Li-ion cell arrangement to one specific ambient
temperature, i.e., (25 ◦C) and inlet velocity (V = 1 m/s). This paper investigates
the 3 × 8 Li-ion cell arrangement over different ambient temperature (Tam), inlet
velocity (V ), and duct sizes. The 3× 8 Li-ion cell arrangement is analyzed over the
different inlet and out duct sizes to understand the effect of duct sizes on thermal
profiles of the given arrangement.

The rest of the paper has been organized as follows. It gives the details of the design
of the 3 × 8 Li-ion cell arrangement. Section 3 describes the mathematical models
developed for the given arrangement. Section 4 presents the results and discussion of
the numerical results of the given arrangement. Finally, the conclusion of the paper
is summarized in Sect. 5.
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(a) 3 8 Li-ion cell pack (b) 3 8 Li-ion cell pack in the enclosure 

Fig. 1 Schematic of 3 × 8 Li-ion cell arrangement with inlet and outlet duct size of 20 mm

2 The Geometry of 3× 8 Li-ion Cell Arrangement

Li-ion cells have been closely stacked in 3 × 8 cell arrangement (see Fig. 1) with a
2 mm inter-cell distance between each cell. When forced air convection method is
employed, the air passed through the 2 mm gaps between individual cells and walls
of the battery module. The distance between the ends of the right and left side of the
cells is 20 mm, and the top is 35 mm, where the overall height of the battery module
is 100 mm. The battery module consists of an enclosure and closely stacked Li-ion
cells. The enclosure houses the Li-ion cells. The inlet and outlet duct size for 3 × 8
cell arrangement is 5 mm. Three different duct sizes, i.e., 10, 15, 20 mm, have been
designed to study the thermal profile of 3 × 8 cell arrangement at 25 ◦C ambient
temperature.

3 Model Formulation

3.1 Governing Equations

The governing equations of the battery module during discharge are expressed as
[14]

Continuity equation

∇−→
υ = 0 (1)
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Momentum equation

∂
−→v
∂t

+ (v.∇)
−→v = 1

ρ
(−∇p + μ∇2−→v ) (2)

Energy equation

ρcp

(
∂E

∂t
+ vx

∂y

∂x
+ vy

∂E

∂y
+ vz

∂E

∂z

)
= k(

∂2E

∂x2
+ ∂2E

∂y2
+ ∂2E

∂z2
) (3)

where ∇ is the gradient operator, ρ is the density (kg/m3), p is the pressure (Pa), μ
is the viscosity (Pas).

The set of governing equations was solved numerically using ANSYS FLUENT.

3.2 CFD Model

In this paper, the thermal profile of 3 × 8 Li-ion cell arrangement is numerically
simulated using ANSYS FLUENT 19. The total number of elements in the meshing
of the 3 × 8 Li-ion arrangement is 400119. The boundary condition used to model
Li-ion cells is velocity inlet, pressure outlet, and the no-slip boundary condition at
the walls. The cooling air is assumed to be steady, incompressible, and laminar due
to the low flow velocity and short characteristics length (Re < 2300). ABS plastic
is used as a battery material. Each cell in a 3 × 8 arrangement is considered as a
homogenous cylinder with an internal heat source, which is a lumped model for a
single cell. Various assumptions made in the study are

1. The cell material is considered to be homogenous.
2. The cell is considered to be isotropic.
3. The heat generated within the Li-ion cell is assumed to be uniformly distributed.
4. Thermal conductivity (K) and other thermo-physical properties are assumed to

be constant.

The thermo-physical properties of Li-ion cells are summarized in Table 1.
The SIMPLE algorithm [16] is used to solve the momentum and energy equation

of the computational unit.

Table 1 Thermo-physical
properties of 3 × 8 Li-ion
cells

Parameter Value

Density (kg/m3) 2100

Heat transfer coefficient (W/m2 K) 10
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4 Results and Discussion

In this section, the numerical result of the 3 × 8 cell arrangement is presented. The
effect of different parameters, such as ambient temperature, inlet velocity, and duct
size on the currentmodel, is discussed in detail.Ambient,maximum, average, optimal

temperature, and inlet velocity is denoted as Tam, Tmax,
−
T, Topt, and V , respectively.

The 3× 8 cell arrangement is investigated for two different velocities, i.e., 1 and
2 m/s. 3 × 8 Li-ion cells are analyzed for five different ambient temperature viz.
−25,−15, 0, 15, and 25 °C. A detailed observation is carried out to analyze the
performance of 3 × 8 Li-ion cells for their ability to work in optimal temperature
ranges at different ambient temperatures. Thermal performance of 3× 8 Li-ion cells
is judged on (1) maximum temperature (Tmax) of the individual cells, and battery
pack, and (2) the optimal temperature profile (Topt) (0−40 °C) of the 3 × 8 battery
pack.

4.1 Validation of Numerical Simulation

The numerical model is validated by comparing it with the results of Wang et al.
[14] for a 3×8 cell arrangement. The model is analyzed for inlet velocity 1 m/s, and
Tam = 25 °C for 2 mm inter-cell distance.

The maximum temperature and average temperature obtained from the current
numerical study is presented in Table 2, along with the results of Wang et al. [14].
It can be seen that the numerical result from the current model closely matches the
results from Wang et al. [14].

4.2 Thermal Analysis of 3× 8 Cell Arrangement

Figure 2 compares the thermal profile of the 3×8 cell arrangement at 25 ◦C ambient
temperature. It can be observed that for inlet velocity 1 m/s, there is uneven temper-
ature distribution within the battery module. Li-ion cells at extreme ends operate
above the optimal temperature range. As the inlet velocity increases to 2 m/s, the
average and individual cell temperatures come below 40 ◦C. All cells operate within
the optimal temperature range of 0−40 ◦C.

Table 2 Validation of the
current CFD model CFD model Tmax (°C)

−
T (°C)

3 × 8 arrangement (Wang et al. [14]) 43.4 36.0

3 × 8 arrangement (Current model) 43.5 36.2

% error in the 3 × 8 arrangement 0.22 0.55
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(a) )b(s/m  m/s 

Fig. 2 Thermal profile of 3 × 8 cell arrangement at Tam = 25 ◦C

At 15 ◦C ambient temperature, it can be observed (see Fig. 3) that for inlet velocity
1 m/s, all cells work within the optimal temperature range. As the inlet velocity
increases to 2m/s, it further cools down the cells andbrings themaximum temperature
Tmax to 29.4 ◦C. All the cells at 15 ◦C ambient temperature work within the optimal
temperature range.

From Fig. 4, it can be observed that a similar trend is followed to 15 and 25 ◦C
ambient temperature. The maximum temperature (see Fig. 4a) is 27.4 ◦C for an inlet
velocity of 1 m/s. As the inlet velocity increases to 2 m/s, the maximum temperature

(a) )b(s/m  m/s 

Fig. 3 Thermal profile of 3 × 8 cell arrangement at Tam = 15 ◦C
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(a) )b(s/m  m/s 

Fig. 4 Thermal profile of 3 × 8 cell arrangement at Tam = 0 ◦C

decreases to 22.9 ◦C.This further cools the cells andhelps to operate in ideal operating
temperatures.

Based on the above analysis (see Figs. 5 and 6), it can be observed that for
lower ambient temperature −15 and −25 ◦C, all cells operate below the optimal
temperature range of 0−40 ◦C. From Fig. 5a, b, it can be observed that as the inlet
velocity to 2 m/s the maximum temperature Tmax increases to 6 ◦C. However, all the
cells at −15 ◦C ambient temperature operate below the optimal temperature range.

(a) )b(s/m  m/s 

Fig. 5 Thermal profile of 3 × 8 cell arrangement at Tam = −15 ◦C
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(a) )b(s/m  m/s 

Fig. 6 Thermal profile of 3 × 8 cell arrangement at Tam = −25 ◦C

The same trend is observed at −25 ◦C ambient temperature (see Fig. 6); all cells
operate below the ideal temperature range. Inlet velocity has no significant effect on
the thermal profile of the 3 × 8 cell arrangement.

Figure 7 shows the plot of maximum and minimum temperature range of 3 × 8
cell arrangement at different ambient temperatures. It can be observed that at a higher
ambient temperature range, all the cells operatewithin the optimal temperature range.
However, at lower temperature ranges, all cells operate below the ideal operating
ranges.

It can be observed from simulation results (see Fig. 8) that duct size (inlet and
outlet) has an impact on the maximum and average temperature range of 3 × 8

Fig. 7 The plot of temperature vs. ambient temperature of 3 × 8 cell arrangement
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(a) Inlet duct size mm (b) Inlet duct size  mm 

(c) Inlet duct size mm (d) Inlet duct size  mm 

Fig. 8 Thermal profile of different inlet and outlet duct sizes of 3 × 8 cell arrangement at Tam
= −25 ◦C

cell arrangement. As the duct size increases to 10 mm, the maximum temperature
decreases to 41.8 ◦C. As the duct size increases, it is observed (see Fig. 5d) that
maximum temperature decreases, indicating that bigger the duct size, better the
cooling of Li-ion cells.
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5 Conclusion

In this study, the thermal profile of 3 × 8 cell arrangement with forced air convec-
tion method is investigated numerically to optimize the performance of the battery
module. The influence of various parameters such as ambient temperature, inlet
velocity, andduct size onof 3×8 array arrangement has been studied.The conclusions
drawn are as follows:

1. At lower ambient temperature, it is observed that the inlet velocity has no signif-
icant effect on thermal profiles of Li-ion cells. Even if the inlet velocity increases
but no significant difference is found on the individual andmaximum temperature
range of cells. Therefore, at lower ambient temperature, i.e., −15 and −25 ◦C,
the 3× 8 cell arrangement does not meet the ideal operating temperature range.

2. At higher ambient temperature ranges, i.e., 0, 15, and −25 ◦C all cells operate
within the ideal operating temperature range of 0−40 ◦C.

3. Duct size plays an essential role as it controls the volume of air going inside the
battery module. As the duct size increases, the maximum temperature decreases.
The ideal duct size for a 3 × 8 cell arrangement would be 15−20 mm.

The above-presented results would provide insights into the thermal profile of the
3 × 8 cell arrangement, which would aid in designing efficient array arrangements
for practical application.
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An Efficient Implementation of Lanczos
Method for Dynamic Analysis of Launch
Vehicle Structures

P. Deepak , P. V. Anil Kumar, and R. Neetha

1 Introduction

FEAST is a Finite Element (FE)-based structural analysis software developed
by structures group of VSSC. Figure 1, shows the architecture of FEAST soft-
ware with the capabilities of its pre- and post-processor [1] and a solver module
called Substructure and Multi-Threaded (SMT). The SMT solver is designed based
on domain decomposition of the FE model and implemented based on multi-
threaded programming to solve large order problems by exploitingmulti-core system
architecture.

The substructure method [2] is employed for solving both static and dynamic
problems of structural analysis by reducing the number of unknown variables in the
solution process. A parallel direct solver for static problems of structural analysis
has efficient sparse storage schemes, to reduce the number of arithmetic operations,
during the factorization of coefficient stiffness matrix at substructure level. A multi-
threaded implementation scales the parallelism of substructure computation based
on number of CPU cores of multi-core system.

1.1 Eigenvalue Problems in Structural Dynamics

The initial eigenvalue problem (Unshifted vibration) for structural dynamics is

([
K

] − λ
[
M

])
φ = 0 (1)
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Fig. 1 Software architecture of FEASTSMT software

[K], [M ] represents global stiffness and mass matrices. λ represents eigenvalues
and {φ} represents eigenvectors. For the shifted eigenvalue problems, the Eq. (1) is
represented by an initial shift value λ0.

(
[
K

] − λ0
[
M

] − (λ − λ0)
[
M

]
)φ = 0

([
K

] − (λ − λ0)
[
M

])
φ = 0 (2)

where [ −
K] = ([K] − λ0[M ]).

For buckling problems, the mass matrix [M ] is replaced by a differential stiffness
matrix [Kd ].

([
K

] − λ
[
Kd

])
φ = 0 (3)

The general form of inverse eigenvalue problem is written as

[
B

]{X} = �
[
D

]{X} (4)

These eigenvalue problems of Eqs. 1 2, and 3) are converted into a symmetric
inverse form represented in Eq. (4). The symmetric stiffness matrix [K] is factor-
ized in [L]−1{d}[L]−T form. The [B], [D], {X }, and � are represented as shown in
Table 1.
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Table 1 Inverse eigenvalue problem definitions

Problem type [B] [D] {X } �

Shifted vibration [M ][L]−T {d}[L]−1[M ] [M ] {φ} 1/(λ − λ0)

Unshifted vibration [L]−1{d}[L]−T [I ] [L]T {φ} – 1/λ

Buckling [L]−1{Kd }[L]−T [I ] [L]T {φ} – 1/λ

1.2 Eigenvalue Problems in Structural Dynamics

The basic Lanczos recurrence algorithm is a transformation process to a reduced
tridiagonal form. The algorithm truncates the tridiagonalization process and provides
approximations to the eigenpairs (eigenvalues and eigenvectors) of the originalmatrix
[3]. The tridiagonal reduction is an automatic matrix reduction scheme whereby the
eigen solutions in the neighborhood of a specified point in the eigen spectrum can
be accurately extracted from a tridiagonal eigenvalue problem whose order is much
lower than that of the full problem. Specifically, the order, m of the reduced problem
is never greater than.

m = 2 ∗ q + 10 (5)

where q is the desired number of accurately computed eigenvalues. Thus, the intrinsic
power of the method lies in the fact that the size of the reduced eigenvalue problem
is of the same order of magnitude as the number of desired roots, even though the
discretized system model may possess thousands of degrees of freedom. Tridiag-
onal reduction method employs only a single initial shift of eigenvalues and hence
usually requires only one matrix decomposition, namely global stiffness matrix [K].
The Lanczos tridiagonal reduction method is implemented in FEASTSMT for real
eigenvalue analysis as typified by structural vibration (Shifted and Un-shifted) and
buckling problems.

The Recurrence algorithm is based on forward and backward passes on factor-
ized global stiffness matrix to perform the inverse iteration operations. The reduced
tridiagonal matrix is of the form:

[A] =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

a1,1 d2
d2 a2,2 d3

d3 a3,3 d4
. . .

. . dm
dm am,m

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

Themth order eigenvalue problem [A]{y} =−
� {y} is solved for eigenvalues −

� and
eigenvectors {y} using QR-algorithm.
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1.3 Multi-frontal Method

In multi-frontal method, numerical factorization is reduced to a series of partial
factorization operations on dense frontal matrices. The frontal matrices are generally
formed by assembling the stiffness associated with each nodal Degree of Freedom
(DOF). They are composed of three main components: diagonal factors LB, off-
diagonal factors LOFF , and Schur complement S. Once the partial factorization is
completed for a frontal matrix, only S is required for the subsequent partial factor-
ization steps. After the partial factorization of a frontal matrix, diagonal and off-
diagonal factors are not required until the triangular solution. Figure 2 shows the
assembly tree structure used for multi-frontal-based factorization.

2 Proposed Method

To handle large order problems, Lanczos recurrence algorithm discussed in Sect. 1.2
is modified based on multi-frontal-based partial factorization method 1.3. The
existing implementation of Lanczosmethod requires both stiffness andmassmatrices
to be fully assembled to perform factorization, followed by forward and backward
substitution. For this purpose, a newmatrix data structure for unassembled elemental
matrices is created. Mass matrix of each element is created and kept on a symmetric
matrices list.

Fig. 2 Assembly tree structure used for multi-frontal method
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Fig. 3 Matrix data structure used for proposed multi-frontal-based partial factorization

The stiffness is arranged as an assembly tree of frontal matrices discussed
in Sect. 1.3. Factorization of eliminated nodes and update matrix operations of
remaining nodes on each assembly tree level are performed on multiple threads. This
ensures computation on multiple tree branches simultaneously on frontal matrices.
The following subsections explain the partial factorization of stiffness matrix with
multi-threaded execution, setting up unassembled mass matrices, and implementa-
tion of parallel multiplication of unassembled mass matrices with a vector. Figure 3
shows the matrix data structure used for storing and propagating frontal matrices.

2.1 Multi-threaded Frontal Factorization

The partial factorization operations are carried out on frontal matrices LB, LOFF , and
S, explained in Sect. 1.3, using BLAS and LAPCK kernels. Multiple threads are
started at each level while computing partial factors of the frontal matrices.
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Step 1. Set current node = root
Step 2. Lauch a new thread on each tree node at the same depth (Level), starting 

from leaf nodes of the tree. Perform the following BLAS and LAPACK 
kernel operations to get partial factorization and update matrix. 

(a) 
(b) 
(c) 
(d) Synchronize threads 

Step 3. Level = Level - 1
Step 4. repeat step 2 and step 3 until Level = 0 
Step 5.  Continue

2.2 Independent Forward Elimination/back Substitution

Forward elimination process starts from the leaf nodes and progress is subsequently
on parent nodes until it reaches the root tree node. The implementation is done
recursively starting from root of the tree.

Step 1.  Level = maximum tree depth 
Step 2. repeat for each child node of current node

(a) current node = child node 
(b) Execute steps: 2,3,4,5,6,7 and 8

until all child nodes are processed 
Step 3. Assemble , the eliminated DOFs from the original RHS vector. 
Step 4. repeat for each child nodes of the current node

(a) Compute the local indices of eliminated and remaining nodes 
(b) Assemble and with RHS vectors of corresponding child 

node 
until all child nodes are processed 

Step 5. Load and 
Step 6. Execute the following BLAS and LAPACK kernel operations for forward 
elimination. 

(a) 
(b) 

Step 7. Update RHS vectors using and 
Step 8. Release and 
Step 9. Continue

Backward substitution process starts at the root node and continues subsequently
on each child nodes until all the tree nodes are processed. The implementation is
explained in the following steps.
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Step 1.  Set current node root
Step 2.  Load from the updated RHS vector 
Step 3.  If current node is not root then

(a) Load and of parent node from the updated RHS vector 
(b) Assemble RHS vector from and 

end If
Step 4.  Load and 
Step 5.  Execute the following BLAS and LAPCK operations for back substitution. 

(a) 
(b) 

Step 6.  Release and 
Step 7.  repeat for each child nodes of the current node 

(a) Current node = child node 
(b) Execute steps: 3,4,5,6,7 and 8

until all child nodes are processed 
Step 8.  Update original RHS vector with 
Step 9.  Continue

2.3 Parallel Multiplication of Mass Matrices with a Vector

In order to avoid memory-related issues, mass matrix is set up as a list of elemental
symmetric matrices, with associated DoF indexing. The mass multiplication with
vector data structure is performed with unassembled mass matrices. To speed up
the process, the multiplication is carried out in multiple threads, spanning the list
into groups. Figure 4 shows the grouped data ready for multi-threaded execution
on independent CPU cores. N indicates number of CPU cores, which is also equal
to number of sets. The multi-threaded computation requires creation of number of
sets, which is dynamically determined by number of CPU cores. Each set data is
represented by a data structure, which is formed by a reference to input vector, a
temporary output vector, a list of elemental mass matrices, and its indices.

3 Results and Conclusion

For performance comparison, Lanczos solver is first used with the coefficient
matrix decomposed with another direct solver based on Cholesky method. The
solution time of the proposed method is compared with the Cholesky version of
Lanczos implementation for satellite and Reusable Launch Vehicle (RLV) structural
components.
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Fig. 4 Multi-threaded multiplication of unassembled mass matrix

Figure 5 shows the free-vibration results of a typical satellite structural compo-
nent, with model size. The multi-frontal-based eigenvalue extraction procedure is
implemented only for solution of interface variables.

Figure 6 shows a comparison of number of solution variables and solution time
taken for different number of substructure super elements. The number of solution

Fig. 5 FE model of a typical satellite structure
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Fig. 6 Comparison of satellite structural components against number of super elements

variable increases as the number of super elements. However, the solution time
depends on the model used and its connectivity information.

Figure 7 shows the solution performance of a reusable launcher structure. Table
2 shows improvement in execution time for extracting mode shapes using Lanczos
method. Performance of satellite component FE model is approximately 4.62 times.
RLV model was unsolvable using Cholesky factorization, is solved using multi-
frontal factorization scheme in nearly 12 min.

Fig. 7 FE model of a typical launch vehicle structure
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Table 2 Inverse eigenvalue
problem definitions

Satellite component RLV component

Multi-frontal Cholesky Multi-frontal Cholesky

156 s 721.544 s 721 s
—
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