
DAMS: Dynamic Association for View
Materialization Based on Rule Mining
Scheme

Ashwin Verma , Pronaya Bhattacharya , Umesh Bodkhe ,
Akhilesh Ladha , and Sudeep Tanwar

Abstract In data warehousing, view selection (VS) is an important aspect. Optimal
VS needs to be materialized in order to minimize the overall data retrieval time. To
support the same, performance metrics like memory constraints to save materialized
views, query execution time, and query workloads needs to be addressed to reduce
the overall retrieval time. As far as static view materialization (VM) is concerned,
pre-computing strategies are required to execute the query workload prior to VM,
but the approach is not scalable for small disk sizes. In the current era, the memory
requirement is humongous to store pre-computed views in the materialized query
table (MQT) that adds an overhead to view maintenance cost and disk sizes. To
address the aforementioned issues, the authors propose a novel VM scheme DAMS.
DAMS operates in three phases. In the first phase, the scheme chooses a material-
ized view in a dynamic and on-demand basis to reduce the query processing time.
Then, in the second phase, a novel attribute selection algorithm is proposed based
on association rule mining (ARM) technique in VS to address historical queries. It
selects a candidate view from a pool of such views. As the number of queries is
large, the proposed algorithm reduces the computational latency in fetching the view
result. Finally, selected views are prioritized by grouping items as clusters set based
on support and confidence metrics to speed up VM operations.

A. Verma · P. Bhattacharya (B) · U. Bodkhe · A. Ladha · S. Tanwar
Institute of Technology, Nirma University, Ahmadabad, Gujarat, India
e-mail: pronoya.bhattacharya@nirmauni.ac.in

A. Verma
e-mail: ashwin.verma@nirmauni.ac.in

U. Bodkhe
e-mail: umesh.bodkhe@nirmauni.ac.in

A. Ladha
e-mail: akhilesh.ladha@nirmauni.ac.in

S. Tanwar
e-mail: sudeep.tanwar@nirmauni.ac.in

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Singapore Pte Ltd. 2021
P. K. Singh et al. (eds.), Recent Innovations in Computing, Lecture Notes
in Electrical Engineering 701, https://doi.org/10.1007/978-981-15-8297-4_43

529

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8297-4_43&domain=pdf
http://orcid.org/0000-0001-8904-228X
http://orcid.org/0000-0002-1206-2298
http://orcid.org/0000-0002-2345-4254
http://orcid.org/0000-0002-4978-0541
http://orcid.org/0000-0002-1776-4651
mailto:pronoya.bhattacharya@nirmauni.ac.in
mailto:ashwin.verma@nirmauni.ac.in
mailto:umesh.bodkhe@nirmauni.ac.in
mailto:akhilesh.ladha@nirmauni.ac.in
mailto:sudeep.tanwar@nirmauni.ac.in
https://doi.org/10.1007/978-981-15-8297-4_43


530 A. Verma et al.

Keywords View materialization · View selection · Candidate views · Materialized
query table · Least recently used

1 Introduction

The rise in data generation by devices has raised challenges to explore optimal ways
to visualize data. Earlier, visualization is conducted through static tools like tableau,
Microsoft Excel and other related applications [12]. Today, the collected datasets
are humongous with multiple attributes [10]; thus, VS is a critical issue. Manual
approaches to determine the most appropriate view through a list of offered repre-
sented views are tedious and time-consuming. Thus, there is a pressing need to
dynamically allocate views based on on-demand query fired by users. The problems
are that there are numerous factors on which a particular query is raised like similari-
ties in view generations, informational semantics, grouping of data and aggregation.
This requires a scanning of the entire MQT every time a query is fired which is
cost-ineffective.

A static or dynamic approach can be used for materialization of view. Static
VM materialize views before the execution of workload and remains as it is till
the last statement of workload, in between if database object update the relation
or tables that will not immediately propagated for the remaining workload, which
create inconsistency in the database, in contrast to dynamic view will be updated
automatically when the database object modifies the database, we can understand the
concept of VM process in Fig. 1. Incremental approaches were proposed by authors
that define multiple performance metrics like accuracy in view updates, misses in
base tables and latency in fetching queries. The performance parameter includes
optimizes a query sequence and involves complexity of view, memory constraints
and selectivity of view [8]. A materialized view is an object of database which
contains a result of the query, which may be local copy of data located remotely or
may be a join result or a summary of an aggregate function. The collection of views
is effectively chosen in such a way that most of the query can be answered, through
which we can reduce the overall execution time of the query. The drawback of VM is
that they need to be refreshed timely whenever an update happens in the base tables.
Thus, the overall system is not scalable as the number of users increases. Table 1
presents a comparative analysis of different existing approaches for VM.

Fig. 1 Sequence flow of view materialization



DAMS: Dynamic Association for View Materialization … 531

Table 1 Comparative table for existing approaches for VM

Authors Years Objective Pros. Cons.

Rashid et al. [21] 2010 Reducing the
maintenance cost
of materialized
view in object
relational DBMS

Incremental model
to improve query
performance cost

Results limited to
static view models,
hence not scalable
with increasing
users

Anter et al. [3] 2012 A hybrid integrated
system to
materialized view
based on past
queries

Distribution of
queries based on
user choices

More parameters
need to be
considered like
query execution
time and query
fetching time in
conjunction with
user choices

Zlamaniec et al. [28] 2015 Increase the
SPARQL
(SPARQL protocol
and resource
description
framework)
endpoint
availability

Selection of view is
based on the access
patterns and
frequency of access
to support real-time
experience

Optimization is
limited toward data
retrieval methods
for SPARQL
database only

Yoshifumi et al. [19] 2017 A PROforma-based
approach on view
updates,
computation-based
calculations of
temporal updates

Cartesian product
and join views
became updatable

Not applicable on
relational DBMS as
view adaptability is
managed by
INSTEAD OF
triggers

Kumar et al. [18] 2017 Materialized view
based on discrete
genetic operators

Particle swarm
optimization (PSO)
to select top k views
from the
multidimensional
lattice for
materialization

The approach is
compared with
heuristic and local
optimum is
achieved with low
convergence rate
during subsequent
iterations

Jindal et al. [16] 2018 Expression of
queries on cluster
datasets to compute
common
sub-expressions for
view
materialization

Reusability of
common
sub-expressions to
expedite the
execution time of
view fetch

Redundancy in
different
sub-expressions
during clustering of
datasets

(continued)



532 A. Verma et al.

Table 1 (continued)

Authors Years Objective Pros. Cons.

Azgomi et al. [6] 2018 Game theory with
players’ view
maintenance costs
and query
processing costs to
decide play-off
function to reach
Nash equilibrium

Convergence toward
equilibrium state is
fast and efficient
resulting in reduced
query processing
costs

Whenever payoff
does not increase
with subsequent
iterations, the game
reaches a local
optimal equilibrium
point which is far
from ash
convergence

Ye et al. [27] 2018 A multi-view
clustering method
to reduce the
effects of noisy
views during
clustering process

Allows assignment
of small weights to
improve clustering
performance

Focuses on
clustering the
relevant views, still
we need to find out
different attributes
which will be
considered for the
view materialization

Gosain et al. [13] 2018 Priority-based VM
scheme for data
warehouse

PSO for selection of
prioritized set of
queries for VM on
data cube

Approach is not
suitable for dynamic
view selections

María et al. [11] 2019 Assertions are
designed with the
help of
materialization to
ensure tuples in
view follow
cross-row
constraints

Suited for high
complex view
models and
large-sized queries

The model is not
scalable in terms of
access cost as the
number of queries
increases in the
system

In the literature,many authors proposed solutions to address challenges inVM like
scalability, information extraction and retrieving patterns from raw data. The various
conditions where a view is needed to be materialized [21], materialization in hybrid
integration [3] and the optimization of materialization in SPARQL are discussed
[28]. PROforma-based approach for view updation [19] and use of discrete genetic
operator and optimization technique is used to materialize the view [18]. Overlap-
ping sub-expression [16] to identify the common expression for materialization and
game theory [6]-based framework for selection of view is discussed. Priority-based
[13] materialization method, multi-clustering [27] to remove noisy view from mate-
rialization process and cross-row constraints [11] in materialization are addressed.
Data mining techniques [22], frequent pattern analysis [24], are proposed to support
ARM applications like word embedding in textual data [15], extract labels in intru-
sion detection system [5] and decentralized storage patterns in blockchain [17]. The
authors in [26] addressed the problems of selecting view dynamically and dropping
of MV. Researchers in [4, 7] use a clustering method to find the cluster of closely



DAMS: Dynamic Association for View Materialization … 533

related queries. Phan et al. [20] describe automated, dynamic materialized query
table management scheme that materializes views.

Materialized view can be managed by least recently used (LRU) policy. Hossein
et al. [6] proposed a game theory approach where one player is greedy for high query
processing time and the other layer is greedy for the high viewmaintenance cost. The
main advantage of the approach is flexibility. However, if the number of parameters
increases the system becomes complex to find materialized set.

1.1 Motivation

As the amount of data on the server is huge, therefore, for better performance views
need to be processed and stored in an efficient manner in a systematic storage system
where it can be frequently accessed based on business logics. So, to minimize the
query execution time we need, we cannot bring the whole relation or database in
memory, and we need to focus only on the selected portion which is sufficient to
answer themaximumqueryworkload.Many authors propose datamining [4], pattern
analysis [23, 25], label extraction [5] and game theory approaches [6] to address
VM issues. However, reducing the size of relevant data in memory is important.
Hence, motivated by the same, DAMS proposes a dynamic VM approach which
has twofold benefits. First, to reduce the query execution time by materializing the
selected candidate views through proposed attribute selection algorithm based on
association rules, and then, view prioritization is achieved based on clustering views
on confidence and support metric results.

1.2 Research Contributions

The proposed research contributions are now as follows:

• Anovel attribute selection algorithm is presented based on association rulemining
in VS to address historical queries.

• Selected views are clustered-based support and confidence matrix and then
prioritize for materialization.

1.3 Organization of the Paper

The contributed paper work is organized into five sections. Section 1 gives introduc-
tion and motivation behind the paper, and Sect. 2 presents the key terminologies in
view materialization process. Section 3 confers the proposed approach and architec-
ture. Section 4 presents the research challenges and future scope in thematerialization



534 A. Verma et al.

process and solving associated attribute sets. Finally, Sect. 5 presents the conclusion
at the end.

2 View Materialization: Key Terminologies

For view materializing, we need to consider both space and processing time for a
query as a constraint in the system. As the database object updates any information
in the base table of the database, we need to propagate those changes in the view.
Hence, the key challenge is tomaintain the consistency in thematerialized view.Some
systems re-compute the materialized view from the scratch, which is not desirable
as re-computations in base tables consume more time. The re-computations of the
views need to be done in an incremental fashion.

2.1 Performance Evaluation Parameters for View
Materialization

Selectivity of View: Selectivity of view can be defined as follows [21]

View_selectivity = Nrowquery

Nrowview

whereN rowquery denotes the number of qualified rows andN rowview denotes the number
of rows existing in the view. The views are calculated with the help of a different
parameter and constraint which results in a different view selectivity for the same
database.

To understand this better consider the following example:

CREATE VIEW sales-view-1 AS SELECT att-1, att-2 FROM sales
WHERE att-3=k1 HAVING SUM(att-4)>k2.

Suppose the total number of rows in the base table is 5000 and the number of rows
in the sales-view-1 is 1500 and we change the constraints to WHERE att-3 > k1 and
att-3 < k2 HAVING AVG(att-4) > k3 GROUP BY att-5. And let us say the resulted
rows in sales-view-1 become 1000, and now you can understand the difference in
the view selectivity due to different constraints on the same database table.

View selectivity (sales-view-1) = 1500/5000 = 0.3

View selectivity (sales-view-1) = 1000/5000 = 0.2

View Complexity: It can be defined as a result of join between two or more relations
and combination of WHERE and GROUP BY clause, because view with JOIN



DAMS: Dynamic Association for View Materialization … 535

another combination of clause is complex and takes time to compute. Understand
the complexity of both sales-view-1 and sales-view-2.

CREATE VIEW sales_view-1 AS SELECT att-1, att-2 FROM sales
WHERE att-3=k1.
CREATE VIEW sales_view-2 AS SELECT att-1, att-2 FROM sales
WHERE att-3=k1 HAVING AVG(att-4)>k2 GROUP BY att-5.

Database Size: It depends on the organization and their business requirement, how
frequently data is accessed from multiple resources for analysis and fact finding. A
small organization relatively stores small size database as compared to the organi-
zation with huge amount of data stored in different geographical locations. So, the
size of materialized view also depends on organization and its requirement.

Query Optimization: Based on the view calculated and stored in the material-
ized query table, few conditions are applied to check whether a view is capable
of providing the solution or not; if it is not, we need to fetch the result from the
original base table. So generally we prefer one of the two approaches, In the first
approach, wematch the attribute of the query with the view, or alternatively in second
approach we can compare the join attribute, selection condition and aggregate func-
tion between the query from the workload and materialized view. The following is
depicted through an example on defining a view.

CREATE VIEW Employee_Department_V1 as SELECT E.
E.employee_name, D.department_name,
D.department_location, M.employee_name as
Contractor FROM Employee E JOIN Department D us
ing(department_no) join Employee M on (M.employee_no=
D.manager);
Query: SELECT E.employee_name, D.department_name FROM Em
ployee E, Department D WHERE D.department_no=101 and
M.employee_no=D.manager;

A VS problem is based on parameter size of the view, frequency of view update
[9], query prioritization [14] and cost function. The approaches of dynamic view
materialization are depicted in Fig. 2.

3 DAMS: The Proposed Approach

In the proposed approach, a heuristic framework is presented.Workload is considered
as a sequence of statements {s1, s2,…, sn} to be executed in a specific order. Figure 3
shows the VM process. For view selection, mainly four steps are involved:

1. Preprocessing of queries to generate attribute matrix
2. Identify the association rules
3. Identify clusters
4. View selection.



536 A. Verma et al.

Fig. 2 Approaches to dynamic view materialization

Fig. 3 View creation

3.1 Attribute Matrix Generation Table

Attribute matrix generation algorithm generates attribute matrix (Mkj) where k is the
number of queries in the workload (Q), j is the number of attributes present in the
relation/table represented by (A), and Attset is the attribute set which is created from
the attribute; initially, it contains ϕ and after the completion of this algorithm Attset
ends up with collection of sets of single attribute which belongs to Queries Qj.



DAMS: Dynamic Association for View Materialization … 537

Table 2 DAMS: generated attribute matrix table

Q/A At1 At2 At3 At4 At5 At6 At7 At8 At9 At10 At11

Q1 1 1 1 0 0 0 0 1 0 1 1

Q2 0 1 1 1 1 1 1 0 0 0 0

Q3 1 0 1 0 0 0 0 1 0 1 1

Q4 0 0 1 1 1 1 0 0 1 0 0

Q5 1 0 0 1 0 0 1 1 1 1 1

Q6 0 1 1 0 0 0 1 0 1 0 0

That is, Attset = {{At1}{At2}{At3}{At4}…{Atj}}. Based on values ofMkj gener-
ated by algorithm 1, a dimension table is presented in Table 2. All possible attributes
present in the query workload {Q1, Q2, Q3, Q4, Q5, Q6} are depicted in the column,
and individual row represents the queries. In cell, a value ‘1’ indicates the presence
and ‘0’ indicates the absence of attribute in the specific query. Using this attribute
matrix, we can co-relate the set of queries in the workload and identify the clusters.

3.2 Mapping Association Rules to Find Clusters

The main issue is to find the view which is associated with maximum number of
queries, i.e., can provide result to major portion of the workload.

Consider the queries:

SELECT SUM(salary) from EmployeeDB where Branch_office=’Mumbai’
and Joining_year=2019 GROUP BY department.

In the above query, we first identify the rows with office at ‘Mumbai’ and year
2020 and then take average of salary using aggregate function and then arranging
them on the basis of department, the same query can also be considered if we first
group the data on the basis of department with branch Mumbai and year 2019 and



538 A. Verma et al.

then apply aggregate function. So, we need to find the result faster. This is depicted
in Fig. 4.

Consider the set of items ITEM(I) = Bread, Milk, Butter which are frequent part
of your transaction, and same is shown in Table 3, where presence and absence of
attribute are shown with numeric values 1 and 0, respectively, and from a collection
of transaction we can identify the closely related attribute which occurs in transac-
tion more frequently. In online transaction, this rule will help the customers to take
decision on the current trends irrespective of the requirement sometimes, and in this

Fig. 4 Proposed
architectural diagram for
view materialization

Table 3 Mapping of
generated associated values to
rule sets

Transaction ID Bread Milk Butter

1 0 1 0

2 1 1 1

3 1 1 0

4 0 0 1



DAMS: Dynamic Association for View Materialization … 539

way, you get suggestion on e-commerce and social media platform [4]. The row in
the attribute matrix represents in the following manner.

Q1 = 10100,Q2 = 00011

We can understand the presence and absence of attribute in the bit vector. Now to
find the co-relation between multiple queries, we can make use of bit-wise logical
operator.

3.3 Clustering and Prioritizing Queries

Based on bit vector supporting a query set, we identify the attribute, create a cluster of
it, then prioritize them based on the frequency in the transaction and create a cluster
based on the decision support system for view selection. Consider Table 4 storing
the bit value in the matrix for each query and attribute.

According to Agrawal et al. [1], ARM problem is defined as: Let A = {At1, At2,
At3, At4, …} be a set of attributes from the query workload which belongs to a
transaction we call it items. LetQ = {Q1,Q2,Q3,Q4,Q5,Q6, …} be a set of queries
in the workload. To understand this, consider each query with a unique identification
which contains subset from the item set I, and A rule is defined as A → B where A,
B ⊆ S and A ∩ B = NULL [2].

To identify the interesting co-relation from the set of transactions, constraint can be
applied. The key constraint to draw any conclusion in this system is use of minimum
support and confidence as a threshold.

Support: The support supp(A ⇒ B) of an items A ∪ B is defined as the frequency of
data A and B comes together in a transaction data set.

Support(A ⇒ B) = n(A ∪ B)

N

Table 4 To generate clusters and prioritize query sets

Query Freq At1 At2 At3 At4 At5

Q1 1 1 0 1 0 0

Q2 1 0 1 1 0 0

Q3 1 1 0 0 1 0

Q4 1 0 1 0 1 1

Q5 1 1 0 1 0 0

Q6 1 0 1 1 1 1

Q7 1 1 0 0 1 1

Q8 1 0 1 1 1 0



540 A. Verma et al.

where N is count of total transaction. If in a total of 1000 transaction the frequency
of A and B comes together 150, then Support (A ∪ B) = 150/1000 = 0.15 or 15%.

Confidence: The confidence is defined as association between item A and B, i.e.,
how likely B is selected if A is considered.

Confidence(A ⇒ B) = Support(A ⇒ B)

Support(A)

For example, if the value of confidence is 0.15/0.15 = 1, i.e., (100%) it means
that for 100% of the transactions, if attribute B is present, then A is also present, so
we consider both the attributes in the same cluster. The reason behind the association
rule is to create cluster based on the priority of the view. To prioritize, we have chosen
A-priori algorithms, because of its efficient approach to categorize dataset items [2].
To understand the concept, consider hypothetical data along with the frequency in
the query workload.

Consider the item set of one and two attributes initially.

1. Attribute set: {{At1}, {At2}, {At3}, {At4}, {At5}}
2. Attribute set {{At1, At2}, {At1, At3}, {At3, At4}, … so on}
3. Attribute set: contains combination of 3 attributes together and so on, so this

attribute set will depend on the number of attributes present in the table.

So, we first find the frequent set with 1 attribute alone in the database which we
call L1 and likewise we calculate till Lk .

Lk = attribute set of K frequent attribute.
Step 1: find the frequent set with 1 attribute in the database.

Lk = {{At1}, {At2}, {At3}, {At4}, {At5}}
Next step to identify the frequent set with 1 attribute by observing L1.

C2 = {{At1, At2}, {At1, At3}, {At1, At4}, {At1, At5}, {At2, At3}, {At2, At4}, {At2,
At5}, {At3, At4}, {At3, At5}, {At4, At5}}

Now scan the attribute table for {Ati, Atj} existing in aQi in the attribute table, where
i, j ∈ {At1, At2, At3, At4, At5} and Qi ∈ query workload.

L2 = {{At1, At2}, {At1, At3}, {At1, At4}, {At1, At5}, {At2, At3}, {At2, At4}, {At2,
At5},{At3, At4}, {At3, At5}, {At4, At5}}

On passing minimum support and confidence on L2, we generate C3.
C3 is generated by combining all possible sets of L2.

C3 = {{At1, At2, At3}, {At1, At2, At4}, {At1, At2, At5}, … and so on}
Using C3, we will get L3 and let us assume only two sets finally qualify the

minimum threshold.

L3 = {{At2, At3, At4} {At2, At4, At5}}



DAMS: Dynamic Association for View Materialization … 541

C4 = ϕ and so we stop here for clustering of attribute because no further possible
attribute set is capable of qualifying threshold value of set Lk , and we also calculate
the support and confidence of all attribute set.

For example, attribute set {At2, At4, At5}

Confidence({At2, At4} ⇒ {At5})

Confidence({At2, At5} ⇒ {At4})

Confidence({At4, At5} ⇒ {At2})

Confidence({At2, At4} ⇒ {At5})

Confidence({At5} ⇒ {At2, At4})

Confidence({At2} ⇒ {At4, At5})

Confidence({At4} ⇒ {At2, At5})

Support({At2, At4} ⇒ {At5})

and so on, and we can calculate the other support rule for this above case.
This result can help us find more relevant and co-related attribute set which helps

prioritize the strong associations and how strongly they are connected together; this
helps us to keep them in a same cluster and can be resolved in a same view.



542 A. Verma et al.

3.4 View Selection by Attribute Selection Using Candidate
Sets

Attribute matrix generation algorithm is presented that generates possible candidate
views formaterialization. The followingAlgorithm2 is used for finding the candidate
set of attributes which are frequent and need to be materialized for efficient access
and storage, where k is the number of queries represented by (Q), j is the number of
attributes present in the relation/table represented by (A), and Attset is the attribute set
whichwas calculated in aboveAlgorithm1 andwill be updated in each iteration using
Cartesian product of previous sets which is combination pair of all the previous set
element, i.e., state after 1st iterationAttset = {{At1,At2}, {At1,At3}, {At1,At4},{At1,
At5}, {At2, At3}, {At2, At4}, {At2, At5}, {At3, At4}, {At3, At5}, {At4, At5}} state
after 2nd iteration Attset = {{At1, At2, At3}, {At1, At2, At4}, {At1, At2, At5}, … and
so on}. Cm is the candidate set which counts the occurrence of the attribute in the
query, and those which qualify minimum support count in the occurrence of queries
are shifted in least count set Lm where m denotes the number of set required to find
out the minimum attribute which is considered for materialization process.

Now we materialized only those view which are capable of providing answers
to multiple queries, and will reduce the candidate set. Query order permutation and
frequency of past queries are also used to reduce the overall query processing.

4 Research Challenges and Future

In VM, refresh needs to be performed constantly on the database object whenever
an update occurs. These updates need to be propagated at real time to simultaneous
users. The challenge lies in identifying the updates that are consistent among all
users. The research challenges are now presented as follows

• Partial versus Complete Refresh of View: The refreshes are sometimes partial,
where the updates are applied as they happen and the view is presented. This
increases the efficiency of query updates but may introduce inconsistency among
parallel users operating simultaneously. The refreshes are sometimes complete,
where all updates first occur on the VM and then the view is presented to users.
This allows consistency among all users for a common view but increases the
latency of the query. Fine-tuning an appropriate balance is a difficult task.

• Cost of Materialization: Another challenge is establishing a trade-off among
limited memory in constrained environments against the query execution time.
Increasing memory usage reduces the execution time of fetching queries, which
is not feasible in low-powered environments.

• Attribute Selection: Another challenge is identifying the proper sets of frequent
attributes during VM. Frequent attributes may be pre-fetched so that latency
reduces. The challenge is to determine the estimated range value of attributes
that needs to be pre-fetched.



DAMS: Dynamic Association for View Materialization … 543

As rule-based queries have casual dependencies, the cost of querying view
increases. To address the same, the authors as part of future work would propose
machine-learning-based approaches on graph-basedmodels to classify a set of candi-
date views to be materialized. This would reduce the overall query and maintenance
cost of updating views. To address the same, queries are clustered as graph datasets.
A priority algorithm for the selection of materialized views would be proposed. This
reduces the overall storage and query processing cost.

5 Conclusion and Future Work

Optimal VS requires materialization in order to minimize the overall data retrieval
time. In the proposed approach DAMS, based on assigned workloads, similarity and
dissimilarity of features are grouped into cluster sets based on confidence values.
To define the candidate view, we use clusters of related queries which further solve
multiple queries. If candidate views are in number, it will take more time to identify
which candidate is merged and at the same time ensure the capability to answer
multiple queries. The concept ruleminingprovidesmuch stronger associated attribute
set. It also helps in the clustering of related attribute which is frequent in queries in
a database for a given amount of time period.

References

1. Agrawal, R., Imieliundefinedski, T., Swami, A.: Mining association rules between sets of items
in large databases. SIGMOD Rec. 22(2), 207–216 (1993)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th
International Conference on Very Large Data Bases VLDB1215 (08 2000)

3. Anter, S., Zellou, A., Idri, A.: personalization of a hybrid integration system: creation of views
to materialize based on the distribution of user queries. In: 2012 IEEE International Conference
on Complex Systems (ICCS), pp. 1–7. IEEE (2012)

4. Aouiche, K., Jouve, P.E., Darmont, J.: Clustering-based materialized view selection in data
warehouses. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds.) Advances in Databases and
Information Systems, pp. 81–95. Springer, Berlin (2006)

5. Arab, M., Sohrabi, M.K.: Proposing a new clustering method to detect phishing websites.
Turkish J. Electr. Eng. Comput. Sci. 25(6), 4757–4767 (2017)

6. Azgomi, H., Sohrabi, M.K.: A game theory-based framework for materialized view selection
in data warehouses. Eng. Appl. Artif. Intell. 71, 125–137 (2018)

7. Bhattacharya, P., Tanwar, S., Bodke, U., Tyagi, S., Kumar, N.: Bindaas: blockchain-based deep-
learning as-a-service in healthcare 4.0 applications. IEEE Trans. Netw. Sci. Eng. 1–1 (2019).
https://doi.org/10.1109/TNSE.2019.2961932

8. Bhattacharya, P., Tanwar, S., Shah, R., Ladha, A.: Mobile edge computing-enabled blockchain
framework—a survey. In: Singh, P.K., Kar, A.K., Singh, Y., Kolekar, M.H., Tan-war, S. (eds.)
Proceedings of ICRIC 2019. pp. 797–809. Springer International Publishing, Cham (2020)

9. Bhattacharya, P., Tiwari, A.K., Srivastava, R.: Dual buffers optical based packet switch
incorporating arrayed waveguide gratings. J. Eng. Res. 7, 1–15 (2019)

https://doi.org/10.1109/TNSE.2019.2961932


544 A. Verma et al.

10. Bodkhe, U., Bhattacharya, P., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M.S.: Blohost:
blockchain enabled smart tourism and hospitality management. In: 2019 International
Conference on Computer, Information and Telecommunication Systems (CITS). pp. 1–5
(Aug2019)

11. Cavero Barca, J.M., Sánchez, B.V., García deMarina, P.C.: Evaluation of an implementation of
cross-row constraints using materialized views. ACM SIGMOD Record 48(3), 23–28 (2019)

12. Ehsan, H., Sharaf, M.A.: Materialized view selection for aggregate view recommendation. In:
Chang, L., Gan, J., Cao, X. (eds.) Databases Theory and Applications, pp. 104–118. Springer
International Publishing, Cham (2019)

13. Gosain, A., Madaan, H.: Efficient approach for view materialization in a data warehouse by
prioritizing data cubes. IET Softw. 12(6), 498–506 (2018)

14. Gosain, A., Madaan, H.: Query Prioritization for View Selection, pp. 403–410 (07 2018).
https://doi.org/10.1007/978-981-10-3373-540

15. Hemmatian, F., Sohrabi, M.K.: A survey on classification techniques for opinion mining and
sentiment analysis. Artif. Intell. Rev. 1–51 (2017)

16. Jindal, A., Karanasos, K., Rao, S., Patel, H.: Selecting subexpressions to materialize at data-
center scale. Proc. VLDB Endow. 11(7), 800–812 (2018)

17. Kabra, N., Bhattacharya, P., Tanwar, S., Tyagi, S.: Mudrachain: blockchain-based frame-work
for automated cheque clearance in financial institutions. Futur. Gen. Comput. Syst. 102, 574–
587 (2020)

18. Kumar, A., Kumar, T.V.: Materialized view selection using discrete genetic operators-based
particle swarm optimization. In: 2017 International Conference on Inventive Systems and
Control (ICISC), pp. 1–5. IEEE (2017)

19. Masunaga, Y.: An intention-based approach to the updatability of views in relational databases.
In: Proceedings of the 11th International Conference on Ubiquitous Information Management
and Communication, p. 13. ACM (2017)

20. Phan, T., Li, W.: Dynamic materialization of query views for data warehouse workloads. In:
2008 IEEE 24th International Conference on Data Engineering, pp. 436–445 (April 2008)

21. Rashid, A.N.M.B., Islam, M.S.: An incremental view materialization approach in ordbms.
In: 2010 International Conference on Recent Trends in Information, Telecommunication and
Computing, pp. 105–109 (March 2010)

22. Sohrabi, M.K., Akbari, S.: A comprehensive study on the effects of using data mining
techniques to predict tie strength. Comput. Hum. Behav. 60, 534–541 (2016)

23. Sohrabi, M.K., Azgomi, H.: Evolutionary game theory approach to materialized view selection
in data warehouses. Knowl.-Based Syst. 163, 558–571 (2019)

24. Sohrabi, M.K., Hasannejad, M.H.: Association rule mining using new fp-linked list algorithm
(2016)

25. Srivastava, A., Bhattacharya, Singh, A., Mathur, A., Prakash, O., Pradhan, R.: A distributed
credit transfer educational framework based on blockchain. In: 2018 Second International
Conference on Advances in Computing, Control and Communication Technology (IAC3T),
Allahabad, India, pp. 54–59. IEEE (2018)

26. Xu,W., Theodoratos, D., Zuzarte, C.,Wu, X., Oria, V.: A dynamic viewmaterialization scheme
for sequences of query and update statements. In: Song, I.Y., Eder, J., Nguyen, T.M. (eds.) Data
Warehousing and Knowledge Discovery, pp. 55–65. Springer, Berlin (2007)

27. Ye, Y., Liu, X., Yin, J.: Multi-view clustering with noisy views. In: Proceedings of the 20182nd
International Conference on Computer Science and Artificial Intelligence, pp. 339–344 (2018)

28. Zlamaniec, T., Chao,K.M.,Godwin,N., Shah,N., Farmer,R.:A framework forworkload-aware
views materialisation of semantic databases. In: 2015 IEEE 12th International Conference on
e-Business Engineering, pp. 15–22. IEEE (2015)

https://doi.org/10.1007/978-981-10-3373-540

	 DAMS: Dynamic Association for View Materialization Based on Rule Mining Scheme
	1 Introduction
	1.1 Motivation
	1.2 Research Contributions
	1.3 Organization of the Paper

	2 View Materialization: Key Terminologies
	2.1 Performance Evaluation Parameters for View Materialization

	3 DAMS: The Proposed Approach
	3.1 Attribute Matrix Generation Table
	3.2 Mapping Association Rules to Find Clusters
	3.3 Clustering and Prioritizing Queries
	3.4 View Selection by Attribute Selection Using Candidate Sets

	4 Research Challenges and Future
	5 Conclusion and Future Work
	References




