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Abstract

Sorghum is the dietary staple for millions of people living in the subtropical and
semi-arid regions of the globe. Its cultivation around the world is spread over
diverse agro-ecosystems. In almost all the sorghum-growing regions, the grain
yield levels have been enhanced over the years because of improved cultivars
with higher nutrient response and better crop management practices. In every
sorghum improvement program, yield and adaptation are the primary objectives
for improvement. Wide genetic diversity is available in the cultivated Sorghum
bicolor, as reflected in its five basic races, viz., bicolor, kafir, guinea, caudatum,
and durra, and their ten intermediate races. The Zera-zera (an intermediate race
between caudatum and guinea) landraces from Ethiopia and Sudan have proved
to be useful sources for many traits such as excellent grain quality, high grain
yield potential, tan plant, resistance to leaf diseases, and desirable plant type.
Despite the considerable diversity in the available germplasm, very few germ-
plasm lines have been utilized in the breeding for yield and adaptation so far. The
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diversity among the five basic races needs to be exploited to broaden the genetic
base to produce cultivars with higher yield and adaptation for sustainable
production.
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1 Introduction

Sorghum, a staple food for over 500 million people in the semiarid tropics of Africa
and Asia, is highly adapted to drought and high temperatures. It is playing an
increasingly important role in meeting the challenges of feeding the world’s growing
population under the climate change scenario. Globally, sorghum is positioned as the
fifth most economically important cereal after wheat, rice, maize, and pearl millet
and plays a critical role in providing food, feed, fodder, and fuel and provides half of
the world’s food calories (Reynolds et al. 2016). Sorghum being an important C4
plant has higher photosynthetic ability and greater nitrogen and water use efficiency.
It is suitable to hot and dry agro-ecologies which are subjected to frequent droughts
and plays an important role in ensuring food security in this region. Sorghum
research has not received the required attention among the scientific community
especially in Africa and Asia in the past because it is considered as a coarse grain and
much of its production is at subsistence level. However, increased food demand due
to rapid population growth, enhanced utilization of animal products, and depleting
fossil fuel reserves has necessitated for utilizing the full potential of this crop as food,
feed, fodder, and fuel. For enhancing the productivity of a crop, genetic improve-
ment is the most cost-effective means.

Genetic improvement of sorghum is being addressed by many national and
international programs globally, viz., USDA (United States Department of Agricul-
ture), INTSORMIL, the International Crops Research Institute for the Semi-Arid
tropics (ICRISAT), FAO/UNDP (Food and Agricultural organization of the UN and
the United Nations Development Program), ICAR-Indian Institute of Millets
Research (ICAR-IIMR), and many other national research organizations in different
countries such as Africa, Australia, and China. The objectives of these sorghum
improvement programs differ in different countries and regions depending on the
local production environment, constraints, and end-product utilization. At present
sorghum cultivation is spread across diverse agro-ecosystems and its improvement
has been characterized by long term increase of grain yields (Miller and Kebede
1984; Doggett 1988) and evolving more adaptive genotypes to cope with increas-
ingly diverse environmental conditions under the climate change scenario. Since
sorghums are tropical in origin, the important factors that define its adaptability are
light, temperature, and day length (Kimber 2000). Diverse germplasm has been
utilized in different breeding programs aiming at improved yield and adaptation.
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2 Genetic Diversity Utilized in Breeding Programs

The diversity available in the cultivated species of Sorghum bicolor is reflected in its
five basic races, viz., bicolor, kafir, guinea, caudatum, and durra, and their ten
intermediate races. National and international research programs have used some of
the germplasm to broaden the genetic base of the material for the traits of interest
(House et al. 1996) and developed elite cultivars for food and feed purposes.
Sorghum germplasm collections are unique in terms of size and diversity thus
providing enormous genetic variability for the crop improvement programs
(Dahlberg et al. 1996). The nuclear-cytoplasmic male sterility system which has
formed the basis for exploiting hybrid vigor was contributed by kafir race in
combination with durra from eastern Africa. While caudatum and durra races
have contributed genes for higher yields, guinea from West Africa provided the
genes for resistance to grain molds, and bicolor race contributed for forage sorghum
breeding (Kameswara Rao et al. 2004). Indian durras have contributed genes for
resistance to shoot fly and drought. Majority of the germplasm has been utilized for
improvement of agronomical and adaptive traits, some target traits being increased
seed number, larger panicle size, plant biomass, drought tolerance, disease resis-
tance, greater leaf area indices, increased green leaf retention, and greater
partitioning of dry matter that contributes to increased yields (Miller and Kebede
1984). Diverse sorghum germplasm is available in Africa, the primary center of its
origin, and different parts of the world have different collection of the germplasm.
Breeding programs across the world have utilized the diverse germplasm available in
Ethiopian collections which consist of three distinct sorghum types, Zera-zera, a
caudatum type of sorghum from lowland, humid areas; durras, which are found
mostly in lower to mid-elevations; and high-altitude sorghums, which are made up
of primarily durra-bicolor derivatives (Upadhyaya et al. 2014). Especially, the Zera-
zera have been extremely useful for the improvement of food type sorghums,
contributing both tan plant and high-quality seed (Rosenow and Dahlberg 2000).

Sudan also is a rich source of trait diversity, where Caudatum race dominates and
caudatum-durras and caudatum-nigricans are observed in the higher rainfall areas
of central Sudan and Zera-zera type in Eastern Sudan. While Southern Sudan has
caudatum and caudatum-guinea derivatives, western Sudan has “zinnari” germ-
plasm (durra derivatives). Zinnari germplasm is characterized with large panicles,
large seed, and long, stiff rachis branches, and these were documented to have good
acid soil tolerance. River valleys of northern Sudan were found to have some true
durras which were useful as sources of drought resistance (Rosenow and Dahlberg
2000; Rosenow et al. 1999). True guineas are found in West Africa, especially in
central and southern Mali, Burkina Faso, and a portion of Senegal. Masakwa
sorghums of western Africa are suitable for transplanting. In China, bicolor or
bicolor derivatives are the most indigenous land races, with many in the working
group nervosum, commonly called kaoliangs. Chinese lines were found to be
distinct and formed a different cluster from the other world collection (de Oliveira
et al. 1996). Tolerance to low temperatures was observed in germplasm collected in
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Ethiopia, Uganda, Yemen, and highlands of Kenya, Zaire, and Cameroon (Kimber
2000).

Initially in almost all the breeding programs, especially in Africa and India,
varieties were developed through pure line selections within cultivated landraces.
About 34 germplasm accessions were directly released as cultivars in 17 countries,
with some of these released in more than one country (Upadhyaya et al. 2014). The
classic example of sorghum germplasm utilization is the conversion program
undertaken by Texas A&M-USDA (Dahlberg et al. 1996) which was initiated to
convert tall, late maturing tropical sorghums to short and early types using
backcrossing program (Rosenow and Dahlberg 2000). The lines developed from
the sorghum conversion program have made large contribution to the sorghum
improvement programs in the United States and elsewhere (Rooney 2004). It was
observed that these converted lines are excellent sources of resistance to diseases,
insects, drought, lodging, and grain weathering and possess plant and grain
characteristics potentially useful in improving the food and feed value of grain
sorghum (Duncan et al. 1991). Some converted Ethiopian germplasm are the
Zera-zera, SC 108 (IS 12608C), and SC 110 (IS 12610C), SC 170 (IS 12661C),
SC 173 (IS 12664C), the midge resistant line SC 175 (IS 12666C), durras with stay-
green SC 35 (IS 12555C) and SC 33 (IS 12553C), and a durra-bicolor with downy
mildew, head smut (Sporisorium reilianum) and anthracnose (Colletotrichum
graminicola) resistance, SC 155 (IS 12645C). Also, SC 326-6, a IS 3756 derivative
has resistance to rust, anthracnose, leaf blight (Exserohilum turcicum), and other leaf
diseases (Rosenow and Dahlberg 2000). Other very useful converted exotics have
been SC 56 (IS 12568C), a stay-green and lodging-resistant line, SC 414 (IS 2508C),
a downy mildew resistant line with wide adaptation, SC 748 (IS 3552C), a grain
mold and weathering-resistant line, and SC 120 (IS 2816C), a leaf disease-
resistant line.

3 Cultivar Option

Since sorghum is an often-cross pollinated crop, the crop improvement methods
applicable to both self- and cross-pollinated crops can be conveniently used for
cultivar development. Hence one can find sorghum pure line varieties, F1 hybrids,
and populations as cultivar options in different parts of the world. Lot of information
is available on available genetic variability in sorghum and heritability and inheri-
tance pattern of important yield contributing traits. Initially only pure line selections
were followed in the farmers’ varieties and local land races. With the discovery of
cytoplasmic-nuclear male sterility (Stephens and Holland 1954), sorghum hybrid
development and exploitation has gone to commercial level. Most breeding
programs focused on the development of F1 hybrid parents. The restorer lines
developed in this process become good candidates for development of open
pollinated varieties (OPVs). While in most of the developed countries, hybrids are
the preferred cultivars, sorghum producers in some areas in Africa, and post-rainy
sorghum areas in India rely still on open pollinated cultivars. The main reasons why
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hybrids are not popular in these regions being either limited heterosis due to narrow
genetic base or lack of well-established seed industry for hybrid production and
marketing.

The cultivation of F1 hybrids has been increasing, particularly in China, India,
and South Africa. Hybrids have greater response compared to varieties, particularly
land races and that has encouraged the use of fertilizer and improved management
practices (House et al. 2000). A yield advantage of 20–60% with hybrids was
recorded compared to improved varieties. Hybrids are more stable across
environments and under stress; the yield decline in hybrids is comparatively less
(House et al. 1996). The absence of a mechanism for hybrid seed production and
distribution has been a major hurdle and a discouraging factor in several countries. In
India and African countries, off season nurseries have been established to make
hybrids which help in speeding up breeding progress. Maunder (1972) reported
150% increase in sorghum yield during the first 15 years of hybrid sorghum
cultivation in the United States. Miller and Kebede (1984) reported an annual
yield gain of 7% in the sorghum improvement program of the United States for
the period of 1950–1980. Though many of the current hybrids are based on A1

cytoplasm, sorghum hybrids on A2 cytoplasm have been grown annually on about
200,000 ha since the early 1980s in China (Chen and Shi 1995).

These advances in sorghum hybrid development has significantly contributed to
yield gains in countries like China, the United States, Australia, Brazil, Mexico, and
India (Rakshit et al. 2014). Influence of sorghum hybrids in achieving yield gains in
different countries is well documented (Smith and Frederiksen 2000 in United
States; Stephens et al. 2012 in Australia; Gizzi and Gambin 2016 in Argentina;
Aruna and Deepika 2018 in India). The quantum jumps in sorghum grain yields
under rainfed conditions are attributed to a combination of genes for reduced plant
height, better grain/straw ratio, and good responsiveness to added nutrients (House
et al. 2000).

4 Breeding for Grain Yield and Adaptive Traits

Sorghum yield productivity is highly variable and is influenced by genotype,
environment, and their interaction. There has been a huge yield gap in the realization
of the crop potential against the documented highest yield potential of 15,000 kg ha�1

(Rooney 2004). This clearly indicates the opportunities available to enhance the
yield potential of the sorghum crop not only by genetic manipulations but also by
reducing the environmental constraints.

Yield and adaptation are the central objectives of any crop improvement program.
A more adaptive genotype maintains high production in different environments even
in the presence of stress. All sorghum cultivars in general have the genetic/physio-
logical potential to produce some degree of economic yield; it varies with the
adaptive traits a genotype has which helps in coping up with the environment
(yield ¼ genotype � environment). A high yielding, widely adapted cultivar is
one that responds positively to varying environmental changes (Miller et al. 1996).
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To develop genotypes with wider adaptation, it is important to understand the
genetics and relations between yield, maturity, and height (Rooney 2004). In
general, grain yield is strongly correlated with increased maturity. But in case of
stress, like drought encountered during the growing season, the positive relationship
between grain yield and maturity is eliminated, and in most cases earlier maturity
cultivars out yield late cultivars. Hence early maturity cultivars are the preferred
genotypes in dryland environments where drought stress and/or short growing
seasons are consistently encountered.

Like any other crop, grain yield in sorghum is a complex trait controlled by many
genes (Beil and Atkins 1967; Aruna and Audilakshmi 2008). Grain yield is deter-
mined by grain number, grain size, panicle length, and number of primary and
secondary branches. Genes controlling these component traits act either additively
or epistatically to define the final output of grain yield. All these component traits are
quantitative and are influenced by environment. Genetic improvement of grain yield
is a challenging task as it involves accumulation of positive alleles involved in the
expression of component traits. Over the last decade, few studies in sorghum have
identified QTL for grain yield and its component traits (Brown et al. 2006; Hart et al.
2001; Nagaraja Reddy et al. 2013; Ritter et al. 2008; Srinivas et al. 2009; Sukumaran
et al. 2016; Bernardino et al. 2019). The major component traits for yield are number
of kernels per panicle, size of kernels, and number of panicles per unit area (Miller
et al. 1996). The kernel size and number are shown to be strongly negatively
correlated. However, that negative correlation can be broken by selecting females
of hybrids with high number of kernels, then selecting male parents (R lines) with
large kernels. Non-overlapping loci for grain number and weight were identified
suggesting that these traits can be manipulated independently to increase the grain
yield in sorghum (Boyles et al. 2016). These independent loci for grain number and
thousand grain weight can be incorporated into elite cultivars thus potentially
increasing one yield component without decreasing the other, ultimately increasing
total grain yield. The genetic basis of grain weight has been studied in multiple
linkage analysis studies in sorghum (Brown et al. 2006; Feltus et al. 2006; Murray
et al. 2008; Paterson et al. 1995; Pereira et al. 1995; Rami et al. 1998; Srinivas et al.
2009; Tao et al. 2018; Tuinstra et al. 1997) which together identified 12 unique
genomic regions (Mace and Jordan 2011). More recently, sorghum diversity panels
have been used to identify loci significantly associated with grain weight and other
grain yield component traits (Boyles et al. 2016; Zhang et al. 2015).

Plant height and grain yield usually have a positive relationship under favorable
environment. Plant height in sorghum is a complex trait consisting of number and
length of internodes and the peduncle length. Four major effect genes (Dw1, Dw2,
Dw3, and Dw4) have been described in sorghum with significant effect on plant
height with a modifier complex of eight genes that influenced elongation of
internodes (Karper and Quinby 1954). The four genes are inherited independently.
Tall is partially dominant to dwarf and the effect of the loci is cumulative (Karper
and Quinby 1954) but unequal. The dwarfing effect of recessive genes (dwdw) at
any of the four loci is brachytic (where internode length is reduced, but not peduncle
length). The genotype with all four dominant alleles (zero dwarf) may reach a height
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of up to 4 m. Recessive allele substitution may reduce height by 50 cm or more. If
one or more height loci are in recessive condition, recessivity at additional loci may
not have greater reducing effect on plant height. The 3-gene dwarf and 4-gene
dwarfs may differ in height for 10–15 cm. Of the four major loci, Dw3 is highly
unstable, and it mutates at a higher frequency of 1 in 600 plants (Karper 1932)
leading to appearance of taller plants in dwarf genotypes. Dw1 and Dw2 are highly
stable, whereas Dw4 has shown little instability in its action. Height loci show
complementary effects, and hence they can be exploited to develop tall hybrids
using two shorter genotypes. Despite growing conditions that affect plant height in
varied environments, the general response of height is relatively consistent. Cassady
(1965) and Graham and Lessman (1966) studied the allelic effect of Dw3 vs dw3 and
Dw2 vs. dw2 on grain yield involving isogenic lines. In both studies, the dominant
allele improved grain yields. It was suggested that better spatial arrangement of the
leaves on Dw2 and Dw3 plants could have resulted in more efficient utilization of
light.

Another adaptive trait which determines the extent of distribution of a crop in
diverse climatic conditions is the flowering time (Bhosale et al. 2012; Craufurd et al.
1999). Though grain sorghum is a short-day plant and mostly photoperiod sensitive,
there are genotypes which exhibit differential sensitivity to varying photoperiods and
temperature regimes (Doggett 1988). Sorghum had a photoperiod controlled repro-
ductive system to cope with the monsoon rainfall pattern, which followed the annual
high-sun position. For maturity, four major genes (Ma1, Ma2, Ma3 and Ma4) with
qualitative effect have been described, with multiple alleles at each locus (Quinby
1967, 1974). Tropical sorghums are usually dominant (Ma-) at all four loci and
recessive condition (mama) at any one of the four loci leads to more adaptation to
temperate climatic conditions. Maturity genes do interact and Ma1 has maximum
effect on the maturity and it influences the operation of other three genes (Ma2,Ma3
andMa4). Mutations inMa1were critical for the early domestication and dispersal of
sorghum from its center of origin across Africa and Asia (Quinby 1967). Dominance
at Ma1 locus (Ma1-), Ma2, Ma3, and Ma4 cause lateness, but when Ma1 is recessive
(ma1ma1), then even recessivity at other three loci (ma2ma2, ma3ma3 and ma4ma4)
show dominance. The presence of the ma3

R allele causes extreme earliness regard-
less of the genotypes present at any other locus. Most of the converted lines from
tropical to temperate are recessive at first maturity locus (ma1ma1) and dominant at
other loci. Tropical lines of early or late maturity retained their flowering behavior
after their conversion to temperate zone adaptation. This was thought to be due to
different alleles at one or more of the maturity loci, and not due to a group of
modifying genes at other loci (Quinby 1967). Rooney and Aydin (1999) identified
two dominant loci, Ma5 and Ma6, controlling photoperiod-sensitive response. Both
Ma1 andMa3 have been cloned.Ma3 encodes a phytochrome B (Childs et al. 1997).
The gene encoding pseudo-response regulator protein 37 (PRR37) was identified as
a likely gene candidate forMa1 based on the known roles of PRR genes in flowering
of Arabidopsis (Murphy et al. 2011). Ma1 suppresses flowering by activating the
floral inhibitor CONSTANS and repressing the floral activators, Early Heading Date
1, and FLOWERING LOCUS T. Mutations in Ma1 produced early-maturing grain
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sorghum plants. Sorghum Ma6, a strong repressor of flowering in long days, was
identified as the CONSTANS, CO-like, and TOC1 (CCT)-domain protein encoded
by SbGhd7 (Murphy et al. 2014). Sorghum Ghd7 increases photoperiod sensitivity
and delays flowering by inhibiting expression of the floral activator SbEhd1 and
genes encoding FT. Sorghum germplasm, both photoperiod sensitive and photope-
riod insensitive, remain important sources of new genes for the continued develop-
ment of cultivars and hybrids in terms of improvement in yield and resistance to
biotic and abiotic stresses.

5 Breeding for Photoperiod-Sensitive Sorghums

In tropical regions, farmers’ selection was for sorghum with specific daylength
requirements that match local environmental conditions so that some grain produc-
tion is assured. Small farmers are benefitted tremendously because no change in day
length requirements is needed and hence there is no need to alter their cropping
systems (Gomez and Chanterau 1996). Photoperiod-sensitive cultivars are in use in
some areas, particularly in West Africa and the post-rainy sorghums of India. The
informal selection by farmers for daylength sensitivity has resulted in sorghum that
matures as available soil water is exhausted in the early part of the dry season,
thereby ensuring that the crop fully utilizes the growing season. This is particularly
beneficial if sowing must be done several times, but the crop should mature when
there is still adequate moisture to finish grain formation (House et al. 2000). In
Nigeria, photosensitive sorghum cultivars are available in which the date of planting
controls the vegetative development of the genotype, but the duration and time of
flowering and fruiting phases remain stable (Franquin 1984).

An example for photoperiod-sensitive sorghum is the unique group of sorghum
called maicillos in Central America. These were introduced from Africa and were
adapted to local farming practices. High photoperiod sensitivity of maicillos enabled
them to become intercropped with early maize landraces (Gomez and Chanterau
1996). Crop improvement work on these lines by Meckenstock (1991) showed that
these are extremely sensitive to photoperiod due to the presence of dominant alleles
at the Ma1 and probably the Ma2 loci. Crosses were made between selected maicillos
and elite germplasm in the early 1980s to develop a new enhanced photosensitive
germplasm, combining excellent adaptation, better yield potential, and superior
grain quality. These improved maicillos are of short stature with longer panicles
and resistance to important diseases such as anthracnose, rust, gray leaf spot, downy
mildew, and tan plant color, in addition to maintaining the photoperiodic response
(Gomez 1995). Scientists working with the tropical germplasm in the United States
and India have studied many aspects of the photoperiod response and understood the
genetics, physiology, and breeding methodologies of photoperiod-sensitive sorghum
(Gomez and Chanterau 1996), enabling tropical plant breeders to tailor sorghum
genotypes based on photoperiod requirements.
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6 Breeding for Photoperiod-Insensitive Sorghums

Photoperiod insensitivity in sorghum allows the breeding and development of
cultivars to suit different environments. These lines can be directly utilized in
making crosses at any location. Most breeding programs around the world have
worked primarily with photoperiod-insensitive or relative non-sensitive types. A few
examples of widely used photoperiod-insensitive exotic sorghums include Sureno, a
grain mold-resistant line; SRN39, a striga-resistant line; Malisor 84-7, a headbug-
resistant line; and CS3541, Macia for high yield and adaptation (Rosenow and
Dahlberg 2000). Generally, the removal of maturity gene, Ma1, will remove the
response to photoperiod. The interaction of Ma5 and Ma6 is also a photoperiod
phenomenon but is not of significance in most germplasm. When these two genetic
conditions are addressed, response to varying photoperiod is minimal, and the
remaining variations in growth and development are primarily temperature driven.
If the confounding effect created by photoperiod sensitivity is removed, yield and its
stability could be enhanced through selection for yield components. Manipulation of
maturity as an adaptive trait has provided for higher and more stable yields in many
areas of the world, i.e., early maturing sorghums in drought prone or short duration
seasons vs. late maturing sorghums in well-watered, longer duration seasons.
Growers tend to use hybrids that mature as late as environmental conditions permit
to maximize yields. However, once photoperiod insensitivity is established,
responses to biotic and abiotic stresses are exposed, for which solutions are to be
devised. Some detrimental effects of photoperiod among photoperiod-insensitive
types in tropical environments are the loss of leaf areas, elongated internodes, and
rapid change from vegetative to reproductive growth. The use of adaptive trait
breeding has been successful in achieving stable and productive genotypes. Identifi-
cation and utilization of such traits as non-senescence and resistance to important
pests and diseases have led to further improvement in yield and yield stability in
many sorghum production areas. Removing the impact of photoperiod response will
help in focusing the research in areas of physiological growth and development.
Photoperiod insensitivity has allowed for continuous improvement of yield and
adaptation in sorghum (Miller et al. 1996).

7 Future Needs

Demand for sorghum grain will continue to rise because of its suitability for diverse
end uses both for food and non-food industries (Boyles et al. 2016). For sorghum to
be more competitive, there is a need to improve the rate of yield gains which
necessitates screening of world germplasm for yield genes. Though considerable
diversity is available in the germplasm, very few lines have been utilized so far.
There is a need to use the diversity among the five basic races to broaden the genetic
base for producing improved cultivars. The caudatum race has been exploited well
in breeding programs. Studies have shown that the guinea race contributes signifi-
cantly (after caudatum) to higher mean and heterosis for grain yield (Aruna and
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Audilakshmi 2008; Reddy et al. 2010). To utilize the available genetic diversity, it is
important to identify major agronomic traits for each race/inter-race and
incorporating them in elite background. Research collaborations across crops and
across disciplines may accelerate genetic, physiological, and molecular understand-
ing of important traits, which would increase the opportunities to enhance genetic
yield potential of sorghum cultivars with under wider adaptation.
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