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Abstract This paper presents the random first-ply failure analyses of laminated
composite plates by using an artificial neural network (ANN)-based surrogate model.
In general, materials and geometric uncertainties are unavoidable in such structures
due to their inherent anisotropy and randomness in system configuration. To map
such variabilities, stochastic analysis corroborates the fact of inevitable edge towards
the quantification of uncertainties. In the present study, the finite element formulation
is derived based on the consideration of eight-noded elements wherein each node
consists of five degrees of freedom (DOF). The five failure criteria namely, maximum
stress theory, maximum strain theory, Tsai-Hill (energy-based criterion) theory, Tsai-
Wau (interaction tensor polynomial) theory and Tsai-Hill’s Hoffman failure criteria
are considered in the present study. The input parameters include the ply orientation
angle, assembly of ply, number of layers, ply thickness and degree of orthotropy,
while the first-ply failure loads for five criteriarepresenting output quantity of interest.
The deterministic results are validated with past experimental results. The results
obtained from the ANN-based surrogate model are observed to attain fitment with
the results obtained by Monte Carlo Simulation (MCS). The statistical results are
presented for both deterministic, as well as stochastic domain.
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1 Introduction

The probability of failure in a laminated composite can be quantified by the amount
of load it can withstand until its fracture point. Due to the inheritance of randomness
and uncertainty in material and geometrical properties, stochastic regime seems to
be an efficient way of modelling the failure analysis as compared to the determin-
istic way. An alternative approach for the analyses necessitating monotonous model
evaluation is the utilisation of approximation models, also referred to as metamodels
[1]. A result found by Onkar et al. [2], where first-ply failure load is analysed to
evaluate the mean and variance of the failure statistics showed that the stochastic
finite element has high accuracy. An experimental investigation designed by Reddy
and Pandey [3], who are considered as the pioneer of failure analysis of composites
conducted computational, as well as numerical investigation on laminated composite,
with different ply orientation, ply angle with in-plane and out-of-plane failure load.

Laminated composite plates failure can be seen by debonding or delamination,
fibre pull-out, fibre breakage and matrix cracking. These modes of failure are major
limitations of laminated composite plate. Delamination is the most common mode
of failure among all other kinds of failure. These modes of failure are major limita-
tions of laminated composite. Many researchers investigated on deterministic failure
analysis of laminated composite plate. ANN incorporated in analysing the proba-
bility of delamination of laminated composite by Chakraborty [4], highlighted that
the trained network can predict the delamination for different shape, size and loca-
tion with less computational time. ANN is applied to predict the kinetic parameters
like high-velocity impact on a carbon reinforced fibre composites (CRFC) [5]. In
a particular case where split growth in the notched composite is analysed under
constant amplitude fatigue by using ANN and power law, ANN proved to be a
better predictive tool than power law [6]. End milling process of a Glass fibre rein-
forced plastic (GFRP) composites ANN provided significant performance increase
in analysing the damage factor by developing five learning algorithms and training
them which contributed in the reduction of cost as well as time in conducting exper-
iment [7]. Prediction of impact location using ANN during damage based on the
kinetic energy of an impact by incorporating the limited strain signatures as inputs
provided a warning system in damage initiation [8]. In another instance, prediction
for impact resistance of aluminium—epoxy-laminated composites were analysed and
it was found that ANN can be used as a substitutive approach to evaluate the effect
of bonding strength of laminated composites [9]. ANN also proved to a better option
in analysing the failure of a cross-ply composite tube under torsion, as well as axial
tension/compression compared to Tsai-Wu theory and tensor polynomial theory [10].
Some of the important works done on the first-ply failure of laminated composites
and ANN are hereby mentioned [11-16]. The present study deals with uncertainty
quantification for first-ply failure of laminated composite plates by incorporating
ANN as surrogate model to reduce computational time.
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2 Mathematical Formulation

In order to determine the first-ply failure of the laminated composite five failure
criteria are taken into consideration as mentioned earlier. The finite element (FE)
model is designed based on the failure criteria followed by this the surrogate model
is implemented using ANN.

2.1 Failure Criteria for Laminated Composite

In the present work, a three-layered laminated composite as shown in Fig. 1, is
considered to study the failure analysis. The orientation of the laminate is [45°, —
45°, 45°]. The five failure criteria are employed to analyse the first-ply failure load
of the laminate and design the finite element model for the same.

Maximum Stress Theory. This theory involves two forms of stress (normal stress
and shear stress) theories. It specifies that, when a material has exceeded its maximum
stress enduring capacity in any of its axes, it fails. The mathematical formulation [17],
can be expressed as
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Fig. 1 a Isometric view of the laminate. b Layer thickness representation of the laminated plate
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where o, 0, represent the normal stresses in x-axis and y-axis, respectively. While
11, represents the shear stress. ¢ and o7 represent the compressive stress and tensile
stress, respectively, through the laminate. Here the suffix ‘u’ is used to signify the
ultimate stress point.

Maximum Strain Theory. This theory is based on the maximum normal strain
theory of St. Venant and Tresca’s strain equivalent of maximum stress theory for
isotropic materials. According to this theory, when the shear and principal strain
exceeds the ultimate strain the material tends to rupture or fail. The mathematical
deduction [18], for the same can be expressed as

(&) < (e1) < (] )
(&5)u < (£2) < (&3 )u &)
yi2 < Iz (6)

where, ¢, and ¢, represent the normal strains in x-axis and y-axis represents while
12 represents the shear strain. £° and ¢ represent the compressive strain and tensive
strain, respectively through the laminate and I, represents the ultimate shear strain.

Tsai-Hill (Energy-Based Criterion) Theory. Tsai-Hill theory for the failure of
laminate is a combination of two energy principle, the first one is the distortion
energy (which is responsible for change of the shape) and the second one is dilation
energy (which causes volumetric changes in the material). The failure of the material
takes place when the following equation [19], holds true.

f(aij) = F(op — 03)2 + G(o3 — 01)2 + H(o1 — 02)2 + ZLGL% + 2M052 +2N<7g =1
(N

where, F, G, H, L, M and N signify strength parameters of the material and oy, o5, 0
are the shear stress components.

Tsai-Wu (Interaction Tensor Polynomial) Theory. The Tsai-Wu failure criterion
is a special case of the general quadratic failure criteria developed by Gol’denblat
and Kopnov. It can be written in a scalar form as [20]

Fio; + Fijoio; > 1 3

where, F; and F;; are the first order and fourth order strength tensors of the material.
Here o; denotes the difference between compressive and tensile induced stress. The
term o0;0; defines an ellipsoid along with the stress space.
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Tsai-Hill’s Hoffman Failure Criteria. The Tsai-Hill’s Hoffman criterion is a special
condition of Tsai-Hill failure criteria. In Hoffman’s failure criteria the difference
between the strength of tension and compression is considered which is ignored
in the case of Tsai-Hill failure criteria which is significant if brittle materials are
considered. The modified criteria are established by adding the odd functions of the
principal stress components (o, o, and o) in the actual expression of Tsai-Hill
criteria [21]. Thus

Ci(02 — 03)* + Ca(03 — 01)* + C3(01 — 02)* + Cy0
+ Cs05 + Cg03 + C707 + C503 + Coof = 1 &)

Here C1—Cg denote the material parameters.

2.2 ANN-Based Surrogate Model

Artificial neural network (ANN) is analogous to the working phenomenon of a
human brain based on which the present computational model is being prepared. The
algorithm in ANN acquires its working procedure based on the input and internal
hidden neuron configuration also known as weights after which the output of the
data is compared with known correct values. The modelling of intricate association
between input and output data involves non-linear statistical data modelling tool,
which is further incorporated and executed through ANN. The input and output data
are channelised through a training process which continues until a significant reduc-
tion in error is achieved. The input data moves forward on a layer basis, training
the data in hidden networks, and simultaneously it is supervised to reduce the error
through the back-propagation algorithm. The hidden layers can be more than one
according to the design required. The principal objective of using ANN is its ability
to compensate the computational time by developing an efficient model similar to
the finite element model. The structure of input and output in an ANN is shown in
Fig. 2.

ANN procures their result by following the patterns and relationships in data
and learn through experience, instead of following a fixed set of programmable
arrangement. The working process of an ANN is followed by a series of steps [22],
as specified here. At first, the input data (x,) is fed to the neurons in the input unit
followed by calculating the output (y,) from the hidden layer of neurons utilising
the transfer function

Y= Wamky + ¥ (10)

1
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Fig. 2 Structure of an ANN

where W,,, denotes the connection weight for the neurons n and m, W is the bias
or threshold value for neuron m that can be observed as the non-zero offset in the
data, H,, is the output of neuron m, and « signifies the non-linear parameter for
the neuron’s operation. Following this stage, compute the parameter to be studied
(Py) for the output neuron in a similar manner as mentioned in Eqgs. (10) and (11).
Since the algorithm will face an error at this stage, the error for each weight in the
output value P; and target output # is analysed by Eq. (13). This process is known
as backpropagation.

S = (tx — P)P(1 — Py) (12)

where k is the output neuron. According to the error correction factor, the change in
weights and bias are updated in this stage

Wt = Weld + AW, (p) (13)

AWyic(p) = nékcHp + n AWy (p — 1) (14)

where W, signifies the adjusted value of the weight between output neuron k
and hidden layer neuron m, p and p—1 refer to the present and previous cycles of
correction, respectively. Also, n denotes the learning rate and u signifies momentum.
Now the error for the hidden layer (§,,) is calculated as Eq. (15) and an updated
weight (W,,,,) is formulated due to the hidden unit based on Eqgs. (16) and (17).
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Fig. 3 Flowchart of the
first-ply failure analysis
incorporating ANN as the
surrogate model

l Define the input parameters ‘

I

‘ Developing the finite element model for failure load ‘

l
[ Specify proper design point ‘

‘ Obtain failure load for selected design point ‘

I

Obtain failure load for selected design point by
implementing the developed finite element model

'
‘ Formation of ANN model ‘
I
‘ Monte Carlo Simulation using ANN model ‘
!
Probabilistic depiction and interpretation of the
results
6 = Hy (1= Ho ) Wit (1)
Wit = Wil + AW (p) (16)
AW, (p) = 16, Hy + AW, (p — 1) (17)

At the end terminating condition is checked after every new sample is calculated
and finally a significant reduction in error is achieved.

The working module for the ANN-based random first-ply failure analysis can be
depicted by the flowchart in Fig. 3.

3 Result and Discussion

In this section, the result obtained for the different failure criteria as mentioned above
are discussed in brief. Firstly, a deterministic study is carried out for the analysis of
first-ply failure loads with respect to the mentioned failure criteria and then the
stochastic analysis is designed based on ANN as the surrogate model.
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Table 1 Material properties of T300/5208 graphite-epoxy laminate [23] with ply orientation of
[45°, —45°, 45°]

Ey E> G2 Gi3 G u o (kg/m?)
(GPa) (GPa) (GPa) (GPa) (GPa)
132.37 10.7 5.65 5.65 3.37 0.3 3202

The laminated composite considered is a three-layered T300/5208 graphite-epoxy
laminate with ply orientation of [45°, —45°, 45°]. The mean value of the material
properties for the specified material is specified in Table 1.

The plate has a dimension of 0.22 m length, 0.127 m breadth and 3 x 10~* m as
thickness. The plate is subjected to uniformly distributed load on the top surface in
the z-direction. Three mesh size is considered for the verification of the deterministic
model of sizes (2 x 2), (4 x 4) and (8 x 8) and they are simultaneously validated with
the finite element model of Reddy and Pandey [3]. The mesh plane area is considered
of (8 x 8) configuration comprising of 64 elements and 225 total number of nodes.
The deterministic validation of the five different failure criteria from Reddy and
Pandey [3], is shown in Table 2. The present deterministic validation of the failure
modes is also validated by Karsh et al. [16], for the spatial vulnerability study for
the first-ply failure for laminated composite.

Subsequently, the deterministic model is validated in Table 2, the ANN model
is designed based on the parent MCS model. For the ANN model, the main MCS
model which is of 10,000 samples sized is compared with the ANN-based MCS for
three different sample size which is 64,128 and 256 as depicted in Fig. 3.

As it can be perceived from Fig. 4, that out of the three sample size considered,
256 samples sized data converges with the parent MCS to a great extent for the five
different failure criteria considered. For the lesser sample size data, the PDF tends
to deviate from the parent MCS model. Thus, it can be concluded that as the sample
size increases the ANN model tends to improve its accuracy comparatively.

Table 2 Validation of the present finite element model with experimental results [3] for in-plane
loading of different failure criteria for the laminate with [45°, —45°, 45°] ply orientation

Failure Failure load
theory |5 » 2) (4 x 4) (8 x 8)
Reddy et al. | Present FE | Reddy et al. | Present FE | Reddy et al. | Present FE
[3] model [3] model [3] model
Max. 2854.40 3408.70 2164.32 2486.50 1908.16 1962.50
stress
Max. 2947.68 3273.20 2268.60 2421.70 1940.48 1994.75
strain
Tsai-Hill |2788.80 3091.40 1803.84 1897.91 1530.40 1563.70
Tsai-Wu | 2886.72 3337.70 2218.88 2432.73 1917.76 1957.32
Hoffman |2850.24 3224.50 2156.80 2269.53 1905.76 1962.10
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Fig. 5 Scatter plot of the 256 samples sized ANN model with respect to the original finite element
(FE) model for a max. stress b max. strain. ¢ Tsai-Hill. d Tsai-Wu and e Hoffman failure criteria

Since the 256 samples sized data of the ANN-based model almost converges with
the parent MCS, the scatter plot shown in Fig. 5, shows that the present ANN-based
model can substitute the time-consuming MCS model with the 256 samples sized
ANN model.

4 Conclusion

The novelty of the present work is that ANN is incorporated along with stochastic
finite element modelling for first-ply failure analysis of a three-layered laminated
composite. It is concluded that as the sample size increases for the ANN-based model,
the accuracy level of the model with respect to the parent MCS also increases. The
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scatter plot for the efficiently matched ANN model is depicted to conclude that the
present parent MCS can be replaced with the efficient ANN-based model.
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