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Abstract Functionally graded materials (FGMs) are the advanced materials in the
family of engineering composites made of two or more constituent phases with
continuous and smoothly varying composition. Nine noded heterosis plate element
is used to formulate the elastic stiffness matrix and mass matrix. The results are also
extracted fromAbaqus CAE by using S8R5 shell elements. Free vibration analysis is
done to obtain the different modes as well as the frequencies. Harmonic sine load is
applied at the centre of the FGM plate to obtain a forced vibration response. Impulse
forces of rectangular, half-cycle sine, triangular shapes are applied on the top of the
plate at the centre and the shock spectra of C-Si C FGM plate is plotted.
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1 Introduction

The diverse and potential applications of FGMs in aerospace, medicine, defence,
energy, and other industries have attracted a lot of attention recently. The application
of these advanced materials was first visualized during a spaceplane project in 1984
in National Aerospace Laboratory of Japan to avoid the stress peaks at interfaces in
coated panels for the space shuttle. Combination of materials used here served the
purpose of a thermal barrier system capable of withstanding a surface temperature
of 2000 K with a temperature gradient of 1000 K across a 10 mm thick section [1].
Later on, its applications have been expanded to also the components of chemical
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plants, solar energy generators, heat exchangers, nuclear reactors and high-efficiency
combustion systems. The concept of FGMs has been successfully applied in thermal
barrier coatings where requirements are aimed to improve thermal, oxidation and
corrosion resistance. FGMs can also find application in communication and infor-
mation techniques. Abrasive tools for metal and stone cutting are other important
examples where the gradation of the surface layer has improved performance.

The variations of the volume fractions through the thickness are assumed to follow
a power-law function. The Reissener-Mindlin first-order shear deformation theory is
very much appropriate for thick plates [2]. It was taken to analyze the behaviour of
the plate subjected to free and forced vibration. It has been found from the literature
that not many studies are done to the vibration analysis of functionally graded plates.
Reddy et al. [3] carried out the free vibration analysis of functionally graded plates.
They have developed analytical formulations and solutions for the free vibration
analysis of functionally graded plates using higher-order shear deformation theory
(HSDT). The principle of virtual work was used to derive the equations of equilib-
rium and boundary conditions. Navier’s technique was used to obtain the solutions
for FGM plates. Vimal et al. [4] have studied the free vibration analysis of func-
tionally graded skew plates using the finite element method. The first-order shear
deformation plate theory is used to consider the transverse shear effect and rotary
inertia. The properties of functionally graded skewplates are assumed to vary through
the thickness according to a power law. It is found that when the length to thickness
ratio of functionally graded skew plates increases beyond 25, the variation in the
frequency parameter is very negligible and also found that a volume fraction expo-
nent that ranges between 0 and 5 has a significant influence on the frequency. Gulshan
et al. [5] carried out a free vibration analysis of functionally graded material (FGM)
skew plates subjected to the thermal environment. It was concluded that the volume
fraction index and skew angle plays an important role in predicting the vibration of
FGM skew plate subjected to thermal load.

Reddy [6] have studied theoretical formulation and FEM model based on TSDT
for FGMplate. The formulation accounted for thermo-mechanical effects combining
change with time and geometric nonlinearity. In this higher-order theory, transverse
shear stress was expressed as a quadratic function along with the depth. Hence this
theory requires no shear correction factor. The plate was considered as the homoge-
nous and material composition was varied along with the thickness. The Young’s
modulus was assumed to vary as per rule of the mixture in terms of the volume
fractions of the material constituents. Hughes and Cohen [7] developed the heterosis
element and elemental equation. They derived lumped positive definite mass matrix,
element matrix and load vector and method for finding critical time step. High-
accuracy finite element for thick and thin plate bending is developed, based upon
Mindlin plate theory.

It has been found from the literature survey that not many researchers attempted to
the vibration analysis of functionally graded plates. Further, we observed that many
authors could model such problems with a stepped variation in material properties
instead of continuous variation. This would have happened because of the limitations
of the commercial software available. In this context, we felt that MATLAB code
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could be used for tailoring the continuous variation in material properties in FE
Modelling. Hence MATLAB code was developed for vibration analysis of FG plate.
The analysis was carried out for C-Si C FGM plate with different volume fraction
indices. The results are compared with Abaqus CAE by using S8R5 shell elements.

2 Problem Formulation

First-order shear deformation theory is used for plate formulation. Displacement
variation is linear, across the plate thickness. But there is no change in plate thick-
ness during deformation. A further assumption is that the normal stress across the
thickness is neglected. Properties are graded through the thickness direction which
follows a volume fraction power-law distribution. The different elements of the plate
are expected to undergo translational and rotational displacement. In the present
work 9- noded heterosis element is used to discretize the plate.

2.1 Strain-Displacement Relations

The displacement field at any arbitrary distance z from the midplane based on the
first-order shear deformation plate theory is given by

[
ū p(x, y, z), v̄p(x, y, z), w̄p(x,y,z)

] = [u0(x, y), v0(x, y),w0(x, y) ]

+ z
[
θx (x, y), θy(x, y), 0

]
(1)

where, up, vp, wp are displacements in x, y and z directions respectively, u0, v0 and
w0 are the associated midplane displacements along x, y and z axes respectively and
θx and θy are the rotations about y and x-axes respectively.

The linear strain displacement relations are given by

εxl = u0,x + zχx

εyl = v0,y + zχy

γxyl = u0,y + v0,x + zχxy

γxzl = w0,x + θx

γyzl = w0,y + θy (2)

where, εxl, εyl and γxyl are the linear in-plane normal and shear strains, γxzl and γxzl

are transverse shear strains, z is the distance of any layer from the middle plane of
the plate and χ are the curvatures.
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Fig. 1 Deformed and un-deformed beam

{χ} =
⎧
⎨

⎩

χx

χy

χxy

⎫
⎬

⎭
=

⎧
⎪⎨

⎪⎩

∂θx
∂x
∂θy
∂y

∂θx
∂y + ∂θy

∂x

⎫
⎪⎬

⎪⎭
(3)

The strain-displacement field at any distance z as shown in Fig. 1.

2.2 Finite Element Formulation

In the current work, the FGM plate has been discretized using 9-noded heterosis
element with 5-degree of freedom (dofs) at all the edge nodes and 4 dofs at the
internal node as shown in the Fig. 2. The serendipity shape functions have been used
for the transverse dofs, w, and Lagrange shape function are used in the remaining
dofs, u, v, θ x, and θ y

ResultantForces andmoments.The analysis of FGMplate is carried out to establish
the relation between the forces and strains by considering transverse shear terms.

Constitutive matrix of the isotropic plate is

8-N Serendipity Element 9-N Heterosis Element 9-N Lagrange Element 
Node with u, v, w, θ x, and θ y degrees of freedom 
Node with u, v, θ x, and θ y degrees of freedom 

Fig. 2 Nodal configuration of the plate element
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Q =
⎡

⎣
Q11 Q12 0
Q12 Q11 0
0 0 Q66

⎤

⎦ (4)

where,

Q11 = E

1 − ν2
, Q12 = νE

1 − ν2
, Q66 = E

2(1 + ν)

The material properties PZ (Elastic constants E,ν, density) at distance, z from the
middle surface of the plate is

Pz = Pb + (Pt − Pb)

[
(2z + h)

2h

]k

= Pb + (Pt − Pb)V f (5)

where, h is the plate thickness, t and b denotes the top and the bottom surface (± z/2),
k is material volume fraction index, Vf is volume fraction.

Stress-strain relationship is

{σ } = [Q]{ε} (6)

where, {σ }= {
σx , σy, τxy

}T
,ε =ε0 + zχ .

The in-plane resultant forces and moments in the kth layer are evaluated as

{
N , M

}=
N∑

k=1

zk∫

zk−1

{σ }( 1, z )
dz (7)

Resultant Transverse Shear Force on the kth layer is given by

[
Qxz

Qyz

]
=

N∑

k=1

zk∫

zk−1

{
τxz

τyz

}
dz =

N∑

k=1

zk∫

zk−1

[
Q44 Q45

Q45 Q55

]{
γxz

γyz

}
dz

(8)

Q44 = (G13t − G13b)

[
(2z + h)

2h

]k

+ G13b

Q55 = (G23t − G23b)

[
(2z + h)

2h

]k

+ G23b

Q45 = 0 (9)

The constitutive relation for FGM plate is given by



124 N. I. Narayanan et al.

{N } = [C]{ε} (10)

where, {N } = [
Nx, Ny, Nxy, Mx, My, Mxy, Qxz, Qyz

]T
represents the in-

plane stress resultants (N), out of plane bending moments (M) and shear resultants
(Q). Here, [C] is the constitutive matrix [8] of the FGM plate. To compensate for
the parabolic shear stress variation across the thickness of the plate, a correction
factor of 5/6 is used in the shear-shear coupling components of the constitutive
matrix [9]. Using Green-Lagrange’s strain-displacement expression [10], the linear
strain-displacement matrix[B] have been worked out.

The different participating element-level matrices such as elastic stiffness matrix
[ke], and consistent mass matrix [me] have been derived using corresponding energy
expression.

The element elastic stiffness matrix and element mass matrix are derived using
the following relations

[ke] =
1∫

−1

1∫

−1

[B]T [C][B]|J |dεdη (11)

[me] =
1∫

−1

1∫

−1

[
N̄

]T
[I ]

[
N̄

]|J |dεdη (12)

In which, [I] is the inertia matrix
Computer coding and Implementation. To perform all the computations, a

computer program is developed using MATLAB to implement the finite element
formulation and include all the necessary parameters to investigate the vibration
behaviour of the FGM plate.

In the present code, selective integration scheme is incorporated for the generation
of the element stiffness matrix. The 3 × 3 Gauss quadrature rule is adopted to get
the bending terms and 2 × 2 Gauss rule is used to solve shear terms in order to avoid
possible shear locking. The mass matrix is evaluated by using 3 × 3 Gauss rule [11].

2.3 Formulation of Dynamic Problems

Validation of assembled stiffness matrix is done through bending problems and that
of mass matrix is done through vibration problems. In order to validate the formula-
tion of mass matrix, one has to solve a free vibration problem by incorporating the
validated elastic stiffness matrix. The standard governing equation in matrix form
for the deflection problem is

[Ke]{q} = {P} (13)
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{P} is the nodal load vector, [Ke] is the system elastic stiffness matrix. For a given
set of loads, the displacement {q} can be determined using the above equation. If
the displacement vector is validated, it ensures the correctness of formulation and
coding of the stiffness matrix.

The standard governing equation in matrix form for the free vibration problem is

[M]{q̈} + +[Ke]{q} = {P} (14)

The standard governing equation in matrix form for the force vibration problem
is

[M]{q̈} + [C]{q̇} + [Ke]{q} = {P} (15)

[M], [Ke] and [C] represents global mass matrix, global stiffness matrix and
damping matrix respectively.

[C] = α[M] + β[Ke] (16)

where, α β and are the Rayleigh damping coefficients. From this, we can solve the
forced vibration problem. From this, we can solve the force vibration problem using
Newmark-beta method.

Newmark-beta technique. The problem is solved here by using constant accel-
eration method as it is unconditionally stable. The stability criteria for constant
acceleration method is given by

t

Tn
≤ 1

π
√
2

1

π
√

γ − 2β

For γ = 1

2
and β = 1

4
this condition becomes

t

Tn
<∞

3 Results and Discussion

The properties of FGM plates are graded through the thickness direction according
to a volume fraction power law distribution (Fig. 3).

3.1 Free Vibration Analysis

The heterosis element is used in the code for free vibration analysis. For validation
of the present code, the data available for the functionally graded plate aluminium
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Fig. 3 Variation of volume
fraction with the
non-dimensional thickness

Table 1 Material properties
of Aluminium
Oxide–Titanium alloy FGM
plate

Material E(N/m2) ρ(kg/m3) υ

Ti-6A1-4V (ceramic) 122.56 × 109 4429 0.2884

Aluminium oxide 349.55 × 109 3750 0.26

Table 2 Variation of
fundamental frequency with k
values –simply supported
plate-comparison

Power-law index Fundamental frequency (Hz)

9-NHE Simulation He (2001)

k = 0 (Titanium) 141.34 146.69 144.25

k = 1 196.95 201.64 198.92

k = 15 245.41 250.56 247.3

k = 1000 (Alumina) 259.26 264.5 261.73

oxide –titanium alloy of size 0.4 m × 0.4 m × 0.005 m available in the literature of
He et al. [12] is used. In numerical simulation by Abaqus, S8R5 element has been
used. Table 1 shows the material properties. Table 2 validated the code with literature
and simulation.

The present code is validated with results of He et al. (2001). The simulation
results are also in good agreement with results obtained from FEM coding. This
ensures the correctness of the formulation of the stiffness and mass matrix.

3.2 Free Vibration Analysis of C-Si C Plate

The analysis is done for C-Si C plate (0.5 × 0.5 × 0.001 m). Material properties
are given in Table 3. Convergence results are shown in Fig. 4. First four mode of
vibration shown in Fig. 5. Frequency of Vibration is minimum for carbon plate as
shown in Table 4.
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Table 3 Material properties C-Si C FGM plate

Material E(G Pa) ν ρ (Kg/m3)

Si-C (Ceramic) 320 0.3 3220

C(Metal) 28 0.3 1780

Fig. 4 Convergence of fundamental frequency of simply supported C-Si C FGM plate (k = 2)

Fig. 5 First 4 mode shapes of simply supported C-Si C FGM plate (k = 2)-Simulation

3.3 Forced Vibration Analysis

Forced vibration analysis was carried out at the centre of the plate using harmonic
sine loading and different impulse loadings.

Harmonic Sine Wave Loading. A harmonic force P(t) = P0 sin(ωt) load is applied
at the centre of the plate, where P0 is the amplitude or peak value of the force and ω

is the forcing frequency. T = 2π/ω is the forcing period of the FGM plate P0 = 1 N
and ω = 2π f where ω is circular frequency and f is natural frequency of the Plate.
Figure 6 shows that maximum displacement at the centre of the plate increases with
the material index (k value). Table 5 compares the un-damped and damped cases.
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Table 4 Variation of the natural frequencies (Hz) of FGM simply supported Square Plate for
different k values. 22 × 22 mesh-Heterosis element(FEM)

Mode no k = 0 Si C k = 2 k = 15 k = 1000 Carbon

1 37.91 27.39 22.2114 15.08

2 94.77 60.84 51.9549 37.7

3 94.77 60.84 51.9549 37.7

4 151.63 98.77 83.7656 60.33

5 189.55 121.26 103.718 75.41

6 189.55 123.04 104.522 75.41

7 246.41 158.98 135.449 98.03

8 246.41 158.98 135.449 98.03

9 322.27 202.97 174.955 128.21

10 322.27 202.97 174.955 128.21

Fig. 6 Response of simply supported C-Si C FGM plate subjected to harmonic loading

Table 5 Displacement of simply supported C-Si C plate for different k values

Power-law index Maximum displacement at centre (m)

CCCC SSSS

Undamped Damped Undamped Damped

k = 0 (Si C) 4.759 × 10−5 4.73 × 10−5 1.165 × 10−4 1.006 × 10−4

k = 2 1.722 × 10−4 1.71 × 10−4 3.142 × 10−4 3.035 × 10−4

k = 15 2.796 × 10−4 2.68 × 10−4 5.222 × 10−4 5.201 × 10−4

k = 1000(C) 5.442 × 10−4 5.41 × 10−4 1.229 × 10−3 1.199 × 10−3

Impulse loading. A very large force that acts for a very short time but with a time
integral that is finite is called an impulse force. Impulse forces of rectangular, half-
cycle sine, triangular shapes each with the same value of maximum force 1 N is
applied at the centre of the plate The response behavior of FGM plate is studied for
material index(k) value = 2. td is pulse duration. Tn is the natural time period of
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Fig. 7 Shock spectra of simply supported C-Si C FGM Plate (material index k = 2)

Table 6 Variation of deformation response factor (Rd) with td/T n values (k = 2)

td/T n Rd = u0/u st0

Rectangular loading Half sine loading Triangular loading

0 0 0 0

0.5 1.569 0.982 0.863

0.75 1.876 1.469 1.3

1 1.901 1.701 1.52

1.5 1.901 1.5 1.298

2 1.901 1.25 0.93

2.5 1.901 1.071 0.996

3 1.901 1.15 1.148

3.5 1.901 1.111 1.103

4 1.901 1.108 1.003

vibration of the plate and u st0 is the static deflection of the plate. Static deflection is
1.438e-4 m and Natural time period is 0.0365 s. The shock spectra of the FGM plate
with material index k = 2 is shown in Fig. 7. Variation of response factor with td/T
n, for k = 2 is given in Table 6. The present results are in good agreement with the
available literature [13].

4 Conclusions

In the present investigation, a finite element formulation is developed for vibration
analysis of FGMplates. The analysis is carried out by developing a computer program
in MATLAB. A 9- noded heterosis element is used to model the FGM plate. The
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heterosis element exhibits improved characteristics as compared to the 8- noded
serendipity and 9-noded Lagrange elements. It offers a high level of accuracy for
extremely thin plate configurations. Convergence study has been carried out for
ensuring the convergence of the numerical results. The results are also extracted
from Abaqus CAE by using S8R5 shell elements and are in very good agreement
with the developed elements. Free vibration analysis is done to study the different
modes as well as frequencies. It is observed that free vibration response is minimum
for carbon and maximum for Silicon carbide plate. The central deflection of the
plate increases with increase in volume fraction index for all types of boundary
conditions. From the shock spectra, it is clearly understood that if the pulse duration
(td) is longer than Tn/2, the overall maximum deformation occurs during the pulse.
Then the pulse shape is of great significance. For the larger value of td/Tn, the overall
maximum deformation is influenced by the rapidity of the loading. The rectangular
pulse in which the force increases suddenly from zero to maximum show the large
deformation. The triangular pulse inwhich the increase in the force is initially slowest
among the three pulses produces the smallest deformation. The half-cycle sine pulse
in which the force initially increases at an intermediate rate causes deformation that
for many values of td/Tn is larger than the response of the triangular pulse.
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