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Abstract. Spiking neural networks (SNN) has been widely used to solve
complex tasks such as pattern recognition, image classification and so
on. The neuromorphic processors which use SNN to perform computa-
tion have been proved to be powerful and energy-efficient. These proces-
sors generally use Network-on-Chip (NoC) as the interconnect structure
between neuromorphic cores. However, the connections between neurons
in SNN are very dense. When a neuron fire, it will generate a large num-
ber of data packets. This will result in congestion and increase the packet
transmission latency dramatically in NoC.

In this paper, we proposed a software-hardware co-exploration frame-
work to alleviate this problem. This framework consists of three parts: soft-
ware simulation, packet extraction&mapping, and hardware evaluation.
At the software level, we can explore the impact of packet loss on the clas-
sification accuracy of different applications. At the hardware level, we can
explore the impact of packet loss on transmission latency and power con-
sumption in NoC. Experimental results show that when the neuromorphic
processor runs MNIST handwritten digit recognition application, the com-
munication delay can be reduced by 11%, the power consumption can be
reduced by 5.3%, and the classification accuracy can reach 80.75% (2%
higher than the original accuracy). When running FSDD speech recog-
nition application, the communication delay can be reduced by 22%, the
power consumption can be reduced by 2.2%, and the classification accu-
racy can reach 78.5% (1% higher than the original accuracy).

Keywords: Neuromorphic processor · Communication optimization ·
Network-on-Chip · Reservoir computing

1 Introduction

Neuromorphic computing is an important branch of artificial intelligence. The con-
cept of Neuromorphic computing was proposed by Carver Mead [10], which refers
to the use of large-scale integrated circuit systems to simulate the neurobiological
structure existing in the nervous system to complete the calculation of large-scale
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neural networks. Recently, some excellent neuromorphic processors have emerged,
such as SpiNNaker [6], BrianScales [18], TrueNorth [1], DYNAPs [16], Loihi [4],
and Tianjic [17]. All of these neuromorphic processors contain thousands of neu-
rons and synaptic connections. For better scalability and parallelism, they mostly
use Network-on-Chip (NoC) to make connections between neurons.

In general, Spiking neural network (SNN) is used in the neuromorphic pro-
cessor. SNN is the third generation artificial neural network (ANN) [15] which
is originally inspired by brain science. It has been proved to be a powerful and
energy-efficient computation model and has been applied to complex tasks such
as pattern recognition [20], image classification [9], natural language process-
ing [5], etc. Many SNN models can be implemented on the neuromorphic proces-
sor, such as multilayer perceptron (MLP), spiking convolutional neural network
(SCNN) [8], reservoir computing (RC) [21], etc. Compared with other mod-
els, RC has more advantages in terms of application scope and implementation
complexity.

Unlike other SNN models, neurons in the RC model can be connected not
only to other neurons but also to themselves. This characteristic makes the
connections denser among the neurons. Figure 1 shows the distribution of the
number of neuron connections in an RC network. The horizontal axis represents
the number of connections. The vertical axis refers to the number of neurons
corresponding to a specific number of connections. We can find that all neurons
are connected to at least one-third of the neurons in the RC.

Fig. 1. Connections distribution in an RC network: 1000 neurons in total, 800 excitory
neurons, 200 inhibit neurons. Pee = 0.40, Pei = 0.40, Pie = 0.50.

In SNN, one pre-neuron cloud connects a large number of post-neurons. When
the pre-neurons membrane voltage exceeds its threshold and fire, the same count
of spike will be generated. Therefore, when the RC network is running in a neuro-
morphic processor, a large number of data packets will be generated at the same
time. This will cause packet congestion in NoC and increase packet transmis-
sion latency. Figure 2 is a simple running process in a neuromorphic processor.
Neuron A connects three neurons B, C, and D. They are mapped to differ-
ent neuromorphic cores. At time-step t, the membrane voltage of A exceeds its
threshold. Then, neuron A generates a spike, and send it to all the post-neurons
connected to it. Because the router cannot transmit all packets immediately, the
final packet has a greater transmission latency than other packets.



Software-Hardware Co-exploration Framework 89

Fig. 2. The running process of SNN in neuromorphic processor. Neuron A connects
three neurons B, C, and D. At time-step t, neuron A generates a spike.

When a large number of packets need to be transmitted at the same time, it
will cause NoC congestion. At the same time, through experiments, we find that
when a small number of data packets are discarded, it doesn’t affect the classifi-
cation accuracy of the software. Based on the above problems and phenomena, in
this paper, we proposed a software-hardware co-exploration framework to opti-
mize the communication in a neuromorphic processor. This framework consists
of three parts: software simulation, packet extraction & mapping, and hardware
evaluation. According to it, we can optimize the communication in the neuro-
morphic processor while ensuring the accuracy of software recognition. To this
end, we make the following contributions:

1) We explored the impact of packet loss on the accuracy of SNN classification.
It is found that a low spike loss rate doesn’t affect the classification accuracy
of SNN. In some cases, the classification accuracy is even higher than the
original accuracy.

2) We propose a software-hardware co-exploration framework for optimizing
communication in a neuromorphic processor. It can alleviate the congestion
in NoC and reduce the packet transmission latency without reducing the
accuracy of SNN classification.

After optimization, when the neuromorphic processor runs MNIST handwrit-
ten digit recognition application, the communication delay can be reduced by
11%, the power consumption can be reduced by 5.3%, and the classification accu-
racy can reach 80.75% (2% higher than the original accuracy). When running
FSDD speech recognition application, the communication delay can be reduced
by 22%, the power consumption can be reduced by 2.2%, and the classification
accuracy can reach 78.5% (1% higher than the original accuracy).
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2 Background and Related Work

2.1 RC Model

Reservoir calculation (RC) is a type of RNN model, which is mainly composed
of an input layer, reservoir layer, and output layer, as shown in the Fig. 3. The
reservoir layer consists of a certain number of excitatory spiking neurons and
inhibitory spiking neurons. According to the complexity of the task, the number
of two types of neurons and the connection probability between them are dif-
ferent. WIn, WR, and WOut represent the weights of the input layer, reservoir
layer, and output layer, respectively. After the reservoir layer receives the input
spike train and runs for a certain period, it will generate an RC state (usually
the membrane voltage of the neurons in the RC). The output layer records the
state of neurons in the reservoir layer.

Fig. 3. The architecture of RC.

2.2 Network-on-Chip

With the advent of multi-core processors, the design interconnect of System
on Chip (SoC) faces many challenges. SoCs typically use a Network on Chip
(NoC) [2,12] solution, with various NoC topologies and router architectures,
and provide low power and high quality of service (QoS) designs. NoC has many
components, such as topology, routing algorithms, and router microstructure
design.

TrueNorth [1] is a neuromorphic chip developed by IBM. In TrueNorth, its
time-step is 1 ms. Operation in each time-step is divided into two phases: In
the first phase, data packets will be routed through the Router. When the data
packet reaches the corresponding core, it will change the membrane voltage of the
corresponding neuron. In the second phase, all cores will receive a synchronizing
signal with a period of 1 ms. Once the synchronizing signal is received, all neurons
need to check whether their membrane voltage exceeds the threshold. If the
threshold is exceeded, the neuron will send a data packet to the network.

TrueNorth uses a global synchronous clock to synchronize each time-step,
so the size of the global clock must consider the worst case in the entire chip.
However, not all packets have a large transmission latency. So its synchronization
method will reduce the efficiency of the hardware.
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3 The Software-Hardware Co-exploration Framework

Fig. 4. Software hardware co-exploration framework.

3.1 Real-Time Definition

Define that a synchronization period in neuromorphic processor consumes L
cycles. When an application is running in a neuromorphic processor, if the data
packets generated by it meet the following conditions, we think that the appli-
cation meets the real-time requirements of the neuromorphic processor:

Max(Latencyi) < L (1)

Among them, i belongs to [0, N−1], N is the total amount of data packets gener-
ated by the application in the inference process. In other words, the transmission
latency of all packets is less than the length of the synchronization cycle.

3.2 Framework

Our proposed framework is shown in Fig. 4. It mainly composed three parts:

Software Level Simulation. We use the SNN simulator to run the RC net-
work. When neurons communicate, we drop packets with different probabilities
and explore the impact of different packet loss rates on software classification
accuracy.

Many SNN simulators can be used, such as Brian2, CARLsim [3], Nest [7],
etc. They can be used to simulate the behavior of neurons and simulate the
operation of SNN. At the same time, log files can be extracted during the running
process. During initialization, we can determine the connection probability and
the weight of the connection in the network. After initialization, we extract the
connection relationship.

We explore the impact of packet loss on the accuracy of SNN classification as
follows: 1) Generate application input spike. 2) Train the readout layer, perform
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classification, and finally test multiple test-sets to get the accuracy of the classi-
fication. 3) Change the different spike loss rates to get the relationship between
classification accuracy and spike loss rate. By dropping part of the data pack-
ets, the communication delay in the neuromorphic processor can be reduced.
Synchronization in the neuromorphic processor must satisfy the worst commu-
nication situation. Therefore, this can reduce the number of clock cycles required
for global synchronization.

Trace Extraction and Mapping. The spike trace can be recorded when
Brian2 is simulating. Each trace records spikes from one neuron to another
neuron. The format of each trace in the trace file is:

[Source Neuron ID,Destination Neuron ID, time-step]

Fig. 5. Two different mapping methods.

Mapping is a process that map neurons in SNN to cores of neuromorphic
processor. Figure 5 shows two different mapping methods [14].

We use NoC simulator to simulate the communication between the cores in
the neuromorphic processor when the SNN network is running.

Hardware Level Evaluation. At the hardware level, we simulate commu-
nication between neuromorphic cores through a NoC simulator. The detailed
hardware evaluation process is shown in Fig. 6. As mentioned before, the param-
eters of NoC include topology, routing algorithm, router micro-architecture, etc.
In this work, we use a 2D-Mesh network structure and a dimension-order-first
routing algorithm to route packets.

As shown in Fig. 6, NoC configuration file and trace files are inputs for hard-
ware evaluation, latency and power consumption are outputs. Throughput refers
to the number of data packets transmitted by the NoC within a specified time.
In neuromorphic processors, each spike is a data packet. Throughput is generally
defined by the following formula (2):

Throughput =
(Total Spike packet finished) × PacketLength

(Numbers of Router) × Totaltime
(2)
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Fig. 6. Hardware level simulation.

The PacketLength is measured in flits. Each packet can be represented by a spike.
So we defined the PacketLength = 1.

Let P be the total number of messages reaching their destination and let
Li be the latency of each message i, where i ranges from 1 to F , as shown in
formula (3):

Li = receiving time of Pi − generating time of Pi (3)

Max transport latency is computed as shown in formula (4):

LTransport latency = Max(Li), 1 ≤ i ≤ F (4)

3.3 Framework Workflow

The framework workflow is shown in Algorithm 1. We can tolerate a 1% reduction
in classification accuracy at most. If the real-time requirements are not met, the
packet loss rate will increase by 5% at a time. If the real-time requirement can
be met, the packet loss rate and classification accuracy will be output. If the
requirement is not met, the framework will explain the situation and exit.



94 S. Wang et al.

Algorithm 1. Framework workflow
Input: Real time Latency
Output: spike loss rate, Accu

1: Real time Latency//Maximum packets transmission latency that meet real-time
requirements;

2: spike loss rate = 0
3: Accuracy(i)//calculation classification accuracy when the spike loss rate is i;
4: Tolerance acc = Accuracy(0) − 0.01//The minimum value of classification accu-

racy we can tolerate;
5: Max Latency(i)//Maximun packets transmission latency when the packet discard-

ing rate is i;
6: Latency = Max Latency(0)
7: while Latency > Real time Latency do
8: spike loss rate+ = 0.05
9: Accu = Accuracy(spike loss rate)

10: if Accu > Tolerance acc then
11: Latency = Max Latency(spike loss rate)
12: if Latency <= Real time Latency then
13: return spike loss rate,Accuracy
14: else
15: continue
16: end if
17: else
18: Classification accuracy reduced too much.
19: Unable to meet the real-time requirement.
20: break
21: end if
22: end while

4 Experiment and Analysis

4.1 Experiment Setup

To verify the optimization effect of our framework, we set up the experiment as
follows:

We use the Brian2 simulator [19] to simulate the running of the RC network.
Software-level simulation includes two steps: (1) Generate spikes from the data
set. The content of the original data set cannot be directly used as the input of
the SNN. Therefore, the original data set needs to be extracted and transformed
into a spike train that can be understood by the SNN; (2) RC simulation and
classification. We input the spike obtained from (1) into the RC network. After
a period of time, readout layer reads the state of the RC neurons to train and
classify. Through multiple tests, a classification accuracy can be obtained.

We use the clock-accurate NoC simulator Booksim2 [11] to simulate the
communication process of RC networks in NoC. We have modified Booksim so
that it can read spike communication trace. The NoC topology in this work is
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8 × 8. The routing algorithm is x-y routing. The NoC has 8 virtual channels,
and the virtual channel depth is 1. Detailed configuration of NoC is shown in
Table 1.

We tested two different applications, one is MNIST handwritten digit recog-
nition and the other is FSDD speech recognition.

Table 1. NoC Config.

topology mesh

routing function xy

vc allocator islip

arb type round robin

priority age

num vcs 8

vc buff size 1

4.2 Result of MNIST Dataset

MNIST [13] is a frame-based dataset, which is used for handwritten digits recog-
nition.

Optimization Effect of Framework. Figure 7 shows optimization results of
MNIST handwritten digit recognition application. Our target maximum trans-
mission latency is 400 cycles. After several rounds of exploration, when the packet
loss rate is 10%, the maximum transmission latency is reduced from the original
436 cycles to 392 cycles. It meets the real-time requirements. After optimization,
the power consumption is reduced by 5.3%. At the same time, the classification
accuracy didn’t decline but increased from 78.75% to 80.75%.

Impact of Packet Loss on Performance of RC Network. Figure 8 shows
the relationship between the packet loss rate and software classification accuracy.
When the packet loss rate is in the range of 0%–10%, the classification accuracy
is almost unchanged. When the packet loss rate exceeds 20%, the classification
accuracy decreases significantly.

Impact of Packet Loss on Data Transmission Latency in NoC. Figure 9
shows the relationship between the packet loss rate and the maximum transmis-
sion latency in NoC. We can find that as the packet loss rate increases, the maxi-
mum transmission latency decreases significantly. Reduced transmission latency
can increase hardware efficiency.
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Fig. 7. Optimization results of MNIST handwritten digit recognition application.
Original refers to the result without optimization. Optimized refers to the optimized
result. (a) Power. (b) Accuracy. (c) Latency.

Fig. 8. Impact of packet loss on classification accuracy of MNIST handwritten digit
recognition application.

Fig. 9. Impact of packet loss on data transmission latency in MNIST handwritten digit
recognition application.
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Fig. 10. Optimization results of FSDD speech recognition application. Original refers
to the result without optimization. Optimized refers to the optimized result. (a) Power.
(b) Accacury. (c) Latency.

4.3 Result of FSDD Dataset

FSDD is a simple audio and speech dataset consisting of recordings of spoken
digits at 8 kHz.

Optimization Effect of Framework. Figure 10 shows optimization results
of FSDD speech recognition applications. For FSDD speech recognition appli-
cations, our target maximum transmission latency is 700 cycles. After several
rounds of exploration, when the packet loss rate is 19%, the maximum transmis-
sion latency is reduced from the original 886 cycles to 697 cycles. It meets the
real-time requirements. After optimization, the power consumption is reduced
by 2.2%. At the same time, the classification rate didn’t decline but increased
from 77.5% to 78.5%.

Fig. 11. Impact of packet loss on classification accuracy of FSDD speech recognition
application.
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Impact of Packet Loss on Performance of RC Network. As shown in
Fig. 11, it shows the impact of packet loss on classification accuracy in FSDD
speech recognition. When the packet loss rate is in the range of 0%–19%, the
classification accuracy is almost unchanged. When the packet loss rate exceeds
19%, the classification accuracy decreases significantly. At the same time, with
the packet loss rate is 1%, the classification accuracy is even better than the
effect of no packet loss.

Fig. 12. Impact of packet loss on data transmission latency in FSDD speech recognition
application.

Impact of Packet Loss on Packet Transmission Latency in NoC.
Figure 12 shows the relationship between the packet loss rate and the max-
imum transmission latency in NoC for FSDD. Same as the result of MNIST
handwriting recognition, we can find that as the packet loss rate increases, the
maximum transmission latency decreases significantly.

4.4 Analysis

How Does Packet Loss Affect the Classification Accuracy of RC? As
mentioned before, an RC network consists of three layers: the input layer, the
reservoir layer, and the output layer. Once the reservoir layer is initialized, the
connections between neurons and their corresponding weights no longer change.
Training an RC network refers to training its readout layer. The input of the
readout layer is the state of the neurons in the reservoir layer.

There are different ways to encode the state of a neuron, such as time encod-
ing and frequency encoding. Frequency encoding means that the state of a neu-
ron is represented according to the count of fire in the time window. Frequency
encoding is used in this experiment. Packet loss adds “noise” to the reservoir
layer. The inputs for training and testing are the states of the reservoir neurons
that contain “noise”. These “noises” are randomly generated with a specific
probability.
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When the packet loss rate is very small, the classifier trained by the dataset
containing “noise” can classify normally. At the same time, because the packet
loss behavior is random, the corresponding classification accuracy may fluctuate
around the original classification accuracy.

When the packet loss rate is too high, the spiking frequency of neurons will
decrease. If frequency coding is used, the state difference between neurons will
become less obvious. At this time, it’s hard for classifier to make right decision.
As a result, the accuracy of classification will descend significantly.

5 Conclusion

In this paper, we proposed a software-hardware co-exploration framework for
optimizing communication in neuromorphic processor. This framework consists
of three parts: software simulation, packet extraction & mapping, and hardware
evaluation. Without reducing the accuracy of SNN classification, we can alleviate
the congestion in neuromorphic processor and reduce the packet transmission
latency.

The experiment result shows that after optimization, when the neuromorphic
processor runs MNIST handwritten digit recognition application, the communi-
cation delay can be reduced by 11%, the power consumption can be reduced by
5.3%, and the classification accuracy can reach 80.75% (2% higher than the orig-
inal accuracy). When running FSDD speech recognition application, the commu-
nication delay can be reduced by 22%, the power consumption can be reduced
by 2.2%, and the classification accuracy can reach 78.5% (1% higher than the
original accuracy).
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