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Abstract. Directory protocol is the most widely used implementation cache con-
sistency method in large-scale shared memory multi-core processor which is very
complex and difficult to verify. In this paper, we propose a random test genera-
tion method based on genetic algorithm to verify directory controller of a type of
64-core processor, analyze the test features to code the symbols of genetic algo-
rithm, and evaluate the merits of the test using the fitness function based on func-
tional coverage. We establish the relationship between coverage and test vector,
analyze the relationship between coverage and test stimulus through a genetic
algorithm. The experimental results show that compared with the pseudo-random
method, the functional coverage rate of this method is increased by nearly 20%—
30%, the detection rate of bugs is relatively high, and the verification efficiency
and quality are also improved.
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1 Introduction

Cache is a key component of microprocessor. With the development of processor struc-
ture to multi-core and many-core, cache consistency protocol is becoming more and
more complex. How to ensure the correctness of consistency protocol has always been
the focus of industry and academia. With the increase of the number of processor cores,
the cache consistency protocol is the most commonly implementation method. Compared
with the snoopy protocol, it has good scalability and reliability, and sends consistency
requests accurately adopting peer-to-peer mode [1, 2]. Because of the state space explo-
sion of directory consistency protocol, software simulation verification method has been
a common verification means. The biggest challenge of software simulation method is
how to generate high-quality test stimuli to cover function points. At the same time,
the quality and progress of verification are usually measured by coverage. The goal of
this paper is to verify the function of a 64-core processor directory controller. There are
1764 protocol message attribute function points, 58 key status registers in the directory
controller, and 1822 functional points in total. The key problem of directory controller
verification is how to generate effective test stimuli to cover functional points.
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The manual test stimuli take exhausting time, and the random test stimuli cover the
function points with great blindness. We propose an approach for automatic coverage
directed test generation (CDG) based on genetic algorithm, aim at constructing efficient
test generators for checking the important behavior and specification of the design under
test (DUT), improving the coverage progress rate; and designing stimulus that can reach
uncovered tasks (coverage points). We establish the relationship between coverage and
test vector, analyze the relationship between coverage and test through a genetic algo-
rithm. The experimental results illustrate the effectiveness of the proposed algorithm in
achieving the goals of CDG. Compared with the pseudo-random method, the functional
coverage rate of this method is increased by nearly 20%—30%. The discovery rate of
bugs is also improved effectively.

The rest of this paper is as follows. Section 2 reviews related work. Section 3 describes
target DUT. Section 4 presents the details of the proposed genetic algorithm. Section 5
illustrates the experimental results. Finally, Sect. 6 concludes the paper.

2 Related Work

The software simulation method has always been a common verification method in the
chip research. The test stimulus of software simulation mainly includes manual test,
random test and coverage directed test generation (CDG). The manual test stimulus
takes exhausting time and cost. Sometimes it is difficult to meet the needs of a large
number of test vectors covering a wide range in regression.

Nagamani, A.N. [3] presented the first implementation of a generation framework
that used feedback from coverage analysis to direct microarchitecture simulation, during
the verification of IBM z-series servers, a CDG system had the potential to bring consid-
erable advantages for a reasonable price. For models of a larger scale, the contribution
was even greater. These advantages can save machine and personal time, and thus save
money overall.

Fine S et al. put forward a random test generation method based on Bayesian network.
This method was successfully applied to verify the PowerPC Northstar pipeline. Through
improving the parameters of the training network, the verification efficiency and the hit
rate of the simulation vector were effectively improved [5, 6].

Ilya Wagner etc. [7] used a random instruction generator driven by a Markov chain
model, which has higher error efficiency compared with the random instruction test
generation technology.

Yi Jiang-fang [8] used Bayesian network to describe the relation between the inputs
and the branch statements. The new simulation vectors were generated by reasoning on
the network. Experiments results indicated that the average vector length generated by
the Bayesian network using different reference algorithms is about 10% of the original
one, but the best path coverage even exceeds the original one.

Ai Yang-yang [9] discuss the Cache coherency protocol, analyze the coverage
directed test generation (CDG) method based on Bayesian network reasoning and applied
the method to Cache consistency verification. Taking the verification of the Cache coher-
ence protocol of the FT processor as an example, the results show that the CDG method
can increase coverage by nearly 30% in comparison with the pseudo-random test.
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Bose M. [10] presented a genetic algorithm based framework to automatically gener-
ate biases. They targeted utilization of specific buffers for a new version of the PowerPC
architecture. The results showed that the GA is effective in achieving high buffer uti-
lization. Also, in targeting multiple objectives, the best approach to be used depends on
whether the objectives were related.

Wang Shu-peng [11] proposed a coverage-directed test generation based on genetic
algorithm (GA), which was used to verify two high-performance 32-bit multi-core pro-
cessors. Results show that the proposed method can significantly reduce simulation time
and improve verification efficiency.

Shen Hai-hua [12] presented genetic algorithm (GA) based coverage directed test
generation (CDG), and built a coverage directed test generation platform. Experimental
results showed that CDG can apparently accelerate the verification process and improve
the reached coverage from 83.3% to 91.7%, which implied that verification efficiency
was greatly improved and skilled manpower was cut down dramatically.

Nagamani, A.N [13] proposed a genetic algorithm based on heuristic test set gener-
ation method for fault detection in Reversible Circuits, which avoided the need for an
exhaustive search. The approach validated on benchmark circuits considering missing-
gate fault (complete and partial), bridging fault and stuck-at fault with optimum coverage
and reduced computational efforts.

Genetic algorithms are intelligent approach to automate the generation of effective
solution for black-box optimization without requirements of experience knowledge and
resources. Only according to the input and output of DUT, Genetic algorithms learn
the relationship between the feedback test vector and the coverage point automatically,
which improves the automation of verification.

Directory-based protocols are very complex, which need rich test vector test to meet
the requirement of functional verification, and random test produces a lot of redundant
stimulus. In order to break through the bottleneck of verification, the genetic algorithm
does not traverse the whole search space, we use genetic algorithm to mine the relation-
ship between the coverage and the stimulus, and then guide the generation of random test
stimulus, improve the growth rate of coverage, reduce the simulation time of redundant
stimulus, and increase the efficiency of verification.

3 Background

Our research background is a 64-core processor developed, which is global shared mem-
ory and CMP structure, as shown in the Fig. 1, including processor core, cache, network
on chip (NOC), directory control unit (DCU) and memory control unit (MCU).

Core: CPU core, which completes the scheduling and execution of instructions.

Cache: Two cores share one cache.

NOC: Interconnection network on chip, which provides information message
exchange between caches and between cache and external memory of the CPU.
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Fig. 1. Target system of 64-core CMP structure

DCU: directory controller, which records the usage of data block copies in each
cache, and completes the maintenance of data consistency between each cache.

MCU: memory controller, attaching External DRAM memory, to achieve read-write
access control of memory.

IOU: IO controller, connecting the PCle device controller and other IO devices.

Two cores share a cache, and each cache line data has four states of MESIO (Modified,
Exclusive, Shared, Invalid, Owned). The function of the directory controller is to support
global data sharing, track and record the use of each cache line data, generate access
requests to the memory controller MCU, process cache consistency protocol messages,
send snoopy requests, accept cache snoopy responses, and complete cache requests.

The directory controller records the tags of all cache line dates and the using status
of data copies in the cache, it tracks and modifies them according to the current received
message commands and directory status to maintain the cache consistency among the
caches in the whole processor.

The directory controller adopts the distributed directory implementation method. The
directory protocol implementation method is divided into centralized and distributed
[14], the centralized directory design is simple, the network traffic around the target
controller is often the access hotspot, thus affecting the consistent transmission delay,
resulting in the network power consumption hotspot. In order to improve the directory
parallel processing ability of multi-core processors, the cache consistent transactions of
the target system are evenly distributed to the DCU, and a DCU has the same address code
for the same memory. In order to further improve the parallel processing performance, the
DCU is divided into two individual banks, which are cross accessed by 6th address bit,
16 DCUs are designed on the 64-core chip. The directory table adopts the configurable
group association mode, and the test configuration is 24-way 64 entries group association
organization. The directory table is shown in the Fig. 2.

The organization and addressing mode of directory entry are the same as that of the
cache tag. Before filling the cache line data, DCU allocates a directory entry to record
using status of cache line data. If the cache line is replaced or does not retain the data
copy, the directory will retrieve the corresponding directory entry (Fig. 3).

DCU entry mainly includes tag, busy, valid, vector, ECC bits and other information.
The tag of the DCU entry, that is, the high 24-bit of the memory address. The busy
defines the busy status of the directory entry. If the snoopy request is not completed, the
new request with the same address cannot be processed. Valid means that the directory
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Fig. 2. Directory table structure of DCU
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Fig. 3. Content of DCU entry content

entry is valid, at least one cache line has data copy. Vector defines which cache has data
copy. ECC check bit is the Hamming check bit of the catalog entry.

The 16 DCUs of the target system are relatively independent, and DCUO manages
the cache consistency record mapping the memory access space of mcu0Q. Therefore, the
functional verification of the directory controller can be tested against an independent
DCUO.

A simulation environment is built for dcu0, as shown in Fig. 4. Cache is an IP design, it
is replaced by cache model in DCU simulation environment, which is a functional model
with an accurate clock, realizes the cache function in the processor. IOU and MCU select
the function model with an accurate clock, simulates IO transaction and memory access
transaction.

Cache_moedIO Cache_moedI1 Cache_moedI31
NOC

I0U0_model } I0U1_model

Fig. 4. Simulation environment of DCUQ
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DCUO can receive requests from 32 caches or 2 IO controllers, MCU response,
cache snoopy response, output cache snoopy request, or memory access or IOU access
request. These input and output cache consistency information of dcuQ is transmitted in
the format of on-chip network message, which can be divided into four categories: read
or write request of cache/IOU, snoopy request, read or write response/snoopy response.

The main verification of DCUQO is the correct processing of cache consistency mes-
sage and the directory table function, including directory entry hit, replacement, directory
entry busy hit, directory table full hit, directory entry misses and other function points.
There are 1764 protocol message attribute function points, 58 important status registers,
and 1822 functions in total. Random test is used in the simulation process, redundancy
test vectors often appear, which is easy to occur the verification period, the coverage of
function points increases slowly. The key of DCU verification is how to generate effec-
tive test stimulus automatically, in order to break through the bottleneck of coverage and
speed up the function verification.

We use a genetic algorithm to mine the relationship between the coverage and the
stimulus, and then guide the generation of random test stimulus, improve the growth
rate of coverage, reduce the simulation time of redundant stimulus, and increase the
efficiency of verification. The effective stimulus generation is abstractly transformed
into a genetic algorithm with improving coverage evolution.

4 Test Generation Based on Genetic Algorithm

The main process of genetic algorithm can be described as follows: the possible solu-
tion code of the problem is expressed as chromosome, and a chromosome population is
randomly generated. Then, the chromosome individuals in the population are placed in
a certain environment, and according to the survival principle of the fittest, the individ-
uals with better adaptation environment are selected for replication, crossover, mutation
and other operations, the next generation of individuals who are more adaptable to the
environment. Such a generation evolves and keeps the offspring with large adaptive
function. When the fitness function reaches the threshold, the evolution stops, and the
optimal solution is obtained.

The essential feature of genetic algorithm is to code chromosomes through feasible
solutions of the problem, to maintain optimization of crossover and mutation operators
between generations, to define fitness function fitness in genetic algorithm, to judge the
quality of chromosomes in the population, and to achieve multi-directional and global
search to find the optimal solution of the problem.

4.1 Question Encoding

When genetic algorithm is used to solve the optimization problem, it is necessary to map
the feasible solution of the problem from the solution space to the search space that the
genetic algorithm can deal with, that is, to code the feasible solution of the problem with
chromosome code.

The test generator is based on a genetic algorithm, its genetic code is related to the test
stimulus. The genetic code is transformed into a feature vector, i.e. gene, by extracting
the features of test stimulus. The gene sequence is built to obtain a chromosome.
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Test stimulus features mainly come from the following aspects: first, opcode, non-
cacheable read, shared read, noncacheable write, and cache maintenance commands of
the message, etc.; second, the number of send SENDID, which indicates which cache
and IO controller the data comes from, the third is address correlation of each message
contained, if it is relevant, then the read and write addresses are the same. The fourth
is bank number, the fifth is length encoding, whether the message request is 1 byte, 2
bytes, 16 bytes or 64 bytes data. So, gene expression includes five feature vectors.

In the implementation of genetic algorithm, genetic coding adopts symbol coding,
and each bit field represents a feature vector. Using symbol coding corresponds to the
problem itself, which is simple, easy to understand, and faster and more stable than
binary coding in solving optimization problems. For example, gene expression is shown
in Fig. 5. For gene coding (4,5,1,1,0), it can determine that cache4 sends a request that
the opcode is op3. In this chromosome, the address is the same as the first gene address,
access the directory table bank1 and read 1 byte of data.

[ a] s[ 1] 1] o]

Fig. 5. An example of gene

A test stimulus consists of multiple test vectors, i.e. forming a chromosome. We
define 32 genes to form a chromosome. As shown in Fig. 6, the chromosome is composed
of 32 genes, Gene 0 is cache4, which sends out a request that the opcode is op5. The
address is at the first address of this chromosome address, that is, random address. Access
directory bankl, and read 1 byte of data. Gene 1 is cache0 which sent out a request with
opcode OP1, the address is the same as the first gene address of this chromosome, access
the directory table bank1, and read 64 bytes of data; gene 31 is the request of IOU 2 that
the opcode is op0, the address is different from the first gene address of this chromosome,
and read 16 bytes of data.

ge?O : genl \gen31

;
_

[aTa il o [o[ [Tz [3~~ [ Jola[o]2

Fig. 6. An example of chromosome

4.2 Fitness Function

Genetic algorithms use a fitness value to evaluate the quality of chromosome. The eval-
uation of solutions represented by fitness values is important to guide the learning and
evolution process in terms of speed and efficiency. The function verification based on
simulation is to get the maximum function coverage in a short period of time. Differ-
ent scenarios and functions defined by test stimulus are reflected by the population of
chromosomes. Fitness function in genetic algorithms is used to judge the quality of
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chromosomes in the population. Therefore, in the application of this study, the fitness
function is to reach the most function points. In genetic algorithms, a chromosome C
represents a test stimulus, and there are N function points to be tested and covered in
the DCUQ. For a chromosome C, its fitness function fitness. Its fitness function is the
number of function points of coverage. The number of function points included in chro-
mosome C is M, the gene i of chromosome C covering the jth function point is defined as
cov[i, j], and Covering the jth function point of chromosome C is defined as follows:

cov[j] = |(cov[i, J]) for,i=1,2,...M
s.t. cov[i, J] = 1, Gene i covers the jth function; (1)

else cov[l, ]] = 0, Gene i does not cover the jth function
. N .
Fitness, = max(Zj:1 (wj * cov[]]))/N 2)

wj represents the weight and importance of the jth function point. Its value can be adjusted
according to the design features. For example, when only the module of the directory
table bank is tested, the function point weight of bank1 can be set to 0.

4.3 Mutation Operator and Crossover Operator

The mutation of genetic algorithm itself is a kind of local random search, which is
combined with random and crossover operators to ensure the effectiveness of genetic
algorithm, make genetic algorithm have the ability of local random search, and keep the
diversity of population, so as to prevent premature convergence. In order to avoid invalid
operation, we adopt fixed-point mutation. The position of mutation operation is the first
and second position of gene, as shown in Fig. 7, an example of mutation operation.

HENRNEENEACEDDE
N [1]9] 1] 1] 0] =+ |10 [11 [o]o]2]

Fig. 7. Example of mutation operation

An example of mutation operation shown in Fig. 7 is to perform the mutation opera-
tion on chromosome T1. If there is a mark “*” in the characteristic position, the mutation
will occur. T1 generates a new chromosome T2 through mutation. We select the muta-
tion feature as opcode and SENDID. We need to pay attention to the legitimacy of the
variation, such as the legality of opcode. IO devices can only send non-cacheable read
and non-cacheable write requests, such as sending cacheable requests, this must be an
illegal operation and needs to be deleted.

The crossover of genetic algorithm is the operation of replacing and recombining
part of the structure from the parent to generate new individuals. Its purpose is to gener-
ate new individuals in the next generation, just like the process of human evolution, so
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that the search ability of genetic algorithm can be improved greatly. Crossover is carried
out according to probability. The higher the frequency of crossover, the faster the opti-
mal solution can converge, but too high will lead to premature convergence. Common
crossover includes single point crossover, multi-point crossover, uniform crossover, etc.
we select single point crossover, and the crossover operator will randomly exchange
some feature bits of two chromosomes according to the crossover rate, so as to generate
a new feature combination. The purpose of crossover is to combine the useful features
together to produce more effective and active coverage of function points. The specific
operation is to set a crossing point in the chromosome code, then exchange the partial
structure of the two chromosome codes before and after the crossing point, and form
two new chromosome codes, that is, two new test stimuluses. Figure 8 introduces an
example of a single point crossing, through which two chromosomes T1 and T2 in Fig. 9
can be changed into two new chromosomes T'1 and T'2.

|4|5|1|1|oct;olsslmfﬁm1t|3| ------ 133 Jo[o]0[2
|T623|9|1|0|3 slafof1]of~- [20 [1]1][0[2]

Fig. 8. Chromosomes before cross operation

T1 crossing point
[4]5]1]1]o]8]4]o]1]2 [33 Jo]o]q2
HONDEONNNEEERNNCE

Fig. 9. New chromosomes after cross operation

4.4 Parameters of Genetic Algorithm

The genetic algorithm needs to determine the size of the test set, that is, the number
of genetic populations POPSIZE. When the POPSIZE value is small, the calculation
time of the algorithm is short, but the probability of the algorithm converging to the
optimal solution is low, that is, the global search ability is small, and the local optimal
solution may be obtained instead of the global optimal solution. With the increase of
POPSIZE, the probability of convergence to the optimal solution will increase, but the
calculation time of the algorithm will also increase significantly. Our algorithm defines
the population size as 32 chromosomes.

Genetic algorithm crossover is built on probability. The higher the crossover fre-
quency is, the faster the optimal solution can converge, but too high will lead to prema-
ture convergence. Mutation is kind of local random search, at the same time, it makes
the genetic algorithm keep the diversity of the population, so as to prevent the premature
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convergence. In the mutation operation, the mutation rate cannot be too large. Otherwise
it may degenerate into random search. At this time, some important mathematical char-
acteristics and search ability of the genetic algorithm no longer exist. In a compromise,
the crossover probability PC = 0.8 and the mutation probability PM = 0.1 are defined
here.

S Experimental Results

The parameters of the genetic algorithm are set as follows: population size POPSIZE =
32, Maximum number of evolutionary iterations MAXGENERATION = 10, crossover
probability PC = 0.8, mutation probability PM = 0.1. According to fitness function of
Formula-1 and Formula-2, chromosome evaluation in genetic algorithm is realized, The
simulation scenario of testbenchl is 32 caches and two IOU devices accessing a directory
controller DCUOQ, sending out 4 K requests, simulating 90 K cycles, obtaining 100%
coverage, pseudo-random test stimulus reaches 73%, as shown in Fig. 10, testbench2
simulation scenario 2 is 4 caches and two IOU devices accessing DCUQ, sending out 256
requests, simulating 1 K cycles. At the same time, the pseudo-random test motivation
reaches 81% of the functional coverage, as shown in Fig. 11.

In the regression test of directory simulation, there are 24 bugs found by testbenchl
of genetic algorithm, 5 bugs of high quality, and 21 bugs found by testbench2 of genetic
algorithm. The results and performance comparison of the algorithm are shown in
Table 1.
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Fig. 10. A coverage comparison of testbenchl simulation scenario
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Table 1. Performance comparison of algorithms

Test scenario | Algorithm Simulation time | Test vector | Functional | Detecting bugs
(cycles) coverage | in regression test
TestBenchl | Genetic 90k 4k 100% 24
algorithm
TestBenchl | Pseudorandom | 90k 4k 73% 19
algorithm
TestBench2 | Genetic 10k 1k 100% 21
algorithm
TestBench2 | Pseudorandom | 10k 1k 81% 15
algorithm

6 Conclusions

In this paper, we propose a random test generation method based on genetic algorithm to
verify directory controller of a type of 64-core processor, which uses a fitness function
based on function coverage to evaluate the quality and value of verification. The genetic
algorithm is used to establish the relationship between the coverage analysis results and
the effective stimulus to direct the generation of higher quality tests. The experimental
results demonstrate that compared with the pseudorandom test generator, the proposed
test generator can achieve higher function coverage in a short time, reduce the verification
time and improve the verification efficiency. The parameters of the genetic algorithm
in this paper are fixed, which is likely to cause the genetic algorithm to fall into the
local optimal solution. In the future, we will do further research on the adaption of the
parameters and test weight of the genetic algorithm, further expand the local optimal
solution space of the genetic algorithm, and generate higher quality tests.
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