
Pin-Tool Based Execution Backtracking

Shuangjian Wei1, Weixing Ji1(B), Qiurui Chen2, and Yizhuo Wang1

1 Beijing Institute of Technology,
Beijing 100081, China

{sjw,jwx,frankwy}@bit.edu.cn
2 Science and Technology on Special System Simulation Laboratory,

Beijing Simulation Center, Beijing 100854, China
qiuruich@126.com

Abstract. Checkpoint/restart is a common fault tolerant technique
which periodically dump state to reliable storage and restart applications
after failure. Most of existing checkpoint/restart implementations only
handle volatile state and lack of support for persistence state of applica-
tions. Even the algorithm specifically designed for file checkpointing may
not support complex operations and some need to modify source code.
This paper presents a new checkpoint technique, which use dynamic
instrumentation to temporarily cache disk operations in memory, and
use existing memory checkpoint tool to dump or restore process state at
runtime. We show that not only can this method create regular check-
points for both volatile and persistence state, but also has important
applications in execution backtracking.

Keywords: Checkpointing · Dynamic instrumentation · Execution
backtracking · Volatile state · Persistence state

1 Introduction

Checkpoint/Restart (C/R) is a mainstream fault-tolerant technique. It generates
checkpoints periodically to save execution state and recovers from checkpoints
after process fails. The behavior of a process has three parts: volatile data, per-
sistent data, and OS environment [1]. Among them, volatile data refers to data
in memory and registers, and they are lost after power-off. Persistent data refers
to the data stored in stable storage, such as files and databases. OS environment
refers to the resources that user processes must access at runtime, such as swap
space and monitors. In this paper, we focus on the C/R of both volatile data
and persistent data.

The consistency of volatile and persistent data is a prerequisite for process
restart. Unlike incorrect recovery of volatile state (which usually leads to obvious
process failures), incorrect rollback of persistent state usually leads to more
serious losses due to difficulty in tracing, so it has become a major concern for
many users. Unfortunately, most existing mainstream checkpoint tools do not
support or do not fully support file checkpoints. Fault-tolerant systems that use
c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 192–206, 2020.
https://doi.org/10.1007/978-981-15-8135-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_14&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_14

Pin-Tool Based Execution Backtracking 193

such tools roll back the volatile state to the previous checkpoint after a process
fails, while keeping the file state unchanged. If the process has modified these
files, such as writing, deleting, renaming, etc., it will cause erroneous results.
There are many types of these errors, and the following figures show two common
cases.

che c kpo in t i ;
f d = open (”doc” ,

OWRONLY|O APPEND) ;
w r i t e (fd , buf , b u f s i z e) ;
/∗ f a i l u r e occurs ∗/
che c kpo in t i +1;

Fig. 1. A process writes same data
multiple times.

f d = open (”doc” , ORDWR) ;
ch e c kpo in t i ;
read (fd , buf , b u f s i z e) ;
l s e e k (fd , 0 , SEEK SET) ;
w r i t e (fd , buf , b u f s i z e) ;
/∗ f a i l u r e occurs ∗/
che c kpo in t i +1;

Fig. 2. A process reads dirty data and
causes error.

In Fig. 1, the program opens the file “doc” after checkpoint i, and writes data
at the end of the file in appending mode, then an error occurs right before check-
point i + 1. During the rollback, since the information of “doc” is not recorded
in checkpoint i, the rollback algorithm will not truncate “doc”, so that the con-
tent will be added again after the execution is resumed. In Fig. 2, the program
performs the read-before-write operation at the same position on the “doc”
after checkpoint i, and then an error occurs before checkpoint i + 1. During the
rollback, because there is no “doc” information in checkpoint i, the rollback
algorithm will not restore the file state, which causes the program to read dirty
data after recovery. The above two errors are also known as RARE (Rollback
After Real time Event) and RARW (Rollback After Reading and Writing the
same area) [2].

Over the past 20 years, many checkpoint algorithms and tools have been
proposed. These algorithms and tools play an irreplaceable role in tasks such
as scheduling management, process migration, and load balance. Nonetheless,
checkpoint related work is far from over, especially in the field of file checkpoints.
There are three main shortcomings in existing file checkpoint algorithms:

– Only idempotent operations and very few non-idempotent operations are sup-
ported. Idempotent operations include all operations that do not change the
consistency state of the file, such as read. User applications that use this type
of checkpoint tool can only access files in read-only and appending modes.

– Only active files are supported. Active files are those files that were open at
the time the checkpoint was created. Such tools traverse all open file handles
and record the current file length when a checkpoint is created.

– The user application source code must be modified to fit the file checkpoint
feature. Currently, most of the file checkpoint tools are provided as libraries,
and they are implemented by encapsulating file interfaces. User programs that

194 S. Wei et al.

have been built must modify the source code to accommodate these libraries.
This method will not only increase the workload of developers, but also leave
security risks for the system.

Although kernel-level checkpointing tools can address all of these issues, they
can also introduce significant overhead for applications that do not require check-
pointing. This article mainly has the following three contributions. First, this
article introduces a new C/R technique that neither modifies program source
code nor restricts process file access operations. Secondly, a method to dump
the complete state of the process using only the memory checkpoint tool is pro-
posed. Finally, the checkpoint method proposed in this paper not only can set
up regular checkpoints, but also assist in execution-backtracking, that is, roll
back the process state to any point in the execution history.

In addition to this section, application scenarios are discussed in Sect. 2 and
related work is given in Sect. 3. The architecture overview is introduced in Sect. 4,
and Sect. 5 presents system implementation details. The evaluation is in Sect. 6
and Sect. 7 is the summary.

2 Application Scenario

To describe the usage scenarios of the ideas presented in this article, it is neces-
sary to first explain how the existing checkpoint tools work. Existing checkpoint
tools, such as MOB [2,16] and CprFS [20] mentioned in the following section, will
automatically create process checkpoints at regular intervals. When the process
execution fails, the system will automatically select the most recent checkpoint,
such as checkpoint i in Fig. 1 and Fig. 2, and restart the program from this check-
point. Restarting the process from checkpoint i discards all changes made to the
file during erroneous execution and minimizes work loss, which is also the ulti-
mate purpose of checkpoint tools. Although multiple checkpoints are set during
process execution, only one checkpoint (checkpoint i) is involved in the entire
C/R process. The process cannot roll back the state to checkpoint i− 1 or i− 2,
because all file modification data before checkpoint i has been discarded when
setting checkpoint i. Therefore, we can conclude that the existing checkpoint
tool is to ensure that the target process can be safely and error-freely executed
to the end in one execution. Only one checkpoint (the most recent checkpoint)
is required to ensure the execution of the process.

Unlike the existing checkpoint tools for program fault tolerance, the check-
point method proposed in this paper can also be used for execution backtracking.
Execution backtracking refers to the operation of rolling back the process state
to any moment in its execution history. Taking the simulation programs as an
example, in order to obtain the simulation results under different parameters,
users need to execute the same simulation program multiple times and enter dif-
ferent parameters for it. To reduce the time it takes to re-execute, we can set a
checkpoint before setting the parameters and restart the process from the check-
point in the next execution. It should be emphasized that the program started
from the checkpoint can also set the checkpoint again. These checkpoints will

Pin-Tool Based Execution Backtracking 195

Fig. 3. Tree structure formed by checkpoints

eventually form a tree structure (see Fig. 3), and the process can be restarted
and executed from any node in the tree. The non-leaf nodes in the tree in Fig. 3
refer to checkpoints, and the leaf nodes represent program execution results. The
strategy proposed in this paper can not only ensure the correct execution of the
process, but also meet the requirements of process traceback, that is, restart the
program from any checkpoint in the checkpoint tree.

3 Related Work

3.1 Checkpointing

The BLCR (Berkeley Lab’s Linux Checkpoint/Restart project) presented in [3–
7] is a robust kernel-level checkpoint/restart implementation that can support
a variety of parallel scientific codes. In terms of file processing, BLCR only
records the file size when creating a checkpoint and simply truncates the file
to its original length during recovery. Although this strategy is very lightweight
and effective in log-only scientific calculations, it is not applicable in practical
applications.

The ftIO system [8] is implemented by encapsulating the standard file inter-
face. In order to avoid file access errors between two adjacent checkpoints, ftIO
has designed a new file access protocol. This protocol is based on the copy-on-
write [9] concept, where the entire file is copied upon the first write operation.
Subsequent file operations are performed on the replica. During checkpointing,
the modifications are committed by simply replacing the original file with its
replica. The ftIO algorithm is concise and effective, but it introduces a huge
time and space overhead when processing large files, which can seriously drag
down user processes.

The core idea of Libckp mentioned in [1,10,11] is to use lazy-coordination
and shadow copy to solve the problem of inactive files. The basic concept of lazy
coordination is that file data is not processed immediately when a checkpoint is

196 S. Wei et al.

created, but is deferred until the file content actually changes. Just record the
file size when the file becomes active, and make a shadow copy of the file when
the file content is about to be modified. Libckp’s strategy to reduce runtime and
space overhead is to perform shadowing page by page.

Libfcp [12] uses in-place updates [13] with undo logs to checkpoint files. It
intercepts all file operations except read-only files through the encapsulated file
interface. When a file is opened for modification, the size of the file is recorded
and a truncated undo log of the file is generated. When the contents of a file
are modified, it generates an undo log that restores the contents of the file.
Libfcp RM [14] enhances Libfcp by adding transaction management. It uses
transactions to atomize a sequence of file updates in the application. Libra [15]
combines a “copy-on-change” strategy with an undo log to keep track of what
really changed to reduce the log size.

The MOB (Modification Operation Buffer) mentioned in [2,16] buffers all
modification operations after one checkpoint until the next checkpoint, so that
all operations between two checkpoints become atomic. MOB’s basic buffering
strategy is to append new content directly after the existing buffer. If the same
area of the file is modified more than twice, the buffer will not append new
content, but update the original data in the buffer. MOB transfers the execu-
tion of file operations to memory, which can significantly reduce file access time
overhead. In addition, MOB uses a disk buffer to limit the amount of memory
occupied by the algorithm.

The VFO (Virtual File Operation) proposed in [17] buffers all the write oper-
ations after a checkpoint until the next one, making all the operations between
two checkpoints atomic. The read and write operations of the user process do
not directly interact with the disk file, but access to the virtual file operation
management table entries, just like inserting a virtual file layer between the user
and the file. Unlike MOB, VFO manages file data in blocks, reducing space
overhead. Metamori [18] is an another MOB-like file checkpointing algorithm. It
adds support for file streams on top of MOB, which only supports file descrip-
tors. In addition, it also optimizes the related data structure and uses a B-tree
to manage the buffer mapping table to improve retrieval efficiency.

CprFS [20] uses the FUSE [21] module in the Linux system to create a file
system that executes in user space. For checkpoint, an atomic transaction is con-
sidered to be the execution of a program between two consecutive checkpoints.
The program either commits its state during checkpointing or aborts at some
point during execution, in which case it can be recovered from the last check-
point. CprFS has high execution efficiency, and does not need to modify the
program source code.

3.2 Execution Backtracking

Execution backtracking is the process of restoring the state of a program to any
earlier point in its execution history. It is used to facilitate program debugging.
The Spyder mentioned by [26] is a system for selective checking of computational
sequences. It allows users to step back from the checkpoint without having to

Pin-Tool Based Execution Backtracking 197

re-execute the program to reach the most recent previous state. [27] describes a
debugging method that uses a combination of re-execution and backtracking to
find the first difference in the calculation, which may eventually lead to incorrect
values indicated by the user. [28] provides a debugging model based on dynamic
program slicing and execution backtracking technology that easily lends itself to
automation.

Fig. 4. System architecture diagram

4 Architecture Overview

The traceback system architecture is shown in Fig. 4, where the user interface
refers to the client of the system, which displays system status information to
users and receives instructions from the users. In addition to this, the user inter-
face is also responsible for managing the tree formed by checkpoints, as well as
issuing commands to the checkpoint tool and inputting parameters to the user
process. Users can issue checkpoint setting commands through the interface,
or select a checkpoint from the tree to restart a process. The checkpoint tool
used in the system is CRIU (Checkpoint/Restore In Userspace) [22], which is an
open source software on GitHub. CRIU works on the Linux operating system.
It can freeze the target process after receiving user commands, and then dump
the process data to disk. CRIU completes the checkpoint restarting process by
transforming itself into a task to be restored.

Pin [25] allows a tool to insert arbitrary code (written in C or C++) in arbi-
trary places in the executable. The best way to think about Pin is as a “just in
time” (JIT) compiler. The input to this compiler is not bytecode, however, but a
regular executable. Here, we use Pin to build a tool (Pin-tool in Fig. 4) for inter-
cepting and caching file operations. Pin-tool is mainly composed of three parts,

198 S. Wei et al.

a list for managing open files, a series of instrumentation codes for intercepting
file operations, and a buffer for buffering file contents. The three components
of Pin-tool form a virtual file layer, which can load the contents of the disk file
into the buffer, and can also transparently cache the data written by the user
process. After CRIU receives the user’s request to set a checkpoint, it directly
dumps the volatile data of Pin-tool and user application to disk. Because the
file modification information is stored in the virtual file layer, each checkpoint
created by CRIU contains all the information of the process.

5 Implementation

The disk file always remains the same to ensure that the process can be correctly
executed back to any point in the execution history. We use the virtual file
layer mentioned in the previous section to buffer all file changes made by the
process. Unlike existing methods, we use dynamic instrumentation to intercept
and replace the corresponding functions in the process, thereby avoiding the work
and risks caused by modifying the source code. Instrumentation is to insert some
probes into the program to collect the tested program information on the basis
of ensuring the original logical integrity of the tested program. These probes are
essentially code segments for information collection, which can be function calls
that distribute information or collect information. The code is added dynamically
while the executable is running. The functions we intercept and replace include:
open, close, read, write, create, dup, dup2, dup3, fcntl, lseek, remove,
etc.

Table 1. Data structure for storing file information.

Name Description Name Description

fd File descriptor flags File access mode

path File path closed Whether the file is closed

flags real Real file access mode pos wd File write pointer

pos rd File read pointer len acc File accessible length

len cur Current file length pages File content buffer

5.1 Data Structure

For each opened file, a global data structure is created to store its information.
We call this data structure FileEntry. As shown in Table 1, fd and flags rep-
resent the file descriptor and file open mode, respectively. path refers to the file
path, closed is used to describe whether the file has been closed. To ensure that
the disk file remains unchanged, the virtual file layer will change the file open

Pin-Tool Based Execution Backtracking 199

mode and record the mode in flags real. The following pos rd and pos wd are
file read and write pointers, while len acc and len cur are the file’s accessible
length and current length. The open mode of the file will affect the value of
len acc, and the process of writing will change the value of len cur. The virtual
file layer manages the file contents in pages and loads the corresponding pages
into pages when needed.

5.2 Virtual File Layer

This section discusses how to transparently perform file operations in the buffer.
The virtual file layer is composed of a set of file access functions and a buffer. The
main purpose of its existence is to unify memory and disk file so that memory
checkpoint tool dumps all process data. The way it works is to intercept all file
operations performed by the process and transparently execute the operations
in the buffer, so the dynamically inserted code has a completely different role
from the native code.

Algorithm 1. New file open function
1: function NewOpen(filename, flags,mode)
2: if flags = O RDONLY then return open(filename, flags,mode)
3: end if
4: if Find(filename, fety) then return ChangeMode(fety)
5: end if
6: if access(filename, F OK)= -1 And (flags&O CREAT) then
7: open(filename,O CREAT,mode)
8: end if
9: fety. fd ← open(filename,O RDONLY)

10: fety. closed ← false
11: fety. path ← filename
12: fety. flags ← flags
13: fety. posrd, fety. poswd ← 0
14: if flags&O TRUNC then
15: fety. len acc ← 0
16: fety. len cur ← 0
17: else
18: fety. len acc ← lseek(fety. fd, 0L, SEEK END)
19: fety. len cur ← fety. len acc
20: end if
21: if flags&O APPEND then fety. pos wd ← fety. len cur
22: end if
23: g files vec.push back(fety)
24: return fety. fd
25: end function

Each file opened by the user process has an independent buffer containing mul-
tiple fixed-size pages. The file just opened by the process does not load any data

200 S. Wei et al.

into the buffer, and data loading is delayed until the file is actually written or
read. To avoid memory overflow caused by excessive file size, the file data always
loaded in pages. The file read/write pointer and read/write size jointly deter-
mine which page needs to be loaded immediately. The virtual file layer does not
handle read-only files, because even if the instrumentation code does nothing,
the disk file will not change.

NewOpen is a function for replacing open in the virtual file layer. It is
used to transparently open a file and return the file descriptor after record-
ing the file information. The virtual file layer does not record any information
about files opened in read-only mode, and directly calls open and returns the
result. For a newly opened file, create a FileEntry instance (fety) and initial-
ize its contents according to the open mode and file status, and finally insert
it into the global list. Its detailed description is shown in Algorithm1, where
g files vec is the global list used to store information about all open files. The
Find function is responsible for finding the current file information in g files vec
to determine whether the file was previously opened. For the file that has been
opened, the virtual file layer no longer creates a new FileEntry instance, but uses
the ChangeMode function to change the file information based on the existing
fety.

NewClose is a function for replacing close in the virtual file layer, and is
responsible for closing the opened file descriptor. For files present in g files vec,
first set the closed flag to true, then close the file descriptor. The reason why
the data of the closed file is not deleted is that the user process may reopen the
file in the subsequent execution.

Algorithm 2. New file read function
1: function NewRead(fd, buf, count)
2: if Find(fd, fety) then return fety.ReadFromPages(buf, count)
3: else
4: return read(fd, buf, count)
5: end if
6: end function
7: function ReadFromPages(buf, count)
8: page str ← pos rd/PAGE SIZE
9: page end ← (pos rd + count − 1)/PAGE SIZE

10: read num ← 0
11: for i = page str → page end do
12: LoadOnePage(i)
13: read num += ReadFromOnePage(buf + read num, count − read num)
14: end for
15: return read num
16: end function

NewRead is a function for replacing read in the virtual file layer to read a
certain number of bytes and return the number of bytes read. When NewRead

Pin-Tool Based Execution Backtracking 201

is called, it first obtains the handle fety used to manipulate the file. If fety does
not exist, it directly calls native read and return. As shown in lines 9 and 10
of Algorithm 2, using the pos rd of the current file and the parameter count
can calculate the pages that may need to be loaded. Then use LoadOnePage
and ReadFromOnePage to load and read out the data in the file (as shown
in lines 12 to 17 of Algorithm 2), and finally return the number of bytes read.
The judgment of the file boundary (len cur) and the change of the read pointer
(pos rd) are made in ReadFromOnePage. The return value may be less than
count when touching the file boundary. Because the preset page size is often
much larger than the read size, the read operation after a page loads will be
much faster than reading directly from the file. The page loaded in the read
operation will also speed up the program write operation.

Algorithm 3. New file write function
1: function NewWrite(fd, buf, count)
2: if Find(fd, fety) then return fety.WriteToPages(buf, count)
3: else
4: return write(fd, buf, count)
5: end if
6: end function
7: function WriteToPages(buf, count)
8: page str ← pos wd/PAGE SIZE
9: page end ← (pos wd + count − 1)/PAGE SIZE

10: write num ← 0
11: for i = page str → page end do
12: LoadOnePage(i)
13: write num += WriteToOnePage(buf +write num, count−write num)
14: end for
15: return write num
16: end function

The execution flow of the NewWrite function used to replace write is similar
to NewRead, and the corresponding page needs to be loaded before writing.
The difference is that if the page to be loaded does not exist, LoadOnePage
will create a blank page instead of doing nothing for writing new data. Unless
the memory overflows or other errors occur, the return value is always the same
as count.

The core idea of this paper is to use memory buffer file operations to unify
volatile and persistent data so that the memory checkpoint tool can dump all
the data of the process. The advantage of this strategy is that it is simple and
effective for processes that have sufficient memory space or access to files that
are not too large, and will not negatively affect the execution speed. But for large
files, it may cause a shortage of memory space. It is unrealistic to completely
buffer the contents of larger files into memory. If the file accessed by a process
is too large, the virtual file layer will write back buffered data to the disk, and
at the same time create a file backup on the disk for process backtracking.

202 S. Wei et al.

In addition to the above four basic file operations, the virtual file layer also
supports operations such as remove, rename, and redirect. When the user
program calls the remove function, the virtual file layer will first close the
corresponding file descriptor, then release the file buffer, and finally set the file
accessible length to 0. For the rename operation of the user process, the virtual
file layer will change the value of path in the file entry. User process redirection
operations, such as freopen, dup, dup2, dup3, etc., will cause the original file
descriptor to be closed and create a new file descriptor (or use the specified file
descriptor) instead.

6 Evaluation

In this section, we use micro-benchmarks and real-world applications to evaluate
our method to prove that dynamic instrumentation and checkpoint overhead are
tolerable. The experiment was conducted on a computer with Intel(R) Core(TM)
i7-8550U CPU @ 1.80 GHz, 4 GB RAM and a 20 GB disk space. The operating
system used was CentOS-7 with kernel 3.10.0-693.el7. The file system for local
disk was xfs.

6.1 IOzone Test

How to dump files is the core problem to be solved in process backtracking. The
method used in this paper is to insert a virtual file layer between the disk and
process through dynamic instrumentation technology. The access speed of the
process to the file, especially the speed of writing the file is closely related to the
execution speed of the program. We use IOzone [23] to evaluate the execution
efficiency of instrumentation code. The experiment uses the original IOzone and
the IOzone after dynamic instrumentation to write 1GB data in different block
sizes, and then records the writing speed. The experimental results are shown in
the figure (see Fig. 5).

The experiment tested the write speed of the xfs file system in different states,
where xfs-a and xfs-b respectively represent the write speed of the file system
with and without calculating the flush time. The black bar shows the writing
speed of the file system after dynamic instrumentation. From the data shown in
the figure, we can find that the file access speed after dynamic instrumentation
is similar to the native file system, and in most cases is slightly higher than the
native file system. Therefore, we believe that the impact of the new virtual file
layer on the simulation program is positive, as can be seen from the total time
of the simulation program execution in the previous section.

6.2 Pin-Tool Overhead

An important part of the implementation of the backtracking strategy based on
checkpoints is dynamic instrumentation. Dynamic instrumentation allows devel-
opers to intercept or replace existing methods in the original program without

Pin-Tool Based Execution Backtracking 203

Fig. 5. Write speed of virtual file layer

changing the source code. Obviously, this requires additional memory overhead.
In order to detect memory overhead, we instrument the existing program and
then sample during the program execution. The test program we use is BWA [24],
which is a software package for mapping DNA sequences against a large reference
genome (such as the human genome). We can find its source code on GitHub.
Figure 6 shows the memory overhead information of the process using 9 samples.

Fig. 6. Memory overhead caused by dynamic instrumentation.

The upper and lower two lines in the figure present the memory occupation
trend of the BWA program after dynamic detection and the original BWA pro-
gram during execution. Since the memory usage of the BWA program in the
steady state does not change much during execution, the lower line is almost
horizontal. Correspondingly, the memory overhead of the BWA program in the
stable state after dynamic instrumentation is also displayed as a horizontal state,
which indicates that the memory overhead caused by dynamic instrumentation
is an approximately fixed value and does not change with the process size and

204 S. Wei et al.

execution status. The gap between the upper and lower lines (the difference is
about 30M) is the overhead caused by dynamic insertion. This fixed overhead is
acceptable for the program.

6.3 Checkpointing Performance

A typical application scenario of process backtracking is simulation backtrack-
ing. Setting checkpoints for the simulation program is the core content of the
simulation backtracking, and its efficiency is closely related to the backtracking
efficiency. We chose a CISE-based [19] simulation program with a run time of
approximately 150 s to find the impact of checkpoints on the simulation pro-
gram execution. The memory checkpoint tool we use is CRIU [22]. We execute
the simulation program after instrumentation, then set multiple checkpoints uni-
formly during its execution, and finally record the execution time of the entire
simulation program. The experimental results we recorded are shown in Fig. 7.

Fig. 7. The performance of the checkpoint setting on the simulation program.

The abscissa in the figure represents the number of checkpoints set on the
simulation program. The abscissa is 0 means the time required to execute the
simulation program itself. A single checkpoint has a limited impact on the exe-
cution time of the simulation program. With the increase in the number of
checkpoints, the execution time of the simulation program increases linearly and
slowly. For simulation programs that require frequent backtracking, the time
overhead of setting checkpoints multiple times is tolerable.

7 Conclusion

We have described a new checkpoint idea, which can not only create process
checkpoints, but also help process traceback (this is very useful for simula-
tion programs). The system uses dynamic instrumentation tools to intercept

Pin-Tool Based Execution Backtracking 205

the native file access interface and insert a virtual file layer to unify the volatile
and persistent data of the process without modifying the imitation source code.
Although performance is the most important issue of the process, our experi-
mental results on micro-benchmarks and practical applications show that the
cost of introducing dynamic instrumentation and virtual file layer is acceptable,
and the impact on the process itself is very limited. Our experience shows that
the use of dynamic instrumentation tools to insert virtual file layer can satisfy
the checkpoint setting requirements of conventional processes, and also provides
a solution for process backtracking.

References

1. Wang, Y.M., Huang, Y., Vo, K.-P., Chung, P.-Y., Kintala, C.: Checkpointing and
its applications. In: Proceedings of the Twenty-Fifth International Symposium on
Fault-Tolerant Computing, p. 22. Institute of Electrical and Electronics Engineers,
Inc., Washington, DC (1995)

2. Pei, D.: Modification operations buffering: a low overhead approach to checkpoint
user files. In: Proceedings of IEEE 29th Symposium on Fault-Tolerant Computing,
Madison USA, pp. 36–38 (1999)

3. Duell, J.: The design and implementation of Berkeley Lab’s Linux check-
point/restart. Berkeley Lab Technical report, LBNL-54941 (2002)

4. Duell, J., Hargrove, P., Roman, E.: Requirements for Linux checkpoint/restart.
Berkeley Lab Technical report, LBNL-49659 (2002)

5. Roman, E.: A survey of checkpoint/restart implementations. Berkeley Lab Tech-
nical report, LBNL-54942 (2002)

6. Sankaran, S., et al.: The LAM/MPI checkpoint/restart framework: system-
initiated checkpointing. In: LACSI Symposium, LBNL-53808 (2003)

7. Paul H., Duell, J.: Berkeley Lab Checkpoint/Restart (BLCR) for Linux clusters.
In: Proceedings of SciDAC 2006, LBNL-60520 (2006)

8. Lyubashevskiy, I., Strumpen, V.: Fault-tolerant file-I/O for portable checkpointing
systems. J. Supercomput. 16, 69–92 (2000)

9. Rashid, R., et al.: Machine-independent virtual memory management for paged
uniprocessor and multiprocessor architectures. IEEE Trans. Comput. 37(8), 896–
908 (1998)

10. Zhong, H., Nieh, J.: CRAK: Linux checkpoint/restart as a Kernel module. Techni-
cal report CUCS-014-01, Department of Computer Science, Columbia University
(2001)

11. Osman, S., Subhraveti, D., Su, G., Nieh, J.: The design and implementation of Zap:
a system for migrating computing environments. In: Proceedings of the Fourth
Symposium on Operating Systems Design and Implementation. ACM SIGOPS
Operating Systems Review (2002). https://doi.org/10.1145/844128.844162

12. Chung, P.E., Huang, Y., Yajnik, S.: Checkpointing in CosMiC: a user-level pro-
cess migration environment. In: Proceedings of the 1997 Pacific Rim International
Symposium on Fault-Tolerant Systems. IEEE Computer Society (1997)

13. Weihl, W.E.: Transaction-processing techniques. In: Distributed Systems, pp. 329–
352. ACM Press/Addison-Wesley Publishing, New York (1993)

14. Wang, Y.M., Chung, P.E., Huang, Y.: Integrating checkpointing with transaction
processing. In: Proceedings of 27rd Fault-Tolerant Symposium, Seattle, Washing-
ton, pp. 24–27. IEEE Computer Society (1997)

https://doi.org/10.1145/844128.844162

206 S. Wei et al.

15. Ouyang, J., Maheshwari, P.: Supporting cost-effective fault tolerance in distributed
message-passing applications with file operations. J. Supercomput. 14, 207–232
(1999)

16. Pei, D., Wang, D., Shen, M., Zheng, M.: Design and implementation of a low-
overhead file checkpointing approach. In: Proceedings of the Fourth International
Conference/Exhibition on High Performance Computing, Asia-Pacific Region, pp.
439–441 (2000)

17. Liu, S., Wang, D., Zhu, J.: A files checkpointing approach based on virtual file
operations. J. Softw. 13(8), 1528–1533 (2002)

18. Jeyakumar, A.R.: Metamori: a library for incremental file checkpointing. Master’s
thesis, Virgina Tech, Blacksburg (2004)

19. Qing, D., et al.: Research of component-based integrated modeling and simulation
environment. J. Syst. Environ. 04, 900–904 (2008)

20. Xue, R., Chen, W., Zheng, W.: CprFS: a user-level file system to support con-
sistent file states for checkpoint and restart. In: Proceedings of the International
Conference on Supercomputing, pp. 114–123 (2008)

21. FUSE Doc. https://www.kernel.org/doc/html/latest/filesystems/fuse.html.
Accessed 28 Apr 2020

22. CRIU Homepage. https://criu.org/Main Page. Accessed 28 Apr 2020
23. IOzone Homepage. http://www.iozone.org/. Accessed 29 Apr 2020
24. BWA Homepage. https://github.com/lh3/bwa. Accessed 29 Apr 2020
25. Pin Doc. https://software.intel.com/sites/landingpage/pintool/docs. Accessed 29

Apr 2020
26. Agrawal, H., Demillo, A.R., Spafford, H.E.: An execution-backtracking approach

to debugging. IEEE Softw. 8(3), 21–26 (1991)
27. Matthews, G., Hood, R., Johnson, S., Leggett, P.: Backtracking and re-execution

in the automatic debugging of parallelized programs. In: Proceedings 11th IEEE
International Symposium on High Performance Distributed Computing, Edin-
burgh, UK, pp. 150–160 (2002)

28. Agrawal, H., DeMillo, R.A., Spafford, E.H.: Debugging with dynamic slicing and
backtracking. Softw. Pract. Exper. 23(6), 589–616 (1993)

https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://criu.org/Main_Page
http://www.iozone.org/
https://github.com/lh3/bwa
https://software.intel.com/sites/landingpage/pintool/docs

	Pin-Tool Based Execution Backtracking
	1 Introduction
	2 Application Scenario
	3 Related Work
	3.1 Checkpointing
	3.2 Execution Backtracking

	4 Architecture Overview
	5 Implementation
	5.1 Data Structure
	5.2 Virtual File Layer

	6 Evaluation
	6.1 IOzone Test
	6.2 Pin-Tool Overhead
	6.3 Checkpointing Performance

	7 Conclusion
	References

