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Abstract. The High-Performance Computing (HPC) systems built for
future exascale computing, big data analytics, and artificial intelligence
applications raise an ever-increasing demand for high-performance and
highly reliable storage systems. In recent years, as Non-Volatile Memory
express (NVMe) Solid-State Drives (SSDs) are deployed in HPC stor-
age systems, the performance penalty paid for the legacy I/O software
stack and storage network architecture turns out to be non-trivial. In
this paper, we propose NV-BSP, an NVMe SSD-based Burst I/O Stor-
age Pool, to leverage the performance benefits of NVMe SSD, NVMe
over Fabrics (NVMeoF) Protocol, and Remote Direct Memory Access
(RDMA) networks in HPC storage systems. NV-BSP disaggregates
NVMe SSDs from HPC compute nodes to enhance the scalability of
HPC storage systems, employs fine-grained chunks rather than physi-
cal NVMe SSD devices as the RAID-based data protection areas, and
exploits high concurrent I/O processing model to alleviate the perfor-
mance overhead from lock contentions and context switches in critical
I/O path . We implement NV-BSP in Linux and evaluate it with syn-
thetic FIO benchmarks. Our experimental results show that NV-BSP
achieves scalable system performance as the number of NVMe SSD and
CPU core increases and obtains much better system performance com-
pared with the built-in MD-RAID in Linux. Compared with node-local
SSDs in HPC, NV-BSP provides a full system solution of storage disag-
gregation, delivers comparable performance, and significantly improves
system reliability.

Keywords: Burst I/O Storage Pool · NVMe SSD · NVMe over
Fabrics · High-Performance Computing

1 Introduction

High-Performance Computing (HPC) has proven its great power in facilitat-
ing data-driven scientific discovery [10]. Future HPC systems will be not only
built for large-scale scientific computing, but also for big data analytics and
artificial intelligence applications, which raises an ever-increasing demand for
high-performance and highly reliable storage systems [13,15].
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Conventional Hard Disk Drive (HDD)-based RAID architectures [2] have
been used as a key component of HPC storage systems over the past 30 years.
However, due to the inherent mechanical characteristics of the rotating media in
HDDs, HDD-based storage arrays are unable to meet the high IOPS, high band-
width, and low latency requirements of the HPC applications with data-intensive
problems [7,20,24]. The new emerging NAND Flash-based Solid-State Drive
(SSD) provides orders of magnitude lower latency and consumes less power than
HDDs [17–19]. SSDs are considered to entirely replace HDDs in future HPC stor-
age systems. SSDs are first designed as the drop-in replacements of traditional
hard disks with interfaces like SATA and SAS. However, the interface protocols
were designed for hard disks which significantly limit the output performance of
SSDs. This promotes the design and development of the Non-Volatile Memory
express (NVMe) protocol that is capable of leveraging the internal parallelism of
SSDs and reducing the software overhead in the I/O path [14,16,22,23]. NVMe
SSDs have been rapidly emerging on the storage market and will be widely
deployed in both data center and HPC storage systems soon.

As HPC systems have an urgent need for high-performance and highly reli-
able large-scale storage systems, using NVMe SSDs to build All Flash Array
(AFA) can effectively meet the requirements simultaneously. However, existing
storage array architectures have critical limitations in terms of software over-
head in I/O path and parallelism exploitation of NVMe SSDs [18,19,21,23]. The
workload characteristics of a certain HPC application can be latency-sensitive
or throughput-oriented or continuously changing during the application lifes-
pan. As the aggregate bandwidth can be easily achieved in large-scale parallel
storage systems, obtaining low latency is more challenging. As the scalability of
the PCI express (PCIe) bus cannot satisfy the connections of a large amount
of NVMe SSDs in large-scale storage systems, NVMe over Fabrics (NVMeoF)
protocol is proposed to extend the advantages of NVMe protocol to shared stor-
age architecture [4,6]. NVMeoF offers a solution that separates storage from
HPC compute node (CN) and connects storage to CN through a network fabric.
Currently, NVMeoF can adequately support fabric transports like Remote Direct
Memory Access (RDMA), TCP, and Fibre Channel (FC), how to efficiently inte-
grate NVMeoF with in-house interconnection networks of specific HPC systems
remains stagnant.

In this work, we consolidate the storage array trend towards integrating
NVMe SSDs and NVMeoF target in a single storage server. We propose NV-
BSP, an NVMe SSD-based Burst I/O Storage Pool, to leverage the performance
benefits of NVMe SSD, NVMeoF Protocol, and RDMA networks in HPC storage
systems. Specifically, NVM-BSP disaggregates NVMe SSDs from HPC compute
nodes, which improves the storage resource utilization and enhances the scalabil-
ity of HPC storage systems. NV-BSP employs fine-grained chunks rather than
physical NVMe SSD devices as the RAID-based data protection areas, which
avoids an entire NVMe SSD participating data reconstruction and achieves load
balance without data redirection or migration. NV-BSP exploits a high con-
current I/O processing model to alleviate the performance overhead from lock
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contention and context switch in critical I/O path, which enables the perfor-
mance of NV-BSP increasing linearly with the number of NVMe SSDs and CPU
cores.

We implement NV-BSP in Linux and evaluate it with synthetic FIO bench-
marks. Our experimental results show that NV-BSP achieves scalable system
performance as the number of NVMe SSD and CPU core increases and obtains
better system performance compared with the build-in MD-RAID in Linux.
Compared with node-local SSDs in HPC, NV-BSP provides a full system solution
of storage disaggregation, delivers comparable performance, and significantly
improves system reliability.

The rest of this paper is organized as follows. Section 2 provides an overview
of NV-BSP, Sect. 3 describes the high concurrent I/O processing mechanism in
NV-BSP. We evaluate the performance of NV-BSP in Sect. 4 and summarize the
related work in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 NV-BSP Overview

In this section, we give an overview of the system architecture, storage manage-
ment, and storage disaggregation designs of NV-BSP.

2.1 System Architecture

The system architecture of NV-BSP is shown in Fig. 1. The hardware of NV-
BSP includes the NVMe SSDs connected to CPU via PCIe bus, NVMeoF net-
work interface for NVMeoF purpose, and other common components of storage
servers, i.e., CPU, RAM, etc. The software of NV-BSP mainly composes of
the storage resource manager, I/O processing handlers, and NVMeoF target.
NV-BSP manages the data to underlying NVMe SSDs in the block layer in the
I/O path. The storage resource manager is responsible for managing all the stor-
age resources in NV-BSP and exporting virtual disks (VDisk) to applications,
which will be discussed in detail in Sect. 2.2. I/O processing handlers will produce
and activate independent threads to serve I/O requests, reconstruction requests,
and error events, etc. NVMeoF target provides NVMe over RDMA communica-
tion between HPC compute nodes (CN) and VDisks in NV-BSP, which will be
further discussed in Sect. 2.3.

2.2 Resource Management

Figure 2 describes the storage resource management mechanism in NV-BSP. The
storage resource management mechanism can be divided into four levels include
storage pool management, resource allocation, data protection, and VDisk man-
agement. In NV-BSP, NVMe SSDs are first organized as a storage pool, in which
the logical address space of all the NVMe SSDs is divided into fixed-size chunks.
The storage pool manager maintains the states of all the fine-grained chunks. Dif-
ferent from traditional RAID, NV-BSP completely separates physical resources
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Fig. 1. NV-BSP system architecture.

and RAID-based data protection areas through chunk-level resource virtualiza-
tion. Therefore, the data reconstruction operations in NV-BSP no longer relies
on the entire SSD device to participate. Furthermore, through fine-grained divi-
sion, the data written to the VDisks from the same NV-BSP will be evenly
distributed on each NVMe SSD, which achieves load balancing among NVMe
SSDs without data redirection and migration.

At the time of creating a VDisk from the storage pool, Resource allocator
groups several chunks into a container which is divided into finer-stripes based
on the configured data protection level (e.g.., RAID 0/1/5/6). Stripe is the basic
granularity of read and write operations in NV-BSP. VDisk is a collection of
containers and will be exported as a logical volume in the operating system.
The corresponding logical volume of the VDisk will provide storage services for
upper-layer applications through a standard block device interface.

2.3 Storage Disaggregation

In NV-BSP, a single storage pool can export several VDisks simultaneously and
the VDisks can be carved into NVMe namespaces with each namespace allocated
to a specific HPC compute node. The I/O processing handlers are responsible for
serving I/O requests concurrently. In NV-BSP, the NVMeoF target dynamically
and arbitrarily attaches virtual disks with needed capacity and performance via
QoS management technology directly to the compute node where the application
runs on. As NVMeoF initiators, computing nodes send NVMeoF read/write com-
mands through the RDMA network to the destination NV-BSP. The NVMeoF
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Fig. 2. Storage resource manager in NV-BSP.

target in NV-BSP parses the received NVMeoF commands and converts them
into NVMe commands to a VDisk that exported from NV-BSP. The storage
resource manager in NV-BSP manages all the VDisks, and finally transmits each
NVMe command into multiple NVMe commands to the corresponding NVMe
SSDs. Each NVMe SSD completes the subsequent read data from the NVMe
SSD to the memory, or write data into the NVMe SSD, finally transmits the
read/write completion message to NV-BSP. NV-BSP combines the arrived com-
pletion messages into a single NVMe response. Finally, the NVMeoF target in
NV-BSP returns the NVMeoF response to corresponding compute nodes over
the NVMeoF storage network.

3 High Concurrent I/O Processing

In this section, we describe the details of the high concurrent I/O processing
model in NV-BSP.

3.1 Task Grouping

In NV-BSP, task grouping is designed to achieve high concurrent I/O process-
ing. As NV-BSP serves as both NVMeoF target and RAID array simultaneously,
significant CPU competitions between the two tasks will be introduced when
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NVMeoF target and RAID array services are all enabled. In NV-BSP, CPU
cores are divided into two different groups, i.e., NVMeoF Target Group (NT-
Group) and RAID Array Group (RA-Group). The CPU cores in NT-Group will
only be assigned for the NVMeoF target while that in RA-Group only assigned
for the RAID array task. In this case, two different tasks will not run on the
same CPU core anymore, which effectively alleviates CPU conflicts caused per-
formance overhead and improves the concurrency of I/O processing.

In RA-Group, each CPU core occupies an independent data structure when
performing an I/O handler. Thus, the CPU cores in RA-Group will no longer
need to compete for a data structure and the lock contention overhead is elim-
inated. As shown in Fig. 3, for the I/O handlers that perform RAID tasks on
N cores (indicated as CPU1 to CPUN ), each I/O handler uses an independent
data structure to avoid lock contentions among CPU cores, which enables the
I/O performance increases linearly with the increase of the number of CPU cores
in NV-BSP.

Fig. 3. High concurrent I/O processing model in NV-BSP.

3.2 I/O Handler Allocation

In NV-BSP, I/O handlers are responsible for handling I/O requests, including
read and write requests from application and data reconstruction requests within
NV-BSP. Each I/O handler thread processes I/O requests of different logical
address areas in VDisk. The logical address space of a VDisk is divided into
multiple regions that do not overlap with each other. I/O requests to a region are
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processed by the corresponding I/O handler thread. As shown in Fig. 3, when an
application accesses the VDisk in NV-BSP, several I/O handler threads will wake
up according to the hash algorithm. Since there is no access correlation between
the requests handled by different I/O handlers, these I/O handler threads can
run on multiple CPU cores concurrently. Furthermore, each I/O Handler can be
bounded to a dedicated CPU core to reduce the performance overhead caused
by context switches.

3.3 I/O Request Processing

In NV-BSP, each I/O request is processed in two phases. In the first phase,
I/O request is distributed into I/O handler command queue according to its
target logical address region. In the second phase, the corresponding I/O handler
processes the request based on the RAID request handling tree model, as shown
in Fig. 4. The I/O request processing acts in accordance with the tree changes.
The tree grows when an I/O request arrives at the corresponding VDisk and the
tree shrinks as I/O requests being served successfully.

Fig. 4. I/O request processing in NV-BSP.

All the I/O operations to NV-BSP can be divided into two categories, i.e.,
basic operation and combo operation. A basic operation only involves in a single
stripe and can be easily accomplished. A combo operation consists of one or
more basic operations. For example, for the reconstruction combo operation, it
consists of two basic operations, i.e., read a stripe to memory and write the
reconstructed data from memory to the spare space. Each combo operation
corresponds to a sequentially executed state machine. The combo operation is
converted into multiple basic operations and executed recursively according to
the state machine until all the basic operations are accomplished.
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4 Performance Evaluation

In this section, we evaluate the detailed behavior of NV-BSP under synthetic
FIO workloads.

4.1 Experimental Setup

The experimental setup consists of a server with two Intel Xeon Gold 6128 CPUs
(each with 6 physical cores and 12 logical cores in Hyper-Threading mode),
192 GB of DDR4 RAM, 8 NVMe SSDs with 1.8 TB NAND Flash. The operat-
ing system is CentOS Linux 7.7 with the kernel version of 4.19.46. NV-BSP is
implemented as a kernel module in Linux and rely on FIO of version 3.7 for per-
formance evaluation. In the following experiments, all the workloads generated
by FIO use Linux Asynchronous I/O (libaio) engine and enable direct IO.

4.2 Experiment Results

Performance Scalability Measurement. To understand the system perfor-
mance of NV-BSP with a different number of NVMe SSDs, we measure the
IOPS of the VDisks from storage arrays equipped with 3 to 8 NVMe SSDs. In
this experiment, we configure FIO workloads to 4 KB read-intensive (30% write
and 70% read) and write-intensive (70% write and 30% read) I/O, 8 threads
with 64 queue depth per thread.

Figure 5 shows the comparison of the IOPS of VDisks from the NV-BSPs
with a different number of NVMe SSDs. NV-BSP generally achieves obvious
performance improvement for both read-intensive and write-intensive workloads
as more NVMe SSDs are equipped in NV-BSP. Specifically, for the read-intensive
workload, IOPS improves 86.94% when the number of NVMe SSDs increases
from 3 to 6, and 97.82% when the number of NVMe SSDs increases from 4 to
8. For the write-intensive workload, IOPS improves 87.04% when the number of
NVMe SSDs increases from 3 to 6, and 97.98% when the number of NVMe SSDs
increases from 4 to 8.

To further evaluate the performance benefits from the high concurrent I/O
processing design in NV-BSP, we configure a different number of I/O handlers in
a VDisk from an NV-BSP epuipped with 8 NVMe SSDs and measure both the
IOPS under 4 KB random read/write and the bandwidth under 128 KB sequen-
tial read/write workloads of the VDiks.

As shown in Fig. 6, both random read and random write performance of the
VDisk improves linearly until the number of I/O handlers increases to 16, where
the 4 KB random performance of the VDisk reaches the bottleneck and appears
little improvement. Figure 7 depicts the sequential read and write bandwidth
of the VDisks with a different number of I/O handlers. Similar to the random
read and write performance, NV-BSP shows a good acceleration ratio with the
increasing number of I/O handlers, especially for the sequential read perfor-
mance. We can clearly see that the maximum read bandwidth of a single VDisk
can be more than 20 GB/s, which indicates outstanding performance scalability
of NV-BSP.
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Fig. 5. IOPS comparison for different number of NVMe SSDs in NV-BSP.

Fig. 6. IOPS comparison for different number of I/O Handlers in NV-BSP.

Performance Comparison with MD-RAID. We compare the performance
of NV-BSP with the build-in MD-RAID in Linux. Two different VDisks cre-
ated by NV-BSP and MD-RAID are evaluated in this experiment. Figure 8 and
Fig. 9 show the average I/O latency and bandwidth comparisons for different I/O
request sizes respectively. As shown in Fig. 8, the average I/O latency of NV-
BSP is much lower than that of MD-RAID. As the I/O request size increases
from 4 KB to 128 KB, the average I/O latency of NV-BSP is at least 4.75x lower
than that of MD-RAID. Similarly, the bandwidth of the VDisk from NV-BSP
is much higher than that of MD-RAID. As the I/O request size increases from
4 KB to 128 KB, the bandwidth of NV-BSP is 1.64x to 11.06x higher than that
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Fig. 7. Bandwidth comparison for different number of I/O Handlers in NV-BSP.

of MD-RAID. Apparently, both the I/O latency and bandwidth confirm that
the performance of NV-BSP significantly outperforms that of MD-RAID.

Fig. 8. Latency comparison for different I/O request sizes.

5 Related Work

The increasing number of CPU cores in modern storage servers enables a single
storage server to host a large amount of high-performance NVMe SSDs [5,8].
However, the scalability issues of storage software stack significantly prevent
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Fig. 9. Bandwidth comparison for different I/O request sizes.

the output performance of the NVMe SSDs on a server. Several studies have
tried to sequentially write data into the storage array to improve system perfor-
mance and achieve wear-leveling among NVMe SSDs [11]. SWAN [7] introduces
a log-structured storage management logic at the host level to sequentialize the
written data to RAID stripes. SWAN is specially designed for NVMeoF target by
balancing the output performance of NVMe SSDs and network interface perfor-
mance. Purity [3] developed by Pure Storage proposes to adopt an LSM-tree [12]
based log-structured indexes and data layouts in storage array, thus data can
be written in large sequential chunks for better performance. Besides, purity
also integrates compression and deduplication to make better use of NVMe SSD
capacity. Different from purity and SWAN, NV-BSP proposes to alleviate the
overhead from lock contentions and context switches in the critical I/O path to
achieve the high concurrent I/O processing.

Integrating flash storage disaggregation techniques (e.g.., iSCSI and NVMeoF)
into storage array designs shows great benefits of improving storage resource uti-
lization and aggregating the performance of a bunch of storage devices [1,9]. Stor-
age array manufacturers like Huawei, Pure Storage, Apeiron Data Systems, Kami-
nario, Pavilion Data Systems have released their storage array products and solu-
tions that integrate NVMeoF target logic respectively. For example, OceanStor
Dorado V6 uses NVMe over FC and RDMA as the front end interfaces of RAID
2.0 storage pools. E8 Storage combines the high performance of NVMe drives,
the high availability and reliability of centralized storage, and the high scalability
of scale-out solutions in a single storage array. The E8-D24 and E8-S10 products
of E8 Storage can deliver up to 10 million IOPS with 40 GBps throughput using
100 GbE or 100 Gbps InfiniBand connectivity.
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6 Conclusion

This paper presents NV-BSP, an NVMe SSD-based Burst I/O Storage Pool
that leverages the performance benefits of NVMe SSD, NVMeoF Protocol, and
RDMA networks in HPC storage systems. NV-BSP disaggregates NVMe SSDs
from HPC compute nodes to enhance the scalability of HPC storage systems,
employs fine-grained chunks rather than physical NVMe SSD devices as the
RAID-based data protection areas, and exploits high concurrent I/O processing
model to alleviate the performance overhead from lock contentions and context
switches in critical I/O path. We evaluated and analyzed the detailed behav-
ior of NV-BSP. Compared with node-local SSDs in HPC, NV-BSP provides a
full system solution of storage disaggregation, delivers comparable performance,
and significantly improves system reliability. Compared with the built-in MD-
RAID in Linux, NV-BSP achieves much better system performance. In future
work, we will study global wear-leveling in NV-BSP to enhance the endurance of
NVMe SSDs and QoS management scheme to create VDisk from NV-BSP with
customized capacity and performance.
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