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Abstract. An efficient use of the memory system on multi-cores is criti-
cal to improving data locality and achieving better program performance.
But the hierarchical memory system with caches often works in a “black-
box” manner, which automatically moves data across memory layers,
and makes code optimization a daunting task. In this article, we dis-
sect the memory system of the Phytium 2000+ many-core with micro-
benchmarks. We measure the latency and bandwidth of moving cache-
lines across memory levels on a single core or two distinct cores. We
design a set of micro-benchmarks by using the pointer-chasing method
to measure latency, and using the chunk-accessing method to measure
bandwidth. During measurement, we have to place the cacheline on the
specified memory layer and set its initial consistency state. The experi-
mental results on Phytium 2000+ provide a quantified form of its actual
memory performance, and reveal undocumented performance data and
micro-architectural details. To conclude, our work will provide quantita-
tive guidelines for optimizing the Phytium 2000+ memory accesses.
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1 Introduction

Compared with single-core processors, multi-core processors have to deal with
significantly more concurrent memory accesses [4]. The memory system has thus
introduced a multi-level caching hierarchy to “lock” the frequently accessed data,
aiming to minimize the accesses to the off-chip memory. Modern cache features,
such as the number of cache layers, each layer’s capacity, to use the inclusive
or exclusive policy, and so on, vary across multi-core architectures. In addition,
the memory system of modern multi-cores often works in the form of a “black
box”, i.e., many implementation details are not disclosed. And the official tech-
nical specifications only reveal theoretical numbers and is of little significance
in guiding the actual performance engineering. All these bring programmers a
huge challenge of optimizing codes on the cache-coherent multi-core architec-
tures. Therefore, it is significant to dissect the working mechanism of multi-core
memory systems through quantifying the actual performance behaviours.

Prior works have demonstrated how well the memory hierarchy performs
on the conventional multi-core architectures. The STREAM benchmarks focus on
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Fig. 1. The Mars II microarchitecture and the panel structure of Phytium 2000+ .

measuring the memory throughput, i.e., data loading/storing bandwidth with
a single-core or multi-cores [5]. McVoy and Staelin present a set of micro-
benchmark suite (lmbench) to quantify the performance of various computer
components [6]. In particular, they use pointer-chasing to measure the overhead
of moving data across cache layers. But lmbench ignores the communication
overhead of moving cachelines across processing cores. Such performance num-
bers are essential when optimizing parallel programs concerning shared memory
accesses, producer-consumer or thread migration. For this, Molka et al. provide a
set of microkernels (BenchIT) to characterize memory systems [7]. But BenchIT
is only applicable to the x86 architecture and its memory hierarchy.

In this work, we dissect the memory hierarchy and quantify the achiev-
able performance on Phytium 2000+ (an ARMv8-based cache-coherent 64-core
architecture). We measure the communication performance of moving cachelines
between distinct cores in terms of latency and bandwidth, through microbench-
marking (Sect. 3). We obtain undisclosed performance data and reveal many
micro-architecture details of Phytium 2000+ on both bandwidth (Sect. 4) and
latency (Sect. 5). Our evaluation results provide a quantitative reference for ana-
lyzing, modelling, and optimizing the performance of parallel codes on multi-core
processors. To the best of our knowledge, this is the first effort of dissecting the
memory hierarchy of the Phytium 2000+ architecture.

2 Phytium 2000+ and Its Memory Hierarchy

Phytium 2000+ uses the Mars II architecture [8]. Figure 1(a) gives a high-level
view of the Phytium 2000+ processor. It features 64 high-performance ARMv8
compatible processing cores. These cores are organized into 8 panels, where
each panel connects a memory control unit (MCU).

The panel architecture is shown in Fig. 1(b). Each panel has eight Xiaomi
cores, and each core has a private L1 cache of 32 KB for data and instructions,
respectively. Every four cores form a core group and share a 2 MB L2 cache.
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Note that, the L2 cache of Phytium 2000+ uses a inclusive policy, i.e., the data
cachelines stored in the L1 cache are also present in the L2 cache.

Each panel contains two Directory Control Units (DCU) and one routing
cell. The DCUs on each panel act as dictionary nodes of the entire on-chip
network. With these function modules, Mars II conducts a hierarchical on-chip
network, with a local interconnect on each panel and a global connect for the
entire chip. The former couples cores and L2 cache slices as a local cluster,
achieving a good data locality and short communication distance. The latter is
implemented by a configurable cell-network to connect panels to gain a better
scalability. Phytium 2000+ uses a home-grown Hawk cache coherency protocol to
implement a distributed directory-based global cache coherency across all panels.

3 Our Approach

This section introduces the design and implementation details of our benchmarks
to measure the bandwidth and latency of the Phytium 2000+ memory hierarchy.

3.1 Benchmarks Design

We measure the sustainable bandwidth by continuously accessing a chunk of
data elements, which is shown in Fig. 2(a). In contrast, we use pointer-chasing to
measure the latency of loading a cacheline by randomly accessing discontinuous
data elements (Fig. 2(b)). In this way, we aim to mitigate the impact of hardware
and/or software prefetching.

Fig. 2. The data accessing schemes for measuring bandwidth and latency: (a) accessing
contiguous data elements to measure bandwidth, and (b) accessing randomly linked
data elements to measure latency.

During the measurement, we use multiple threads to move data between
cores. To ensure that the buffer allocated by a thread belongs to a fixed core,
we pin each thread to a fixed core, i.e., thread n always runs on core n (cn).
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Besides, we have to control coherency states (modified, exclusive, shared)
of cachelines. We use the methods stated in [7], to set the initial coherency state.
To determine which level the data is suited in, we control the size of the input
datasets to be accessed. And we use a cache flush routine to replace the data in
this cacheline with dummy data to evict the measurement data to the next-level
cache. The benchmarking steps of measuring latency are shown in Algorithm 1.
Here we assume that c0 loads data from cn. The steps of measuring bandwidth
are the same, except the way of preparing the initial data.

Algorithm 1. The benchmarking steps of measuring latency
Require: n ≥ 0
1: for t = 1 to n do
2: initialize a thread Threadt
3: cpu set(mem bind[t])
4: thread[t].status ⇐ WAIT
5: end for
6: for t = 0 to n do
7: // Prepare data and set the initial coherency state of the cacheline
8: if n == 0 then
9: // Access local caches

10: prepare memory(thread[t])
11: else
12: // Access caches on other cores
13: thread[t].status ⇐ PREPARE MEMORY
14: prepare memory(thread[t])
15: thread[t].status ⇐ DONE
16: end if
17: // The cache flush routine
18: if n == 0 then
19: flush caches(thread[t])
20: else
21: thread[t].status ⇐ FLUSH
22: flush caches(thread[t])
23: thread[t].status ⇐ DONE
24: end if
25: // Measurement
26: use assembly instruction to access data
27: end for

3.2 Benchmarks Implementation

When implementing benchmarks on the Phytium 2000+ processor, we have to
address the following architecture-specific details.
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Enabling the Clock-Wise Timing. Our benchmarks are designed to measure
the performance of the Phytium 2000+ memory system. For such an measure-
ment, we need a clock-wise timer. It is straightforward to do so by using the
rdtsc instruction to read the timestamp on the x86 architecture. Similarly, we
can enable the clock-wise timing with the Performance Monitors Cycle Count
Register (PMCCNTR EL0) on the ARMv8-based architecture. But this register is
only accessible in the kernel mode. To address the issue, we use a kernel module
to activate the performance monitoring unit. The key steps of this kernel module
are summarized as follows.

– Reading the contents of the control register PMCR EL0.
– Activating the user mode by writing PMUSERENR EL0.
– Resetting all hardware counters by writing PMCR EL0.
– Enabling the performance counter by writing PMCNTENSET EL0.

With this kernel module, the PMCCNTR EL0 register can be accessible through
the mrs instruction to obtain the starting and ending timestamps.

Using the Vector Instructions. To obtain the maximum bandwidth, we
have to use the vector instructions to read/write data from/to the memory
system. The ARMv8-based architecture extends NEON with 32 128-bit vector
registers, while keeping the use of the same mnemonics as general registers [1].
The vector instructions are thus supported on the Phytium 2000+ processor.
In the implementation of its SIMD instruction, registers can hold one or more
elements of the same size and type. In assembly instructions, the register can
identify the vector format including Vn (128-bit scalar), Vn (.2D, .4S, .8H, .16B)
(128-bit vector) and Vn (.1D, .2S, .4H, .8B) (64-bit vector). When moving data
between registers and memory, we use the LD1/ST1 instruction of the ARMv8
architecture, similar to movqda on the x86 architecture. The selected vector
format is 4 single-precision floating-point words (.4S).

Using Special Instructions. Beside the general instructions, we use special
instructions shown in Table 1. DC CIVAC is used to invalidate specified cachelines.
It is useful when controlling the initial coherency state of cachelines. To put tar-
get data into the right cache space, we use DMB to ensure that the Phytium 2000+
processor does not optimize the execution order of the fetch instructions. In addi-
tion, we use the ALIGN instruction to avoid unaligned memory accesses.

Table 1. The special ARMv8 instructions [10].

DC CIVAC Data or unified cacheline clean and invalidate by
VA to PoC

DMB Data memory barrier acts as a memory barrier
that Explicitly enables the exeuction of memory
access instructions in front of it

ALIGN Align instruction or data storage address
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Table 2. c0 read bandwidth (GB/s).

Exclusive Modified Shared RAM

L1 L2 L1 L2 L1 L2

c0 33.6 18.5 33.6 18.5 33.6 18.5 6

c1 13.3 13.3 18.5

c4 10.5 10.9 10.5 10.9 10.9

c8 9.2 9.7 9.2 9.7 9.3 5.1

4 Bandwidth Results

In this section, we measure the read bandwidth on the Phytium 2000+ architec-
ture. Figure 3 show the bandwidth of c0 loading cachelines which are exclusive,
modified, or shared in different cores and different cache levels. Table 2 gives
a high-level view of the bandwidth numbers. We measure the bandwidth of c0
loading data from its local cache, from c1 sharing a L2 cache with c0, from c4
on the same panel, and from c8 on a different panel.

In Fig. 3 we find that the read bandwidth results show a clear phase change
as the size of the data set increases. Moreover, the size of the data set when
the staged change occurs is basically consistent with the size of various levels
of cache. Compared with the first change occurring exactly at 32k (size of L1
cache), the second change occurres earlier than 2M (size of L2 cache). This is
because L1 cache is a data cache explicitly, while L2 cache is a hybrid cache
including data and instructions both.

Local Accesses. Whatever the state of the cachelines, data can be loaded from
c0’s local caches. The obtained bandwidth has nothing to do with the coherency
state of the accessed data. The read bandwidth to its local L1 cache can reach
33.6 GB/s, while reading data from the local L2 cache can reach a bandwidth of
18.5 GB/s. Given that the L1 read port of Phytium 2000+ is 128 bits in width
and runs at 2.2 GHz, we calculate the theoretical L1 read bandwidth as

2.2 × 128 ÷ 8 = 35.2GB/s (1)

We see that the measured bandwidth is close to its theoretical counterpart
(33.6 GB/s vs. 35.2 GB/s). The measured write bandwidth stays about 17.4 GB/s
for L1. We note that the write bandwidth is around a half of the read bandwidth.
This is because storing data into L1 occurs at 64 bits per cycle.

Within a Core Group. Given that c1 and c0 shares the same L2 cache slice,
data can be loaded from the local L2 cache when the cacheline is shared. And
the memory bandwidth of accessing the local L2 can reach 18.5 GB/s. The band-
width stays the same when cachelines are exclusive or modified and suited
only in the local L2. But the bandwidth is reduced to be around 13.3 GB/s when
c0 loading exclusive or modified cachelines suited in c1’s local L1 cache.
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Fig. 3. Read bandwidth of c0 accessing the local or another core (c1, c4 or c8)
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This is a notable difference from the x86 processor that the data can be loaded
directly from the shared cache slice, when the cacheline is exclusive initially.
Only when the cacheline is modified, the data has to be loaded from the remote
higher level cache. But on the Phytium 2000+ processor, we observe that data
have to be loaded from a higher cache level for both exclusive and modified
cachelines.

Within a Panel. When c0 loads data from c4 of the same panel, where the
two cores share no common cache slices, the bandwidth will be limited by cross-
group links. As can be seen from Fig. 3, the bandwidth is significantly smaller
(by around 40%) than the case when sharing the same L2 cache slice.

Similarly to c1, when performing cross-group access to c4 for exclusive or
modified cachelines, the bandwidth for reading the remote L1 cache is always
smaller than accessing the remote L2. This is also because data can be obtained
directly from the L2 cache only when its state is shared initially.

Across Panels. c8 does not share a common L2 cache slice with c0, and the
two cores have to be communicated via the cross-panel routing cells. The read
bandwidth of c0 accessing c8 ranges from 9.2 GB/s to 9.7 GB/s, which is smaller
than the bandwidth of accessing c1 or c4 within a panel.

Memory. Since c0, c1, c4 are within the same panel, they are connected directly
to the same MCU and memory module. When accessing data in the local mem-
ory module for c1 and c4, the bandwidth can reach around 6 GB/s. On the
other hand, c8 is connected directly to another MCU and memory module. The
bandwidth of c0 loading data from c8’s memory module is around 5.1 GB/s.

To summarize, there is another difference between the Phytium 2000+ pro-
cessor and the x86 processor when accessing the shared cachelines. The x86 pro-
cessor uses an extension of the MESIF protocol, which requires data to be fetched
from the core with the latest copy (forward). Meanwhile, the Phytium 2000+
processor uses a MOSEI-like coherency protocol. There is no need to find the
forward copy, but it can directly obtain the data with an arbitrary shared copy.

5 Latency Results

This section shows the latency for the Phytium 2000+ memory hierarchy. The
performance numbers are measured when the cachelines are modified initially.

5.1 Overview of the Latency Results

Figure 4 shows the latency results when c0 loading data from its local cache, from
c1 sharing a L2 cache slide with c0, from c4 on the same panel, and from c8 on
a different panel. Table 3 shows an overview of the measured latency results.
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Fig. 4. Read latency of c0 accessing the local (c0) or another core (c1, c4 or c8).

Table 3. c0 read latency (cycle (ns)).

L1 L2 RAM

c0 3 (1.4) 21 (9.5) 271 (123.2)

c1 18 (8.2)

c4 34 (15.5) 94 (42.7)

c8 49 (22.3) 127 (57.7) 310 (141.4)

We see that, the latency of accessing the local L1 and L2 cache are 3 cycles
(1.4 ns) and 21 cycles (9.5 ns), respectively. For the Mars II architecture, there
is no public specification documenting such numbers. The specification of the
first generation Mars describes that accessing the local L1 and L2 takes 2 ns
and 8 ns, respectively, which is in accordance with our measured results [11].
When c0 loading data from c1, the latency is same as accessing the local L2
cache. Figure 4 shows that, no matter which memory layer the data is in, loading
cachelines across core groups or panels takes many more cycles than accessing
the local cache slices. Thus, loading data within a core group is the fastest.

5.2 Across-Panel Latency Results

We evaluate the performance impact of panel distance on latency when access-
ing cores fixed to different panels. Figure 5 shows the latency results when c0
accessing the cores on p1 (panle 1)–p7 (panel 7), respectively.
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Fig. 5. Read latency of c0 accessing p1–p7.

We see that the latency numbers vary over the panel distance, with the
latency difference of up to 105 cycles. Besides, the latency numbers of c0 on p0
accessing c8 on p1 and c32 on p4 are the same. This is because p1 and p4 are
at the same distance to p0 (Fig. 1). This result also agrees with the theoretical
latency results [11].

5.3 With Different Page Sizes

We investigate the performance impact of the TLB page size on latency. Figure 6
shows the latency measured with the 4KB page, and the other configurations
stay the same as that for Fig. 4.

Phytium 2000+ provides the usage of 4 KB and 2 MB pages. With 2 MB
page (Fig. 4), the latency of each cache level looks stable. While using the 4 KB
pages (Fig. 6), although the gap between different cache levels is still visible, the
latency increases over the amount of data being accessed. This is because the
latency measurement uses the pointer-chasing method. In the data preparation
stage, the next-to-be accessed address is randomly generated, resulting in a poor
locality for the linked-list access. When using small pages, there will generate
too many page table entries, leading to frequent TLB misses and resulting in a
large memory access overhead. The bandwidth measurement does not have this
issue because its access is consecutive.
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Fig. 6. Read latency of c0 accessing the local (c0) or another core (c1, c4 or c8) using
4 KB pages.

6 Related Work

Although the effective use of the memory systems is essential to obtain the
best performance, vendors seldom provide the details of the memory hierarchy
or the achieved performance. For this reason, researchers have to obtain such
performance results and implementation details through measurements.

Babka et al. [2] propose experiments that investigate detailed parameters of
the x86 processors. The experiment is built on a general benchmark framework
and obtains the required memory parameters by performing one or a combi-
nation of multiple open-source benchmarks. It focuses on detailed parameters
including the address translation miss penalties, the parameters of the addi-
tional translation caches, the cacheline size, and the cache miss penalties.

McCalpin et al. [5] present four benchmark kernels (Copy, Scale, Add, and
Triad), STREAM, to access memory bandwidth for a large variety current com-
puters, including uniprocessors, vector processors, shared-memory systems, and
distributed-memory systems. STREAM is one of the most commonly used memory
bandwidth measurement tools in Fortran and C. But it focuses on throughput
measurement without considering the latency metric.

Molka et al. [7] propose a set of benchmarks, including to study the per-
formance details of the Nehalem architecture. Based on these benchmarks, they
obtain undocumented performance data and architectural properties. This is
the first work to measure the core-to-core communication overhead, but it is
only applicable to the x86 architectures. Fang et al. extend the microkernels to
Intel Xeon Phi [3]. Ramos et al. [9] propose a state-based modelling approach
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for memory communication, allowing algorithm designers to abstract away from
the architecture and the detailed cache coherency protocols. The model is built
based on the measurement numbers of the cache-coherent memory hierarchy.

7 Conclusion

A variety of cache organizations and coherency protocols make modern multi-
cores complicated, diverse, but hard-to-use. As the cache-based memory sys-
tem is a critical factor that affects the overall performance, it is important to
know its working mechanism and the achieved performance. This article focuses
on dissecting the memory hierarchy of the Phytium 2000+ architecture with
microbenchmarks. Specifically, we quantify the on-core and core-to-core com-
munication performance when cachelines are in different states and located in
various cache levels. We choose Phytium 2000+ as our experimental platform
to access the performance of its memory system and dissect its working mecha-
nism. The experimental results provide a detailed and quantitative performance
description of the Phytium 2000+ memory hierarchy. We also compare architec-
tural properties between Phytium 2000+ and the x86 architecture. For future
work, we will use the hardware counters in our micro-benchmarks to collect
detailed performance data, aiming to obtain more details of the memory sys-
tem, e.g., on the TLB miss rate.
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