
Dezun Dong · Xiaoli Gong ·
Cunlu Li · Dongsheng Li ·
Junjie Wu (Eds.)

13th Conference, ACA 2020
Kunming, China, August 13–15, 2020
Proceedings

Advanced
Computer Architecture

Communications in Computer and Information Science 1256

123

Communications
in Computer and Information Science 1256

Commenced Publication in 2007
Founding and Former Series Editors:
Simone Diniz Junqueira Barbosa, Phoebe Chen, Alfredo Cuzzocrea,
Xiaoyong Du, Orhun Kara, Ting Liu, Krishna M. Sivalingam,
Dominik Ślęzak, Takashi Washio, Xiaokang Yang, and Junsong Yuan

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Dezun Dong • Xiaoli Gong • Cunlu Li •

Dongsheng Li • Junjie Wu (Eds.)

Advanced
Computer Architecture
13th Conference, ACA 2020
Kunming, China, August 13–15, 2020
Proceedings

123

Editors
Dezun Dong
National University of Defense Technology
Changsha, China

Xiaoli Gong
Nankai University
Tianjin, China

Cunlu Li
National University of Defense Technology
Changsha, China

Dongsheng Li
National University of Defense Technology
Changsha, China

Junjie Wu
National University of Defense Technology
Changsha, China

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-981-15-8134-2 ISBN 978-981-15-8135-9 (eBook)
https://doi.org/10.1007/978-981-15-8135-9

© Springer Nature Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-15-8135-9

Preface

It was our pleasure to welcome all of you to the technical program of the 13th Con-
ference on Advanced Computer Architecture (ACA 2020). ACA is the premier forum
for the presentation of research results in computer architecture in China. ACA is
mostly held every two years and has evolved nearly three decades. ACA 2020 is hosted
by the China Computer Federation (CCF) and co-organized by the CCF Technical
Committee on Computer Architecture and National University of Defense Technology,
China. ACA 2020 was held online, which will be remembered as the first time since its
inception, due to the COVID-19 outbreak. The theme of ACA 2020 was “Computer
Architecture Entering the New Golden Age.” The conference focused on state-of-the-
art computer architecture issues and featured a series of exciting and rich activities,
including invited keynotes, technical reports, and professional forums.

We solicited papers on all aspects of research, development, and application of
computer architecture. We received 149 paper registrations and 105 complete sub-
missions. Each submission was reviewed by three Program Committee (PC) members
on average. There was also an online discussion stage to guarantee that consensus was
reached for each submission. Finally, the PC decided to accept 64 submissions,
including 24 papers in English and 40 papers in Chinese. 7 of the 64 accepted papers
were conditionally accepted. Authors of all the accepted papers were asked to submit a
revised version based on the review comments. Each conditionally accepted paper was
shepherded by one assigned PC member, and further revised at least one round before
the camera-ready deadline.

We would like to thank all the colleagues who submitted papers and congratulate
those whose papers were accepted. We would like to thank all PC members and
additional reviewers for their contribution to the program. Their names are listed in the
subsequent pages. The PC members did an excellent job in returning high-quality
reviews in time and engaging in a constructive online discussion. Without their efforts,
this program would have not been possible. We would like to express our deepest
gratitude to the publication chairs, Xiaoli Gong and Cunlu Li, who made a great effort
to communicate frequent reminders to authors and give feedback to the CCF confer-
ence review system with new demands. Our thanks also go to Springer for their
assistance in putting the proceedings together. We would like to thank all the other
people involved in the organization of ACA 2020: general chairs, Ninghui Sun and
Depei Qian; executive chair, Dongsheng Li; Steering Committee chairs, Yong Dou and
Chenggang Wu; publicity chairs, Li Shen and Chao Wang; workshops chair,
Zichen Xu; and website chair, Zhen Huang.

July 2020 Dezun Dong

Organization

General Chairs

Ninghui Sun Institute of Computing Technology, Chinese Academy
of Sciences, China

Depei Qian Sun Yat-sen University, China

Steering Committee Chairs

Yong Dou National University of Defense Technology, China
Chenggang Wu Institute of Computing Technology, Chinese Academy

of Sciences, China

Steering Committee

Zhenzhou Ji Harbin Institute of Technology, China
Dongsheng Wang Tsinghua University, China
Xingwei Wang Northeastern University, China
Gongxuan Zhang Nanjing University of Science and Technology, China
Junjie Wu National University of Defense Technology, China
Tao Li Nankai University, China
Dongsheng Li National University of Defense Technology, China
Chao Li Shanghai Jiao Tong University, China
Li Shen National University of Defense Technology, China

Executive Chair

Dongsheng Li National University of Defense Technology, China

Local Chair

Lijun Yun Yunnan Normal University, China

Program Chair

Dezun Dong National University of Defense Technology, China

Publicity Chairs

Li Shen National University of Defense Technology, China
Chao Wang University of Science and Technology of China, China

Workshops Chair

Zichen Xu Nanchang University, China

Publication Chairs

Xiaoli Gong Nankai University, China
Cunlu Li National University of Defense Technology, China

Web Chair

Zhen Huang National University of Defense Technology, China

Program Committee

Hong An University of Science and Technology of China, China
Qiang Cao Huazhong University of Science and Technology,

China
Lizhong Chen Oregon State University, USA
Quan Chen Shanghai Jiao Tong University, China
Yunji Chen Institute of Computing Technology, Chinese Academy

of Sciences, China
Chen Ding University of Rochester, USA
Zhenman Fang Simon Fraser University, Canada
Xiaobing Feng Institute of Computing Technology, Chinese Academy

of Sciences, China
Xiaoli Gong Nankai University, China
Binzhang Fu Huawei, China
Bingsheng He National University of Singapore, Singapore
Yang Hu The University of Texas at Dallas, USA
Yu Hua Huazhong University of Science and Technology,

China
Weixing Ji Beijing Institute of Technology, China
Jingwen Leng Shanghai Jiao Tong University, China
Chao Li Shanghai Jiao Tong University, China
Dongsheng Li National University of Defense Technology, China
Tao Li Nankai University, China
Yun Liang Peking University, China
Chi Lin Dalian University of Technology, China
Duo Liu Chongqing University, China
Haikun Liu Huazhong University of Science and Technology,

China
Xu Liu College of William and Mary, USA
Xiaoyi Lu Ohio State University, USA
Jiahua Lu Xilinx, China

viii Organization

Songwen Pei University of Shanghai for Science and Technology,
China

Pengju Ren Xian Jiaotong University, China
Li Shen National University of Defense Technology, China
Shuaiwen Leon Song The University of Sydney, Australia
Tian Song Beijing Institute of Technology, China
Guangyu Sun Peking University, China
Chao Wang University of Science and Technology of China, China
Lei Wang National University of Defense Technology, China
Bo Wu Colorado School of Mines, USA
Chenggang Wu Institute of Computing Technology, Chinese Academy

of Sciences, China
Yuan Xie University of California, Santa Barbara, USA
Zichen Xu Nanchang University, China
Hailong Yang Beihang University, China
Xiaochun Ye Institute of Computing Technology, Chinese Academy

of Sciences, China
Zhibin Yu Shenzhen Institutes of Advanced Technology,

Chinese Academy of Sciences, China
Jidong Zhai Tsinghua University, China
Weihua Zhang Fudan University, China

Organization ix

Contents

Interconnection Network, Router and Network
Interface Architecture

SDNVD-SCADA: A Formalized Vulnerability Detection Platform
in SDN-Enabled SCADA System . 3

Jinjing Zhao, Ling Pang, and Bai Lin

Optimal Implementation of In-Band Network Management
for High-Radix Switches . 16

Jijun Cao, Mingche Lai, Xingyun Qi, Yi Dai, and Zhengbin Pang

A 32 Gb/s Low Power Little Area Re-timer with PI Based CDR in 65 nm
CMOS Technology . 31

Zhengbin Pang, Fangxu Lv, Weiping Tang, Mingche Lai, Kaile Guo,
Yuxuan Wu, Tao Liu, Miaomiao Wu, and Dechao Lu

DBM: A Dimension-Bubble-Based Multicast Routing Algorithm
for 2D Mesh Network-on-Chips . 43

Canwen Xiao, Hui Lou, Cunlu Li, and Kang Jin

MPLEG: A Multi-mode Physical Layer Error Generator for Link Layer
Fault Tolerance Test . 56

Xingyun Qi, Pingjing Lu, Jijun Cao, Yi Dai, Mingche Lai,
and Junsheng Chang

Accelerator-Based, Application-Specific
and Reconfigurable Architecture

GNN-PIM: A Processing-in-Memory Architecture for Graph
Neural Networks . 73

Zhao Wang, Yijin Guan, Guangyu Sun, Dimin Niu, Yuhao Wang,
Hongzhong Zheng, and Yinhe Han

A Software-Hardware Co-exploration Framework for Optimizing
Communication in Neuromorphic Processor . 87

Shiying Wang, Lei Wang, Ziyang Kang, Lianhua Qu, Shiming Li,
and Jinshu Su

A CNN Hardware Accelerator in FPGA for Stacked Hourglass Network 101
Dongbao Liang, Jiale Xiao, Yangbin Yu, and Tao Su

PRBN: A Pipelined Implementation of RBN for CNN Training 117
Zhijie Yang, Lei Wang, Xiangyu Zhang, Dong Ding, Chuan Xie,
and Li Luo

Processor, Memory, and Storage Systems Architecture

Network-on-Chip Aware Task Mappings . 135
Xiaole Sun, Yong Dong, Juan Chen, and Zheng Wang

Dissecting the Phytium 2000+ Memory Hierarchy via
Microbenchmarking. 150

Wanrong Gao, Jianbin Fang, Chuanfu Xu, and Chun Huang

TSU: A Two-Stage Update Approach for Persistent Skiplist 163
Shucheng Wang and Qiang Cao

NV-BSP: A Burst I/O Storage Pool Based on NVMe SSDs 178
Qiong Li, Dengping Wei, Wenqiang Gao, and Xuchao Xie

Pin-Tool Based Execution Backtracking. 192
Shuangjian Wei, Weixing Ji, Qiurui Chen, and Yizhuo Wang

Model, Simulation and Evaluation of Architecture

Directory Controller Verification Based on Genetic Algorithm 209
Li Luo, Li Zhou, Hailiang Zhou, Quanyou Feng, and Guoteng Pan

Prediction and Analysis Model of Telecom Customer Churn Based
on Missing Data . 221

Rui Zeng, Lingyun Yuan, Zhixia Ye, and Jinyan Cai

How to Evaluate Various Commonly Used Program Classification
Methods? . 233

Xinxin Qi, Yuan Yuan, Juan Chen, and Yong Dong

A Performance Evaluation Method for Machine Learning Cloud 249
Yue Zhu, Shazhou Yang, Yongheng Liu, Longfei Zhao, and ZhiPeng Fu

Parallelization and Optimization of Large-Scale CFD Simulations
on Sunway TaihuLight System . 260

Hao Yue, Liang Deng, Dehong Meng, Yuntao Wang, and Yan Sun

New Trends of Technologies and Applications

Liquid State Machine Applications Mapping for NoC-Based
Neuromorphic Platforms . 277

Shiming Li, Lei Wang, Shiying Wang, and Weixia Xu

xii Contents

Compiler Optimizing for Power Efficiency of On-Chip Memory 290
Wei Wu, Qi Zhu, Fei Wang, Rong-Fen Lin, and Feng-Bin Qi

Structural Patch Decomposition Fusion for Single Image Dehazing 304
Yin Gao, Hongyun Li, Yijing Su, and Jun Li

Historic and Clustering Based QoS Aggregation for Composite Services 315
Zhang Lu and Ye Heng Zhou

A High-Performance with Low-Resource Utility FPGA Implementation
of Variable Size HEVC 2D-DCT Transform. 325

Ying Zhang, Gen Li, and Lei Wang

Author Index . 335

Contents xiii

Interconnection Network, Router
and Network Interface Architecture

SDNVD-SCADA: A Formalized Vulnerability
Detection Platform in SDN-Enabled SCADA

System

Jinjing Zhao1(B), Ling Pang1, and Bai Lin2

1 National Key Laboratory of Science and Technology on Information System Security,
Beijing, China

zhjj0420@126.com, stissl@163.com
2 Beijing Institute of System Engineering, Beijing, China

linbaipeking@126.com

Abstract. After the Stunex event in 2010, the security problems of SCADA
reveal to the public, which abstract more and more researchers to design new
security firms to address the security problems of SCADA. Especially, after the
software defined network (SDN) arose, it has become a beneficial attempt to
improve the SCADA security. In this paper, a formalized vulnerability detection
platform named SDNVD-SCADA is presented based on the SDN technology,
which can be used to find the most familiar vulnerabilities in SCADA design,
implementation, deployment and action processes. A general security mechanism
description language and a SCADA vulnerability pattern database are embedded
in SDNVD-SCADA to achieve the ambition of automatic vulnerability detection.

Keywords: SCADA · Software defined network · Vulnerability detection

1 Introduction

Supervisory control and data acquisition (SCADA) networks perform critical tasks and
provide essential services within critical infrastructure, which be considered to be the
backbone of any country.Critical infrastructure, and in particular control systems, require
protection from a variety of cyber threats that could compromise their ordinary oper-
ation. The impairment of SCADA networks could cause interruption of critical ser-
vices, process redirection, or manipulation of operational data that could have serious
consequences for the population.

In terms of security, SCADA systems have many problems that might cause attacks
or security events [1], e.g.:

1) Insecure design and implementation:

• No hardware authentication: which makes it easier to connect non-authorized
computers to the system.

© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 3–15, 2020.
https://doi.org/10.1007/978-981-15-8135-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_1&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_1

4 J. Zhao et al.

• No access credentials: several systems do not use access credentials, which
means their security really only on the belief that no one (non-authorized) will
get virtual or physical access to them.

• No individual access credentials: some systems only allow the setting of general
passwords that quickly become known by too many people.

• Uncontrolled access: access limitations in control software are often not used.
• Anonymous access allowed: services like Telnet and FTP often allow for

anonymous login.

2) No system patching: on the last years several efforts were made to improve the
policy on patch management and from these efforts resulted some standards [2].
Nevertheless, once systems go into production, they will likely never be patched,
due to the impossibility of having downtime on the production line, the fear that
systems may become unstable, have limitations, lack support/updates by the vendor,
among others.

3) External network connections: nowadays almost all the SCADA systems are,
directly or indirectly, connected to external networks like internet, however it is
often believed they are completely isolated from the outside world. This means that
numerous connections are uncontrolled.

Many security firms have started designing solutions to address security problems
of SCADA systems from different aspects. But there still has no efficient way to find its
vulnerabilities automatically and correctly, because getting the security mechanisms of
each entity and the whole network running state on time and on purpose are very hard to
implement. But they are the fundamental factors of SCADA system security analysis.

SDN is an architecture that decouples forwarding functions (data plane) and network
control (control plane), with the aim of introducing direct programmability into the
network, to applications and policy engines alike. In recent years, many creative works
have been done to deploy SDN in SCADA system [2, 6, 13]. The SCADA masters can
also be operated as the SDN controllers or connect to a openflow switch just like the PLC.
The network architecture can be designed as Fig. 1. With the help of SDN technology,
the controllers can get all the entity states, including the security mechanisms and the
traffic information of interactions between entities inside or outside the SCADA system.

In this paper, a formalized vulnerability detection platform named SDNVD-SCADA
is presented based on the SDN technology, which can be used to find the most familiar
vulnerabilities in SCADA design, implementation, deployment and action processes. In
short, our paper makes the following contributions:

1) We propose the first SDN-enabled vulnerability detection platform in SCADA. We
also implement a fast prototype on open source SDN controller Floodlight v1.0.

2) We investigate the familiar vulnerability patterns in SCADA and build the SCADA
vulnerability database. The relations between these vulnerabilities and possible
attacks are also be analyzed.

3) A SCADA security mechanism description language is designed in SDNVD-
SCADAplatform,which canbe used to describe the securitymechanismsof different

SDNVD-SCADA: A Formalized Vulnerability Detection 5

Fig. 1. A case of SDN deployed in SCADA system. The SCADA masters can also be operated
as the SDN controllers or connect to a openflow switch just like the PLC.

entities based on their interactionmodes. Thismakes the standardized and automated
vulnerabilities analysis possible.

The remainder of this paper is organized as follows. The related works on SCADA
security using SDN technology are listed in Sect. 2. The vulnerability detection method
is presented in Sect. 3 with the introduction of SDNVD-SCADA architecture. The
SDNVD-SCADA implementation is described in Sect. 4, including the SCADA security
mechanism description language, SCADA vulnerability pattern database and SCADA
vulnerability detector. An example is shown in Sect. 5 to illuminate how to use
SDNVD-SCADA. Finally, we conclude in Sect. 6 with a brief summary and discussion.

2 Related Works

Using the SDN technology to improve the security of SCADA and ICS (Industrial
Control System) is a new and creative attempt in recent years [2–14].

A approach is suggested by Machii et al. [4] as a way to minimize the attack surface
by using SDN to dynamically segregate fixed functional groups within the ICS. This
strategy reduces the time and spatial exposure to attacks (effectively creating a moving
target) and also provides the means to isolate compromised devices.

Also related to dynamic configuration techniques, Chavez et al. [5] present a security
solution based onnetwork randomization,which also encompasses an IDSwith near real-
time reaction capabilities. This network randomization approach assigns new addresses
to network devices in a periodic basis or by request, in order to protect them against
attacks that rely on knowledge about the ICS topology (such as static device addresses).

6 J. Zhao et al.

Silva et al. [6] also describe a dynamic technique that makes use of SDN to prevent
eavesdropping on SCADA networks. The intended goal is to deter attackers from col-
lecting sequential data, which is essential for breaking encryption, identifying patterns,
and retrieving useful information from the payload.

Genge et al. [7] propose two distinct SDN-based techniques to mitigate and block
ICS cyber-attacks. The first technique, designed for single-domain networks, attempts
to mitigate DoS attacks by rerouting traffic, using information from the SDN controller.

Song, Shin, and Choy [8] suggested using honeynets (networks set up with several
honeypot devices) together with SDN technologies to detect scouting procedures and
collect profiling information about attackers. Despite being a generic proposal, this
solution can be easily ported to most ICS infrastructures.

Adrichem et al. [9] present a SDN network failover solution that should reduce the
recovery time in multiple topologies. Being the speed of failure detection the main key
for improving the recovery time, a short discussion on different failure detecting systems
is presented and the best choice is presented in a detailed mode.

In [10], N. Dorsch et al. also describe their algorithms and different approaches
based on SDN regarding: the efficiency improvement of network recovery time in case
of link failure; the real-time processing of messages through the implementation of QoS
mechanisms, based on the flexibility of SDN networks.

Rui Miguel’s master degree dissertation [12] addresses the absence of proper
management and security policies problems to improve SCADA ICS manageability,
availability and security based on synergies between SDN and ICS domain.

In thesis [14], an SDN-assisted middleware is designed and implemented with open
source platformsOpenNetworkOperating System (ONOS) andMininet, which not only
enables real-time information exchange between two SCADA control centers but also
supports multiple-to-multiple communications simultaneously.

3 SDNVD-SCADA Architecture

In the SDN-enabled SCADA system, SDNVD-SCADA can be installed on the SDN
controller. Every important entity in SCADA which may influence the system security,
should describe its security mechanisms and report them to the SDN controller by open-
flow switch. Based on the common description of security mechanisms that the SCADA
entities submitted, SDNVD-SCADA dissects them from the global view and utilizes
the FSM to discover the vulnerabilities caused by the absence of some security mech-
anisms. The inputs of SDNVD-SCADA are the standard description of entity security
mechanisms and the network running states, while the outputs are variety of potential
vulnerabilities. The design of SDNVD-SCADA architecture is shown in Fig. 2.

In order to describe the security mechanisms of entities formally, SDNVD-SCADA
proposes a uniform description language, which is a high level abstraction of entity secu-
ritymechanism. The entity securitymechanism is divided into three levels: system-level,
Internet-level and operation level. Based on the study of various SCADA vulnerability
cases and data, SCADA vulnerability pattern database defines the vulnerability patterns
as the missing the confidentiality, integrity or availability of the critical resources in

SDNVD-SCADA: A Formalized Vulnerability Detection 7

Entity 1 Security
Mechanism

System Level...

SCADA Server Security
Mechanism Description

Interaction Level...

Operation Level...

Entity Security Mechanism

Operation
Level

System
Level

Interaction
Level

Entity 1 Security
Mechanism

System Level...

PLC Security
Mechanism Description

Interaction Level...

Operation Level...

Entity 1 Security
Mechanism

System Level...

MTU Security
Mechanism Description

Interaction Level...

Operation Level...

Entity 1 Security
Mechanism

System Level...

RTU Security
Mechanism Description

Interaction Level...

Operation Level...

SCADA
Venerability

Detector
Security Mechanism

of Entities
Security Attribution

of Resource

Resource Vulnerability
Detection by FSM

SCADA
Vulnerability

Pattern Database

Vulnerability 1 Vulnerability n

SDN CONTROLLER

SCA
D

A
 EN

TITIES

SDNVD-SCADA

Resource States
in Network

Transmission

Fig. 2. The design of SDNVD-SCADA architecture, which can be separated into the controller
part and entities part.

SCADA. The key characteristics of vulnerability are represented with the vulnerabil-
ity name, triggered position and possible attack. In addition, SDNVD-SCADA sets the
security sensitive resources as the analysis objects, extracts their security attributes from
the SCADA security mechanisms of related entities, and build their finite-state machines
(FSM) on their security states in the network transmission process. If the state of resource
matches some items in the SCADA vulnerability pattern database, and the resource is
sensitive to this vulnerability patterns, SDNVD-SCADA will deduce that the behavior
of SCADA entities may cause a vulnerability.

The time cost of the process is composed of two parts. The one is the time of resources
information generation, which is O(|Entity|) and the |Entity| is the entity number in
SCADAwhich has the sensitive resources or has the right to read andwrite the resources;
the other is the time cost onbuilding theFSMsof all these entities.OneFSMbuilding time
overhead is O(lg|VMD|), which is the course of searching and matching process in the
SCADA vulnerability pattern database using the binary search algorithm. Consequently,
the time overhead of all the resources FSM building is O(|R|*lg|VMD|). Thus, the entire
time cost of the vulnerability detection is max (O(|Entity|), O(|R|*lg|VMD|)).

8 J. Zhao et al.

4 SDNVD-SCADA Implementation

In order to implement the SDNVD-SCADA system, the most important thing is how
to solve the formalization problems to let the detection process automatically. There-
fore, a SCADA security mechanism description language is designed to describe the
security mechanism of different entities in SCADA system. A SCADA vulnerability
pattern description syntax is described to construct the vulnerability pattern database.
And the corresponding SCADA vulnerability detector is presented to make the detection
automatically.

4.1 SCADA Security Mechanism Description Language

SDNVD-SCADA provides a formalized approach to describe the security mechanism
of different entities at various levels. Thus, SDNVD-SCADA provides a standardized
and formalized language to analyze SCADA vulnerabilities.

The language provides the capability to describe the class specification in BNF
paradigm syntaxwithXML format recursively. So, various types of securitymechanisms
at all levels can find the appropriate location in the SDNVD-SCADA framework. By
language decomposes its complexity and highlighting the most essential features, which
can effectively improve the analysis capabilities of SDNVD-SCADAmodel and establish
the automated analysis foundation for SCADA vulnerability detection.

The entity security mechanism is divided into three levels: system-level, Internet-
level and operation level. Based on the study of various SCADA vulnerability cases
and data, we define the vulnerability patterns as the missing of resources confidentiality,
integrity and availability.

Definition 1. Xdenotes an entity set, and R is a resource. If the entity in X cannot access
the information on R, then define R for X is confidential.

Definition 2. Set X the aggregation of entities, and R is a resource. If all members in X
trust R, then R has integrity for X.

Definition 3. Set X the aggregation of entities, and R is a resource. If all members of X
can access R, then R for X with the availability.

System security mechanism involves confidentiality, integrity and availability. Con-
fidentialitymeans that the securitymechanism should prevent the resources from leaking
to unauthorized entity. Integrity indicates that the security mechanisms must specify the
authorized entities that can modify the resources. The security mechanism to describe
the conditions and modes of the resource changes is called integrity strategy. Availabil-
ity refers to that the security mechanism should describe the resources which must be
provided. It defines the resources parameters and the access range.

SCADA security mechanism description language defines some basic elements in
SCADA interaction, as shown in Table 1. The main contents are divided into two cate-
gories: the one is the basic definitions related to the interactive entities and processes;
the other is the basic definitions of security mechanisms, which include resource access
privileges, resource security features, and its security patterns.

SDNVD-SCADA: A Formalized Vulnerability Detection 9

Table 1. The elements definition of SCADA security mechanism description language

Elements Definition
Entity ID
Duration
ResName
Data
Information
Service
Confidentiality Sensitive
Confidentiality Insensitive
Integrity Sensitive
Integrity Insensitive
Availability Sensitive
Availability Insensitive
t_Readable
t_Writable
t_Executable
Authorization Pattern

Encryption Pattern

Authentication Pattern

Entity identification
Duration for an interaction process
Resource identification
Data type of resource
Information type of resource
Service type of resource
Be sensitive for confidentiality
Be insensitive for confidentiality
Be sensitive for integrity
Be insensitive for integrity
Be sensitive for availability
Be insensitive for availability
Resource readable
Resource writable
Resource executable
Entity authorization pattern, including Central
pattern and distributed pattern, etc.
Entity encryption pattern, including symmetrical
pattern and dissymmetrical pattern, etc.
Entity authentication pattern, including certifica-
tion pattern and password pattern, etc.

With the syntax definition above, SDNVD-SCADA provides a specification to
describe the security mechanisms at different levels by dint of the BNF description
methods. In BNF, “:: =” denotes “definition”, “|” means “or”, angle brackets “<>”
refers to a non-terminal symbol. The so-called non-terminal symbol is some abstract
concept in language, and the terminal symbol is that can directly appear in the language.

Table 2 lists the descriptions for some securitymechanisms. System levelmechanism
is mainly concerned about the security mechanisms used by the operating system. Inter-
action level mechanism is focused on the network layer and application inter-connection
layer. Operation level security mechanisms is mainly used to describe the security mech-
anisms in business processes, including the information of released resources and its
authorization, encryption and other information. If there is a new security mechanism,
it can be added according to the syntax specifications.

4.2 SCADA Vulnerability Pattern Description

While the manifestations of vulnerabilities are very wide, their fundamental connotation
just refers to that the confidentiality, integrity or availability of a resource is compromised.
Thus, from the perspective of resource state, a vulnerability can be denoted as follows:

<Vulnerability> ::= R¬Confidentiality|¬Integrity|¬Availability

10 J. Zhao et al.

Table 2. The syntax of SCADA security mechanism description language

Syntax of SCADA Security Mechanism Description
<Security Mechanism> ::= <System Level Mechanism> | <Interaction Level
Mechanism> | <Operation Level Mechanism>
<System Level Mechanism> ::= Entity ID | <Neighbor> | Authentication Pattern
| Authorization Pattern | Encryption Pattern||…
<Neighbor> ::= <Entity>*
<Entity> ::= PLC | MTU|RTU | Master|Switch Node|External Node…
<Interaction Level Mechanism> ::= <Interaction List>|...
<Interaction List> ::= <Interaction>*
<Interaction> ::= <Src> <Des> <Path> <Msg> <Event>Duration
<Src> ::= PLC | MTU|RTU | Master|…
<Des> ::= PLC | MTU|RTU| Master|…
<Path> ::= <Src> Swith Node* <Des>
<Msg> ::= ResName+
<Event> ::= Read |Write | Copy| Cut | Create |Delete|...
<Operation Level Mechanism> ::= <Resource List>|<Authorization List>|...
<Resource List> ::= <Resource >*
<Resource> ::= ResName <ResType> <ResFeather>
<ResType> ::= Data | Information | Service |…
<ResFeather> ::= Confidentiality Sensitive| Confidentiality Insensitive | Integrity
Sensitive |Integrity Insensitive |Availability Sensitive | Availability Insensitive
<Authorization List> ::= <AuObject> <AuResource> <AuType>
<AuObject> ::= Entity*
<AuResource> ::= ResName
<AuType> ::= R | W | E | RW| RE| WE| RWE
<R> ::= t_Readable
<W> ::= t_Writable
<E> ::= t_Executable

The SCADA vulnerability pattern in the database can be expressed as:

E ∧ ¬B → V → A

It indicates that when the event E occurs, if the security mechanism B is invalid or
missing, the vulnerability V will appear which may trigger attacks A. The event E is an
interactive process, and is represented with a quad-ruple f (Src, Des, ResName, Action)
to abstract the key properties of a resource. Action includes the actions of read, write,
copy, cut, create, delete, and so on. When a resources is identification or encryption key,
Action can include the identity and key creation, distribution and destroy. For example,
if a user X requests resource R from server Y, event E can be denoted as E = [X, Y, R,
Read].

Security mechanism B is applied to the resource ResName. As the entity interaction
happens between Src and Des, B can be expressed by a triple consisting of resources,
methods, and entities, i.e. B = g (Entity, ResName, Mechanism), Entity∈[Src, Des],
wherein mechanism may cover authorization, encryption, authentication, etc. If the

SDNVD-SCADA: A Formalized Vulnerability Detection 11

resource ResName is identity, key or other special types, Mechanism can include the
key length, identity and encryption mode. As a demonstration, the server Y provides
authorization mechanism B to its resource R, which can be expressed as B = [Y, R,
authorization].

The vulnerability V is denoted as seven kinds of forms enumerated as follows:
V = [(¬Confidentiality, Integrity, Availability), (Confidentiality, ¬Integrity,

Availability), (Confidentiality, Integrity, ¬Availability), (¬Confidentiality, ¬Integrity,
Availability), (¬Confidentiality, Integrity, ¬Availability), (Confidentiality, ¬Integrity,
¬Availability), (¬Confidentiality, ¬Integrity, ¬Availability)].

Attack A which may be incurred by vulnerability V includes all SCADA possible
attacks, such as Sybil attack, denial of service attack, middle-person attack, etc.

For example, with the definitions above, when a client accesses the resources pub-
lished by a server, if the server does not provide the authorizationmechanism for resource
accessing, the resources confidentiality may be compromised. This scenario can be
represented in the following manner:

V1 : [USER, RP, R, Read] ∧ ¬[RP, R, authorization] →
¬Confidentiality → Information leakage

When the server’s resources are to be back upped to other servers, if there is no
identity authentication for these servers, the resources integrity may not be guaranteed
andSybil attack perhaps takes place. This can be describedwith the following expression:

V2 : [RP1,RP2, R, Copy] ∧ ¬[RP1, R, ID Authentication] →
¬Integrity → Sybil Attack

4.3 SCADA Vulnerability Detector

In order to characterize the resource states changed with the SCADA entity interaction
process, SDNVD-SCADA introduces a finite-state machine M = (Q,

∑
, �, δ, λ, q0),

wherein:

• Q = {q0, q1, …, q8} is the collection of resource security state;
• Σ = {σ0, σ1, …, σn} is the collection of input events;
• Δ = {a0, a1, …, an} is the collection of output events;
• δ: Qx Σ → 2Q is the state transformer function;
• λ: Qx Σ → Δ is the output function;
• q0 ∈ Q is the resource initiate security state.

Q = V ∨ (Confidentiality, Integrity, Availability).
� and � are the collection of events E.
δ: Q × ∑ → 2Q is the state transformer function,
λ: Q × ∑ → � is the output function.

12 J. Zhao et al.

These two functions provide the basis rules for resources security state transforma-
tion. The definitions of δ and λ refer to the SCADA vulnerability pattern database. If
the input events and the resource security mechanisms will lead to a vulnerability, LDS-
IVDM will work on the resource security attributes of furthermore. If the resource is
sensitive to this vulnerability, the security state of resource will switch to a fragile state;
otherwise, the resource security state will remain, namely:

δ, λ(σi, qi) =
{
v, v ∈ V , if σi ∈ E ∧ SecurityMechanism ∈ ¬B ∧ v /∈ ResFeather
else (Confidentiality, Integrity,Availability)

5 Example

In this section, we will show how to use SDNVD-SCADA to find vulnerabilities in
SCADA by a typical example. Figure 3 exhibits the network topology of a SDN-enabled
SCADA system used in the power grid. A SDN controller is deployed to control all the
information transmission in the network. The entities in the SCADA include the OPC
Server, PLC, MTU, RTU, Interface terminal etc. They transmit the control and data
information between each other. For example, RTU uploads its collected information Ri
about the power nodes to the OPC Server, PLC node read the industrial data Ra from
the OPC Server, and PLC node transfer the control command Rc to the OPC Server.

Interface Interface

Hub

Database

Server

Work Station

SCADA Server SCADA Server

RTU

Protocol
Transfer
Gateway

MTU

Control
Server

Mobile
workshop

Server

RTU

Database Access Control

Database

DMZ

Local Sensor

Enterprise
Network

PLC

OPC
OPC

OPC

SDN Controller

OpenFlow Switch OpenFlow Switch

PLC

Fig. 3. Network topology of a typical SDN-enabled SCADA system used in the example. A SDN
controller is deployed to control all the information transmission in the network. The entities in
the SCADA include the OPC Server, PLC, MTU, RTU, Interface terminal etc.

SDNVD-SCADA: A Formalized Vulnerability Detection 13

The resource Ri, Ra and Rc are all sensitive the confidentiality, integrity and availability.
Any action that may destroy the C-I-A of them is a vulnerability to the SCADA system.
According to the applicable reality, Ri is a part of Ra, because OPC Server collect the
Ri from all RTUs to construct the Ra. That means Ri has the same security feature of Ra
(Fig. 4).

<RTU Security Mechanism>
<System Level>

<PersonalID ID="RTU",IDType="local">
<NeighborID ID="OPC Server">

</System Level>
<Interaction Level>

<Interaction List>
<I1 Src="RTU", Des="OPC Server",

Path="[RTU,OPC Server]", Msg="Ri", Event
="Write", Time="10">

</Interaction List>
</Interaction Level>
<Operation Level>

<Resource List>
<Re1 ResName="Ri",ResType="Information"

ResFeather="Default">
</Resource List>

</Operation Level>
</RTU Security Mechanism>

RTU Security Mechanism

<PLC Security Mechanism>
<System Level>

<PersonalID ID=”PLC",IDType="local">
</System Level>
<Interaction Level>

<Interaction List>
<I1 Src="PLC", Des="OPC Server",

Path="[PLC...OPC Server]", Msg="RA", Event
="Read", Time="10">

<I1 Src="PLC", Des="OPC Server",
Path="[PLC...OPC Server]", Msg="RC", Event
="Write", Time="10">

</Interaction List>
</Interaction Level>
<Operation Level>

<Resource List>
<Re1 ResName="RC",ResType="Command"

ResFeather="Default">
</Resource List>

</Operation Level>
</PLC Security Mechanism>

PLC Security Mechanism

<OPC Server Security Mechanism>
<System Level>

<PersonalID ID="OPC Server",IDType="local">
<NeighborID ID="RTU">

</System Level>
<Interaction Level>

<Interaction List>
<I1 Src="OPC Server", Des="RTU", Path="[OPC Server,RTU]", Msg="RC", Event ="Write", Time="10">
</Interaction List>

</Interaction Level>
<Operation Level>

<Resource List>
<Re1 ResName="RA",ResType="Information",ResFeather="Default">>
</Resource List>

</Operation Level>
</OPC Server Security Mechanism>

OPC Server Security Mechanism

Fig. 4. Security mechanism description of SCADA entities. The security mechanisms of RTU.
PLC and OPC are described in SCADA security mechanism description language.

The process proceeding of SDNVD-SCADA is illustrated as follows. Firstly,
SDNVD-SCADA pre-installed on the SDN controller analyzes the security mechanism
files submitted by RTU, PLC and OPC Server. Secondly, it extracts the related mecha-
nism ofRa andRc. At the same time, The SDN controller monitors all the transformation
in the network and builds the FSMs of Ra and Rc security states, which are illustrated

14 J. Zhao et al.

in Fig. 5. The events related to Ra and Rc include OPC Server Create Ra, OPC Server
Write Ra from RTU, PLC Read Ra from OPC Server, PLC create Rc, PLC Write Rc
to OPC Server, OPC Server Write Rc to RTU. Finally, SDNVD-SCADA detects the
possible vulnerabilities and work out the potential attacks according to the part in the
corresponding items in SCADA vulnerability pattern database. When the states of Ra
and Rc transfer to the R2 and R3, they might occur a security problem.

1) To the R2 vulnerability state, it may be occurred by the remote anonymous log in,
which is be permitted by the default deployment of many SCADA device corpora-
tions. So the attackers from the Internet or external network could access the OPC
Server CLSID on the OPC Server, and analyze the Controller type and software
information of the SCADA system. The confidentiality of the system is broken.

2) To the R3 vulnerability state, it may be occurred by the absence of the encryption
mechanism in the OPC communication course. After the attackers connect in the
SCADA network, it can listen and analyze the important information, or disguise
itself as a OPC client and send the fake packets to the OPC server to destroy the
accurate control process of SCADA.

ResName="RA",ResType="Information",
 ResFeather="Default"

R0

PC Create RC

R1

PC
 W

rit
e R

C

to
 O

PC
 Se

rv
er

(True,True,True)

R2(False,True,True)

R0

OPC Server Create RA

R1

R3

OP
C

Se
rv

er
 W

rit
e

RA
 fr

om
 R

TU

PC
 R

ea
d

RA

fro
m

 O
PC

 S
er

ve
r

R2

Halt

(True,True,True)

(False,False,True)

(False,True,True) Halt

R3

O
PC Server W

rite RC

to RTU

(False,False,True)

ResName="RC",ResType="Command",
 ResFeather="Default"

Fig. 5. FSMs of Ra and Rc Resource Security State. When the states of Ra and Rc transfer to the
R2 and R3, they might occur a security problem.

6 Conclusion

In this paper, we focus on the security problem in SCADA system and propose a new
solution on automatic vulnerability detection by adopting the SDN technology. The
SDN controller implemented SDNVD-SCADA can centralized analyze the security
mechanisms of important entities in SCADAandmonitor all the information transferring
about the security-sensitive resources in SCADA. By the formalized securitymechanism

SDNVD-SCADA: A Formalized Vulnerability Detection 15

description language and SCADA vulnerability pattern database, a finite-state machine
can be built of each security-sensitive resource, by which the vulnerable state of resource
could be detected by SDNVD-SCADA.

The prototype of SDNVD-SCADA is under construction on one of the popular open
source SDN controller, Floodlight v1.0. More SCADA vulnerability pattern should be
collected and more experiments should be tested later.

References

1. Gresser, C.H.: Hacking SCADA/SAS systems. In: Seminar at Petroleum Safety Authority
Norway (2006)

2. Dong, X., Lin, H., Tan, R., Iyer, R.K., Kalbarczyk, Z.: Software-defined networking for smart
grid resilience: opportunities and challenges. In: Cyber Physical System Security (CPSS
2015), Singapore (2015)

3. Irfan, N., Mahmud, A.: A novel secure SDN/LTE-based architecture for smart grid. In:
Proceedings of the 2015 IEEE International Conference on Computer and Information
Technology, pp. 762–769 (2015)

4. Machii, W., et al.: Dynamic zoning based on situational activities for ICS security. In:
Proceedings of the 2015 10th Asian Control Conference (ASCC), pp. 1–5 (2015)

5. Chavez, A., Hamlet, J., Lee, E., Martin, M., Stout, W.: Sandia National Laboratories, network
randomization and dynamic defense for critical infrastructure systems, Albuquerque, New
Mexico and Livermore, California, USA (2015)

6. Silva, E., Knob, L., Wickboldt, J., Gaspary, L., Granville, L., Schaeffer-Filho, A.: Capitaliz-
ing on SDN-based SCADA systems: an anti-eavesdropping case-study. In: 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM), Ottawa (2015)

7. Genge, B., Haller, P., Beres, A., Sándor, H., Kiss, I.: Using software-defined networking.
Securing Cyber-Phys. Syst. 305–329 (2016)

8. Simões, P., Cruz, T., Proença, J., Monteiro, E.: On the use of honeypots for detecting cyber-
attacks on industrial control networks. In: Proceedings of the 12th European Conference on
Information Warfare and Security, pp. 263–270 (2013)

9. Song, Y., Shin, S., Choi, Y.: Network iron curtain: hide enterprise networks with openflow.
In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 218–230. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05149-9_14

10. Adrichem, N., Asten, B.J., Kuipers, F.A.: Fast recovery in software-defined networks. In:
EWSDN 2014 Proceedings of the 2014 Third European Workshop on Software, Washington
(2014)

11. Dorsch, N., Kurtz, F., Georg, H., Hagerling, C.,Wietfeld, C.: Software-defined networking for
smart grid communications: applications, challenges and advantages. In: IEEE International
Conference on Smart Grid Communications (2014)

12. Queiroz, R.M.C.: Integration of SDN technologies in SCADA Industrial Control Networks.
Masters’ Degree in Informatics Engineering Dissertation, 15 January 2017

13. Rehmani, M.H., Davy, A.: Software defined networks based smart grid communication: a
comprehensive survey. arXiv:1801.04613v4 [cs.NI], 27 March 2019

14. Beibei, L.: A Software-Defined Networking (SDN) Assisted Middleware Interconnecting
Supervisory Control and Data Acquisition (SCADA) Systems. Thesis of the Degree Master
of Science, Arizona State University, August 2018

https://doi.org/10.1007/978-3-319-05149-9_14
http://arxiv.org/abs/1801.04613v4

Optimal Implementation of In-Band
Network Management for High-Radix

Switches

Jijun Cao(B), Mingche Lai, Xingyun Qi, Yi Dai, and Zhengbin Pang

College of Computer, National University of Defense Technology, Changsha, China
{caojijun,laimingche,qixingyun,daiyi,pangzhengbin}@nudt.edu.cn

Abstract. To manage (such as configuring and monitoring) the numer-
ous network chips and its ports efficiently, the in-band management tech-
nology is used in the interconnect network of high performance comput-
ing systems. However, with the rapid development of network switch-
ing chips towards the higher radix, the traditional in-band management
implementation of ring structure faces the problem of delay performance
scalability. The work proposed two optimized implementation structures
for the in-band management, four-quadrant double-layer ring and four-
quadrant star ring to solve the problem. The results of resource consump-
tion assessment and delay performance simulation showed that in the
high-radix switching chips with 64, 80, 96, 112, 128, 144, and 160 ports,
the occupancies of LUT (Look Up Table) resources of the four-quadrant
double-layer ring and star ring structures increased by an average of
5.46% and 1.71% compared to the traditional ring structure, respec-
tively. Meanwhile, the occupancies of LUTRAM (Look Up Table mem-
ory) resources increased by an average of 30.89% and 21.81%; that of
FF (Flip Flop) resources by an average of 3.86% and 0.19%; the forward
delay of management packets decreased by 25.75% and 21.81%, respec-
tively. Considering both resource consumption and delay performance,
the star ring was an ideal structure to deal with the problem of delay per-
formance scalability among the in-band management structures, which
can be applied to realize the in-band management for the higher-radix
switching chips in the future.

Keywords: High-radix switching chips · In-band network
management · Single ring · Four-quadrant double-layer ring ·
Four-quadrant star ring

1 Introduction

According to the implementation methods of transmission path of management
information (i.e., management path), the interconnect network management of
high-performance computing systems is classified into the in-band and out-band
management. The path of out-band management is independent of the data path

This work was supported by The National Key Research and Development Program
of China (grant 2018YFB0204300).

c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 16–30, 2020.
https://doi.org/10.1007/978-981-15-8135-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_2&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_2

Optimal Implementation of In-Band Network Management 17

of the network; however, the management information transmission and network
data transmission of the in-band management multiplex the same physical path.
Compared with the out-band management, the in-band management has the
advantages of high performance, low implementation cost, and maintaining fault
consistency. Therefore, it is an essential means to achieve efficient management
of the interconnect networks of a high-performance computing system [1].

In the interconnect network of the high-performance computing system, the
high-radix switching chips (i.e., switches) reduce the diameter of the network sys-
tem and the average number of hops for communication between nodes. There-
fore, the communication delay between nodes reduces. The switching chip ports
increase to reduce the switching nodes in the interconnect networks, thereby
improving the reliability of the network system. Also, the high-radix switch-
ing chips provide abundant interconnection ports, which provides flexibility for
designing the network topology. Networks with redundant links and supporting
multi-path routing can improve the availability of the system. Designing a high-
performance interconnect network based on the high-radix switching chips has
become the mainstream trend. As Kim and Dally predicted more than a decade
ago, the mainstream switching chips are developing towards a higher radix [2,3].
Table 1 shows the high-radix switching chips that have been commercialized or
applied to actual systems in recent years.

Table 1. Several typical switching chips of high-radix network.

Switching chips Year Radix Comp. Ref.

Omni-Path Architecture 4.8 Tbps Switch ASIC 2015 48 Intel [7,10]

Centec CTC8096 (GoldenGate) 2016 96 Centec network [5]

Broadcom StrataDNXTM BCM88690 2017 112 Broadcom [4]

Broadcom Tomahawk3 BCM56980 2017 128 Broadcom [4]

Broadcom StrataDNXTM BCM88790 2017 192 Broadcom [4]

QuantumTM HDR(4x) InfiniBand Switch IC 2019 40 Mellanox [6]

SpectrumTM-2 Ethernet Switch ASIC 2019 128 Mellanox [6]

In a word, the in-band management is an important technology for the
high-speed interconnect network. However, with the switching chips develop-
ing towards higher radix, the present in-band management will face the problem
that delay performance is challenging to extend. For the higher-radix switching
chips, the work studied the optimal implementation of the in-band management.

The rest of this paper is organized as follows. Section 2 discusses the related
works of in-band network management. Section 3 analyzes the problem of delay
performance scalability faced by implementing the in-band management of ring
structures in higher-radix switching chips. Two optimized structures for the in-
band management are presented in Sect. 4. Section 5 assesses the logic resources
occupied by the structure implementing new in-band management; meanwhile,
Sect. 6 evaluates the delay performance of the new structure implementing the
in-band implementation. Finally, Sect. 7 draws relevant conclusions.

18 J. Cao et al.

2 Related Works

2.1 IB In-Band Management

Mellanox company implemented the InfiniBand high-speed interconnect proto-
col [8]. Subnet management, the basis for the InfiniBand network interconnec-
tion, adopts an autonomous way to discover the subnet topology and deal with
its changes. It can ensure the availability of the network without external inter-
ferences. The main functions of InfiniBand subnet management include topology
discovery, route calculation, and distribution of forwarding tables. The subnet
management is mainly completed by the subnet manager (SM) and subnet man-
agement agent (SMA). The SM is responsible for controlling and checking the
subnet, while the SMA sets and queries the management parameters of each
endpoint. SM and SMA send the data packets of subnet management to com-
municate with each other through the subnet management interface. In the sub-
net, each managed node has an SMA, but there is usually only one main SM
responsible for discovering, configuring, activating, and maintaining the subnet.

2.2 OPA In-Band Management

Intel Corporation proposed and implemented the Omni-Path Architecture (OPA)
for interconnect network [9,10]. OPA adopts the centralized network management,
that the network management function is mainly completed by the centralized fab-
ric manager and the management agents distributed in each network component
(including switches and host fabric interfaces (HFIs)). Fabric Manager is a soft
component of OPA network. Each OPA network can instantiate multiple fabric
managers, but during the network initialization process, only one fabric manager
is selected as the primary fabric manager. The features of main fabric manager
include discovering network topology, providing identification information of net-
work component, calculating and delivering switch forwarding tables, maintaining
network management databases, and monitoring network performance and fault
status. Network management messages are transmitted by separate virtual chan-
nels and buffers, and management messages can be transmitted in flow and non-
flow controls. If using the latter, the management messages are allowed to be dis-
carded when the port buffer resources are unavailable during the transmission.
The management message of the OPA network adopts directional routing, with
the maximum supported number of hops of 64.

2.3 TianHe In-Band Management

Nowadays, the National University of Defense Technology (NUDT) has success-
fully developed two generations of TianHe supercomputer system, in which the
TianHe-2 interconnect network also adopts the in-band management [1]. The
essential features of the TianHe in-band management include parameter config-
uration, status monitoring, failure active reporting, link test, topology discovery,
and path tracking. Management server sends management request messages to

Optimal Implementation of In-Band Network Management 19

the network and receives management response messages or failure active report
messages from the network to achieve the in-band management.

TianHe in-band management adopts source routing to transmit packets. The
management server contains two routing tables, a forward routing table, and a
backward routing table. Each item of the forward routing table indicates the
routing field from the management server to certain network chip, while the item
of the backward routing table indicates the routing field from certain network
chip to the management server. The routing field is expressed as <HopNum,
Hop0, Hop1, Hop2, · · ·, Hop(N−1)>. Wherein, the HopNum represents the
number of valid hops, which is decremented by 1 for each hop. Under normal
circumstances, when the HopNum reduces to 0, the packet will reach the desti-
nation network chip. During the packet transmitting process, the output port of
each hop is designated by Hop0, Hop1, · · ·, and Hop(N−1), respectively.

When a management server sends a request packet to a chip, indexed by the
serial number of the chip, the management program queries the forward and
the backward routing table to obtain the forward and backward routing fields,
respectively. Then the program fills the information into the request packet,
which is routed to the destination chip according to the forward routing field.
Meanwhile, the response packet constructed by the destination chip is routed to
the server based on the backward routing field. Failure active report packet is
sent to the management server when the chip fails, the routing field of which is
determined by the configuration of the chip.

TianHe network implements nine virtual channels (VC) based on credit flow-
control [11], namely VC0–VC8. VC8 is used separately for the management pack-
ets, which are transmitted on the network link by a credit-based flow control
method. Management packets, including management request packets, manage-
ment response packets, and fault active report packets, are of fixed size. It is
comprised of 6 flits, which is the smallest unit of the flow control. The size of
each flit is 256 bits.

3 Scalability Problem of In-Band Management Ring

3.1 Ring Structure of In-Band Management

TianHe network mainly includes two types of network chips, interface chip and
switching chip. For in-band management, the former is used to convert the man-
agement descriptors in the descriptor queue (DQ) to management request pack-
ets and process management request packets. Meanwhile, it has the following
functions such as managing the generation of management response packets and
failure active report packets, receiving the management response packets and
failure active report packets, and writing the above packets into mini-packet
queue (MPQ). The upper management program sends a management request
packet by writing the management descriptor to the DQ, and then receives a
response by reading the management response or failure active report packet
from the MPQ. The in-band management of the interface chip is mainly realized
by the in-band management agent (INM Agent).

20 J. Cao et al.

Network switching chip is to process the management request packets, man-
age the generation of management response and failure active report packets,
and control the packet routing. Figure 1 shows the data path structure of the
in-band management for register access in the switching chips. In-band manage-
ment agent (INM Agent) and CSR (Control and Status Registers) controllers
are the main functional modules of a network management engine (NM Engine).
INM Agent is connected to each logic port of the chip (specifically including PCS
and Link-Layer) to form the ring channel of the in-band management. Mean-
while, the CSR Controller is connected to three sets of the CSR-ring channels,
respectively, including underlying SerDes path, port path, and Tile path.

Fig. 1. Data path structure of in-band management (register access) in switching chips.

CSR Controller receives the register operating commands from the INM
Agent, and then injects the commands into a CSR ring. The register operat-
ing command is transmitted sequentially on the ring, each module of which
recognizes the operating command according to the registered addresses. There-
fore, the information is read and written to the corresponding register. In case
of a register read command, the CSR Controller needs to wait for the data from
the CSR ring and return it to the INM Agent in response. For the register write
command, it dose not need to return a write completion response. Taking the

Optimal Implementation of In-Band Network Management 21

register read access as an example, when the INM Agent receives a manage-
ment request packet with the chip as access target from the ring channel of the
in-band management, the INM Agent will convert the request into a register
read command for the CSR Controller to start the on-address read aiming at
the corresponding register. Then the INM Agent waits for the CSR Controller
to return the register value, thus generating a management response packet and
finally injecting the management response into the data path of the in-band
management.

The length of each flit of management packet is 32 bytes. The width of the
ring channel is designed to be 40 bits to save wire resources and reduce the
difficulty of the backend design of chips. The single-clock data is called the in-
band-management ring flit. Therefore, the link flit is divided into seven ring
flit, while each management packet into 42 ring flits. Moreover, to facilitate
the routing of ring flits, a ring flit is added as a head ring flit especially, the
format of which is defined as <DestRSID,RSHopCnt,PkgType>. DestRSID(7bit)
indicates the serial number of the switch chip port that the ring flit leaving from.
RSHopCnt(6bits) shows the number of hops in the ring reduced by 1 for each
port transmitted in the management ring, with an initial value of 63. Meanwhile,
PkgType(2bits) represents the packet types, that is, management request packet,
management response packet and failure active report packet. They are used to
implement priority scheduling policies.

3.2 Problem of Delay Performance Scalability

The the relay station (RS)module is implemented and instantiated in each network
port logic to realize the routing of the in-band management packets in switching
chips. Figure 2 shows the in-bandmanagement ring constructedby these connected
modules. RS module was implemented to realize the 2 × 2 switching. The inputs
of the two directions were the data from the upper-level RS of the in-band man-
agement ring and the management packet data received from the physical layer,
respectively.Meanwhile, the outputswere the data transmitted to the next levelRS
of the in-band management ring and the management packet data sent by the cur-
rent RS to the physical layer of the port. RS adopted the input queue (IQ) switch-
ing, which was implemented by the register array (RA) with 64-bit depth and 40-
bit width. The management packets received from the physical layer needed to be
width-converted and then stored into the FIFO (RECV FIFO). The sub-modules
of the RS data receiver and transmitter for the data-width transformation were
RS RX and RS TX, respectively.

It was noteworthy that INM Agent instantiated the RS+ module. The switch-
ing structure of the RS+ module was basically the same as that of RS. However,
there were two differences between them. (1) IQ on the Chain was deep (using
1024 deep RA in CHAIN FIFO design), so more management packets were
cached, which limit the number of concurrent management packets in the net-
work for deadlock avoidance. (2) The two data interfaces of RS RX and RS TX
were connected to the INM Agent, respectively, instead of the physical logic of
the ports. Supposing that the number of network ports of switching chip was N,

22 J. Cao et al.

Fig. 2. Implementation of data path of the in-band management in the switching chip.

expressed as P0,P1, · · ·,PN−2, and PN−1, then there were N RS and one RS+

in the switching chip. The management packet routing and the number of hops
in the loop are as following cases (See Table 2, of which A means INM agent).

According to the Table 2, the routing of the in-band management packets in
the switching chip was mainly divided into three situations. (1) The management
request for accessing the chip was routed to INM Agent through the in-band
management ring. (2) The in-band management response or failure active report
packets generated by this chip was routed from the INM Agent to the output port
through the in-band management ring. (3) The management packets transferred
through the switching chip entered the network port and then was routed to the
output port through the in-band management ring. Except for the third case
that the input and output port were the same, and the number of hops of the
ring flit was 1, the maximum number and average number of hops are linearly
related to the number of the switch chip ports.

Table 2. Switching hops analysis of in-band management ring.

Routing Cases Routing Path Min Hops Max Hops Avg. Hops

Pi→A →Pi→Pi+1→ · · · →PN−2→PN−1→A→ 1 N (N+1)/2

A→Pj →A→P0→P1 · · · →Pj−1→Pj→ 1 N (N+1)/2

Pi→Pj , i < j →Pi→Pi+1 · · · →Pj−1→Pj→ 1 N (N+1)/2

Pi→Pj , i = j →Pi→ 1 1 1

Pi→Pj , i > j →Pi→Pi+1 · · · →PN−1→A→P0→ · · · →Pj−1→Pj→ 2 N+1 (N+3)/2

As the switching chip continues to develop toward higher radix, the number
of hops in the management ring flit routing increases. Meanwhile, the average
number of hops increases rapidly with the number of ports. It results in a con-
tinuously increasing routing time of management packets in the switching chip,

Optimal Implementation of In-Band Network Management 23

and ultimately increases the time from sending management request to receiv-
ing response. Therefore, the efficiency of the in-band management is affected,
which is called the Problem of Delay Performance Scalability of the In-Band
Management Ring.

4 The Proposed Structures for In-Band Management

The work referred to the traditional ring structure of the in-band management
path as Single Ring structure. For convenience, taking 64-port switch chip as
an example, Fig. 3(a) shows the large single ring structure of the chip. Wherein,
the circle numbered i(0 ≤ i ≤ 19) indicated the RS module embedded in the
port i of switching chip, and the circle numbered M indicated the RS+ module
embedded in the INM agent of switching chip.

Fig. 3. Three topology structures for in-band management ring.

For the problem of delay performance scalability of the in-band management
ring in the high-radix switching chips, the data-path structure of the single large
ring must be changed. However, if using the common multi-dimensional inter-
connect topologies such as Mesh and Torus, the wiring between ports became
more complex, thus bringing challenges to the overall architecture and back-end
design of switching chips. For that reason, the work proposed two structures of
in-band management: double-layer ring and star ring.

24 J. Cao et al.

4.1 Double-Layer Ring Structure

Figure 3(b) shows the double-layer ring structure with 64 ports. Sixty-four RS
and one RS+ are divided into four quadrants (quadrant I, II, III, and IV) by
the distribution of relative positions, among which RS+ is placed in the fourth
quadrant. An RS+ node is added to quadrants I, II, III, and IV, respectively,
named A, B, C, and D (called the root RS+ of the quadrant). RS and RS+ in each
quadrant are connected according to the number to form the first-dimensional
ring structure. Meanwhile, the transmission and receiving ports of the four root
RS+ are connected end-to-end to form the second-dimensional ring structure.

For the management packets switching with source and destination in the
same quadrant, if the source number was less than or equal to the destination
number, the packets should not go through the root RS+. For the management
packets switching with source and destination in different quadrants, the packets
must go through the root RS+, at least two, and at most four root RS+. In this
structure, the data needed to be converted from ring flit to flit when entering
the RS+ ring from the RS ring, while the data was in the store-and-forwarded
mode in the RS+ ring.

4.2 Star Ring Structure

Figure 3(c) shows the star ring structure with 64 ports. The star ring and double-
layer ring structures were consistent in quadrant division design. Their difference
was that the double-layer ring structure formed by adding four roots RS+ to
construct a ring and connecting each root RS+ to RS in this quadrant to form
a ring structure. However, the star ring structure connected the RS in the four
quadrants by adding one 4 × 4 full switching structure.

Corresponding to the management packets switching of the double-layer ring
structure, for the management packets switching with source and destination in
the same quadrant, if the source number was less than or equal to the destina-
tion number, the packets should not go through the switching structure of X.
However, for the management packets switching with source and destination in
different quadrants, the packet must go through ES+ (Exchange Station).

Similar to the core switching in RS, the ES+ used the IQ (Input Queue) switch-
ing;meanwhile, the queuewas implementedby1,024deep40-bitwideRA(Register
Array). RS realized the 2 × 2 full switching, while the ES+ implemented the 4 × 4
full switching. RS not only realized the switching of ring flits but also achieved the
data width conversion between ring flit and flit. However, ES+ only realized the
data switching of the ring flits instead of the data-width conversion between the
ring flit and flit. Figure 3(d) shows the structure of ES+. Compared with the tradi-
tional single ring structure, the double-layer ring and star ring structures divided
the one-dimensional ring into four quadrants. One-dimensional ring routing was
used in each quadrant; however, the flit routing of management ring was imple-
mented between quadrants through a two-dimensional ring or switching structure,
respectively. As a result, the number of hops in the routing of management ring
flit reduced overall. For example, the management packet was imputed from port

Optimal Implementation of In-Band Network Management 25

14 of the switching chip and outputed from port 46. (1) In the single ring struc-
ture, the routing process of ring flitwasRS(14)→RS(15)→· · ·→RS(30)→RS(31)→
· · ·→RS(45)→RS(46), with a total of 33 loop hops required. (2) In the newly pro-
posed double-layer ring structure, the routing process of
ring flit was RS(14)→RS(15)→RS+(A)→RS+(B)→RS+(C)→RS(32)→RS(33)→
· · ·→RS(45) →RS(46), with a total of 21 ring hops required. (3) In the newly pro-
posed star ring structure, the routing process of ring flit was RS(14)→RS(15)→
ES+(X) →RS(32)→RS(33)→ · · · →RS(45)→RS(46), with a total of 19 ring hops
required.

5 Resource Assessment

For the high-radix switching chip with N ports, both the traditional single ring
structure and the newly proposed double-layer ring structure and star ring struc-
ture contained an INM Agent and N−1 RS modules. The difference was that
the double-layer ring structure additionally contained four RS+ modules and the
star ring structure additionally contained one ES+ module. Table 3 shows the
overall resource occupancy of sub-modules of the three ring structures.

Table 3. Overall resource occupancy of sub-modules of in-band management ring.

Structure Resources

Single ring Res(INM Agent) + (N−1)·Res(RS)

Double-layer ring Res(INM Agent) + (N−1)·Res(RS) + 4·Res(RS+)

Star ring Res(INM Agent) + (N−1)·Res(RS) + Res(ES+)

To further evaluate the logic resources occupied by the modules, the RTL
code of the in-band management modules were synthesized by the FPGA design
platform. The synthesize tool was the Vivado v2018.2 (64-bit) develop by Xilinx
Corporation [12], and the synthesis target device selected the Virtex UltraScale
series of xcvu440-flga2892-2-e. Meanwhile, the synthesis adopted the default pol-
icy: Vivado Synthesis Defaults. The logical resources in FPGA included CLB
(Configurable Logic Block), LUT (Look Up Table), Register, CARRY8 (a fast
carry logic for performing addition and subtraction), F7 Mux and F8 Mux
(two multifunctional multiplexers), LUTRAM (Look Up Table memory), and
FF (Flip Flop).

Table 4 shows the resource occupancy for each sub-module of the in-band
management. INM Agent occupied the most resource among these four basic
logic modules. It contained the logic for register access, E2prom access and Flash
access; however, the RS, RS+, and ES+ only contained the logic for data format
conversion and packet switching . Under the existing technology and process
for ASIC, the chip with no less than 64 ports was usually called a high-radix
switching chip. For this reason, the in-band management of high-radix switching

26 J. Cao et al.

Table 4. Resource occupancy for each sub-module of in-band management.

Structure type CLB LUTs CLB registers CARRY8 F7 Muxes F8 Muxes

INM Agent 6459 10345 49 185 6

RS 1971 4167 17 170 0

RS+ 2840 4217 22 251 0

ES+ 3594 883 14 240 91

chips with 64, 80, 96, 112, 128, 144, and 160 ports was used for the resource
assessment in the work. The synthesize environment was the same as that of the
sub-modules of the in-band management. Table 5 shows the total resource occu-
pancy of the modules of the in-band management of typical high-radix switching
chips, only counting the usage of three main resources, LUT, LUTRAM, and FF.

Table 5. Resource occupancy of the modules of the in-band management of typical
high-radix switching chips.

Structure LUTs LUTRAMs FFs

type SingleRα DoubleLRβ StarRγ SingleR DoubleLR StarR SingleR DoubleLR StarR

64 132605

(1.0000)

143905

(1.0852)

136136

(1.0266)

6832

(1.0000)

10096

(1.4778)

9136

(1.3372)

277034

(1.0000)

293896

(1.0609)

277879

(1.0031)

80 164140

(1.0000)

175565

(1.0696)

167708

(1.0217)

8368

(1.0000)

11632

(1.3901)

10672

(1.2753)

343706

(1.0000)

360574

(1.0491)

344561

(1.0025)

96 195676

(1.0000)

207084

(1.0583)

199221

(1.0181)

9904

(1.0000)

13168

(1.3296)

12208

(1.2326)

410378

(1.0000)

427245

(1.0411)

411226

(1.0021)

112 227212

(1.0000)

238652

(1.0503)

230791

(1.0158)

11440

(1.0000)

14704

(1.2853)

13744

(1.2014)

477050

(1.0000)

493918

(1.0354)

477893

(1.0018)

128 258743

(1.0000)

270062

(1.0437)

262284

(1.0137)

12976

(1.0000)

16240

(1.2515)

15280

(1.1776)

543717

(1.0000)

560585

(1.0310)

544564

(1.0016)

144 290285

(1.0000)

301709

(1.0394)

293873

(1.0124)

14512

(1.0000)

17776

(1.2249)

16816

(1.1588)

610394

(1.0000)

627256

(1.0276)

611243

(1.0014)

160 321820

(1.0000)

333221

(1.0354)

325388

(1.0111)

16048

(1.0000)

19312

(1.2034)

18352

(1.1436)

677066

(1.0000)

693934

(1.0249)

677911

(1.0012)

αSingleR is Single Ring; βDoubleLR is Double-Layer Ring; γStarR is Star Ring.

The resource assessments based on FPGA design platform showed that: (1)
In the high-radix switching chips with 64, 80, 96, 112, 128, 144, and 160 ports,
the LUT resource occupancy of the four-quadrant double-layer ring and star
ring structures increased by an average of 5.46% and 1.71% compared to simple
ring structure, respectively. Meanwhile, the occupancy of the LUTRAM resource
increased by an average of 30.89% and 21.81%; that of FF resource by an aver-
age of 3.86% and 0.19%, respectively. (2) Compared with simple ring structure,
LUTRAM � LUT > FF was the rank order of an increasing proportion of
resources occupied by four-quadrant double-layer ring and star ring structures. In
other words, LUTRAM was the main factor for the increased resource. (3) Com-
pared with the simple ring structure, the increasing ratio of LUT, LUTRAM,
and FF resources occupied by the four-quadrant double-layer ring and star ring
structure gradually decreased with the increasing number of ports.

Optimal Implementation of In-Band Network Management 27

6 Performance Evaluation

The performance of the in-band management mainly refers to the delay in
accessing CSR, E2prom, or Flash through the in-band management path. In
the high-performance computing systems, the in-band accessing delay refers to
the completion time of the in-band network that managing one request-response
transaction. The work [1] has modeled the in-band accessing delay, the approx-
imate model of which was that: in-band accessing latency = the processing delay
of management packet + (the number of hops + 1) × the single-hop two-way
average transmission delay of the management packet. When considering the dif-
ference between the delay of management request and response packet in chips,
the more accurate model should be that: in-band accessing delay = the process-
ing delay of management packet + the switching and transmission delay of the
management request packet in each hop + the switching and transmission delay
of a management response packet in each hop. The switching and transmission
delay of management packet at each hop included two parts. One was switching
delay of the packet from source port to a destination port on the in-band ring.
The other was the sending delay and receiving delay of management packet that
sequentially passing through physical layer, coding sub-layer, and link layer of
network.

The work mainly studied the optimized implementation of the in-band man-
agement of the high-radix switching chips, thus evaluating the switching delay
from the source port to the destination port of management packets in the three
in-band management rings. The next section analyzed the average switching
delay of the in-band management packets and then tested the switching delay
through simulation.

6.1 Theoretical Analysis

Similar to the average delay analysis in Table 2, the research object of the-
oretical analysis is the average switching delay of the three ring structures
of the in-band management (Porti → Portj , i �= j). Meanwhile, the work
analyzed the average switching delay of the in-band requests for the chip
(Porti → INM Agent) and the average switching delay of the in-band response
from the chips (INM Agent → Portj). In the analysis, it was supposed that
N is the number of network ports of the switching chips; D is the single-hop
transmission delay of the in-band ring; F is the single-hop transmission delay of
the RS+ ring. Table 6 shows analysis results.

Table 6. Theoretical analysis of average switching delay of three ring structures.

Structure Type Porti→INM Agent INM Agent→Portj Pi→Pj , i �= j

Single Ring ≈D ·(N/2+1) ≈D ·(N/2+1) ≈D ·(N/2+1)

Double-Layer Ring ≈D ·(N ·5/16)+ 3·F ≈D ·(N/8)+ 2·F ≈D ·(N ·7/32)+ 2·F
Star Ring ≈D ·(N ·5/16+1) ≈D ·(N/8+1) ≈D ·(N ·7/32+1)

28 J. Cao et al.

The theoretical analysis result shows that (1) compared with the single ring
structure, the average switching delay of the star ring structure was significantly
reduced. (2) Since the data in the four-quadrant double-layer ring adopted the
SAF data transmission scheme in the RS+ ring, which resulted in F>D, the
average switching delay of double-layer ring structure could be higher than that
of single ring structure when N was small. However, with N increasing, the
average switching delay of the double-layer ring would be lower than that of a
single ring structure. (3) By comparing these three structures, the four-quadrant
star ring structure has the best average switching delay performance. (4) The
average switching delay of the three structures are all increased linearly with the
increased network ports N, but the rates of growth are different.

6.2 Simulation Analysis

To further study the average switching delay of the three ring structures of the
in-band management, the RTL implementation of the in-band management ring
was regarded as DUT (Device Under Test). Also, the work used the SystemVer-
ilog language to construct a unified performance test environment, and used the
VCS of Synopsys corporation [13] for simulation. The DUT was running at
800 MHz according to the current technological level for ASIC. The configurable
parameters of the test environment are as follows: (1) the types of the three
ring structures of the in-band management; (2) the number of network ports for
switching chip, N valued 64, 80, 96, 112, 128, 144, and 160 during the test; (3)
packet types: the in-band request packet for the chip (represented by Req.), the
in-band response packet from the chip (represented by Ack.), and the in-band
packet forwarded by this chip (represented by Forward).

The actual system usually adopts the centralized network management based
on in-band, and in most cases, the in-band network management uses the serial
request-response. Therefore, the simulation environment in the work used the
serial mode when injecting the management packets into DUT, that was, sending
the next request packet to the DUT after receiving the previous response packet.
Theoretical analysis showed that the switching delay was linearly related to the
number of ring hops. To obtain the average switching delay of packets, the
work used the RR (Round-Robin) to change the input port and output port
of management packets and ensured fair coverage to the combinations of all
source ports and destination ports. Finally, it counted the minimum delay, the
arithmetic average delay, and a maximum delay of each measurement.

Figure 4 delay of the management packet of the three ring structures. Com-
paring Table 6 and Fig. 4, the test results and theoretical analysis results were
consistent. The following conclusions can be further obtained: (1) The average
request delay of double-layer ring structure was higher than that of single ring
structure when N = 64. However, as N increased, the average request delay of
the double-layer ring structure was lower than that of the single ring structure.
(2) According to the data fitting results, the parameter value in the theoretical
analysis of the average delay was approximately D� 10 ns and F� 60 ns. (3) In
the high-radix switching chips with 64, 80, 96, 112, 128, 144, and 160 ports,

Optimal Implementation of In-Band Network Management 29

Fig. 4. Simulation results of mgmt packet switching delay of the three ring structures.

compared with single ring, the average switching delay of the four-quadrant
double-layer ring and star ring reduced by an average of 25.75% and 62.25%,
respectively.

7 Conclusions

In-band management is efficient for high-speed interconnect networks in HPC
system. However, with the development of switching chips towards a higher
radix, the current implementation of the in-band management will face the prob-
lem of scalable delay performance, that is, the average switching delay of man-
agement packets increases rapidly with the increasing ports. When the number of
network ports is large, the in-band management delay will increase significantly.
If the problem is not solved, the technical advantages of the in-band management
will disappear. Therefore, the work proposed and implemented two optimized
in-band management structures, the four-quadrant double-layer ring, and the
four-quadrant star ring.

The work evaluated the resource consumption and delay performance based
on the Xilinx FPGA design platform and Synopsys VCS simulation platform to
study the optimization of the two newly proposed in-band management struc-
tures compared to traditional ring structure. The results showed that in the
high-radix switching chips with 64, 80, 96, 112, 128, 144, and 160 ports, the
LUT resource occupancies of the four-quadrant double-layer ring and the star
ring structures increased by an average of 5.46% and 1.71% compared to the sin-
gle ring structure, respectively. Meanwhile, the occupancy of LUTRAM resource
increased by an average of 30.89% and 21.81%; that of FF resource by an aver-
age of 3.86% and 0.19%; the switching delay of management packets decreased
by 25.75% and 62.25%, respectively. Considering both resource consumption

30 J. Cao et al.

and delay performance, the star ring was an ideal structure to deal with the
delay performance scalability problem among the three structures, which can be
applied to realize the in-band management of the high-radix switching chip in
the future.

Both the double-layer ring and star ring structure proposed in the work are
four-quadrant. The major factors are as follows: (1) The number of ports for most
achievable higher-radix switching chips are multiples of 4. (2) If the number of
quadrants is lower, such as 2 quadrants, the effect of a new structure on reducing
the average switching delay of management packets may be less significant. (3)
If the number of quadrants is too high, it may increase the overall wiring of the
chip, which hinders the back-end design of the chip. In actual chip design, it
is necessary to consider the back-end layout comprehensively and the optimiza-
tion goals of delay performance to select the appropriate number of quadrants,
thus balancing the demands for resource consumption, delay performance, and
implementation.

References

1. Cao, J., Xiao, L., Pang, Z., et al.: The efficient in-band management for intercon-
nect network in Tianhe-2 system. In: 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, pp. 18–26. IEEE Press, New
York (2016). https://doi.org/10.1109/PDP.2016.58

2. Kim, J., Dally, W.J., Towles, B., et al.: Microarchitecture of a high-radix router.
In: 32nd International Symposium on Computer Architecture (ISCA), pp. 420–431.
IEEE Press, New York (2005). https://doi.org/10.1109/ISCA.2005.35

3. Kim, J., Dally, W.J., Abts, D.: Adaptive routing in high-radix Clos network. In:
The 2006 ACM/IEEE Conference on Supercomputing (SC), pp. 420–431 (2006).
https://doi.org/10.1109/SC.2006.10

4. Broadcom Corporation Homepage. https://www.broadcom.com
5. Centec Networks Corporation Homepage. https://www.centecnetworks.com
6. Mellanox Technologies Corporation Homepage. https://www.mellanox.com
7. Intel Corporation Homepage. https://www.intel.com
8. InfiniBand Trade Association: Infiniband Architecture Specification: Release 1.0.

InfiniBand Trade Association (2000)
9. Birrittella, M.S., Debbage, M., Huggahalli, R., et al.: Enabling scalable high-

performance systems with the intel omni-path architecture. IEEE Micro 36(4),
38–47 (2016). https://doi.org/10.1109/MM.2016.58

10. Birrittella, M.S., Debbage, M., Huggahalli, R., et al.: Intel omni-path architec-
ture: enabling scalable, high performance fabrics. In: IEEE Symposium on High-
performance Interconnects. IEEE Press, New York (2015). https://doi.org/10.
1109/HOTI.2015.22

11. Dally, W.J.: Virtual-channel flow control. ACM Sigarch Comput. Archit. News
18(3), 60–68 (1990). https://doi.org/10.1145/325096.325115

12. Xilinx Corporation Homepage. https://www.xilinx.com
13. Synopsys Corporation Homepage. https://www.synopsys.com

https://doi.org/10.1109/PDP.2016.58
https://doi.org/10.1109/ISCA.2005.35
https://doi.org/10.1109/SC.2006.10
https://www.broadcom.com
https://www.centecnetworks.com
https://www.mellanox.com
https://www.intel.com
https://doi.org/10.1109/MM.2016.58
https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.1145/325096.325115
https://www.xilinx.com
https://www.synopsys.com

A 32 Gb/s Low Power Little Area Re-timer
with PI Based CDR in 65 nm CMOS Technology

Zhengbin Pang1, Fangxu Lv1(B), Weiping Tang2, Mingche Lai1, Kaile Guo2,
Yuxuan Wu2, Tao Liu2, Miaomiao Wu2, and Dechao Lu2

1 National University of Defense Technology, Changsha, China
lvfangxu1988@163.com

2 Air Force Engineering University, Xi’an, China

Abstract. This paper presents a 32 Gb/s low power little area re-timer with Phase
Interpolator (PI) based Clock and Data Recovery (CDR). To further ensure signal
integrity, both a Continuous Time Linear Equalizer (CTLE) and Feed Forward
Equalizer (FFE) are adapted. To save power dissipation, a quarter-rate based 3-
tap FFE is proposed. To reduce the chip area, a Band-Band Phase Discriminator
(BBPD) based PI CDR is employed. In addition, a 2-order digital filter is adopted
to improve the jitter performance in the CDR loop. This re-timer is achieved in
65 nm CMOS technology and supplied with 1.1 V. The simulation results show
that the proposed re-timer can work at 32 Gb/s and consumes 91 mW. And it
can equalize >−12 dB channel attenuation, tolerate the frequency difference of
200 ppm.

Keywords: Re-timer · Clock and Data Recovery (CDR) · Phase Interpolator
(PI) · Feed Forward Equalizer (FFE)

1 Introduction

The continuously increasing bandwidth demand for data communication in high perfor-
mance computer (HPC) has pushed wire-line connections towards data-rates of 25 Gb/s
or beyond [1]. However, low-power and high density data transceivers are also key
elements of modern HPC, due to systems such as network switches and processor inter-
faces will employ optical communication [2, 3]. Figure 1 shows the next switch system
with optical communication. The black box in the center of the system, which outputs
optical signal directly, usually consists a switch chip, many re-timer chips and other
optical chips. However the bandwidth, power efficiency and area of the re-timer also
limit performance of the switch system. Even though, many reported CDR can meet
its bandwidth, but their power is hungry due to fabricated with III-VI materials [4]. In
addition, the large area of the CDR is not good for high density integrated.

To solve these problems, a high speed, low power and little area re-timer based
CMOS technology is proposed. To save the power dissipation, a quarter-rate based 3-
tap FFE is proposed. To reduce the chip area, a BBPD based PI CDR is employed. In
addition, to improve the high speed performance, a 2-order digital filter is used.

© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 31–42, 2020.
https://doi.org/10.1007/978-981-15-8135-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_3&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_3

32 Z. Pang et al.

Fig. 1. System of the next switch chip with optical network.

This paper is organized as follows. Section 2 presents the architecture of the re-timer,
followed by the description of building blocks. Section 3 reveals the experimental results
and the conclusion.

2 Architecture and Circuit Design

Figure 2 shows the re-timer architecture, which includes a phase tracing control loop
and a data path. In the phase tracing control loop, the input data are sampled by 1/4 rate
8 phase clocks firstly. Secondly, the early/late information between the sampling clocks
and input data is extracted by PD circuit. After the voter and filter, the control words
generated by code circuit are used to rotate the extra input clock tomatch the phase of the
input data. In the data path, firstly, the input data is equalized by the CTLE. Secondly, it
is resampled by the recovery clock. Lastly the data is equalized and output by the 3-tap
FFE with driver.

In the phase tracing control loop, a quarter rate BBPD based CDR is introduced,
which consists of 1/4 rate sampler, 8:32 DEMUX, phase detector, voter, 2-order digital
filter, code, and phase interpolator. The data path consists CTLE, baud rate sampler,
delay latch array, 4:1 MUX based 3-tap FFE.

2.1 BBPD Based PI-CDR with 2-Order Digital Filter

Clock recovery circuit is the most important circuit module in high re-timer system. Its
main task is to extract clock information from the input data with amplitude noise and
phase noise, and then retime the data. In addition, CDR can track the low frequency
phase jitter introduced in the input data. The working principle of a CDR, shown in
Fig. 3, mainly includes clock recovery (CR) module and data recovery (DR) module.
The CR detects the phase information of the data, and then generates the clock related
to the input data. The DR uses the generated clock to complete the data retiming task.

Figure 4 shows the model of the proposed CDR, which is a Bang-Bang phase dis-
criminator (BBPD) based PI CDR with 2-order digital filter. It consists a BBPD, a voter,
a 2-order digital filter, a phase interpolator, and a feed-back. The BBPD is used to extract
the phase error between the input data and clock generated from PI. The voter is used to
get the efficient results of the decision from BBPD. The 2-order digital filter is adapted

A 32 Gb/s Low Power Little Area Re-timer 33

IP
 Samper

X 8

D[0:3] D0[0:3]

e[0:15]
d[0:15] Eary/Late

[0:15]

4
2-Order

Digital Filter

CLK1 CLK2

CLK3CLK4

DEMUX
X 3

CDR

CMOSCML

E[0:3]

I* Q*

I Q

Bit[1:16]

IG
QG

CLK5

CK0

D1[0:3]
D2[0:3]

OP

IN
ON

4

C
K

45
C

K
0

C
K

90

C
K

18
0

C
K

13
5

C
K

22
5

C
K

27
0

C
K

31
5

Fig. 2. Re-timer architecture.

Fig. 3. Basic working principle of CDR.

to smooth the result of the voter and then used for PI. PI is used to generate a desired
phase clock with a fixed input clock (Fig. 5).

K3
2-order digital filter

CKout
()outφ

Din

()inφ

Reference clock

Phase interpolator

Z -1

Z -1
K4

BBPD Voter

Fig. 4. BBPD based PI CDR with 2-order digital filter.

To analyze the performance of the CDR, a linearized model with parameters is
modeled in Fig. 6. In the linearized model, KTD is the edge conversion density of the
input data. KPD is the phase detector gain. KV is the gain of the voter to take effects of
decimation from any decimation that takes place. The value KP and KI correspond to
the proportional and integral paths from the output of the voting to the PI. KPI is the gain
of the PI. This corresponds to the resolution of the PI in units of Unit Interval (UI) per
bit. z−NEL represents all of the delay (analog and digital pipe stages) in going around the

34 Z. Pang et al.

inφ errφ
−+
outφ -1z

-1z
2-order

digital filter

-z NEL

Fig. 5. Linearized model of the CDR.

loop. Thus, the open-loop transfer function for the linearized CDR can be express as

G(Z−1) = ϕout

ϕerr
= KTDKPDKV (KP + KI

Z−1

1 − Z−1)
Z−1

1 − Z−1KPIZ
−NEL (1)

In Z-Domain, z = eS∗TDLF , where S is j ∗ 2π f and TDLF is the operation (cycle)

period of digital loop filter (DLF). In addition, e−sTDLF = 1+ (−sTDLF) + (−sTDLF)2

2 +
(−sTDLF)3

3! + · · · · · · , when sTDLF << 1, we can get

z−1 = e−sTDLF ≈ 1 − sTDLF , (sTDLF << 1) (2)

Therefore the open-loop transfer function can be given by

G(S) = KTDKPDKV

[
KP(1 − sTDLF)

sTDLF
+ KI (1 − sTDLF)2

s2T 2
DLF

]
KPI (1 − sTDLF)NEL

≈ KTDKPDKV

(
KP

sTDLF
+ KI

s2T 2
DLF

)
KPI (1 − sTDLF)NEL (3)

The phase transfer function is given by the following well known equation:

H (S) = φout

φin
= G(S)

1 + G(S)
(4)

Figure 6 shows the calculated phase transfer function of the proposed CDR. It can
be observed that the bandwidth is 1.46 MHz.

2.2 Phase Interpolator

PI is the key module in the CDR. It can generate a desired phase clock underling the
control of the input control words for sampling the input data. The working principle of
the basic PI can be explained by a vector diagramand itsmathematicalmodel equation. In
Fig. 7, the two basic vectors

−→
VQ and

−→
VI , which between the phase is 90°, can composite

a new vector. It’s known by the vector knowledge of geometry that, the phase of the
composite vector,which is the angle between the newcomposite vector and the horizontal
vector, can be controlled through changing these amplitudes of the two basic vectors.
And the geometry theory of this composite vector can be expressed by Eq. (5).

A 32 Gb/s Low Power Little Area Re-timer 35

Fig. 6. Calculated the transfer function of the proposed CDR.

I

Q

outϕ

IV

QV OV

Fig. 7. Composite vector.

−→
VO = −→

VQ + −→
VI (5)

Vout = αA sin(ωt) + (1 − α)A cos(ωt), (0 ≤ α ≤ 1) (6)

Vout = A
√

α2 + (1 − α)2 sin(ωt + ϕout) (7)

ϕout = arctan(
1 − α

α
) (8)

In actual circuit, the two basic vectors
−→
VQ and

−→
VI can be replace by αA sin(ωt) and

(1− α)A cos(ωt), thus Eq. (5) can be expressed as Eq. (6), which of the value is limited
in [0, 1]. The phase between sin(ωt) and cos(ωt) is 90°, αA and (1 − α)A are their
amplitudes respectively. When α is changed, the phase of the Vout followed in 0 to 90°,
which is the desired phase of Vout. In order to precisely calculate the output phase, the
Eq. (7) can be derive by Eq. (6), and the phase of Vout can be calculated by Eq. (8).
Figure 8 shows the Vout waveforms with different α values.

Figure 9 shows the part circuit of the PI. It includes two pull-up loads, two pairs of
input transistors, and 16 equivalent tail current sources under each of input pairs. And
the relationship between input temperature code and output clock phase is depicted in
Fig. 10.

If the input two basic clocks are be changed from 0, 90, 180, 270, the phase of the
composited clock can be got in any degree (0–360) that we are desired, which is depicted

36 Z. Pang et al.

Fig. 8. Different output clocks with different α value.

M1 M2 M3 M4

Current
sourceI16 I1 I16I2

IPv

outV

INv QNvQPv

1R 2R

Current
source

I Q

Fig. 9. Part circuit of the PI.

Fig. 10. The relationship between input temperature code and output clock phase.

in Fig. 11. Figure 12 shows the circuit of the complete PI, which consists 4 pairs of the
input transistors, control words transistors and tail current sources.

A 32 Gb/s Low Power Little Area Re-timer 37

sin(0)t

1sin()
2

t

sin()t

3sin()
2

t

Fig. 11. 360° output phase of the composite vector.

M1 M2VIP

<1>
<2>

CTRL0 CTRL180 CTRL90 CTRL270

M1 M2 M1 M2 M1 M2

VDD
R1 R2

VIN VQP VQN

VBIAS
ISS2 ISS3 ISS16ISS1

<16>

BIT1
BIT1

BIT2
BIT16

IG
QG

IP IN QP QN
VIP VQP

Fig. 12. Circuit of the complete PI.

2.3 4:1 MUX Based 3-Tap FFE

As everyone knows that, the dielectric channel usually presents low - pass characteristics
due to the dielectric loss and skin effect. Figure 13(a) shows a typical backbone channel
S12 curve,which includes a 19 in. PCBchannel, 2 via holes, 2 packages and 2 connectors.
The attention at the baud rate frequency is −17.32 dB. When data rate exceeds the
channel bandwidth, the high data rate signal couldn’t transform within 1 unit interval
(UI) and extend to the adjacent signal interval, which are showed in Fig. 13 (b), and this
phenomenon is usually called inter-symbol interference (ISI). ISI can deteriorate signal

38 Z. Pang et al.

integrity of the high speed signal. Figure 14 presents a 32 Gb/s NRZ eye diagram before
this channel, and the eye diagram after passing channel is closed due to the ISI.

(a) (b)

Fig. 13. (a) S12 curve of a typical channel, (b) unit pulse response before and after the channel.

(a) (b)

Fig. 14. (a) Eye diagram before the channel, (b) eye diagram after the channel.

In order to mitigate this problem, a feed-forward equalizer (FFE) is usually to be
introduced at the output of the re-timer to reduce the ISI. The basic construction of a
3-taps FFE as show in Fig. 15, which includes 3 delay units, 3 multiplying units with
3 coefficients and a summer, is a finite impulse response (FIR) filter. The time-domain
transfer function is Eq. (9), and the Z-domain transfer function is Eq. (10), where the Z
is ej2π fT . Figure 16 shows the channel response with different character. The black curve
presents the channel response without FFE. The blue curve describes a high pass based
FIR filter with proper 3 tap coefficients. And the red curve shows the channel response
with the FFE, which can keep the signal integrity. Figure 17 (a) and (b) show the eye
diagrams before and after the channel with proper coefficients based FFE.

y(t) = c0 ∗ x(t) + c1 ∗ x(t + T) + c2 ∗ x(t + 2T) (9)

H(Z) = c0 ∗ Z0 + c1 ∗ Z−1 + c2 ∗ Z−2
(
z = ej2π fT

)
(10)

Compared with the pre-emphasis based FFE, the de-emphasis based FFE is widely
used due to its simple circuit structure. A de-emphasis based FFE equalizes the output’s
signal through reducing the amplitude of the high frequency components of the original

A 32 Gb/s Low Power Little Area Re-timer 39

T T T

x(t)

y(t)

c0 c1 c2

Fig. 15. Basic construction of FFE.

Fig. 16. Frequency domain channel response.

(a) (b)

Fig. 17. Time domain channel response (a) eye diagram before channel, (b) eye diagram after
channel with proper coefficients FIR.

signal and maintaining the amplitude of the low frequency components of the original
signal, which still follows the principle of the FFE. However, when data rates exceed
20 Gb/s, the high speed delay is power hungry and the timing is constrict under PVT
variation. In order to solve these problems, a 4:1 MUX based 3-tap FFE is introduce
to this re-timer showing Fig. 18. Compared with other FFE circuits, the delay cell in
this FFE circuit designed with 3 4:1 MUX units, which can save power and relaxes the
critical path timing by using the quarter rate clock and avoiding CML based circuits.

Figure 19 describes the 4:1 MUX with its timing diagram. This MUX consists of
shunt-peaked loads and four identical unit cells, which is activated sequentially by the
2UI-spaced pulses quadrature clock (i.e., CK0, CK90, CK180, and CK270) to combine
the four quarter-rate data into one serial sequence.

40 Z. Pang et al.

IND

OUTD

4

bT
INCK Mux

4:1
4

Mux
4:1

4

Mux
4:1

4

Fig. 18. Multiple-MUX based FFE.

CK270CK180

D1P

CK0

CK90

CK90 CK180

CK0

CK270

Unit

L

R

D1N D2P D2N D3PD3ND0P D0N

Unit Unit Unit

Vout,1

Vout,2

Vout,3

Vout,4

Dout

1-UI

D0 D1 D2 D3

Fig. 19. The 4:1 MUX with its timing diagram.

3 Experimental Results

The re-timer designed in 65 nm CMOS Technology. The layout of the re-timer is shown
in Fig. 20. The core area of this chip is 0.11 mm2.

0.55mm

Fig. 20. Layout of the re-timer.

A 32 Gb/s Low Power Little Area Re-timer 41

Fig. 21. Eye diagram of equalized signal (a) without FFE, (b) with proper coefficients of FFE.

Fig. 22. Eye diagram of the recovery 1/4 rate clock with 200 ppm frequency difference.

Figure 21 show the 32 Gb/s output eye diagram of this re-timer with or without FFE.
When it passes a −12.52 dB@16 GHz attenuation channel without FFE, the output
eye-diagram is closed as shown in Fig. 21 (a). When using the 3-tap FFE with the proper
coefficients, the vertical eye opening of the eye diagram is 200 mVpp just as shown in
Fig. 21(b). When setting 200 ppm frequency between the input data and the reference
clock, the eye diagram of the recovery 1/4 rate clock is shown in Fig. 22, and the total
jitter of that is 7.1 ps. The total power of this re-timer is 91 mW under 1.1 V supply.
Table 1 compares the performance of this work with prior similar works.

42 Z. Pang et al.

Table 1. Performance summary

This work
(Simulation)

5 (Fabricated) 6 (Fabricated)

Data rate 32 Gb/s 32 Gb/s 26.5 Gb/s

Power 91 mW 102 mW 254 mW

CDR technology PI and 2-order digital
filter

DCO and digital filter LC-QDCO and digital
filter

Recovered clock Jitter
(PP)

<7.1 ps N/A <8.9 ps

CoreArea (mm2) 0.55 × 0.2 0.8 × 0.28 1 × 0.75

Technology 65 nm 28 nm 65 nm

4 Conclusion

In order to solve the problem of high power consumption and large area of the high
speed re-timer in HPC data communication, a 32 Gb/s low power little area re-timer
with PI based CDR is proposed. To further ensure signal integrity, both a CTLE and
feed forward equalizer are adapted. To save power dissipation, a quarter-rate based 3-tap
FFE is proposed. To reduce chip area, a BBPD based PI CDR is employed. In addition,
a 2-order digital filter is adopted to improve the high speed performance in the CDR
loop. This re-timer is achieved in 65 nmCMOS technology and supplied with 1.1 V. The
simulation results show that the proposed re-timer can work at 32 Gb/s and consumes
91mW. The 3-tap FFE in the re-timer can equalize >−12 dB channel attenuation. The
PI based CDR with 2-order digital filter can CDR can tolerate a frequency difference of
200 ppm.

References

1. Rupp, K.: 42 years of microprocessor trend data. https://www.karlrupp.net/2018/02/42-years-
ofmicroprocessor-trend-data/

2. Moore, G.E.: Crammingmore components onto integrated circuits. Electronics 38(8), 114–117
(1965)

3. Pham, D.: The design and implementation of a first-generation CELL processor-a multi-core
SoC. In: 2005 International Conference on Integrated Circuit Design and Technology, Austin,
TX, USA, pp. 49–52. IEEE (2005)

4. Nagashima, K.: 28-Gb/s × 24-channel CDR-integrated VCSEL-based transceiver module for
high-density optical interconnects. In: 2016 Optical Fiber Communications Conference and
Exhibition (OFC), Anaheim, CA, pp. 1–3. IEEE (2016)

5. Rahman, W.: A 22.5-to-32-Gb/s 3.2-pJ/b Referenceless Baud-Rate Digital CDR With DFE
and CTLE in 28-nm CMOS. IEEE J. Solid-State Circ. 52(12), 3517–3531 (2017)

6. Chu, S.-H.: A 22 to 26.5 Gb/s optical receiver with all-digital clock and data recovery in a
65 nm CMOS process. IEEE J. Solid-State Circ. 50(11), 2603–2612 (2015)

https://www.karlrupp.net/2018/02/42-years-ofmicroprocessor-trend-data/

DBM: A Dimension-Bubble-Based
Multicast Routing Algorithm for 2D

Mesh Network-on-Chips

Canwen Xiao, Hui Lou, Cunlu Li(B), and Kang Jin

College of Computer, National University of Defense Technology,
Changsha 410073, Hunan, China

{cwxiao,huilou,cunluli,kangjin}@nudt.edu.cn

Abstract. Network-on-Chips (NoCs) has been widely used today for
efficient communication in multicore systems. Existing NoCs mostly use
2D mesh topology in commercial and experimental manycore processors
since it maps well to the 2D layout. For 2D mesh, dimension order rout-
ing and different adaptive routing algorithms performs well in unicast
traffic but suffer from poor performance when faced with one-to-many
(multicast) traffic. Efficient multicast routing algorithm is an impor-
tant target for the design of special on-chip networks such as neural
networks. Recently proposed multicast routing algorithms are less effi-
cient or can introduce unbalanced load in some situations. In this paper,
we propose DBM, a novel multicast routing algorithm based on the
dimension-bubble flow control for 2D mesh networks. DBM is deadlock-
free while achieving the minimal path and fully-adaptive multicast rout-
ing algorithm. Moreover, DBM simplifies the deadlock condition where
the escape channel is not necessary. Evaluation results show that DBM
can achieve much better performance than existing multicast routing
algorithms, with 18% reduction in packet latency and 16% improvement
in network throughput.

Keywords: Dimension-bubble flow control · Multicast routing
algorithm · Deadlock

1 Introduction

Network-on-Chips (NoCs) has always been a challenging research topic, provid-
ing a scalable solution for Multiprocessor System-on-Chip (MPSoC). 2D mesh
topology is usually preferred due to its layout on a planar surface in the chip.
The topology of a 4-ary 2-cube mesh and corresponding router microarchitecture
are presented in Fig. 1.

In addition to unicast communication, NoCs also needs to deal with a lot of
multicast communication [3]. Multicast messages are useful for efficient execu-
tion of parallel programs as the multicast communication is frequently employed
in many MPSoC applications such as replication [8], barrier synchronization [13],
c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 43–55, 2020.
https://doi.org/10.1007/978-981-15-8135-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_4&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_4

44 C. Xiao et al.

cache coherency in distributed shared-memory architectures [6] and clock syn-
chronization [1]. In these MPSoC applications, it is a key issue to ensure efficient
communication for multicast packets. On the other hand, the number of pro-
cessor cores integrated on the chip is also increasing. For example, SpiNNaker
project aims to produce 10,000-core chips for modeling of large-scale spiking
neural networks in biological real time [9]. For these million processor machines,
multicast packets with appropriate multicast routing algorithms can effectively
reduce the number of packets in the network to alleviate network congestion.

Some theories and methodologies have been proposed [4,7,10,11] to achieve
deadlock-free multicast routing. Virtual circuit tree multicasting (VCTM) [4], as
a representative, achieves a tree-based routing algorithm to support multicasting
in NoCs. VCTM builds several virtual circuit trees through the destinations
before the multicast messages are injected into the network. VCTM achieves
this scheme by sending separate unicast setup messages (look ahead signals)
for each destination, through the utilization of virtual circuit table (VCT) and
content addressable memory.

Fig. 1. 4-ary 2-cube mesh

In VCTM, cyclic dependencies can be avoided by using the Dimension Order
Routing (DOR) algorithm for both the setup and the multicast messages. How-
ever, some shortcomings can be introduced within VCTM. First, VCTM’s design
complexity and hardware overhead strongly depends on the network size, mak-
ing it difficult to scale up. Second, VCTM is less efficient when faced with high
injection rate network conditions. Third, when updating the VCT, the source
node has to send discrete unicast setup messages per destination. In this sit-
uation, when faced with large number of destinations, the number of unicast
setup message will be increased, thereby reducing the performance. Recursive
Partitioning Multicast (RPM) [11] is another representative multicast routing
algorithm. In RPM method, the processing of the header information is complex
and will be performed several times for each multicast message. VCTM and RPM
share the same disadvantage that a message may hold several output channels,
thereby increasing network contention. Finally, both RPM and VCTM are based
on deterministic algorithms and cannot provide adaptiveness to neither unicast

DBM: A Dimension-Bubble-Based Multicast Routing Algorithm 45

nor multicast messages. Paper [7] presents a routing algorithm called Balanced
Adaptive Multicast (BAM). This algorithm adopted Duato’s principle [2] to
realize the deadlock-free adaptive routing.

In our former works, the Dimensional Bubble Routing Algorithm
(DBRA) [12] is proposed for Mesh networks. This algorithm realizes a fully
adaptive routing for unicast communication without the escape channels. In
this paper, DBM, a novel dimension-bubble-based multicast routing algorithm
is studied based on the idea of DBRA. The contributions of this paper are as
follows:

1. The strategy of dimensional-bubble flow control is presented for multicasting
operation in 2D Mesh networks and the novel multicast routing algorithm,
DBM, is studied;

2. We proof and present that DBM is deadlock-free with efficient multicast com-
munication;

3. We provide a thorough evaluation of the proposed organization and demon-
strate that we can achieve higher performance.

The rest of this paper is organized as follows. In Sect. 2, the novel multicast
routing algorithm will be presented. In Sect. 3, we prove that the proposed flow
control strategy can ensure that the minimal path and fully-adaptive routing
algorithm is deadlock-free. The performance of the novel algorithm is evaluated
in the Sect. 4. In the end, we summary this paper in Sect. 5.

2 Novel Multicast Routing Algorithm

In this section, we design DBM, a novel multicast routing algorithm based on
the dimensional-bubble flow control. Firstly, the algorithm schemes of RPM
and BAM will be analyzed and the novel multicast routing algorithm will be
presented based on the study of RPM and BAM.

2.1 RPM and BAM Routing Algorithm

RPM algorithm uses the determinate method to divide the network to eight
regions according to the router’s location. Then, according to the destinations of
the multicast packet, the output port of packet will be calculated by deterministic
rule. RPM algorithm ensures the multicast packets are transmitted along the
same path as more as possible. At the same time, RPM also strives to balance
the load of network. Figure 2 depicted an example of eight regions of RPM in
4-ary 2-cube Mesh network.

RPM algorithm adopts two virtual networks called VN0 and VN1 to avoid
the existence of deadlock routing in the network. However, this method can bring
unbalanced network communication to degrade the performance. Similarly, BAM
algorithm also divides the network to eight regions depended on the location of
the multicast packet. BAM multicast routing algorithm is based on the strategy
of full-adaptive routing of Duato’ s principle, and choose the output port with
lower buffer utilization when there exist two or more available output ports.

46 C. Xiao et al.

Fig. 2. An example of eight regions of RPM

2.2 Dimension-Bubble Multicast (DBM) Algorithm

We propose the novel multicast algorithm called Dimension-Bubble Multicast
(DBM) based on the study of RPM and BAM algorithm. At the same time,
DBM algorithm adopts the strategy of minimal path and realizes the multicast
routing based on the idea of DBRA algorithm [12].

In DBRA, the definition of dimensionbubble flow control for unicast commu-
nication is as follows:

when a packet wants to move to the next buffer, if there are remaining routing
hops in N dimensional directions (N ≤ n), then this packet can request for
arbitration of the next buffer only when there are more than or equal to N free
packet spaces in the next buffer. Otherwise, it has to wait.

DBRA routing algorithm uses the remaining number of hops in a dimension
to judge the next step of packet’s routing. In order to support the multicast rout-
ing, we propose a new strategy of flow control based on DBRA in 2-dimensional
(2D) Mesh networks.

In 2D Mesh networks, we define the set of destination nodes of a multicast
packet as

{D1,D2, ...,Di, ...,Dn|1 ≤ i ≤ n, n is an integer}
Suppose that the packet needs to transmit Mi dimensional directions before

arriving at the destination node Di. We define Max{Mi} to represent the max-
imum value in the set of {M1,M2, ...,Mi, ...,Mn|1 ≤ i ≤ n, n is an integer}.

Based on the above definitions, the novel flow control strategy can be
described as follows:

The multicast packet can request for arbitration of the next buffer only when
there exist more than or equal to Max{Mi} free packet space in the input buffer
of the next-hop router. Otherwise, it has to wait.

DBM: A Dimension-Bubble-Based Multicast Routing Algorithm 47

We name the new flow control strategy as DBMFC (Dimensional Bubble
Multicast flow control). For 2D Mesh networks, once a multicast packet arrived
at the input buffer of a router, it may have remaining routing paths in X+/X−,
Y +/Y − dimensional directions. But if only generic minimal path can be cho-
sen in 2D Mesh networks, each destination node has routing hops only in two
dimensions at most.

Therefore, Max{Mi} ≤ 2 can be guaranteed in 2D Mesh networks, and thus
it is enough for the input buffer to be set with 2-packet size, which can meet the
demand of DBMFC for multicast operations.

Based on DBMFC, we propose DBM, to achieve a fully-adaptive multicast
routing algorithm. The following is the description of DBM algorithm:

• Firstly, minimal-path routing is adopted as the baseline in 2D mesh networks.
For each multicast packet in the input buffer, it is calculated how many
hops this multicast packet must transmit on the different dimensions for each
destination node.

• Secondly, multicast packets calculate the remaining dimensions of the desti-
nation nodes and appeal the arbitration requests of the different buffers meet
with the strategy of DBMFC.

• Thirdly, if the number of granted requests is more than one, DBM algorithm
will choose an output port with lower buffer utilization in the next-hop router.
This process is similar to RPM and BAM algorithms.

• Fourthly, the replicated packet carried the information of those destination
nodes had remaining hops in the dimensional direction to flow out. At the
same time, the number of hop of destination node in this dimensional direction
minus 1.

• The multicast packets repeat from step 1 to step 4 until all the destination
nodes have been traversed.

Compared with DBRA algorithm for unicast routing, DBM algorithm decides
the next routing dimensional direction by the value of Max{Mi}. The choosing
strategy of arbitration of DBM algorithm is similar as the arbitration strategy
of RPM and BAM based on regions and the entire network is divided into eight
regions labelled as 0, 1, 2, 3, 4, 5, 6 and 7 such as Fig. 2.

We explain the routing strategy of DBM algorithm in Fig. 2. Suppose that
the multicast packet hops on the Y + direction. When all destination nodes of
packet locate in the region Y + (region 1 in Fig. 2), it means that the set of
destination nodes do not include those nodes in region 0 and 2.

If there are free spaces in the next router of Y + direction, the packet may
enter to the buffer of the next router. On the other hand, if there are nodes of
region 0 or region 2 in the destinations of packet, the packet may enter when
there are more than or equal to 2 free packet spaces of the next router in Y +
direction.

For DBM routing algorithm, asynchronous replication is adopted. In asyn-
chronous replication, branch replicas will not block each other, since each of
them proceeds independently. It means that replicated packets can be granted
in different directions respectively.

48 C. Xiao et al.

3 Proof of Deadlock Freedom of DBM

The goal of this section is to explain how the DBM algorithm achieves the
dead-lock free characteristic for any minimal path, adaptive routing on 2D mesh
networks.

DBM algorithm is achieved based on DBRA algorithm which is fully adaptive
routing for unicast operations. Since the deadlock freedom of DBRA has been
proved in paper [12], if the differences between DBM and DBRA do not cause
dead lock of network, it can be concluded that DBM algorithm is deadlock
freedom.

The differences between DBRA and DBM are that multicast packets may
carry with more than one addresses of destination nodes and the replication
operation of packet will be performed in the router and it will increase the
number of packets in the network. We should analyze whether the replication
operation will cause dead lock in the network.

Proof Sketch: In each step of the proof, we will analyze all possible cases of
packet in the network and present allocation of buffers to prove that all kinds
of packets can reach the destination node. Accordingly, the conclusion that the
deadlock does not exist in the network can be made as a result.

Proof. If the replication operation was committed before multicast packets
injecting into the network, this replication operation cannot cause the dead lock
in the network. This is because the replicated packets will be injected into the
network as same as the unicast packets,

Next, we analyze the replication operation after multicast packets have been
injected into the network. In this situation, the multicast packets may be stored
in the buffer of one-dimensional direction such as X+, X−, Y + and Y − in the
2D mesh networks. Without loss of generality, we assume multicast packet is
in the buffer of direction X+. The multicast packets on buffer space have three
cases:

• The first case is that remaining hops of all destination nodes of multicast
packet are in the direction X+, it means that the value of Max{Mi} of this
packet is 1.
Suppose: the space of buffer can contain two packets. The situation of packet
is described by the third graph.

Fig. 3. Buffers in X+

DBM: A Dimension-Bubble-Based Multicast Routing Algorithm 49

There exist two possible cases for the next buffer. If there is one free space
in the next buffer, according to the flow control strategy of DBMFC, since
the value of Max{Mi} is equal to 1, the replicated packets can enter the next
buffer. If there is not room in the next buffer, we can conclude that there
is no less than one packet in the next buffer whose destination nodes are
only in X+ or packet is waiting for consumption in the next buffer. Suppose
that the destination nodes of two packets in the next buffer remain hops in
two directions or one direction that is not X+, According to the flow control
strategy of DBMFC, when Max{Mi} is equal to 2, it is necessary that the
destination buffer must own two free packets space at least. So, it is impossible
that the destination nodes of two packets in the next buffer remain hops in
two directions or one direction that is not X+. We can reach the conclusion
that there is no less than one packet in the next buffer whose destination
nodes are only in X+ or packet s waiting for consumption in the next buffer.
The situation of the latter buffer is the same as the next buffer.
Because there are not wraparound connections in X and Y direction, the
cyclic dependency cannot be formed in X or Y direction. As a consequence,
the forever block is not formed between packets of this case. Because it is
impossible that the destination nodes of packets in the last buffer in X+
direction need to hop in X+ direction, it is true that packet waiting for
consumption exist in the last buffer. The packet o will be consumed soon,
thus, these replicated packets of the first case can always move and reach the
destination node.

• The second case is that it is existed that the destination nods of multicast
packet in buffer have only one-direction routing and different direction with
the buffer space where the packet is placed. We analyze the possibility of
packet of destination’s buffer when there is not room in the destination’s
buffer. Suppose that the packets that are occupying the destination’s buffer
space are the packets waiting for consumption or the packets of the first case.
Because the packets of two cases can always go ahead from the current buffer,
they will not block the packets of the second case forever. Suppose that the
packets that are occupying the destination’s buffer space are those packets
whose destination nodes remain X and Y direction routing or are also packets
of the second case. According to DBMFC, these packets cannot occupy all
buffer space and the destination buffering must remain one free packet space
after they enter the destination buffer. Thus, the replicated packets of the
second case can enter the destination’s buffer space. So, the packets of the
second case can always reach the destination nodes.

• The last case is that it is existed that the destination nods of multicast packet
in buffer remains X and Y direction routing. According to DBM algorithm,
the replicated packet remaining X and Y direction routing can have requests
in X and Y direction at the same time. We consider the situation of those
buffers which have the same direction with the buffer in which the packet is
placed at present. Suppose the direction of current buffer space is X+. The
situation of buffer is the same as the Fig. 3.

50 C. Xiao et al.

According to the above analyses, if the packets that are occupying the next
buffer space are those packets of the above two cases or waiting for consumption,
they cannot result in other packets blocking forever. As a result, the deadlock
maybe only exists among the packets of the last case. According to DBM algo-
rithm, it is certain that those packets of the last buffer in X+ direction have
one-direction routing at most, because they have the routing in X+ direction
no longer. These packets are the packets of the former two cases or waiting for
consumption. Because the packets in the buffer space inX+ direction can move
certainly, the packets of the last case may finish the routing of one-direction and
become the packets of the former two cases or waiting for consumption. So, the
packets of the last case will also reach the destination node.

Based on the above proof, we can conclude that DBM will not introduce
deadlock that when the scheme is deadlock free in the 2D mesh.

4 Evaluation

In this section, we study performance and scalability of DBM algorithm support-
ing fully-adaptive multicast routing. The DBM algorithm is common minimal
path, fully-adaptive routing algorithm except for DBMFC. We base our evalua-
tion on the BookSim simulator [5] developed at the Stanford University, thanks
to its modular design, and the availability of a large variety of classic network
implementations. DBM algorithm was implemented in the BookSim simulator
with little effort.

We compare average packet latencies of DBM to its counterparts: RPM and
BAM algorithms. More specifically, for BAM algorithm, Duato’s method reserves
one virtual channel, which employs dimension order routing (DOR), as an escape
channel, and the other virtual channels employ the shortest path adaptive rout-
ing algorithm.

4.1 Experiment Setup

It is noteworthy to mention that in our design, DBM takes the same way as
DBRA to allow a packet to be chosen for the arbitration independently, without
considering its position in the buffer. In other words, head of line (HOL) blocking
will not occur in DBM. To ensure fair comparisons, we have removed HOL
blocking from the implementations of RPM and BAM, which also stresses the
effect of multicast routing strategies. In addition, we have assigned the same
amount of buffer space to each router in the evaluation, and in the case of BAM,
uses exactly the same adaptive routing function as DBM.

The simulator is warmed up for 10,000 cycles and then the performance
is measured over another 100,000 cycles. Network is considered unstable when
average latency of one packet exceeds 1000 cycles [5], therefore we stop reporting
results when latency is beyond this point. Flit injection rate used in the simu-
lation is defined as the time to take a single flit to be injected at a source. For
example, injection rate is 0.1 means that each source injects a new flit in one out
of every ten simulator cycles. Our simulation settings are summarized in Table 1.

DBM: A Dimension-Bubble-Based Multicast Routing Algorithm 51

Table 1. BookSim configuration parameters

Configuration parameters Value

Topology 4-ary 2-cube mesh, 8-ary 2-cube mesh

Number of VCs 4, 6, 8

Proportion of multicast packets 10%, 15%, 20%

Injection rate (flits/cycle/node) 0.1–0.5

Number of destinations in
multicast packets

6, 9, 12, 15

Traffic pattern Uniform random, random permutation,
bit rotation, transpose

4.2 Average Latency and Load Scalability

The Fig. 4, 5, 6, 7 plots the average latencies for 2-cube mesh network under
different patterns. DBM outperforms the other two algorithms in all cases. In
particular, under the pattern of uniform random, the saturation throughput of
DBM algorithm is largest in three algorithms and BAM is better than RPM
algorithm. When the load of network is low, the latency of three algorithms is
almost same. However, with the increase of load of the network, the performance
of RPM is the worst. It shows that the load of two virtual networks in RPM
algorithm is unbalance. Compared with BAM, DBM algorithm achieved 8.6%
latency reduction and 6.3% throughput improvement.

Fig. 4. Average packet latency in uniform random traffic

Similarly, in transpose and random permutation patterns, the saturation
throughput of DBM is the largest and BAM is the following. The advantage
of performance of DBM is obvious. Relative to RPM, DBM achieved 24.9% and
12.7% latency reduction and 71.4% and 75% throughput improvement respec-
tively. Since the traffic patterns of transpose and random permutation cause the
unbalancing load of different dimensions easier than uniform random, for RPM
algorithm, the performance in these patterns is worse than uniform random.

52 C. Xiao et al.

Fig. 5. Average packet latency in transpose traffic

The simulation in bit rotation pattern shows the similar result. The perfor-
mance of RPM is the worst in three algorithms. It can be seen that in general,
latency will increase as load (injection rate) increases. RPM is clearly not scal-
able as latency will dramatically increase with traffic load. Both DBM and BAM
perform better than RPM. So, we only compare DBM with BAM in the following
simulation.

Fig. 6. Average packet latency in random permutation traffic

4.3 Impact of Buffer Size

The bit rotation traffic is considered to be the worst case for all the networks
under study. We study network performance with different buffer under this
traffic pattern.

The performance with different buffer sizes are showed in Fig. 8. DBM and
BAM’s algorithm both improve given larger buffer sizes. Comparatively, DBM
performance is more advantage. For example, relative to DBM, when the buffer
size is 4, 6 and 8 respectively, DBM performance achieved 8.6%, 8.1% and 14.2%
latency reduction and 6.3%, 8.8% and 12.2% throughput improvement.

DBM: A Dimension-Bubble-Based Multicast Routing Algorithm 53

Fig. 7. Average packet latency in bit rotation traffic

Fig. 8. Average packet latency with different buffer size

4.4 Scalability of Network Size

In 2D mesh networks, DBM exhibits better scalability than BAM with respect
to network size. The performance with different network sizes are showed in
Fig. 9. Using the uniform random pattern, we compare latencies by increasing
the number of nodes in each dimension from 16 to 64. When the number of nodes
from16 to 64, relative to BAM, DBM achieved latency reduction from 13.8% to
18.1% and throughput improvement from 8.6% to 9.8%.

Fig. 9. Average packet latency with different network size

54 C. Xiao et al.

4.5 Discussion

DBM can improve the network performance by employing more restrictive flow
control scheme than that in BAM’C the more remaining dimensional directions
of replicated packet, the more buffer space in the next hop required. Although
such bias may raise the chances of conflicts, it encourages packets to use more
paths and enables DBM to unburden the network by balancing traffics.

In contrast, BAM in Duato’s framework, a packet is free to enter any queue
as long as credit available. This freedom tends to form a locked ring in busy
networks and requires the escape channels to break the deadlock which is very
likely to end up with the “hot-spot” problem causing performance degradation.

More importantly, DBM promises the adaptively throughout the trip of a
packet. However, in BAM, a packet has to enter into the DOR-based escape
channel for deadlock avoidance when conflicts occur. As a consequence, within
a typical injection rate range, traffic congestion tends to be alleviated in the
networks using DBM. This explains why DBM is more adept at preventing the
networks from performance degradation while the injection rate increases or
traffic patterns become more adverse.

Understandable, a network’s overall performance is determined by the “worst
case” routing. In fact, buffer size increment helps DBM attenuate the “worst
case” impact, which happens when a queue becomes full. In other words, a
larger buffer size makes a queue less likely to become full.

Specifically, the flow control DBMFC keeps the number of “bubbles” as bal-
anced as possible in queues, and regardless of the buffer size, this mechanism
remains functioning. However, this is not the case for BAM. The “worst case”
in BAM is the “hot-spot” followed by DOR routing. Unfortunately, larger buffer
size makes a queue capable of accommodating more packets implying that the
queue contains more packets when it becomes full. Thus, more packets may enter
into the DOR-based escape channel, which prolongs the average latency.

5 Conclusions and Future Work

In this paper, we design the DBM multicast routing strategy for 2D mesh net-
works. DBM algorithm provides a new way to implement high performance mul-
ticasting routing in interconnection networks. We prove that the proposed algo-
rithm is deadlock-free while enabling minimal path and fully-adaptive multicast
routing. Moreover, we complete some comparative work against RPM and BAM
algorithms, which indicates that DBM can achieve more performance and scala-
bility improvement under synthetic workloads. In the future work, we will study
the micro-architecture of router based on DBM.

Acknowledgment. We thank the anonymous reviewers for their valuable feedback.
We gratefully acknowledge members of Tianhe interconnect group at NUDT for many
inspiring conversations. This project was partially supported by the National Key R&D
Program of China under Grant No. 2018YFB0204300, and in part by NSFC. 61802416
and School Research Project of National University of Defense Technology under grants
No. ZK20-18.

DBM: A Dimension-Bubble-Based Multicast Routing Algorithm 55

References

1. De Azevedo, M.M., Blough, D.M.: Fault-tolerant clock synchronization of large
multicomputers via multistep interactive convergence. In: Proceedings of the 16th
International Conference on Distributed Computing Systems, pp. 249–258 (1996)

2. Duato, J., Pinkston, T.M.: A general theory for deadlock-free adaptive routing
using a mixed set of resources. IEEE Trans. Parallel Distrib. Syst. 12(12), 1219–
1235 (2001)

3. Furber, S., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc.
IEEE 102(5), 652–665 (2014)

4. Jerger, N.E., Peh, L., Lipasti, M.H.: Virtual circuit tree multicasting: a case for on-
chip hardware multicast support. In: Proceedings of the International Symposium
on Computer Architecture, pp. 229–240 (2008)

5. Jiang, N., et al.: A detailed and flexible cycle-accurate network-on-chip simulator.
In: Proceedings of the IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 86–96 (2013)

6. Li, K., Schaefer, R.: A hypercube shared virtual memory system. In: Proceedings
of the International Conference on Parallel Processing, pp. 125–132 (1989)

7. Ma, S., Jerger, N.E., Wang, Z.: Supporting efficient collective communication in
NoCs. In: Proceedings of the IEEE International Symposium on High-Performance
Computer Architecture, pp. 1–12 (2012)

8. Mckinley, P.K., Xu, H., Kalns, E.T., Ni, L.M.: Compass: efficient communication
services for scalable architectures. In: Proceedings of the ACM/IEEE Conference
on Supercomputing, pp. 478–487 (1992)

9. Navaridas, J., Lujan, M., Miguelalonso, J., Plana, L.A., Furber, S.: Understanding
the interconnection network of spinnaker. In: Proceedings of the 23rd International
Conference on Supercomputing, pp. 286–295 (2009)

10. Rodrigo, S., Flich, J., Duato, J., Hummel, M.D.: Efficient unicast and multicast
support for CMPS. In: Proceedings of the 41st Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 364–375 (2008)

11. Wang, L., Jin, Y., Kim, H., Kim, E.J.: Recursive partitioning multicast: a
bandwidth-efficient routing for networks-on-chip. In: Proceedings of the 3rd
ACM/IEEE International Symposium on Networks-on-Chip, pp. 64–73 (2009)

12. Xiao, C., Yang, Y., Zhu, J.: A sufficient condition for deadlock-free adaptive routing
in mesh networks. IEEE Comput. Archit. Lett. 14(2), 111–114 (2015)

13. Xu, H., Mckinley, P.K., Ni, L.M.: Efficient implementation of barrier synchroniza-
tion in wormhole-routed hypercube multicomputer’s. J. Parallel Distrib. Comput
16(2), 172–184 (1992)

MPLEG: A Multi-mode Physical Layer Error
Generator for Link Layer Fault Tolerance Test

Xingyun Qi(B), Pingjing Lu, Jijun Cao, Yi Dai, Mingche Lai, and Junsheng Chang

College of Computer, National University of Defense Technology, Changsha, Hunan, China
qi_xingyun@mail.nudt.edu.cn

Abstract. In the design of high-speed communication network chips, the fault-
tolerant design of the link layer is among the most important parts. In the design
process, the link layer fault tolerance function need to be fully tested and verified.
But it is far from enough to rely only on traditional case-by-case simulation. In
order to test and verify this function completely, this paper proposes a configurable
multi-mode physical layer error generationmethod implemented on chip:MPLEG
(a Multi-mode Physical Layer Error Generator). With MPLEG, a desired bit error
pattern can be generated at the physical layer in all stages of chip design, including
simulation verification, FPGA prototype system verification, sample chip testing,
and actual system running. The statistical analysis of the experimental results
shows that MPLEG can generate an error pattern almost identical to the real link
error. Meanwhile, MPLEG can perform relatively complete and efficient testing
and verification of various functions of link layer fault tolerance.

Keywords: Physical link error · Error pattern analyze · Error generator on chip ·
Link layer fault tolerance test

1 Introduction

In high-speed digital communications, the traditional parallel transmission method has
been unable to meet the ever-increasing communication bandwidth requirements, and
high-speed serial transmission methods have emerged. In the serial communication
mode, digital communication between two nodes is performed through high-speed serial
differential signals. The transmitter encodes the parallel data and clock signal, and then
converts it into a serial data stream through a SERializer/DESerializer (SERDES), and
then sends it to the physical medium; the SERDES in the receiving end receives the serial
data, then the serial data is converted into parallel data, and the clock of the receiving
end is recovered by the clock and data recovery (CDR) circuit. According to the network
layer structure, serial-to-parallel conversion, clock recovery, data encoding and decod-
ing, and data transmission processes in serial digital communications all belong to the
physical layer function [1]. In this process, the high-speed serial signal may cause errors
in the transmission process due to various reasons. Under normal circumstances, there
may be two reasons for the occurrence of bit errors: (1) due to the timing jitter, the actual
signal transition is earlier or later than the ideal position; (2) due to amplitude noise,

© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 56–69, 2020.
https://doi.org/10.1007/978-981-15-8135-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_5&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_5

MPLEG: A Multi-mode Physical Layer Error Generator 57

the high level of the signal is lower than the reference threshold or the low level of the
signal is higher than the reference threshold. Therefore, in a high-speed communication
system, after the link layer receives data from the physical layer, one of the important
functions is the fault tolerance processing, including data verification, error detection,
error correction, and retransmission. The purpose of fault tolerance is to provide reliable
data transmission services for the upper layers of the network.

In the design of communication systems, especially the design of high-speed network
communication chips, in order to test the correctness of the link layer error processing
system, it takes a lot of resources to verify and evaluate each function of the fault tolerance
system. In the process, the most critical thing is to artificially generate various errors
close to the real situation at the physical layer, so as to cover most error testing scenarios.
The physical layer errors generated for the purpose of performing link layer fault-tolerant
tests play a vital role in the correctness and completeness of the final system verification.

There are currently two commonly used link fault tolerance test methods: simulation
test and real system test. The simulation test method is using VCS [2]/Xcelium [3] and
other front-end simulation tools to simulate the RTL design, and manually inserting the
errors expected by the designer on the link. But the test data of this method is limited,
and the subjective bias of the designer may not be able to reproduce the error scenario
under the real environment, and its test coverage is limited. The real system test method
is to build a real hardware test environment, apply interference on the physical link,
and then test the fault tolerance design of the system. The real system test method can
indeed reproduce the real error scenario, but the cost is too high, and it is not easy to find
the error. At the same time, the real system test method generally needs to be carried
out after the chip has been taped out, so it is difficult to perform a complete test at the
design stage. Therefore, to design a link fault tolerance test method which is capable of
simulating real physical link errors inside the chip is necessary, so as to carry out various
boundary and abnormal tests on link transmission in the design stage of high-speed
communication chips.

Aiming at the above problems, this paper first collects the bit errors on the real
link, analyzes its distribution characteristics, and designs an on-chip error generation
method of physical layer - MPLEG according to the characteristics. Using MPLEG, a
physical layer error similar to the real situation can be generated inside the high-speed
communication chip, which is used to test the fault-tolerant design inside the chip.

The rest of this paper is organized as follows: Sect. 2 introduces the relevant research
background; Sect. 3 collects and analyzes the bit error characteristics on the actual
physical link; Sect. 4 presents the method of MPLEG; Sect. 5 evaluates the effect and
performance of on-chip error generated by MPLEG; Sect. 6 summarizes the work and
draws relevant conclusions.

2 Related Works

Most researches about physical link error pattern are focused on wireless communica-
tions [10–14] and free space optical links [15]. In [10], the target packet error sequences
are generated by a simulator with a typical urban (TU) channel and co-channel inter-
ference. A general design procedure of a generative model is then proposed by using

58 X. Qi et al.

a properly parameterized and sampled deterministic process with a threshold detec-
tor and two parallel mappers. A generative error model that can generate packet-level
error sequences with predicted burst error statistics is proposed in [11], which can gen-
erate errors similar to those of error sequences obtained from real wireless systems.
[12, 13] both proposed a link error prediction method respectively. Both methods are
shown to have accuracy within a few tenths of a dB under a wide range of modulation
schemes, coding rates and channel types. These methods are then extended to handle
more advanced link enhancements such as hybrid ARQ and Alamouti encoding [14].
Wu et al. [16] studied chip error patterns in IEEE 802.15.4, and found out that there
are four major error patterns. They proposed a simple yet effective method based on the
chip error patterns to infer the link condition.

For high speed serial communication, there are currently two methods for evaluating
the signal quality: simulation analysis and worst-case link analysis. Among them, the
simulation analysis method generally uses tools such as SPICE for pseudo-random data
simulation, which usually uses a Pseudo-Random Bit Sequence (PRBS) generator to
simulate the link channel. The worst-case link analysis method calculates the worst eye
diagram of the system by analyzing the channel response and noise model, and estimates
the worst bit error rate of the system [4–6]. Both of these two methods have advantages
and disadvantages. The simulation analysis method needs to generate a large amount
of random test cases to cover various transmission scenarios of the link, therefore it
is difficult to ensure complete coverage of various test scenarios [8]. The worst-case
analysis method only focuses on the link in the worst case. Therefore, the result is too
pessimistic, which will put more strict requirements on the design [7]. Some researchers
[8] studied the error conditions of high-speed links from the perspective of probability
statistics, and proposed a new bit error rate analysis method to analyze the eye diagram
of any pattern under the influence of link ISI and crosstalk. Then the paper calculated
the probability of each situation, and obtained the bit error rate eye diagram of the link
according to the probability distribution at the receiving end. Dongwoo Hong et al.
believes that the error in high-speed communication mainly comes from data jitter,
including random jitter (RJ) and deterministic jitter (DJ) [9]. This paper proposes a
method to theoretically analyze the RJ and DJ of signals in the data at the receiving end,
and gets the bit error rate on high-speed serial links.

Some researchers assumes that the ideal noise sources follow the Gaussian distribu-
tion. For real noise source generation, two uniformly distributed pseudo-random signals
are generated, which are then transformed into actual noise sources through function
transformation, and implemented on the FPGA chip. However, this method is only com-
pared with the theoretical Gaussian distributed noise source, but not with the actual noise
on the real link.

All the researches above have only analyzed and estimated the noise on the physical
link. Some have only designed an ideal noise source, but they have not been compared
with the noise on the actual link. Moreover, most of the current researches focus on the
theoretical analysis of the noise and interference on the serial link. These researches
lack statistics and analysis of interface data error between physical layer and link layer,
which is precisely the link layer fault tolerance design should pay attention to. Some
researches

MPLEG: A Multi-mode Physical Layer Error Generator 59

This paper is geared towards the fault-tolerant design of the link layer. It collects and
analyzes the true bit errors of the data on the interface between the physical layer and
the link layer. Based on the analysis, a physical layer bit error generator inside the chip
is proposed, which can generate various modes of bit error close to the actual bit error
mode. It can be used to fully test the fault-tolerant design of the link layer.

3 Statistics of Real Bit Error in Physical Links

In order to analyze the real bit error characteristics on the physical link in the high-
speed serial communication, we use an FPGA chip evaluation board with a high-speed
serial communication interface to design a hardware system that can collect and analyze
the physical layer data transmission bit errors. The system communicates between two
FPGA chips through a high-speed serial interface. The transmitter continuously sends
out pseudo-random sequences as test data, while the receiver continuously receives data
and checks the correctness of the data. The system structure is shown in Fig. 1.

PCS

SERDES SERDES SERDES SERDES

PRBS

PCS

SERDES SERDES SERDES SERDES

rx

check

result
fifo

tx

Fig. 1. The structure of the physical layer error capture

At the receiving end, each receiveddata is checked for correctness. If data error occurs
during transmission, the receiver will record the specific error information, including
the expected data, the wrong data, the time interval between this error and the previous
error, and the total number of error bits. Based on these information, the distribution
characteristics of error can be figured out, and the error model can be obtained.

In the experiment, we chose a fiber with errors with which the two FPGA are con-
nected in the test system. The FPGA chips choosed in the experiment are Xilinx Virtex
7 2000T devices. In the evaluation board, each port uses a 4lane GTX, with the rate of
1.25 Gbps per lane. The test system based on FPGA evaluation boards is illustrated in
Fig. 2.

The test continues about 30 min, and the data is continuously sent at the maximum
rate. The receiver detects the correctness of the data and records the error information.
The test results are shown in Table 1.

60 X. Qi et al.

Fig. 2. Link error test system based on FPGA

Table 1. Statistics of physical link real error information

Items Value

Total amount of the test data 7.5 × 1012 bits

Total error bits 134128 bits

Average error rate 1.788 × 10−8

Average interval of 2 error (take 256bit data as the unit) 4.4706 × 105

We analyzed the time interval between two adjacent errors, and take statistics of the
interval distribution. Figure 3(a) is a distribution diagram of different error intervals. It
can be seen that the number of errors with an interval of 1 (that is, two adjacent errors)
is significantly larger than the errors of other intervals. The number of errors of other
intervals gradually decreases with the increasing of interval. We can see that adjacent
error with an interval of 1 is the burst error. Figure 3(b) is the error distribution diagram
with the error interval greater than or equal to 2, and Fig. 3(c) is the error distribution
diagram with the error interval of 1. It can be seen from the figure that the bit errors in
the actual link are actually the superposition of burst errors and uniform errors. That is,
Fig. 3(a) is the superposition of Fig. 3(b) and Fig. 3(c).

MPLEG: A Multi-mode Physical Layer Error Generator 61

(a) (b) (c)

Fig. 3. Number of errors in different intervals

4 Multi-mode Physical Layer Error Generator - MPLEG

By analyzing the bit error characteristics of the real physical link in above experiment,
we find that the bit error on the actual link is a mix form of uniform bit error and
burst bit error. According to this feature, we design a configurable multi-mode physical
layer error generator -MPLEG. The error generator is located between the PCS (Physical
Coding Sublayer) and SERDES at receiver, and is used to inject a specific pattern of error
sequences into the data from SERDES. According to this structure, an error generating
module (error_insert) is designed at the receiving end of each lane to insert a specific
error bit sequence into the parallel data given by SERDES, as shown in Fig. 4.

PCS

error_insert_0

Serdes Lane0

64

64

error_insert_1

Serdes Lane1

64

64

error_insert_2

Serdes Lane2

64

64

error_insert_3

Serdes Lane3

64

64

256

Config

Fig. 4. Structure of error generator

In Fig. 4, there are 4 lanes in each network port. After serial-to-parallel conversion,
each SERDES provides 64-bit-wide parallel data bits to PCS. The 4 lanes are bound
together to provide a 256-bit-wide data path. Under the control of the Config module,
each error_insert module reverses every bit in the incoming 64-bit data according to
certain error generation rules. For example, if the link error rate is set to 10−8, then the
probability of error per bit is 1/108. That is, in that lane, a bit flips once about every 108
clock cycles on average (0 to1 or 1 to 0). Each error_insert contains 64 error-generating

62 X. Qi et al.

units (named err_element), and each error-generating unit generates errors in a certain
bit of 64-bit data. Therefore, all data bit errors are independent of each other, as shown
in Fig. 5.

m

Config

Serdes Lane

err_element_0

err_element_1

err_element_m-1

data_in[1]

data_in[0]

data_in[m-1]

data_out[0]

data_out[0]

data_out[m-1]

m PCS

err_insert

Fig. 5. Structure of error_insert module

The function of the error-generating unit is to generate all kinds of error patterns
according to the configuration. Based on the previous analysis of the error characteristics
on the physical link, the error-generating unit should provide multiple configurations to
achieve a variety of error distribution characteristics such as uniform error, burst error and
mixed error. From the perspective of functional components, the error-generating unit is
divided into a uniform error generator, a burst error generator, and a synthesizer, which
are used to generate uniform errors, burst errors, and multiple error modes. The uniform
error generator generates uniform errors according to the input signal cfg_err_rate. The
error rate of the uniformerror is cfg_err_rate/232. The burst error generator generates two
kinds of errorwith different error rates (high error rate and low error rate) according to the
input signals cfg_err_burst_low_period, cfg_err_burst_high_period, cfg_err_rate_low
and cfg_err_rate_high. The high error rate is cfg_err_rate_high/232 and the low error
rate is cfg_err_rate_low/232, and the durations of high error rate and low error rate
are cfg_err_burst_high_period and cfg_err_burst_low_period, respectively. In this way,
when different configuration are given, different burst errors can be generated.According
to the configuration, the synthesizer combines the previously generated uniform errors
and burst errors into a mixed error mode, and the physical layer error is the result of a
mixture pattern of uniform errors and burst errors. The structure of error-generating unit
is shown in Fig. 6.

The processing flow chart of error-generating unit is shown in Fig. 7.
When the configuration signal cfg_err_mode is 0, no error is generated, that is,

output data data_out is equal to input data data_in. When cfg_err_mode is 1, errors are
generated in uniform mode, that is, the output data data_out is the inverse of the input
data data_in with certain probability.When cfg_err_mode is 2, the error-generating units

MPLEG: A Multi-mode Physical Layer Error Generator 63

PRBS-32 xor

com
parer

burst_err_state
burst_�mer

cfg_err_burst_low_period[31:0]

cfg_err_burst_high_period[31:0]

cfg_err_rate_low[31:0]

cfg_err_rate_high[31:0]

data_in[*]

data_out[*]

cfg_err_rate[31:0]

cfg_err_mode[2:0]

Fig. 6. Structure of error-generating unit

start

cfg_err_mode ?

0 1 2 3

cfg_err_rate
>= prbs32

N

Y

burst_err_state ?

1

0

cfg_err_rate_low
>= prbs32

Y

N

cfg_err_rate_high
>= prbs32

Y
N

random_num

0

1
data_out=data_in

data_out=~data_in

Fig. 7. The processing flow of error-generating unit

are in burst error mode, that means, two different periods are generated according to the
configuration signal burst_time, which are corresponding to the high error rate time and
low error rate time. In the high error rate period, the error rate is cfg_err_rate_high, and
in the low error rate period, the error rate is cfg_err_rate_low. That is, there exists bit
error in output data data_out compared with data_in. The error rate changes between two
different preset bit error rates according to the configuration. In this way, the burst error
mode can be achieved. When cfg_err_mode is 3, the error-generating units are in mix
mode. In this mode, a 1-bit random number (random_num) is generated to determine
whether it is currently in uniform error mode or burst error mode randomly. When the

64 X. Qi et al.

random number is 0, it is in a uniform error mode, and when the random number is 1, it
is in a burst error mode.

In this way, an error generating module (error_insert) contains 64 independent error-
generating units, and each error-generating unit generates an error to one of the data bit.
Figure 8 shows the structure of an error_insert module.

PRBS-32 xor

com
parer

burst_err_state
burst_�mer

data_out[1]

PRBS-32 xor

com
parer

burst_err_state
burst_�mer

cfg_err_burst_low_period[31:0]

cfg_err_burst_high_period[31:0]

cfg_err_rate_low[31:0]

cfg_err_rate_high[31:0]

data_in[63:0]

data_out[0]

cfg_err_rate[31:0]

cfg_err_mode[2:0]

PRBS-32 xor

com
parer

burst_err_state
burst_�mer

data_out[63]

data_in[0]

data_in[1]

data_in[63]

Fig. 8. Structure of an error_insert module

MPLEG: A Multi-mode Physical Layer Error Generator 65

5 Evaluation

We will analyze and evaluate the errors at the physical layer generated by the physical
layer error generator proposed above.

5.1 Evaluation Criterion

The error data recorded in the experiment is an n-tuple, where n is the number of records.
In the experiment, we take n = 65535. Therefore, the actual error data is recorded as

R = [r1, r2, · · · , r65535]
The error data generated by the error generator described in this paper is recorded as

G = [
g1, g2, · · · , g65535

]

Where ri, gi = 0, 1, 2, · · · , means the interval between the current error data and
the last error data.

For example, if a certain error data is recorded as [74, 382, 0, 1673, 258, 4, 67], it
means that a total of seven errors occurred during the recording time. There are 74
correct data between the first error data and the first data, and 382 correct data between
the second error data and the first error data, and 0 correct data between the third error
data and the second error data (which means the second and the third error data are
continuous), …, and 67 correct data between the seventh error data and the sixth error
data.

In order to evaluate the difference between R and G, we define the distribution
distance between two sets of data records below.

Let s = 1, 2, 3, …, and s is the dividing scale. Divide the record R and G according
to the following algorithm, and calculate their distribution distance:

(1) Let m = max{R, G}
(2) Initialize 2

⌊m
s

⌋
-dimensional vectors

Vr

[
0 :

⌊m
s

⌋
− 1

]
= 0

Vg

[
0 :

⌊m
s

⌋
− 1

]
= 0

(3) for i = 1, 2, …, 65535

Vr

[⌊ ri
s

⌋]
= Vr

[⌊ ri
s

⌋]
+ 1

Vg

[⌊gi
s

⌋]
= Vg

[⌊gi
s

⌋]
+ 1

66 X. Qi et al.

(4) When the division scale is s, the average distribution distance between R and G is
defined as

Ds(R,G) =
∣∣
∣∣∣∣

1
⌊m
s

⌋
�m

s �−1∑

i=0

(
Vr[i] − Vg[i]

)
∣∣
∣∣∣∣

and the accumulated distribution distance between R and G is defined as

Es(R,G) = 1
⌊m
s

⌋
�m

s �−1∑

i=0

∣∣Vr[i] − Vg[i]
∣∣

When s = 1, Vr and Vg indicate the number of error messages with different error
intervals. That is, Vr[0] represents the number of 0s in R, i.e. the number of error packets
with an error interval of 0. Vr[1] represents the number of 1s in R, i.e. the number of
error packets with an error interval of 1.

When s > 1, it is equivalent to dividing the data in R and G into
⌊m
s

⌋
groups

respectivelywith the interval s from small to large. Then the number of data in each group
are counted. Thus, Vr[i] indicates the number of data whose value is i · s ∼ (i + 1) · s−1
in R. For example, Vr[0] represents the number of data in R with a value of 0 ~ s − 1,
that is, the number of error packets with an error interval of 0 ~ s − 1. Vr[1] represents
the number of data in R with a value of s ~ 2s − 1, that is, the number of error packets
with an error interval of s ~ 2s − 1.

When s is constant, Ds(R,G) and Es(R,G) is the distance between vectors R and G.
The smaller Ds(R,G) and Es(R,G) is, the smaller the difference between R and G is.

5.2 Evaluation of Generated Error Data

We use the FPGA test system in Sect. 3 to evaluate the error data generated by the
physical layer error generator. Firstly, the FPGA system is tested with an optical fiber
that has bit errors, and a set of original error record R with the elements number of
65535 is obtained. Then the record R is analyzed to calculate the bit error rate. Based
on this error rate, appropriate parameters of the error generator are set. Then the FPGA
system is tested again using a normal fiber. The error results of the test are recorded as
G. According to the analysis method mentioned before, the difference between R and G
is evaluated for the two sets of error records.

According to the algorithm presented in 5.1, we take different division scales s = 1,
2, 3, …, 100 to analyze R and G respectively. Figure 9 shows the curves of Vr and Vg

when s is 1, 3, 5, 10, 20, 30, 50, 80 and 100. That is, the distribution of R and G under
different division scales s. It can be seen from the figure that the distribution of the error
interval of R and G are basically coincident. It indicates that the result of MPLEG are
close to the result of actual physical link errors in different scale s, and the physical layer
errors generated by MPLEG can basically fit the error pattern under actual conditions.

We also calculated the distance between actual error record R and generated error
record G at different division scales (s = 1, 2, 3, …, 5000). Figure 10(a) and (b) show
the curves ofDs(R,G) and Es(R,G)with the increasing of s, respectively. It can be seen

MPLEG: A Multi-mode Physical Layer Error Generator 67

from the figure that no matter what the value of s, the curve of Ds(R,G) is basically 0.
That is, the average distance between R and G remains very low, which indicates that
the distribution curves of R and G have significant similarities. At the time, Es(R,G)

increases with the increase of s. When s > 1000, Es(R,G) gradually decreases with the
increase of s. Under different values of s, the average value of Es(R,G) is 684.5, which
is still at a low level, indicating that the difference between R and G is small.

(a) s=1 (b) s=3 (c) s=5

(d) s=10 (e) s=20 (f) s=30

(g) s=50 (h) s=80 (i) s=100

Fig. 9. Vr and Vg in different s

68 X. Qi et al.

 (a) (b)

Fig. 10. Distance between R and G

5.3 Actual Link Layer Fault Tolerance Test

The purpose of MPLEG in this paper is to facilitate the test of the fault tolerance in
the link layer. In order to verify whether the function of MPLEG proposed in this paper
could test the fault tolerance function of the link layer comprehensively and reasonably,
we use fiber with poor link quality and normal fiber with the error generator to test a same
network environment respectively. Thenwe compare the performance differences of link
layer fault tolerance in these two different environments. Table 2 shows the number of
link layer retransmissions per second in the two error scenarios under different bit error
rates.

Table 2. Link layer retransmission number in different error rate

Error mode Number of error rate

3 * 10−9 2 * 10−8 1 * 10−7 3 * 10−6

Actual physical layer error 147 282 1218 14038

MPLEG 164 298 1176 14357

It can be seen from the table that MPLEG has an impact on the fault tolerance
processing of the link layer, which is basically the same as the impact of the physical
layer errors under the real link on the link layer. Under the two methods, the numbers of
retransmissions in the link layer are basically equal within a certain period of time. So
the transmission qualities of the two situation are same from the view of link layer. We
can simulate the bit error scenario on the real physical link and test the link layer fault
tolerance function using the physical layer error generation method in this paper.

6 Conclusion

This paper aims at the difficulty of effectively making errors on the physical link during
the design and verification process of the current high-speed interconnection network
chip, which makes it impossible to fully test and verify the fault tolerance function of the

MPLEG: A Multi-mode Physical Layer Error Generator 69

link layer. According to the actual error characteristics of the link, a configurable multi-
mode physical layer error generation method - MPLEG is proposed. Using MPLEG, a
configurable error mode that combines burst errors and uniform errors can be generated
based on actual link error patterns and scenarios. By comparing the actual physical link
error with the generated error, we find that MPLEG is similar to actual link layer error
in many aspects such as error mode, error distribution characteristics and impact on
the actual link layer fault tolerance processing. MPLEG can simulate the errors on the
physical link in the chip, and provide strong support for the test of the link layer fault
tolerance function.

References

1. Tanenbaum, A.S, Wetherall, D.J.: Computer Networks. 5 edn. (2010)
2. Synopsys VCS. https://www.synopsys.com/verification/simulation/vcs.html. Accessed 21

Apr 2020
3. Cadence Xcelium Logic Simulation. https://www.cadence.com/en_US/home/tools/system-

design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.
html. Accessed 21 Apr 2020

4. Casper, B.K., Haycok, M., Mooney, R.: An accurate and efficient analysis method for multi-
Gb/s chip-to-chip signaling schemes. In: IEEE Symposium on VLSI Circuits Digest of
Technical Papers, Honolulu, HI, USA (2002)

5. Casper, B., O’Mahony, F.: Clocking analysis, implementation and measurement techniques
for high-speed data links—a tutorial. IEEE Trans. Circ. Syst. 56(1), 17–39 (2009)

6. Ren, J., Oh, D.:Multiple edge responses for fast and accurate system simulations. IEEETrans.
Adv. Packag. 31(4), 741–748 (2008)

7. Chada, A.R., Wu, S., Fan, J., et al.: Efficient complex broadside coupled trace modeling and
estimation of crosstalk impact using statistical BER analysis for high volume. high perfor-
mance printed circuit board designs. In: IEEE 63rd Electronic Components and Technology
Conference (ECTC), Las Vegas, NV, pp. 2095–2101 (2013)

8. Li, Y.: BER performance analysis of high-speed parallel link. Master’s Thesis of XiDian
University (2015)

9. Hong, D., Ong, C.-K., Cheng, K.-T.: Bit-error-rate estimation for high-speed serial links.
IEEE Trans. Circ. Syst.—I: Regul. Pap. 53(12), 2616–2627 (2006)

10. Wang, C-X., Xu, W.: Packet-level error models for digital wireless channels. In: Proceeding
of IEEE ICC 2005, Seoul, Korea, pp. 2184–2189, May 2005

11. Salih, O.S., Wang, C-X., Mesleh, R., Ge, X., Yua, D.: Predicting burst error statistics of
digital wireless systems with HARQ. In: 9th International Wireless Communications and
Mobile Computing Conference (IWCMC) (2013)

12. Lampe, M., Rohling, H.: PER-prediction for PHY mode selection in OFDM communication
systems. In: Proceeding of IEEE GLOBECOM 2003, vol. 1, pp. 25–29, December 2003

13. Ericsson: System-level evaluation of OFDM - further considerations. 3GPP TSG-RAN
WG1#35, R1–031303, pp. 17–21, November 2003

14. Blankenship, Y.W., Sartori, P.J., Classon, B.K., Desai, V., Baum, K.L.: Link error prediction
methods for multicarrier systems. In: Proceeding of VTC 2004-Fall, Los Angeles, USA,
pp. 4175–4179, September 2004

15. Ansari, I.S., Yilmaz, F., Alouini, M.-S.: Performance analysis of free-space optical links over
Málaga (M) turbulence channels with pointing errors. IEEE Trans. Wirel. Commun. 15(1),
91–102 (2016)

16. Wu, K., Tan, H., Ngan, H., Liu, Y., Ni, L.M.: Chip error pattern analysis in IEEE 802.15.4.
IEEE Trans. Mob. Comput. 11(4), 543–552 (2012)

https://www.synopsys.com/verification/simulation/vcs.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html

Accelerator-Based, Application-Specific
and Reconfigurable Architecture

GNN-PIM: A Processing-in-Memory
Architecture for Graph Neural Networks

Zhao Wang1, Yijin Guan2, Guangyu Sun1(B), Dimin Niu2, Yuhao Wang2,
Hongzhong Zheng2, and Yinhe Han3

1 CECA, Peking University, Beijing, China
gsun@pku.edu.cn

2 Alibaba DAMO Academy, Hangzhou, China
3 Institute of Computing Technology,

Chinese Academy of Sciences, Beijing, China

Abstract. Graph neural networks (GNNs) have attracted increasing
interests in recent years. Due to the poor data locality and huge data
movement during GNN inference, it is challenging to employ GNN to pro-
cess large-scale graphs. Fortunately, processing-in-memory (PIM) archi-
tecture has been widely investigated as a promising approach to address
the “Memory Wall”. In this work, we propose a PIM architecture to
accelerate GNN inference. We develop an optimized dataflow to leverage
the inherent parallelism of GNNs. Targeting the dataflow, we further
propose a hierarchical NoC to perform concurrent data transmission.
Experimental results show that our design can outperform prior works
significantly.

1 Introduction

As the volume of non-Euclidean data [32] keeps growing, graph neural networks
(GNNs) have attracted great attention because of their capability to express
complex relationships and inter-dependency between objects. Inspired by the
success of convolutional neural networks (CNNs) in computer vision domain,
spatial-based GNNs have advanced rapidly in recent years. Most GNNs are com-
posed of several “convolutional” layers, as those in CNNs [11,19].

The “convolution” operation in GNN can be roughly divided into two
phases [30]. Aggregation Phase aggregates nodes’ information from their
multi-hop neighbours by pointer-chasing operations. This phase incurs inten-
sive random memory accesses. Handling Phase feeds the aggregated features
into a neural network to generate new features. Both computation and aggre-
gation are regular in this phase. Having totally different processing patterns,
the two phases consume considerable yet distinct resources. Thus, each of them
may become the bottleneck of the whole system. We can tell that GNN pro-
cessing encounters similar challenges as those in the graph processing and CNN
inference, which have been well studied separately.

Recently, researchers propose to accelerateGNNprocessing by optimizing both
software framework [20] and hardware architecture [30]. Ma et al. [20] developed
c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 73–86, 2020.
https://doi.org/10.1007/978-981-15-8135-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_6&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_6

74 Z. Wang et al.

a programming framework for GNN processing by extending conventional edge-
centric processing framework. Yan et al. [30] employs a hybrid architecture to han-
dle the two phases separately. However, the size of graph datasets for GNNs keeps
increasing in many applications, such as, social networks and e-commerce trans-
actions [11,22,28]. As a result, the requirements for large capacity and high band-
width of the memory subsystem are further raised.

To address this challenge, the processing in memory (PIM) architecture has
been considered as a promising solution. It can greatly alleviate the overheads
of data movement by offloading computation tasks to the storage. PIM architec-
tures have been extensively explored for both DNN models and graph processing
applications [8,12,24,27]. However, it is inefficient to directly employ prior works
for GNNs. For example, PRIME [8] proposes a comprehensive design of process-
ing elements for NN processing on ReRAM. But its processing dataflow is not
suitable for GNNs, and the bus-based communication among PEs may cause sig-
nificant performance loss during the random sampling in the aggregation phase.
Customized for graph processing, GraphR [27] addresses the random access prob-
lem in aggregation phase by employing edge-center processing model. However,
the architecture for a conventional graph task lacks the support for efficient
tensor processing.

Taking both aggregation phase and handling phase into consideration, we
propose a PIM architecture equipped with a carefully designed NoC, called
GNN-PIM. Our architecture employs SAGA [20] as the programming model
and provides efficient PIM implementation. In GNN-PIM, we first leverage the
computing capability of PIM architecture to support operations in handling
phase. Then, we design a hierarchical interconnection network for efficient data
movement in the aggregation phase. To the best of our knowledge, this is the
first PIM accelerator proposed for GNNs. The contributions of this work are
summarized as follows:

– By exploiting the inherent parallelism of GNNs, we propose a PIM architec-
ture called GNN-PIM to accelerate the inference.

– We propose an optimized dataflow to map GNN inference efficiently on GNN-
PIM, which is compatible with SAGA programming model.

– To facilitate the dataflow, we develop a hierarchical NoC providing high-
bandwidth for data transmission.

The rest of this paper is organized as follows. In Sect. 2, we briefly review
the computation of GNN inference with SAGA model. In addition, the basics of
PIM architecture are introduced. In Sect. 4, we propose the GNN-PIM architec-
ture and describe the execution dataflow on it. The hierarchical interconnection
network of GNN-PIM is then presented in Sect. 3. Section 6 provides evaluation
to demonstrate the efficiency of GNN-PIM, and Sect. 7 concludes this paper.

2 Background

In this section, we first introduce the operations of GNN inference and a ded-
icated programming model called SAGA. Then, we present basics about PIM
designs.

GNN-PIM: A Processing-in-Memory Architecture for GNN 75

2.1 GNN Inference and SAGA

GNNs are emerging neural networks that operate directly on graphs with non-
Euclidean data. The idea of GNNs roots in CNNs and graph embedding [32].
Inheriting the ideas of parameter sharing from CNN and recursive execution from
RNN, GNN convolution with kernel size one could be formulated as follows:

ht
v = f(ht−1

v′∈N(v), h
t−1
v , Ie)

where N(v) is the neighbourhood of v, ht
v is the feature of vertex v in iteration

t, and Ie are the labels of edges that are connected with v. To process the
operations involved in GNN inference, vertices need to fetch features from their
neighboring vertices. Since the neighbours of nodes are relevant to the topology
of graph, random memory access occurs frequently. Such random memory access
pattern can cause significant bandwidth waste and performance degradation.

Algorithm 1. GGCN in SAGA
input: p = [W l

H , W l
C , W l

e], vertexl

output: vertexl+1

1: edgel = Scatter(vertexl)
2: acc = ApplyEdge(edgel, p)
3: function ApplyEdge(edgel, p)
4: η = sigmoid(p.W l

H ⊗ edgel.src + p.W l
C ⊗ edgel.dst)

5: return η � edgel.src
6: end function
7: accum = Gather(acc)
8: vertexl+1 = ApplyVertex(vertexl, accum, p)
9: function ApplyVertex(vertexl, accum, p)

10: return ReLU(p.W l ⊗ accum);
11: end function

To regulate the processing of GNN inference, Neugraph [20] proposes a pro-
gramming model called SAGA. SAGA converts a primitive program to the edge-
centric dataflow and alleviates random memory access. In SAGA, a GNN is
decomposed and converted into ApplyEdge and ApplyVertex to handle edges
and vertices, respectively. Combined with Scatter and Gather for data transmis-
sion, the processing of GNN inference is illustrated in Algorithm1.

ApplyEdge takes parameters of the network (p) and scattered features (edge)
as input, and generates the partially accumulated features (acc) which is further
reduced by Gather. The inputs of ApplyVertex consist of accum, vertex data
tensor (vertex), and p. ApplyVertex outputs new vertex features through a neural
network, usually an MLP. Scatter and Gather perform data broadcasting before
ApplyEdge and data gathering before ApplyVertex, respectively.

76 Z. Wang et al.

2.2 PIM Basis

PIM architecture breaks the “Memory Wall” by moving computation to where
the data are stored. Thus, it is friendly for memory-intensive applications such as
graph processing and deep neural networks. Recently, various PIM architectures
have been proposed. Basically, these approaches can be categorized according to
the computation unit.

For the first type, the computation unit is still based on the traditional logic,
which is integrated close to or inside the memory array [6,7,10,25]. This is
also known as near-data-processing (NDP). For the second type, the computing
unit is just built using the memory cell. Prior works have demonstrated that
both traditional SRAM and DRAM technologies [1,17,23] and emerging memory
technologies, such as ReRAM [24,29,31], MRAM [3–5], and PCM [18], can be
leveraged for PIM designs.

Recently, many works [2,8,12,21,24,26,27] have revealed the potential ben-
efits of using PIM architectures for both DNN and graph computing applica-
tions. However, these accelerators either lack the ability to handle graph-like
data transmission pattern during GNN inference, or are unable to process NN
computation efficiently. As a result, we propose the GNN-PIM architecture to
simultaneously address the two drawbacks of prior works.

3 GNN-PIM Architecture

In this section, we introduce GNN-PIM’s hierarchical architecture. The top hier-
archy is Node Cluster, composed of a number of Nodes. Each node owns
several memory chunks and a set of processing elements (PEs).

3.1 Node

Node is the unit for performing computation on the sub-graphs. They are funda-
mental modules to build the whole architecture. As shown in Fig. 1, the micro-
architecture of nodes includes several memory chunks and a processing core.

(e)

(b)

(e)

(b)

(e)(e)

(d)(c)

(a)

(b)

(a)(a)(a)

Ed
ge

 C
hu

nk
 M

em
or

y

Computation Subarray

Node Cluster

Fig. 1. Overall architecture of GNN-PIM

GNN-PIM: A Processing-in-Memory Architecture for GNN 77

A node can be configured as either an E-Node or a V-Node, depending on the
type of data stored in the memory chunk that they are working on. During GNN
inference, E-Nodes are assigned with computation on edges, i.e. ApplyEdge. V-
Nodes handle remaining tasks, consisting of Scatter, Gather and ApplyVertex.
To simplify hardware design and provide more flexibility for mapping strategy,
E-Node and V-Node share the same architecture and just differ in control logic
which could be configured according to graph status.

We equip each V-Node with a processing core, weight memory for the storage
of neural weights of ApplyVertex, along with temporary vertex memory and
stationary vertex memory to store source vertex chunks and destination vertex
chunks, respectively. An E-Node also consists of a processing core, a weight
memory, as well as an input memory for storing input features of the layer that
they are assigned to.

Matrix-Vector (MV) multiplication is the key operation of a processing core.
It is used to process the most computing intensive functions in the phases of
ApplyEdge and ApplyVertex. The computing architecture for MV operations
have been extensively studied in prior works. Note that several non-MV functions
are also needed, which are implemented with dedicated logic.

3.2 Node Cluster

Multiple Nodes can be grouped into a Node Cluster connected by NoC. The
node cluster is composed of several nodes connected by a interconnection net-
work. Some nodes are configured to be V-Nodes and the others are E-Nodes
according to the sub-graph topology. In this way, more edges exist in the sub-
graph, more nodes are configured to be E-Nodes. Since we employ a homogeneous
design for the underlying hardware, all the nodes can be configured arbitrarily.
As a result, GNN-PIM is able to configure nodes to balance the workloads accord-
ing to the graph topology. Nodes in GNN-PIM work more like Multi-Processors
System-on-Chip (MPSoC), transmitting data via the network-on-chip (NoC).
In order to design an efficient NoC, we first need to understand the execution
dataflow, which is introduced in the next section.

4 Execution Dataflow

We design an optimized dataflow that can map SAGA to GNN-PIM in a pipelin-
ing style. It is based on the phase sequence of Scatter, ApplyEdge, Gather, and
ApplyVertex.

4.1 Mapping Strategy

As shown in Fig. 2, the whole graph is divided into multiple sub-graphs by divid-
ing vertices into multiple chunks. Edges, which take the vertices in the chunk
as destination, are also contained in the sub-graph. The set of edges in the sub-
graph could be further divided by their source vertices. We put the edges with

78 Z. Wang et al.

Fig. 2. Edge and vertex chunks partitioning and mapping strategy

source vertices in the same sub-graph into a block, named as edge chunk. And we
assign a cluster of our architecture with a sub-graph, which contains a column
of edge chunks for processing ApplyEdge on, together with the vertex chunk for
handling ApplyVertex phase. In a cluster, we let an E-Node process a layer of
neural network of ApplyEdge, and V-Nodes are responsible for handling Scatter,
Gather and ApplyVertex.

As for most of natural graphs obey the power-law, the edges in each chunk
may be diverse significantly, resulting in imbalanced workload for clusters. To
handle this situation, we employ the Index Mapping Interval-Block Partition
(IMIB) algorithm introduced in [9]. IMIB firstly removes the blank vertices,
then hashes the vertices into different chunks using the modulo function. The
time complexity of this algorithm is O(m), where m denotes the size of edges.

4.2 Setup and Terminology

ApplyEdge is the most time-consuming state, which is normally composed of
multiple layers of neural networks. To simplify discussion, we assign the compu-
tation task of each layer to an individual E-node. In the example of Fig. 2, the
ApplyEdge phase employs a three-layer MLP. Thus, we have three E-nodes in a
cluster for each layer computation.

Terminologies

– Eij denotes the edge chunk located at the i-th row and the j-th column, and
Vi means the i-th vertex chunk.

– Li denotes the i-th E-Node, which handles the computation of i-th layer
ApplyEdge.

– S(Eij) denotes the output features of Scatter, which take Vi and Vj as input
and process the operations related to Eij .

– Lt(Eij) denotes the output features of t-th layer on the edge chunk Eij .

GNN-PIM: A Processing-in-Memory Architecture for GNN 79

4.3 Dataflow Description

We divide the whole execution flow into multiple rounds. A round can be further
divided into two sub-rounds. During the computation sub-round, input features
and neural weights stored in their local buffer are fed into processing arrays
to do the computation. During each communication sub-round, nodes forward
their output features, and clusters exchange vertex chunks stored in temporary
memories with each other in a circular manner, as shown in Fig. 3.

Fig. 3. Edge chunks being processed in each round

Initially, the V-Node in the cluster loads the i-th vertex chunk and copies
it into both the stationary vertex memory and temporary vertex memory. In
the following paragraphs, we will introduce the details in Round 0, Round 1 to
illustrate how the dataflow works.

Fig. 4. GNN-PIM dataflow during Round 0

80 Z. Wang et al.

The dataflow during Round 0 is shown in Fig. 4. During the computation
sub-round, clusters load edge chunks in the diagnose of the adjacent matrix of
the graph, as shown in Fig. 3. Then V-Nodes feed data in edge and vertex chunks
into processing cores, respectively. During the communication sub-round, the V-
Node in cluster 0 forwards its output features S(E00) to the edge node. Cluster
0 transmits its vertex chunk V0 to its neighbor cluster 2. At the same time, it
receives the vertex chunk V1 from cluster 1.

Fig. 5. GNN-PIM dataflow during Round 1

The dataflow during Round 1 is illustrated in Fig. 5. During the computation
sub-round, node clusters shift the edge chunks they works on, loading new edge
chunks from edge chunk memory, as Fig. 3 shows. Noted that the vertex chunks
stored in stationary vertex memory and temporary vertex memory are exactly
the destination vertices and source vertices of the new edge chunk respectively.
E-node L0 starts its computation in this round. During the communication sub-
round, both V-Nodes and E-Nodes forward their outputs to their following nodes
in the pipeline. At the same time, each cluster also forwards its vertex chunk
accordingly.

In the subsequent rounds, GNN-PIM repeats this process until clusters
receive the same data as the one in their stationary memory, which indicates
that ApplyEdge and Gather finish. After that, V-Nodes continue to perform
ApplyVertex on the aggregated data to generate new features. The ApplyVertex
phase is not shown due to page limitation.

5 Interconnection Hierarchy

As reported by Ji et al. [12], data transmission may consume considerable time,
even a number of times longer than computation does. For GNN inference pro-
cessing, the transmission is much more complex by combining all the 4 different
phases in SAGA. According to previous work [16], it is inefficient to employ
basic interconnection topology such as bus or mesh for handling GNN’s trans-
mission patterns. As a result, we develop a 2-layer hierarchical interconnection

GNN-PIM: A Processing-in-Memory Architecture for GNN 81

network for handling not only local communication efficiently in the cluster but
also global communication between clusters with low power and area overhead.

a) b)

Fig. 6. Network hierarchy

Inter-cluster Interconnection Networks: We use the Octagon topology [15]
for the global network, as shown in Fig. 6(a). Each block on the octagon is a node
cluster. The O(n) ring topology is cost effective, and can fit data movement pat-
tern of the node cluster architecture well. The Octagon topology is constructed
based on a ring network. It guarantees that there exist at most two hops of
a transaction between two arbitrary routers in the same ring. As for cross-ring
transaction, the maximum number of hops increases to 2n, where n is the number
of pass-by rings. Furthermore, the low complexity of global wiring demonstrates
the great scalability of GNN-PIM’s networks.

Noted that the main cost of Scatter is to move data between clusters. To
illustrate the superiority of our dataflow on this topology, we use the total hops
in global network as the metric since traversing through global wires consumes
much more time and energy than local ones. There are 8 clusters in total and
they are connected by a single Octagon Ring. Without considering deadlock or
non-optimal routing, the minimal global hops of preparing data for an E-Node is
1× 3

7 +2× 4
7 = 1.57 on average. And the number decreases to 1 by employing the

optimized dataflow, as each transaction is only between two adjacent clusters.
Furthermore, most nodes keep busy and no spatial broadcast is needed, which
eliminates the bandwidth demand of global interconnection network. The storage
overheads consist of the vertex of the graph and one edge chunk per cluster.
These overheads can be ignored, compared with holding the whole edge data.

Intra-cluster Interconnection Networks: The topology employed to con-
nect nodes in the same group is illustrated in Fig. 6(b), and each router is in
charge of the data transmission related to a node. In this example, n routers are
connected via the local network. Each router is connected to other logn routers,
i.e. each router has the radix of logn. Since each number with h = logn bits
can change to another number with the same bit in h steps by inverting single
bit per step, each transaction goes through at most logn hops from source to
destination.

82 Z. Wang et al.

6 Evaluation

In this section, we first present the detailed evaluation setup. It is worth noticing
that GNN-PIM is applicable for various memory technologies, and we choose
ReRAM to prototype GNN-PIM in this work. Then we perform comparison
between GNN-PIM and prior works in performance. We also present compre-
hensive analysis on power consumptions of GNN-PIM.

6.1 Benchmark

We use the datasets mentioned in Neugraph [20] to evaluate GNN-PIM’s perfor-
mance and power consumptions. The vertex number, edge number, feature size,
and model size of these real-world graphs are summarized in Table 1.

Table 1. Summary of real-world graphs

Dataset Vertex Edge Feature Storage

pubmed 19.7K 108.4K 500 500 KB

blog 10.3K 668.0K 128 2.6 MB

redditsmall 58.2K 1.4M 300 5.8 MB

redditfull 2.4M 705.9M 300 2883 MB

enwiki 3.6M 276.1M 300 1118 MB

amazon 8.6M 231.6M 96 960 MB

6.2 Methodology

Baseline: We employ a state-of-the-art design, PRIME [8], as our baseline. We
adapt the size of PRIME circuits and scale the power and performance reported
in that paper for a fair comparison. For simplicity, we treat its interconnection
topology as a bus.

GNN-PIM Configuration: We set the overall size of ReRAM to 16 GB,
and it is divided into 8 clusters with 2 GB each. There are 32 nodes in each
cluster, connected by local networks. We statically assign 4 of them as V-
Nodes while the other 28 nodes are N-Nodes. For processing elements, we adapt
the same configurations used in PRIME [8]. Resolution of ADC and DAC is
5 bits and 2 bits, respectively. The power and area of the circuit are mod-
eled based on ISAAC [24]. The HRS/LRS resistances are 25 MΩ/50 KΩ, and
read/write voltages are 0.7 V/2 V. The latency and energy cost of read/write are
29.31 ns/50.88 ns and 1.08 pJ/3.91 nJ, respectively. The on-chip network design
adapts Booksim [13] to simulate the latency, and employ the model proposed
in ORION [14] to simulate power consumption and area overhead of the NoC.
Both global network and local network work on 1 GHz. 4 nodes share a physical
router with 1 global channel and 7 local channels. To fully utilize the bandwidth
of local networks, we place V-Nodes of a cluster in different physical routers.

GNN-PIM: A Processing-in-Memory Architecture for GNN 83

6.3 Performance Results

The time consumption normalized to PRIME is illustrated in Fig. 7. The per-
formance of PRIME is obtained by applying the dataflow generated by SAGA
framework directly on its circuits. PRIME’s primitive architecture leads to inten-
sive competition and conflicts while using bus for data communication. As a
result, the majority of PEs stay idle waiting for the data.

Therefore, the performance improvement of GNN-PIM comes from two folds.
On one hand, hierarchy interconnection as well as optimized dataflow cooperate
to reduce data transmission latency. On the other hand, parallel broadcast mech-
anism delivers data to multiple processing elements simultaneously, enabling
more PEs working in parallel.

Fig. 7. Speedup over mapping GNNs directly on PRIME

Figure 8 illustrates the breakdown of power consumption, in which we choose
GGCN as the benchmark. The power consumption of NoC could be heavy when

Fig. 8. Breakdown of power consumption

84 Z. Wang et al.

the graph is sparse or configured with short feature vectors. There are consid-
erable redundant data transmission brought by edge-center programming model
when the graph has high sparsity. Meanwhile, the feature size F will influence
the computation with the factor of F 2 for matrix-vector multiplications, while
for communication the factor is just F .

7 Conclusions

In this paper, we propose GNN-PIM, a PIM architecture for processing GNN
inference. GNN-PIM employs a PIM-based hierarchical architecture with high
throughput and efficiency. Besides, we perform customized optimizations on the
dataflow, and propose a hierarchical NoC design to fully utilize the improvements
brought by the optimized dataflow. Experimental results show that GNN-PIM
achieves up to 52x speedup compared with prior designs.

Acknowledgement. This work is supported by National Key Research and Develop-
ment Project of China (Grant No. 2018YFB1003304) and Beijing Academy of Artificial
Intelligence (BAAI).

References

1. Aga, S., Jeloka, S., Subramaniyan, A., Narayanasamy, S., Blaauw, D., Das, R.:
Compute caches. In: 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 481–492. IEEE (2017)

2. Ahn, J., Hong, S., Yoo, S., Mutlu, O., Choi, K.: A scalable processing-in-memory
accelerator for parallel graph processing. In: Proceedings of the 42nd Annual Inter-
national Symposium on Computer Architecture, Portland, OR, USA, 13–17 June
2015, pp. 105–117 (2015). https://doi.org/10.1145/2749469.2750386

3. Angizi, S., He, Z., Fan, D.: PIMA-logic: a novel processing-in-memory architecture
for highly flexible and energy-efficient logic computation. In: Proceedings of the
55th Annual Design Automation Conference, pp. 1–6 (2018)

4. Angizi, S., He, Z., Rakin, A.S., Fan, D.: CMP-PIM: an energy-efficient comparator-
based processing-in-memory neural network accelerator. In: Proceedings of the
55th Annual Design Automation Conference, pp. 1–6 (2018)

5. Angizi, S., Sun, J., Zhang, W., Fan, D.: Aligns: a processing-in-memory accelerator
for DNA short read alignment leveraging SOT-MRAM. In: 2019 56th ACM/IEEE
Design Automation Conference (DAC), pp. 1–6. IEEE (2019)

6. Asghari-Moghaddam, H., Son, Y.H., Ahn, J.H., Kim, N.S.: Chameleon: versatile
and practical near-DRAM acceleration architecture for large memory systems.
In: 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 1–13. IEEE (2016)

7. Boroumand, A., et al.: CoNDA: efficient cache coherence support for near-data
accelerators. In: Proceedings of the 46th International Symposium on Computer
Architecture, pp. 629–642 (2019)

8. Chi, P., et al.: PRIME: a novel processing-in-memory architecture for neural net-
work computation in ReRam-based main memory. In: 43rd ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2016, Seoul, South
Korea, 18–22 June 2016, pp. 27–39 (2016). https://doi.org/10.1109/ISCA.2016.13

https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1109/ISCA.2016.13

GNN-PIM: A Processing-in-Memory Architecture for GNN 85

9. Dai, G., et al.: GraphH: a processing-in-memory architecture for large-scale graph
processing. IEEE Trans. CAD Integr. Circ. Syst. 38(4), 640–653 (2019). https://
doi.org/10.1109/TCAD.2018.2821565

10. Farmahini-Farahani, A., Ahn, J.H., Morrow, K., Kim, N.S.: NDA: near-DRAM
acceleration architecture leveraging commodity DRAM devices and standard mem-
ory modules. In: 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), pp. 283–295. IEEE (2015)

11. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on
large graphs. In: Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017, pp. 1024–1034 (2017). http://papers.nips.cc/paper/6703-
inductive-representation-learning-on-large-graphs

12. Ji, Y., et al.: FPSA: a full system stack solution for reconfigurable ReRam-based
NN accelerator architecture. In: Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2019, Providence, RI, USA, 13–17 April 2019, pp. 733–747
(2019). https://doi.org/10.1145/3297858.3304048

13. Jiang, N., et al.: A detailed and flexible cycle-accurate network-on-chip simulator.
In: 2012 IEEE International Symposium on Performance Analysis of Systems &
Software, Austin, TX, USA, 21–23 April 2013, pp. 86–96 (2013). https://doi.org/
10.1109/ISPASS.2013.6557149

14. Kahng, A.B., Li, B., Peh, L., Samadi, K.: ORION 2.0: a power-area simulator
for interconnection networks. IEEE Trans. Very Large Scale Integr. Syst. 20(1),
191–196 (2012). https://doi.org/10.1109/TVLSI.2010.2091686

15. Karim, F., Nguyen, A., Dey, S.: An interconnect architecture for networking sys-
tems on chips. IEEE Micro 22(5), 36–45 (2002)

16. Kwon, H., Samajdar, A., Krishna, T.: Rethinking NoCs for spatial neural network
accelerators. In: Proceedings of the Eleventh IEEE/ACM International Symposium
on Networks-on-Chip, NOCS 2017, Seoul, Republic of Korea, 19–20 October 2017,
pp. 19:1–19:8 (2017). https://doi.org/10.1145/3130218.3130230

17. Li, S., Niu, D., Malladi, K.T., Zheng, H., Brennan, B., Xie, Y.: DRISA: a DRAM-
based reconfigurable in-situ accelerator. In: 2017 50th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pp. 288–301. IEEE (2017)

18. Li, S., Xu, C., Zou, Q., Zhao, J., Lu, Y., Xie, Y.: Pinatubo: a processing-in-memory
architecture for bulk bitwise operations in emerging non-volatile memories. In:
Proceedings of the 53rd Annual Design Automation Conference, pp. 1–6 (2016)

19. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural
networks. In: 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, 2–4 May 2016, Conference Track Proceedings (2016).
http://arxiv.org/abs/1511.05493

20. Ma, L., et al.: Neugraph: parallel deep neural network computation on large graphs.
In: 2019 USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA,
USA, 10–12 July 2019, pp. 443–458 (2019). https://www.usenix.org/conference/
atc19/presentation/ma

21. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, 6–10 June 2010, pp. 135–146 (2010).
https://doi.org/10.1145/1807167.1807184

22. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Col-
lective classification in network data. AI Mag. 29(3), 93–106 (2008). http://www.
aaai.org/ojs/index.php/aimagazine/article/view/2157

https://doi.org/10.1109/TCAD.2018.2821565
https://doi.org/10.1109/TCAD.2018.2821565
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
https://doi.org/10.1145/3297858.3304048
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1109/TVLSI.2010.2091686
https://doi.org/10.1145/3130218.3130230
http://arxiv.org/abs/1511.05493
https://www.usenix.org/conference/atc19/presentation/ma
https://www.usenix.org/conference/atc19/presentation/ma
https://doi.org/10.1145/1807167.1807184
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2157
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2157

86 Z. Wang et al.

23. Seshadri, V., et al.: Ambit: in-memory accelerator for bulk bitwise operations using
commodity DRAM technology. In: 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 273–287. IEEE (2017)

24. Shafiee, A., et al.: ISAAC: a convolutional neural network accelerator with in-
situ analog arithmetic in crossbars. In: 43rd ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2016, Seoul, South Korea, 18–22
June 2016, pp. 14–26 (2016). https://doi.org/10.1109/ISCA.2016.12

25. Singh, G., et al.: NAPEL: near-memory computing application performance pre-
diction via ensemble learning. In: 2019 56th ACM/IEEE Design Automation Con-
ference (DAC), pp. 1–6. IEEE (2019)

26. Song, L., Qian, X., Li, H., Chen, Y.: Pipelayer: a pipelined ReRam-based accelera-
tor for deep learning. In: 2017 IEEE International Symposium on High Performance
Computer Architecture, HPCA 2017, Austin, TX, USA, 4–8 February 2017, pp.
541–552 (2017). https://doi.org/10.1109/HPCA.2017.55

27. Song, L., Zhuo, Y., Qian, X., Li, H.H., Chen, Y.: GraphR: accelerating graph
processing using ReRam. In: IEEE International Symposium on High Performance
Computer Architecture, HPCA 2018, Vienna, Austria, 24–28 February 2018, pp.
531–543 (2018). https://doi.org/10.1109/HPCA.2018.00052

28. Tang, L., Liu, H.: Relational learning via latent social dimensions. In: Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Paris, France, 28 June–1 July 2009, pp. 817–826 (2009). https://doi.
org/10.1145/1557019.1557109

29. Xie, L., Du Nguyen, H.A., Taouil, M., Hamdioui, S., Bertels, K.: Fast boolean logic
mapped on memristor crossbar. In: 2015 33rd IEEE International Conference on
Computer Design (ICCD), pp. 335–342. IEEE (2015)

30. Yan, M., et al.: HyGCN: a GCN accelerator with hybrid architecture. CoRR
abs/2001.02514 (2020). http://arxiv.org/abs/2001.02514

31. Yu, J., Du Nguyen, H.A., Xie, L., Taouil, M., Hamdioui, S.: Memristive devices
for computation-in-memory. In: 2018 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pp. 1646–1651. IEEE (2018)

32. Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Sun, M.: Graph neural networks:
a review of methods and applications. CoRR abs/1812.08434 (2018). http://arxiv.
org/abs/1812.08434

https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/HPCA.2017.55
https://doi.org/10.1109/HPCA.2018.00052
https://doi.org/10.1145/1557019.1557109
https://doi.org/10.1145/1557019.1557109
http://arxiv.org/abs/2001.02514
http://arxiv.org/abs/1812.08434
http://arxiv.org/abs/1812.08434

A Software-Hardware Co-exploration
Framework for Optimizing

Communication in Neuromorphic
Processor

Shiying Wang, Lei Wang(B), Ziyang Kang, Lianhua Qu, Shiming Li,
and Jinshu Su

School of Computer, National University of Defense Technology, Changsha, China
{wangshiying18,leiwang,kangziyang14,qulianhua14,

lishiming15,sjs}@nudt.edu.cn

Abstract. Spiking neural networks (SNN) has been widely used to solve
complex tasks such as pattern recognition, image classification and so
on. The neuromorphic processors which use SNN to perform computa-
tion have been proved to be powerful and energy-efficient. These proces-
sors generally use Network-on-Chip (NoC) as the interconnect structure
between neuromorphic cores. However, the connections between neurons
in SNN are very dense. When a neuron fire, it will generate a large num-
ber of data packets. This will result in congestion and increase the packet
transmission latency dramatically in NoC.

In this paper, we proposed a software-hardware co-exploration frame-
work to alleviate this problem. This framework consists of three parts: soft-
ware simulation, packet extraction&mapping, and hardware evaluation.
At the software level, we can explore the impact of packet loss on the clas-
sification accuracy of different applications. At the hardware level, we can
explore the impact of packet loss on transmission latency and power con-
sumption in NoC. Experimental results show that when the neuromorphic
processor runs MNIST handwritten digit recognition application, the com-
munication delay can be reduced by 11%, the power consumption can be
reduced by 5.3%, and the classification accuracy can reach 80.75% (2%
higher than the original accuracy). When running FSDD speech recog-
nition application, the communication delay can be reduced by 22%, the
power consumption can be reduced by 2.2%, and the classification accu-
racy can reach 78.5% (1% higher than the original accuracy).

Keywords: Neuromorphic processor · Communication optimization ·
Network-on-Chip · Reservoir computing

1 Introduction

Neuromorphic computing is an important branch of artificial intelligence. The con-
cept of Neuromorphic computing was proposed by Carver Mead [10], which refers
to the use of large-scale integrated circuit systems to simulate the neurobiological
structure existing in the nervous system to complete the calculation of large-scale
c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 87–100, 2020.
https://doi.org/10.1007/978-981-15-8135-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_7&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_7

88 S. Wang et al.

neural networks. Recently, some excellent neuromorphic processors have emerged,
such as SpiNNaker [6], BrianScales [18], TrueNorth [1], DYNAPs [16], Loihi [4],
and Tianjic [17]. All of these neuromorphic processors contain thousands of neu-
rons and synaptic connections. For better scalability and parallelism, they mostly
use Network-on-Chip (NoC) to make connections between neurons.

In general, Spiking neural network (SNN) is used in the neuromorphic pro-
cessor. SNN is the third generation artificial neural network (ANN) [15] which
is originally inspired by brain science. It has been proved to be a powerful and
energy-efficient computation model and has been applied to complex tasks such
as pattern recognition [20], image classification [9], natural language process-
ing [5], etc. Many SNN models can be implemented on the neuromorphic proces-
sor, such as multilayer perceptron (MLP), spiking convolutional neural network
(SCNN) [8], reservoir computing (RC) [21], etc. Compared with other mod-
els, RC has more advantages in terms of application scope and implementation
complexity.

Unlike other SNN models, neurons in the RC model can be connected not
only to other neurons but also to themselves. This characteristic makes the
connections denser among the neurons. Figure 1 shows the distribution of the
number of neuron connections in an RC network. The horizontal axis represents
the number of connections. The vertical axis refers to the number of neurons
corresponding to a specific number of connections. We can find that all neurons
are connected to at least one-third of the neurons in the RC.

Fig. 1. Connections distribution in an RC network: 1000 neurons in total, 800 excitory
neurons, 200 inhibit neurons. Pee = 0.40, Pei = 0.40, Pie = 0.50.

In SNN, one pre-neuron cloud connects a large number of post-neurons. When
the pre-neurons membrane voltage exceeds its threshold and fire, the same count
of spike will be generated. Therefore, when the RC network is running in a neuro-
morphic processor, a large number of data packets will be generated at the same
time. This will cause packet congestion in NoC and increase packet transmis-
sion latency. Figure 2 is a simple running process in a neuromorphic processor.
Neuron A connects three neurons B, C, and D. They are mapped to differ-
ent neuromorphic cores. At time-step t, the membrane voltage of A exceeds its
threshold. Then, neuron A generates a spike, and send it to all the post-neurons
connected to it. Because the router cannot transmit all packets immediately, the
final packet has a greater transmission latency than other packets.

Software-Hardware Co-exploration Framework 89

Fig. 2. The running process of SNN in neuromorphic processor. Neuron A connects
three neurons B, C, and D. At time-step t, neuron A generates a spike.

When a large number of packets need to be transmitted at the same time, it
will cause NoC congestion. At the same time, through experiments, we find that
when a small number of data packets are discarded, it doesn’t affect the classifi-
cation accuracy of the software. Based on the above problems and phenomena, in
this paper, we proposed a software-hardware co-exploration framework to opti-
mize the communication in a neuromorphic processor. This framework consists
of three parts: software simulation, packet extraction & mapping, and hardware
evaluation. According to it, we can optimize the communication in the neuro-
morphic processor while ensuring the accuracy of software recognition. To this
end, we make the following contributions:

1) We explored the impact of packet loss on the accuracy of SNN classification.
It is found that a low spike loss rate doesn’t affect the classification accuracy
of SNN. In some cases, the classification accuracy is even higher than the
original accuracy.

2) We propose a software-hardware co-exploration framework for optimizing
communication in a neuromorphic processor. It can alleviate the congestion
in NoC and reduce the packet transmission latency without reducing the
accuracy of SNN classification.

After optimization, when the neuromorphic processor runs MNIST handwrit-
ten digit recognition application, the communication delay can be reduced by
11%, the power consumption can be reduced by 5.3%, and the classification accu-
racy can reach 80.75% (2% higher than the original accuracy). When running
FSDD speech recognition application, the communication delay can be reduced
by 22%, the power consumption can be reduced by 2.2%, and the classification
accuracy can reach 78.5% (1% higher than the original accuracy).

90 S. Wang et al.

2 Background and Related Work

2.1 RC Model

Reservoir calculation (RC) is a type of RNN model, which is mainly composed
of an input layer, reservoir layer, and output layer, as shown in the Fig. 3. The
reservoir layer consists of a certain number of excitatory spiking neurons and
inhibitory spiking neurons. According to the complexity of the task, the number
of two types of neurons and the connection probability between them are dif-
ferent. WIn, WR, and WOut represent the weights of the input layer, reservoir
layer, and output layer, respectively. After the reservoir layer receives the input
spike train and runs for a certain period, it will generate an RC state (usually
the membrane voltage of the neurons in the RC). The output layer records the
state of neurons in the reservoir layer.

Fig. 3. The architecture of RC.

2.2 Network-on-Chip

With the advent of multi-core processors, the design interconnect of System
on Chip (SoC) faces many challenges. SoCs typically use a Network on Chip
(NoC) [2,12] solution, with various NoC topologies and router architectures,
and provide low power and high quality of service (QoS) designs. NoC has many
components, such as topology, routing algorithms, and router microstructure
design.

TrueNorth [1] is a neuromorphic chip developed by IBM. In TrueNorth, its
time-step is 1 ms. Operation in each time-step is divided into two phases: In
the first phase, data packets will be routed through the Router. When the data
packet reaches the corresponding core, it will change the membrane voltage of the
corresponding neuron. In the second phase, all cores will receive a synchronizing
signal with a period of 1 ms. Once the synchronizing signal is received, all neurons
need to check whether their membrane voltage exceeds the threshold. If the
threshold is exceeded, the neuron will send a data packet to the network.

TrueNorth uses a global synchronous clock to synchronize each time-step,
so the size of the global clock must consider the worst case in the entire chip.
However, not all packets have a large transmission latency. So its synchronization
method will reduce the efficiency of the hardware.

Software-Hardware Co-exploration Framework 91

3 The Software-Hardware Co-exploration Framework

Fig. 4. Software hardware co-exploration framework.

3.1 Real-Time Definition

Define that a synchronization period in neuromorphic processor consumes L
cycles. When an application is running in a neuromorphic processor, if the data
packets generated by it meet the following conditions, we think that the appli-
cation meets the real-time requirements of the neuromorphic processor:

Max(Latencyi) < L (1)

Among them, i belongs to [0, N−1], N is the total amount of data packets gener-
ated by the application in the inference process. In other words, the transmission
latency of all packets is less than the length of the synchronization cycle.

3.2 Framework

Our proposed framework is shown in Fig. 4. It mainly composed three parts:

Software Level Simulation. We use the SNN simulator to run the RC net-
work. When neurons communicate, we drop packets with different probabilities
and explore the impact of different packet loss rates on software classification
accuracy.

Many SNN simulators can be used, such as Brian2, CARLsim [3], Nest [7],
etc. They can be used to simulate the behavior of neurons and simulate the
operation of SNN. At the same time, log files can be extracted during the running
process. During initialization, we can determine the connection probability and
the weight of the connection in the network. After initialization, we extract the
connection relationship.

We explore the impact of packet loss on the accuracy of SNN classification as
follows: 1) Generate application input spike. 2) Train the readout layer, perform

92 S. Wang et al.

classification, and finally test multiple test-sets to get the accuracy of the classi-
fication. 3) Change the different spike loss rates to get the relationship between
classification accuracy and spike loss rate. By dropping part of the data pack-
ets, the communication delay in the neuromorphic processor can be reduced.
Synchronization in the neuromorphic processor must satisfy the worst commu-
nication situation. Therefore, this can reduce the number of clock cycles required
for global synchronization.

Trace Extraction and Mapping. The spike trace can be recorded when
Brian2 is simulating. Each trace records spikes from one neuron to another
neuron. The format of each trace in the trace file is:

[Source Neuron ID,Destination Neuron ID, time-step]

Fig. 5. Two different mapping methods.

Mapping is a process that map neurons in SNN to cores of neuromorphic
processor. Figure 5 shows two different mapping methods [14].

We use NoC simulator to simulate the communication between the cores in
the neuromorphic processor when the SNN network is running.

Hardware Level Evaluation. At the hardware level, we simulate commu-
nication between neuromorphic cores through a NoC simulator. The detailed
hardware evaluation process is shown in Fig. 6. As mentioned before, the param-
eters of NoC include topology, routing algorithm, router micro-architecture, etc.
In this work, we use a 2D-Mesh network structure and a dimension-order-first
routing algorithm to route packets.

As shown in Fig. 6, NoC configuration file and trace files are inputs for hard-
ware evaluation, latency and power consumption are outputs. Throughput refers
to the number of data packets transmitted by the NoC within a specified time.
In neuromorphic processors, each spike is a data packet. Throughput is generally
defined by the following formula (2):

Throughput =
(Total Spike packet finished) × PacketLength

(Numbers of Router) × Totaltime
(2)

Software-Hardware Co-exploration Framework 93

Fig. 6. Hardware level simulation.

The PacketLength is measured in flits. Each packet can be represented by a spike.
So we defined the PacketLength = 1.

Let P be the total number of messages reaching their destination and let
Li be the latency of each message i, where i ranges from 1 to F , as shown in
formula (3):

Li = receiving time of Pi − generating time of Pi (3)

Max transport latency is computed as shown in formula (4):

LTransport latency = Max(Li), 1 ≤ i ≤ F (4)

3.3 Framework Workflow

The framework workflow is shown in Algorithm 1. We can tolerate a 1% reduction
in classification accuracy at most. If the real-time requirements are not met, the
packet loss rate will increase by 5% at a time. If the real-time requirement can
be met, the packet loss rate and classification accuracy will be output. If the
requirement is not met, the framework will explain the situation and exit.

94 S. Wang et al.

Algorithm 1. Framework workflow
Input: Real time Latency
Output: spike loss rate, Accu

1: Real time Latency//Maximum packets transmission latency that meet real-time
requirements;

2: spike loss rate = 0
3: Accuracy(i)//calculation classification accuracy when the spike loss rate is i;
4: Tolerance acc = Accuracy(0) − 0.01//The minimum value of classification accu-

racy we can tolerate;
5: Max Latency(i)//Maximun packets transmission latency when the packet discard-

ing rate is i;
6: Latency = Max Latency(0)
7: while Latency > Real time Latency do
8: spike loss rate+ = 0.05
9: Accu = Accuracy(spike loss rate)

10: if Accu > Tolerance acc then
11: Latency = Max Latency(spike loss rate)
12: if Latency <= Real time Latency then
13: return spike loss rate,Accuracy
14: else
15: continue
16: end if
17: else
18: Classification accuracy reduced too much.
19: Unable to meet the real-time requirement.
20: break
21: end if
22: end while

4 Experiment and Analysis

4.1 Experiment Setup

To verify the optimization effect of our framework, we set up the experiment as
follows:

We use the Brian2 simulator [19] to simulate the running of the RC network.
Software-level simulation includes two steps: (1) Generate spikes from the data
set. The content of the original data set cannot be directly used as the input of
the SNN. Therefore, the original data set needs to be extracted and transformed
into a spike train that can be understood by the SNN; (2) RC simulation and
classification. We input the spike obtained from (1) into the RC network. After
a period of time, readout layer reads the state of the RC neurons to train and
classify. Through multiple tests, a classification accuracy can be obtained.

We use the clock-accurate NoC simulator Booksim2 [11] to simulate the
communication process of RC networks in NoC. We have modified Booksim so
that it can read spike communication trace. The NoC topology in this work is

Software-Hardware Co-exploration Framework 95

8 × 8. The routing algorithm is x-y routing. The NoC has 8 virtual channels,
and the virtual channel depth is 1. Detailed configuration of NoC is shown in
Table 1.

We tested two different applications, one is MNIST handwritten digit recog-
nition and the other is FSDD speech recognition.

Table 1. NoC Config.

topology mesh

routing function xy

vc allocator islip

arb type round robin

priority age

num vcs 8

vc buff size 1

4.2 Result of MNIST Dataset

MNIST [13] is a frame-based dataset, which is used for handwritten digits recog-
nition.

Optimization Effect of Framework. Figure 7 shows optimization results of
MNIST handwritten digit recognition application. Our target maximum trans-
mission latency is 400 cycles. After several rounds of exploration, when the packet
loss rate is 10%, the maximum transmission latency is reduced from the original
436 cycles to 392 cycles. It meets the real-time requirements. After optimization,
the power consumption is reduced by 5.3%. At the same time, the classification
accuracy didn’t decline but increased from 78.75% to 80.75%.

Impact of Packet Loss on Performance of RC Network. Figure 8 shows
the relationship between the packet loss rate and software classification accuracy.
When the packet loss rate is in the range of 0%–10%, the classification accuracy
is almost unchanged. When the packet loss rate exceeds 20%, the classification
accuracy decreases significantly.

Impact of Packet Loss on Data Transmission Latency in NoC. Figure 9
shows the relationship between the packet loss rate and the maximum transmis-
sion latency in NoC. We can find that as the packet loss rate increases, the maxi-
mum transmission latency decreases significantly. Reduced transmission latency
can increase hardware efficiency.

96 S. Wang et al.

Fig. 7. Optimization results of MNIST handwritten digit recognition application.
Original refers to the result without optimization. Optimized refers to the optimized
result. (a) Power. (b) Accuracy. (c) Latency.

Fig. 8. Impact of packet loss on classification accuracy of MNIST handwritten digit
recognition application.

Fig. 9. Impact of packet loss on data transmission latency in MNIST handwritten digit
recognition application.

Software-Hardware Co-exploration Framework 97

Fig. 10. Optimization results of FSDD speech recognition application. Original refers
to the result without optimization. Optimized refers to the optimized result. (a) Power.
(b) Accacury. (c) Latency.

4.3 Result of FSDD Dataset

FSDD is a simple audio and speech dataset consisting of recordings of spoken
digits at 8 kHz.

Optimization Effect of Framework. Figure 10 shows optimization results
of FSDD speech recognition applications. For FSDD speech recognition appli-
cations, our target maximum transmission latency is 700 cycles. After several
rounds of exploration, when the packet loss rate is 19%, the maximum transmis-
sion latency is reduced from the original 886 cycles to 697 cycles. It meets the
real-time requirements. After optimization, the power consumption is reduced
by 2.2%. At the same time, the classification rate didn’t decline but increased
from 77.5% to 78.5%.

Fig. 11. Impact of packet loss on classification accuracy of FSDD speech recognition
application.

98 S. Wang et al.

Impact of Packet Loss on Performance of RC Network. As shown in
Fig. 11, it shows the impact of packet loss on classification accuracy in FSDD
speech recognition. When the packet loss rate is in the range of 0%–19%, the
classification accuracy is almost unchanged. When the packet loss rate exceeds
19%, the classification accuracy decreases significantly. At the same time, with
the packet loss rate is 1%, the classification accuracy is even better than the
effect of no packet loss.

Fig. 12. Impact of packet loss on data transmission latency in FSDD speech recognition
application.

Impact of Packet Loss on Packet Transmission Latency in NoC.
Figure 12 shows the relationship between the packet loss rate and the max-
imum transmission latency in NoC for FSDD. Same as the result of MNIST
handwriting recognition, we can find that as the packet loss rate increases, the
maximum transmission latency decreases significantly.

4.4 Analysis

How Does Packet Loss Affect the Classification Accuracy of RC? As
mentioned before, an RC network consists of three layers: the input layer, the
reservoir layer, and the output layer. Once the reservoir layer is initialized, the
connections between neurons and their corresponding weights no longer change.
Training an RC network refers to training its readout layer. The input of the
readout layer is the state of the neurons in the reservoir layer.

There are different ways to encode the state of a neuron, such as time encod-
ing and frequency encoding. Frequency encoding means that the state of a neu-
ron is represented according to the count of fire in the time window. Frequency
encoding is used in this experiment. Packet loss adds “noise” to the reservoir
layer. The inputs for training and testing are the states of the reservoir neurons
that contain “noise”. These “noises” are randomly generated with a specific
probability.

Software-Hardware Co-exploration Framework 99

When the packet loss rate is very small, the classifier trained by the dataset
containing “noise” can classify normally. At the same time, because the packet
loss behavior is random, the corresponding classification accuracy may fluctuate
around the original classification accuracy.

When the packet loss rate is too high, the spiking frequency of neurons will
decrease. If frequency coding is used, the state difference between neurons will
become less obvious. At this time, it’s hard for classifier to make right decision.
As a result, the accuracy of classification will descend significantly.

5 Conclusion

In this paper, we proposed a software-hardware co-exploration framework for
optimizing communication in neuromorphic processor. This framework consists
of three parts: software simulation, packet extraction & mapping, and hardware
evaluation. Without reducing the accuracy of SNN classification, we can alleviate
the congestion in neuromorphic processor and reduce the packet transmission
latency.

The experiment result shows that after optimization, when the neuromorphic
processor runs MNIST handwritten digit recognition application, the communi-
cation delay can be reduced by 11%, the power consumption can be reduced by
5.3%, and the classification accuracy can reach 80.75% (2% higher than the orig-
inal accuracy). When running FSDD speech recognition application, the commu-
nication delay can be reduced by 22%, the power consumption can be reduced
by 2.2%, and the classification accuracy can reach 78.5% (1% higher than the
original accuracy).

References

1. Akopyan, F., et al.: Truenorth: design and tool flow of a 65 mW 1 million neuron
programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circ.
Syst. 34(10), 1537–1557 (2015)

2. Beigné, E., Clermidy, F., Vivet, P., Clouard, A., Renaudin, M.: An asynchronous
NOC architecture providing low latency service and its multi-level design frame-
work. In: 11th IEEE International Symposium on Asynchronous Circuits and Sys-
tems, pp. 54–63. IEEE (2005)

3. Chou, T.S., et al.: CARLsim 4: an open source library for large scale, biologically
detailed spiking neural network simulation using heterogeneous clusters. In: 2018
International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

4. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning.
IEEE Micro 38(1), 82–99 (2018)

5. Diehl, P.U., Zarrella, G., Cassidy, A., Pedroni, B.U., Neftci, E.: Conversion of artifi-
cial recurrent neural networks to spiking neural networks for low-power neuromor-
phic hardware. In: 2016 IEEE International Conference on Rebooting Computing
(ICRC), pp. 1–8. IEEE (2016)

6. Furber, S.B., et al.: Overview of the spinnaker system architecture. IEEE Trans.
Comput. 62(12), 2454–2467 (2012)

100 S. Wang et al.

7. Gewaltig, M.O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia 2(4),
1430 (2007)

8. Guo, S., et al.: A systolic SNN inference accelerator and its co-optimized software
framework. In: Proceedings of the 2019 on Great Lakes Symposium on VLSI, pp.
63–68 (2019)

9. Iakymchuk, T., Rosado-Muñoz, A., Guerrero-Mart́ınez, J.F., Bataller-Mompeán,
M., Francés-Vı́llora, J.V.: Simplified spiking neural network architecture and STDP
learning algorithm applied to image classification. EURASIP J. Image Video Pro-
cess. 2015(1), 4 (2015). https://doi.org/10.1186/s13640-015-0059-4

10. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw.
14(6), 1569–1572 (2003). https://ieeexplore.ieee.org/document/1257420

11. Jiang, N., Michelogiannakis, G., Becker, D., Towles, B., Dally, W.J.: Booksim 2.0
user’s guide. Standford University (2010)

12. Kumar, S., et al.: A network on chip architecture and design methodology. In:
Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms
for VLSI Systems Design, ISVLSI 2002, pp. 117–124. IEEE (2002)

13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

14. Li, S., et al.: SNEAP: a fast and efficient toolchain for mapping large-scale spiking
neural network onto NOC-based neuromorphic platform. In: Proceedings of the
2020 on Great Lakes Symposium on VLSI (2020)

15. Maass, W.: Networks of spiking neurons: the third generation of neural network
models. Neural Netw. 10(9), 1659–1671 (1997)

16. Moradi, S., Qiao, N., Stefanini, F., Indiveri, G.: A scalable multicore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchronous
processors (dynaps). IEEE Trans. Biomed. Circ. Syst. 12(1), 106–122 (2017)

17. Pei, J., et al.: Towards artificial general intelligence with hybrid Tianjic chip archi-
tecture. Nature 572(7767), 106–111 (2019)

18. Schemmel, J., et al.: Live demonstration: a scaled-down version of the brainscales
wafer-scale neuromorphic system. In: 2012 IEEE International Symposium on Cir-
cuits and Systems, pp. 702–702. IEEE (2012)

19. Stimberg, M., Brette, R., Goodman, D.F.: Brian 2, an intuitive and efficient neural
simulator. Elife 8, e47314 (2019)

20. Wysoski, S.G., Benuskova, L., Kasabov, N.: Fast and adaptive network of spik-
ing neurons for multi-view visual pattern recognition. Neurocomputing 71(13–15),
2563–2575 (2008)

21. Young, A.R., Dean, M.E., Plank, J.S., Rose, G.S.: A review of spiking neuromor-
phic hardware communication systems. IEEE Access 7, 135606–135620 (2019)

https://doi.org/10.1186/s13640-015-0059-4
https://ieeexplore.ieee.org/document/1257420

A CNN Hardware Accelerator in FPGA
for Stacked Hourglass Network

Dongbao Liang, Jiale Xiao, Yangbin Yu, and Tao Su(B)

San Yat-Sen University, Guangzhou 510006, Guangdong, China
sutao@mail.sysu.edu.cn

Abstract. Staked hourglass network is a widely used deep neural network model
for body pose estimation. The essence of this model can be roughly considered as
a combination of Deep Convolutional Neural Networks (DCNNs) and cross-layer
feature map fusion operations. FPGA gains its advantages in accelerating such
a model because of the customizable data parallelism and high on-chip memory
bandwidth. However, different with accelerating a bare DCNN model, stacked
hourglass networks introduce implementation difficulty by presenting massive
feature map fusion in a first-in-last-out manner. This feature introduces a larger
challenge to the memory bandwidth utilization and control logic complexity on
top of the already complicated DCNN data flow design. In this work, an FPGA
accelerator is proposed as a pioneering effort on accelerating the stacked hourglass
model. To achieve this goal, we propose an address mapping method to handle the
upsample convolutional layers and a network mapper for scheduling the feature
map fusion. A 125 MHz fully working demo on Xilinx XC7Z045 FPGA achieves
a performance of 8.434 GOP/s with a power efficiency of 4.924 GOP/s/W. Our
system is 296× higher than the compared Arm Cortex-A9 CPU and 3.2× higher
power efficiency, measured by GOP/s/W, than the GPU implementation on Nvidia
1080Ti.

Keywords: Stacked hourglass network · Convolutional Neural Network · Pose
estimation · Hardware accelerator · FPGA

1 Introduction

In deep Convolutional Neural Networks (DCNNs), deeper layers yield larger perception
fields to the original images and, therefore, encapsulate higher-level feature information,
which is opposite to the shallow (near-input) layers. In body pose estimation tasks, a
common practice to accurately locate body key points is to combine the abstract global
features with shallow local features [1]. Following such motivation, stacked hourglass
network are commonly used in pose estimation tasks and achieves an unprecedented
accuracy on the MPII Human Pose dataset with an average 90.9% percentage of detec-
tions [1]. However, this design of model poses new challenges to the system design
complexity on FPGAs compared to solely accelerating a DCNNmodel for classification
tasks [4–7].

© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 101–116, 2020.
https://doi.org/10.1007/978-981-15-8135-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_8&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_8

102 D. Liang et al.

Fig. 1. Feature map fusion branches introduce up to 3.3 times more memory transfer and up to
3.59 times more operations to normal convolutional layers

In Fig. 1, DSC stands for depthwise separable convolution module [17] and DSC1-
DSC7 are the layers in a single hourglass model (see model details in Sect. 2). The
featuremaps in the shallow layers are transferred between on- and off-chip for the feature
fusion branches, which introduces up to 3.3 times more memory transfer and 3.59 times
more computation compared to a simple cascaded convolutional layer structure. Such
computation nature changes the workload from a compute-bound task into a memory-
bound one [12, 19].

Central Processing Unit (CPU) suffers from its sequential execution nature when
dealing with the parallel DCNN computation. General Purpose Graphic Processing Unit
(GPGPU) is also a naturally fitted platform in accelerating DCNN applications, but
the sweet point for GPGPUs normally requires a relatively large input batch size [11].
Additionally, the data synchronization mechanism in GPGPUs is not specially designed
for neural network computation. Field-Programmable Gate Array (FPGA), on the other
hand, gains its advantages in accelerating deep neural network tasks because of its
customizable parallel logic and high power efficiency. There have been many imple-
mentations of DCNNs on FPGA in recent years [2–14]. Systems like NEURAghe [6]
and SnowFlake [5] mainly target on DCNN classification task acceleration. As above-
mentioned,DCNNclassificationmodels do not introduce extra computation andmemory
transfer from the feature fusion branches. It is hard to make straight and fair comparisons
to these works. For example, if scales up a typical backbone DCNN accelerated in [5,
6] adding feature map fusion branches, the system performance reported in these works
can massively drop due to the multi-scale feature fusion operations and newly intro-
duced memory transfer. Although very few works exactly address the stacked hourglass
network, its building block, depthwise separable convolution modules, are carefully
considered in the system architecture designs in [10–12]. However, model redundancy
reduction techniques are applied in theseworks to help realizing feasible FPGAmapping.
These techniques, moreover, are orthogonal to our proposed system.

A CNN Hardware Accelerator in FPGA for Stacked Hourglass Network 103

In most of the FPGA-based DCNN implementations, designers are benefited from
configurable architecture to perform multiple functions of the algorithms and on-chip
memories to overcome the limitation of the memory bandwidth. Works like [2] and [3]
try to realize a general structure for all possible network structures with parameterized
design, while other references [4] and [8] try to fit the CNN model into the embed-
ded applications by dedicated memory arrangement and tiling strategies. Reference [9]
and [10] explore the sparsity within the DCNN, using compression or pruning method
to make fully use of the memory bandwidth. With the rapid development of the algo-
rithms, new DCNN structures appears and reference [13] and [14] explore newmapping
strategies for the networks with residual blocks like ResNet and Xception.

In this work, our new system architecture is designed for the stacked hourglassmodel
with above difficulty handled by our proposed network mapper module and an address
mapping method. The main contributions of this work are listed as below:

1. Our work is pioneering effort in accelerating the commonly used stacked hourglass
network model on FPGAs. Our system achieves 296× higher than the compared
CPU and 3.2× higher power efficiency than the examined GPU implementation.

2. To implement the logic for the feature map fusion branches, we propose a network
mapper module for efficiently managing the storage and fetching of long-distant
residual results. In addition, the network mapper also converts the stacked hourglass
network into instructions for the accelerator automatically.

3. “Channel-first” data arrangement is proposed to enhanced the performance of 1 × 1
convolutions which are heavily used in depthwise separable convolutions.

This paper is organized as follows. Section 2 provides the background of stacked
hourglass network and the separable depthwise convolution. Section 3 describes the
architecture of the accelerator, including the processing engine and the organization of
the on-chip memory. The dedicated design of control signals for the accelerator will
be described in Sect. 4. Section 5 gives the experimental results on the performance
of the accelerator, also provides a demo of the accelerator using on the real-time pose
estimation application. The summary will be given in Sect. 6.

2 Background

2.1 Stacked Hourglass Network

Stacked hourglass network was first introduced in [1] to improve the accuracy of pose
estimation task. Figure 2 gives us an overview of the architecture of an hourglass module
and the stacked hourglass network. In the network, the input feature map is firstly scaled
down to the intermediate with very low resolution but much more channels, then scaled
up to the original size again. Scale down is done by the stride-n (n > 1) convolutions or
pooling and the upsample performs the reverse operation. It’s worth noticing that feature
maps are combined across multiple resolutions by doing summations within the hour-
glass module, named by its shape. Residual module is also used heavily in the hourglass
module and filters greater than 3 × 3 are abandoned here, which make it easier for

104 D. Liang et al.

the hardware design. The residual module sometimes is replaced by depthwise separa-
ble convolution to reduce the complexity of the network and the number of parameters
further, which will be introduced in the next chapter. After the intermediate supervision
process for the output of the hourglass module is included, hourglass modules can be
stacked up successively to create a deeper network.

Fig. 2. An illustration of a single “hourglass” module (left), and the stacked hourglass network
(right).

2.2 Depthwise Separable Convolution

Depthwise separable convolution was first introduced in [16]. In this kind of convolu-
tion, a standard convolution is split into two steps. Depthwise convolution firstly extracts
features on the input feature map of different channels separately, and then pointwise
convolution follows up to combine all the results in different channels with 1 × 1 convo-
lution. Differences between standard convolution, depthwise convolution and pointwise
convolution are illustrated in Fig. 3.

Depthwise separable convolution is proved to have much less parameters and arith-
metic operations to achieve comparable accuracy for popular CNN networks [15]. A
simple mathematical proof is shown here. Considering an D × D × M input feature
map produces an D × D × N output feature map after a convolution operation. If
standard convolution is chosen, the number of parameters P for the kernel with size of
K × K is

PSC = K × K × M × N (1)

And the computational cost O of the standard convolution is

OSC = D × D × K × K × M × N (2)

However, if depthwise separable convolution is chosen, the corresponding number
of parameters and the computational cost is

PDSC = K × K × M +M × N (3)

ODSC = D × D × K × K × M + D × D × M × N (4)

A CNN Hardware Accelerator in FPGA for Stacked Hourglass Network 105

Fig. 3. Comparison of different kinds of convolutions.

Fig. 4. Different kinds of residual blocks. Note that t (t > 1) in (b) is the expansion factor.

Thus, the reduction of the parameters and the computational cost comparing to the
standard convolution is

FP = K × K × M+M × N
K × K × M × N = 1

N + 1
K2 (5)

FO = D × D × K × K × M+D × D × M × N
D × D × K × K × M × N = 1

N + 1
K2 (6)

A popular choice of K is 3 so the common reduction in number of parameters and
the computational cost is 8 to 9 times.

Depthwise separable convolution is successfully applied to the usual object detection
and classification tasks in MobileNetV1 [15], and the successor MobileNetV2 [18]. In
MobileNetV2, performance is further improved by the new operation called bottleneck,
also get its name from the shape. Within the structure, one more 1 × 1 convolution

106 D. Liang et al.

is placed before the depthwise convolution and the feature map fusion connects two
bottlenecks from bottom to top. The inverted residual bottleneck layers (differ from the
common residual block in [17]) is proved to be memory efficient evidently for feature
maps with less channels in the bottleneck (Fig. 4). This structure is also widely used in
stacked hourglass network acting as a substitution of residual modules.

3 Hardware Design

In this chapter, we present the architecture of the hardware accelerator for running
stacked hourglass network in the inference phase. The acceleration lies in the dedicated
data path design and memory management.

3.1 Overall Architecture

The block diagram in Fig. 5 shows the overview of the whole architecture of the acceler-
ator. Within the accelerator, a control module receives the control instructions from the
host CPU and transform them into internal control signals for the other module in the
accelerator. Processing engine (PE) array is responsible for all calculations in stacked
hourglass network. Buffer module moves input data and weight from external mem-
ory to on-chip buffer, also move the calculated results came out from PE array back to
DRAM. Redistribution module is placed between PE array and buffer module for order
rearrangement for input data and output results, which will be introduced in detail in
Sect. 3.2.

Fig. 5. Block diagram of the proposed hardware accelerator.

3.2 Processing Engine

In this paper, the hardware accelerator will use 16 PEs in the PE array for parallel
computations. Two permutation blocks for each input vector deals with different data

A CNN Hardware Accelerator in FPGA for Stacked Hourglass Network 107

Fig. 6. Block diagram of the processing engine.

reuse schemes. There are 18 multipliers in the multiplier array responsible for two 3 ×
3 convolutions at one cycle. Adder tree can perform different kinds of summation under
different configurations. The architecture of a single PE is illustrated in Fig. 6.

Vector-Based Calculation. Each processing engine takes two vectors as input and out-
puts a result vector, acting like a vector processing unit. To maximize the reuse of the
input vector, we carefully choose the size to be 16 × 16-bit, and the permutation block
helps us to rearrange the order of data in the vector. Weight vector can be an array
of weight data under convolution operations or an array of pixel data when operating
residual summations.

Permutation Block. Reusing data between two adjacent convolution windows is a way
to improve the power efficiency of the accelerator when performing depthwise convolu-
tion, and here the permutation block is designed to undertake the job. In the “Row-first”
data arrangement (please refer chapter 3.3 for more information about data arrangement
in buffers), 4 pixels in the same row can be fetched in one cycle. Figure 7 shows that in
3 × 3 convolution with one padding, two adjacent convolution windows of calculation
need 4 pixels in a row at most. Permutation blocks re-arrange data from buffers into two
separate vectors for two windows and send them to processing unit. In addition, pixels
in the right-most column of window are temporarily store in the module for convolution
in the next cycle. The re-arrangement and temporary storage improve the data utilization
of input feature map, saving power by reducing read access to buffers.

Depthwise Convolution. Depthwise convolution performs convolution for each feature
map in different input channels separately. Each processing engine is in charge of all
multiplications and accumulations for one input channel so 16 channels can be calculated
in parallel at a time. The output vector contains two valid results from two side-by-side
3 × 3 windows for depthwise convolution.

Pointwise Convolution. Pointwise Convolution performs convolution operations
across different input channel for input pixel data. For the case that input channels
are larger than 16, the intermediate result is registered at the output stage of PE and
waits for the next intermedia result in the coming round. For more efficient calculation
and data fetch, 16-pixel data in data vector will be data from different feature maps but

108 D. Liang et al.

(a) (b)

Fig. 7. Two adjacent convolution windows in different strided-convolutions. (a) is for stride-1
and (b) is for stride-2. In both figures, blue pixels stand for zero-padding pixels while green pixels
are for pixels in feature maps. (Color figure online)

16-in
adder
tree

8-in
adder
tree

4-in
adder
tree

2-in
adder
tree

4 x 16 bit 2 x 16 bit 1 x 16 bit

2-in
adder
tree

1 x 16 bit16-in
adder
tree

ADD result
16 x 16 bit

DWC result

PWC result

Data
Vector

Weight
Vector

8

Data
Vector

Weight
Vector

8
8

8

8

8

8

8

products

8

8
16

products

1

1

2

2 x 16 bit

1

1

Fig. 8. Different configurations of adder tree. (Color figure online)

in the same row and column position, unlike the usual “row-first” order of data. More
information about the data arrangement will be discussed in Sect. 3.3.

Residual Summation. As it is described in Sect. 2, residual summation performs at
the end of every residual module. To reuse the resource of adder tree, residual enter the
processing engine through weight vector and performs the summation with the result
from the former layer.

Adder Tree. Adder tree is configurable to do the summation in depthwise convolution,
pointwise convolution and residual addition. It is configured into various number of
stages of adders for different layers, as illustrated in Fig. 8. For vector addition used in
residual summation, two vector inputs coming from data vector and weight vector will
enter two separate 16-in adder trees and produce a 16× 16-bit result vector, which only
need 1 stage of adders. For pointwise operation, 16 products coming from the former
multiplier stage will go through all the adder tree on the upper path to produce 1-element
result. A little bit complicated case for depthwise convolution is that 18 products will
come from the multiplier arrays (partial sums from two convolution windows), and an
extra 2-in adder tree will deal with the 2 extra products (the purple lines in the figure
shows how the dataflow goes in depthwise mode) in the last stage and there will be
2-element result for depthwise convolution.

A CNN Hardware Accelerator in FPGA for Stacked Hourglass Network 109

ReLU. The ReLU operation, f (x) = max(0; x) is optional in the network. The process
is simply replaced the negative results by zero on the output stage.

3.3 Memory Organization

The new structure in stacked hourglass network requires much dedicated design for the
data flow control to efficiently make use of the memory bandwidth. Therefore, in the
proposed architecture, we adapt different strategies for different situations, trying to
explore the efficient data flow methods.

Table 1. Percentage of different types of operation in stacked hourglass network.

Operation type Conv1 Conv3 Add

Percentage 90.41% 9.32% 0.27%

Fig. 9. “Row-first” data arrangement (a) and “Channel-first” data arrangement (b).

Data Arrangement. From a typical stacked hourglass network, we can see that the
pointwise convolution occupies a large part of thewhole calculations (Table 1). Pointwise
convolution convolves feature maps from different channels and produces one feature
map for one time. Traditional “Row-first” data arrangement (which means that data are
arranged along the row direction first, then in column and channel direction successively,
illustrated in Fig. 9(a)) brings trouble for this kind of convolution due to the discontinuous
input data fetch, but works fine for the depthwise convolutions. “Channel-first” (which
means that data are arranged along the channel direction first, then row and column
direction successively, illustrated in Fig. 9(b)) arrangement is proposed to resolve the
troubles. Moreover, to guarantee the computational efficiency for both depthwise and
pointwise convolutions, the data arrangement is automatically exchanged during the

110 D. Liang et al.

output stage of the processing engine. Types of upcoming layer is told to the redistribution
module as well, so the results streaming out to the result buffer will change to the proper
arrangement here.

In our implementation, each PE is attached with 3 buffers, an input buffer storing
input activations, an output buffer collecting the output results and a weight buffer to
store weights. The input buffer and the output buffer are in the same size with 4 banks
each and a total of 256-bit data width while the weight buffer is with the same data width
but shorter in depth. When performing depthwise convolution and standard convolution,
elements in different rows can be fetched in a time enabling parallel computation for
multiple MAC operations in different rows for a convolute window. In contrast, multiple
elements in different input channels can be fetch in a time when performing pointwise
convolution in “channel-first” data arrangement and speed up the accumulation between
input channels.

Fig. 10. An illustration of address mapping. Note that same color blocks in the result after
upsample is represented the same origin pixel before the operation. (Color figure online)

Address Mapping for Upsample. Upsample is the operation to scale up the interme-
diate result to the same size of the residual so that they can perform the summation. To
avoid the waste of memory space and bandwidth, address mapping method is proposed
here to combine the upsample operation and the following residual summation together
in the accelerator. A simple demonstration of address mapping is illustrated in Fig. 10.
After upsample in the usual stride 2, one pixel is scaled up into a 2 × 2 result block
with same value in it. When the summation tries to fetch the result of the upsample
operation, it actually fetches the input of the upsample 4 times with simple address map-
ping. Moreover, for some specific circumstance, the mapping is further simplified to the
interception and concatenation of the address without any complex address calculations.

A CNN Hardware Accelerator in FPGA for Stacked Hourglass Network 111

Tiling for Data. Tiling is necessary for various sizes of input feature maps to accom-
modate in the on-chip buffer with fixed and limited size. Moreover, data arrangement for
different layer is different as mentioned in data arrangement, direction of tiling differs
as well. For operands of depthwise convolutions or residual summations, tiling is along
the channel direction and for pointwise convolutions, tiling is along the row direction.

4 Network Mapper

This hardware accelerator heavily relies on the control instructions sent from the host
CPU to control the behaviors and to configure the hardware accelerator. To maximize
the performance for the network on the hardware, we design a dedicated network map-
per for the proposed accelerator. The mapper acts as a compiler for transforming the
high-level network descriptions (like excel form) to the corresponding code-like control
instructions.

4.1 Overview of Network Mapper

To perform the calculation of one particular layer of stacked hourglass network, the
hardware accelerator need to know the information about size of feature map, how the
layer cascade, parameters for efficient tiling, etc. It is necessary to do the calculation for
those parameters in advance to reduce the extra burden on the accelerator, which is the
job for network mapper (Fig. 11) Network mapper first reads through the architecture
of the network and do the analysis and calculations. The major job will be as follows.

Fig. 11. The function of network mapper.

1) Layer Cascade: Some layers can be cascade to reduce thememory bandwidth for less
intermediate results, for example, ReLU activation is performed after the calculation
of the former layer, and the upsample operation is done with the following residual
summation as mentioned in Sect. 3.3.

112 D. Liang et al.

2) Gather-Scatter Setup: A buffer controller is in charge of the communication between
multiple banks in the accelerator and the external memory, acting like a simplify
gather-scatter DMA. Different sizes of feature map result in different transfer length
for layers and they are calculated in network mapper.

3) Feature Map Tiling: Tiling is always necessary in the acceleration and the tiling
method is described in Sect. 3.3. Network mapper figure out the best tiling strategy
for different size of featuremaps ahead and configure the accelerator through control
instructions.

Once the architecture of the network is fixed, control instructions can be generated
immediately. The accelerator follows the instructions to calculate for one frame and loop
over the instructions for video stream. The size of the instructions for a typical stacked
hourglass network is not greater than 20 KB for each frame. Due to the tiny size of the
codes, they can be either stored in the on-chip memory or sent by the host CPU for
convenient control scheme.

4.2 Residual Optimizing

As mentioned in Sect. 2, stacked hourglass network has more than one kind of residual
summation branch for multiple resolutions. As the nested hourglass become deeper, it
is impossible to store all the intermediate residual results in the on-chip memory for the
limited memory space. Also, how to choose the right intermediate residual exactly for
the summation has become a challenge as a residual will be used for multiple times.
We proposed a method to control the residual storage inspired by the use of stacks in
CPUs. When reaching a residual layer during the network structure read-in, the network
mapper will record the residual level and how many times this residual result will be
used, and a new memory space is allocated to store this residual. When reaching an
add layer, the processing engine looks for the latest residual for sum operation, and the
corresponding residual count will be decreased by one. The residual count counted down
to zero means that the residual result is no longer needed, so the memory space will be
set free for subsequent use. After finishing all the calculations in the network, memory
space occupied by residuals should be cleaned up for all the residuals have been used
and freed. The network mapper follows these principles to allocate the memory space
for accelerator in advance. This method is also applied to the data flow branches of the
intermediate supervision process between two stacked hourglass modules.

5 Experimental Result

The proposed accelerator architecture is implemented on the Zynq-7000 ZC706 evalua-
tion board (XC7Z045), which contains 218,600 LUTs, 545 block RAMs and 900 DSPs.
The implementation result and the performance comparison will be discussed below and
then followed by a pose estimation demonstration using the proposed accelerator.

A CNN Hardware Accelerator in FPGA for Stacked Hourglass Network 113

5.1 Implementation Result

We choose the number of PEs to be 16 and every PE is paired with an input buffer, a
weight buffer and an output buffer. The size the input buffer and output buffer is same
with 1536 × 256-bit each and the size of a weight buffer is 64 × 256-bit.

Table 2. Resource utilization of our implementation

Module LUT DSP BRAM

PE array 22394
(10.3%)

288 (32.0%) 0 (0.0%)

Buffer 51412
(23.5%)

9 (1.0%) 448 (82.2%)

Total 73806
(33.8%)

297 (33.0%) 448 (82.2%)

Table 3. Performance comparison with other implementations

Work [13] Embedded CPU Desktop CPU GPGPU Ours

Platform Arm
Kyro

Arm
Cortex-A9

Intel i7-6800 k Nvidia 1080 Ti Zynq
XC7Z045

Tech node
(nm)

14 28 14 16 28

Clock (MHz) 2150 667 3400 1480 125

Power (W) – – 30 55 8.6

Problem
complexity
(GOP)

0.608 0.953 0.953 0.953 0.953

Computation
time (ms)

75 33427 121.80 56.21 112.76

Performance
(GOP/s)

8.107 0.0285 7.824 16.954 8.434

The resource utilization is shown in Table 2. The stacked hourglass algorithm needs
0.953 GOPs, mostly of them are multiplications and summations. Our system achieves
an average performance of 8.434 GOP/s and the frame rate reach 8.85 fps.

Since our design is for the embedded applications, and also is the first implementation
for the hourglass network as far as we know, the performance comparison will be made
with the embedded CPU within the Zynq XC7Z045, which is an ARM Cortex-A9 core.
We also make the comparison with the performance mentioned in [15] for the similar
algorithm structure of depthwise separable convolution. Our implementation achieves
the average performance of 8.434 GOP/s, which is 296× faster than the embedded CPU.

114 D. Liang et al.

Regardless of extra memory access for the multiple resolution summation of residual
blocks in stacked hourglass network, our implementation can still slightly override the
performance to MobileNetV2 implemented in Kyro CPU. In addition, we also run the
same hourglass network on the modern desktop CPU and GPGPU. It’s surprise that
our implementation does better jobs than the desktop CPU, by 1.08× and 3.76× on
calculation speed and power efficiency respectively. Our works also wins 3.18× power
efficiency when comparing to GPGPU. The performance of our system and different
devices is shown in Table 3.

Considering the nature of the stacked hourglass network that residual results with
multiple resolution are created and accumulated during the inference phase, frequent off-
chipmemory access seems inevitable and it’s themain reason for the lowutilization of PE
in our work. We consider it unfair to compare our works with other works implemented
on the same ZC706 which runs the holistic network structures without branches.

5.2 Application

We also use the proposed hardware accelerator to build an embedded system for real-
time pose estimation demo on ZC706 evaluation board as well. The system is in the
heterogeneous architecture. The whole stacked hourglass network is calculated within
the proposed hardware accelerator while the embedded ARMCortex-A9 dual core CPU
is responsible for the control of the video capture, weights preload, image pre-processing
and the HDMI display. The accelerator runs at the frequency of 125 MHz. The block
diagram of the whole system is presented on Fig. 12.

Fig. 12. Block diagram of the demo system.

Figure 13 shows the overview of the system and the pose estimation application
demo. As shown on the monitor, the system is able to reproduce the skeleton and the
key points of the human body with relatively high precision.

A CNN Hardware Accelerator in FPGA for Stacked Hourglass Network 115

Fig. 13. FPGA evaluation board used for the pose estimation demo (left) and the demonstration
(right).

6 Conclusion

In this article, a hardware accelerator implementation is purpose for the stacked hour-
glass network. The architecture of the accelerator is optimized for the depth separable
convolutions and the multiple resolution residual summations that are frequently seen
in the stacked hourglass network. With such dedicated design, high accuracy pose esti-
mation applications can be done on the portable device. As an example, our accelerator
implemented on Zynq XC7Z045 can achieve an average performance of 8.434 GOP/s
with high power efficiency of 0.981 GOP/s/W under the 125 MHz working frequency.
Also, a pose estimation demo is also presented here using the purpose hardware design.

References

1. Newell, A., Yang, K., Deng, J.: Stacked Hourglass Networks for human pose estimation.
arXiv:1603.06937v2 [cs. CV], July 2016

2. Chen, Y., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: an energy-efficient reconfigurable accel-
erator for deep convolutional neural networks. IEEE J. Solid-State Circ. 52(1), 127–138
(2017)

3. Luo, T., et al.: DaDianNao: a neural network supercomputer. IEEE Trans. Comput. 66(1),
73–88 (2017)

4. Qiu, J., et al.: Going deeper with embedded FPGA platform for convolutional neural network.
In: Proceeding of FPGA, Monterey, CA, USA, pp. 26–35 (2016)

5. Gokhale, V., Zaidy, A., Chang, A.X.M., Culurciello, E.: Snowflake: an efficient hardware
accelerator for convolutional neural networks. In: Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS 2017), pp. 1–4 (2017)

6. Meloni, P., et al.: NEURAghe: exploitingCPU-FPGA synergies for efficient and flexible CNN
inference acceleration on Zynq SoCs. ACMTrans. Reconfigurable Technol. Syst. 11(3), 1–24
(2018)

7. Su, J., et al.: Neural network based reinforcement learning acceleration on fpga platforms.
ACM SIGARCH Comput. Archit. News 44(4), 68–73 (2016)

8. Guo, K., et al.: Angel-eye: a complete design flow for mapping CNN onto embedded FPGA.
IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 37(1), 35–47 (2018)

9. Kim, D., Ahn, J., Yoo, S.: ZeNA: zero-aware neural network accelerator. IEEE Des. Test
35(1), 39–46 (2018)

10. Aimar, A., et al.: NullHop: a flexible convolutional neural network accelerator based on sparse
representations of featuremaps. IEEETrans.NeuralNetw. Learn. Syst. 30(3), 644–656 (2019)

http://arxiv.org/abs/1603.06937v2

116 D. Liang et al.

11. Bianco, S., Cadene, R., Celona, L., Napoletano, P.: Benchmark analysis of representative
deep neural network architectures. IEEE Access 6, 64270–64277 (2018)

12. Su, J.: Artificial neural networks acceleration on field-programmable gate arrays considering
model redundancy. Imperial College London Ph.D. thesis (2018)

13. Lin, X., Yin, S., Tu, F., Liu, L., Li, X., Wei, S.: LCP: a layer clusters paralleling map-
ping method for accelerating inception and residual networks on FPGA. In: 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), San Francisco, CA, pp. 1–6
(2018)

14. Ma, Y., Kim, M., Cao, Y., Vrudhula, S., Seo, J.: End-to-end scalable FPGA accelerator for
deep residual networks. In: 2017 IEEE International Symposium on Circuits and Systems
(ISCAS), Baltimore, MD, pp. 1–4 (2017)

15. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision
applications. arXiv:1704.04861 [cs], April 2017

16. Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv:1610.023
57v3 [cs], April.2017

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv:1512.
03385v1 [cs. CV], December 2015

18. Sandler,M., Howard, A., Zhu,M., Zhmoginov, A., Chen, L.:MobileNetV2: inverted residuals
and linear bottlenecks. arXiv:1801.04381 [cs. CV], January 2018

19. Venkataramani, S., et al.: ScaleDeep: a scalable compute architecture for learning and evaluat-
ing deep networks. In: ISCA 2017 Proceedings of the 44th Annual International Symposium
on Computer Architecture, pp. 13–26 (2017)

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1610.02357v3
http://arxiv.org/abs/1512.03385v1
http://arxiv.org/abs/1801.04381

PRBN: A Pipelined Implementation
of RBN for CNN Training

Zhijie Yang1, Lei Wang1(B), Xiangyu Zhang1, Dong Ding1, Chuan Xie2,
and Li Luo1

1 College of Computer Science and Technology, National University of Defense
Technology, Changsha, China

Leiwang@nudt.edu.cn
2 College of Computer Science and Technology, Southwest Minzu University,

Chengdu, China

Abstract. Recently, training CNNs (Convolutional Neural Networks)
on-chip has attracted much attention. With the development of the
CNNs, the proportion of the BN (Batch Normalization) layer’s execu-
tion time is increasing and even exceeds the convolutional layer. The
BN layer can accelerate the convergence of training. However, little work
focus on the efficient hardware implementation of BN layer computation
in training. In this work, we propose an accelerator, PRBN, which sup-
ports the BN and convolution computation in training. In our design, a
systolic array is used for accelerating the convolution and matrix multi-
plication in training, and RBN (Range Batch Normalization) array based
on hardware-friendly RBN algorithm is implemented for computation of
BN layers. We implement PRBN on FPGA PYNQ-Z1. The working fre-
quency of it is 50MHz and the power of it is 0.346 W. The experimental
results show that when compared with CPU i5-7500, PRBN can achieve
3.3× speedup in performance and 8.9× improvement in energy efficiency.

Keywords: Deep convolutional neural network · Training · Batch
normalization · Accelerator

1 Introduction

CNNs achieve high accuracy in image recognition tasks [1]. Training CNNs is
more difficult than their inference. The reason is that training includes forward
propagation, error backpropagation, and weight update, whereas inference only
includes forward propagation. The processes of error backpropagation and weight
update is time consuming. Moreover, the convergence speed of training is slow,
because most of the training uses SGD (Stochastic Gradient Descent) solver [2]
which leads to the gradient explosion and dispersion problem.

BN [3] layer is one of the most important layer in CNNs. It can prevent
gradient explosion or dispersion and accelerate the convergence speed of CNN
training. BN layer is getting more important than ever before. In conventional
CNNs, the execution time of convolution layers accounts for more than 90%
of the total execution time. But in the state of the art CNN such as DenseNet-
121 [4], the execution time of non-convolutional layers (primarily BN layers) even
c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 117–131, 2020.
https://doi.org/10.1007/978-981-15-8135-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_9&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_9

118 Z. Yang et al.

exceeds the time of convolutional layers in training [5]. As shown in Fig. 1, we also
observe that the execution time of BN layers exceeds convolutional layers in some
layers in forward propagation of training MobileNet [6]. The reason is that BN
layer’s computation includes complex computations of statistics such as the mean
and variance of cumulative sums in each mini-batch which will be introduced in
detail in Sect. 2. This process includes a large number of multiplication, square
root and addition operations as well as complex control flow. However, little
work focus on the efficient hardware implementation of BN layer computation
in training.

Fig. 1. Execution time breakdown of BN layer and convolutional layer in MobileNet
V1.

Thus, in this paper, we focus on accelerating the BN layer and convolution
computations that dominate the training workload. Our main contributions are
as follows:

– Based on the hardware-friendly RBN algorithm [7], we propose a pipelined
hardware implementation for forward and backfoward propagation of BN
layer computation.

– We integrate the above module and a systolic array [8] for accelerating convo-
lution and matrix multiplication in forward propagation and backpropagation
in training into an accelerator, PRBN, to accelerate CNN training. By this
way, our accelerator can support the workload that takes up most of the
training execution time, i.e. BN and convolution computation.

We implement the accelerator in RTL-level code and deploy it on FPGA
PYNQ-Z1. The experimental results show that when compared with CPU i5
7500, PRBN can achieve 3.3× speedup in performance and 8.9× improvement
in energy efficiency.

PRBN: A Pipelined Implementation of RBN for CNN Training 119

2 Background

The algorithm used in the training of CNN is the backpropagation algorithm [9].
It consists of three processes, forward propagation, backpropagation and error
update. In this section, we introduce the computation of the convolutional layer
and BN layer which dominate the training execution time.

2.1 CNN Training

Forward Propagation of Convolutional Layer and Fully-Connected
Layer. For the convolutional layer and the fully connected layer, the input
multiplies weights to get partial sums and partial sums are accumulated to get
activation. The computation process of activation is as follows:

zl = W l ∗ al−1 + bl (1)

al = f(zl) (2)

In the above equation, l is the layer index, z is the sum, W is the weight matrix,
a is the activation, b is the layer bias parameter, and f is the activation function.
The main computation of the convolutional layer and the fully connected layer in
the forward propagation is convolution and matrix multiplication.

Forward Propagation of BN Layer. Since the training dataset is divided
into several mini-batches, the function of the BN layer is to form the mean and
standard deviation of each mini-batch and then normalize all of the data in the
mini-batch according to the obtained mean and standard deviation. The BN
layer algorithm in training is shown in Algorithm 1.

Algorithm 1. Algorithm of batch normalization [3].
Input: Values of z over mini-batch n: z1...zm;
Parameters to be learned: γ, β
Output: {yi = BNγ,β(zi)}

μ = 1
m

m∑

i=1

zi //mini-batch mean

σ2 = 1
m

m∑

i=1

(zi − μ)2 //mini-batch variance

x̂i = zi−μ√
σ2+ε

//normalize

yi = γx̂i + β ≡ BNγ,β(zi) //scale and shift

In Algorithm 1, the inputs are sums of a mini-batch produced by an output
neuron in the previous layer. The output of the batch normalization is y. μ is the
mean of the mini-batch, and m is the size of the mini-batch. σ is the variance
of this mini-batch. x is the result of normalizing the input to N(0, 1). ε is a

120 Z. Yang et al.

small constant that prevents the denominator from being 0. y is the result of
adjusting for x. γ and β are parameters to be learned according to the chain rule
by backpropagation after the forward propagation of one mini-batch is done.

In addition to the mean and variance of each mini-batch, the BN layer also
needs to form the global mean and global variance of all mini-batches. Tehy are
formed as follows:

μn
global = μn ∗ 1

N
+ μn−1

global ∗ N − 1
N

(3)

(σ2)nglobal = (σ2)n ∗ 1
N

+ (σ2)n−1
global ∗ N − 1

N
(4)

In the above formula, μn
global is the partial result of the global mean updated

in mini-batch n. N is the number of mini-batches. σ is the standard deviation,
and its square is the variance.

Back Propagation. Once the forward propagation of a mini-batch is com-
pleted, the difference between the results and the labels can be obtained based
on the cost function. And the error map can be obtained as well. The error map
of the output layer is formed as follows:

δL = �C � f ′(zL) (5)

In the above formula, δ is the error map, C is the cost function, f is the
activation function, z is the sum before activation, and L is the output layer.
f ′ is the derivative of f . The error maps are propagated forward layer by layer.
The error maps of the previous layer are formed as follows:

δl−1 = ((W l)T ∗ δl) � f ′(zl−1) (6)

In the above formula, l is the layer index, W is the weight matrix, and T is
the transpose sign. Matrix multiplication or convolution is performed between
the weight matrix and the error map. The update values of the weights and the
bias parameters are formed as follows:

Δwij =
∂C

∂wl
ij

= al−1
j ∗ δli (7)

Δbi =
∂C

∂bli
= δli (8)

In the above formula, w is the weight, a is the activation, b is the bias
parameter, and i and j are the indexes of the weight matrix.

2.2 Range Batch Normalization

Banner et al. [7] first proposed the RBN algorithm. The main idea is that the stan-
dard deviation σ used in conventional BN algorithm can be approximated by the

PRBN: A Pipelined Implementation of RBN for CNN Training 121

product of correlation coefficient c(m) and the range of input values. It is based on
the theory that, if the input data are assumed to follow Gaussian distribution, the
range of the input is highly correlated with the standard deviation σ.

x̂i =
zi − μ

c(m) · range(zi − μ)
(9)

RBN in Training. The only difference between RBN and BN in forward prop-
agation of training is the normalization. The normalization of RBN in training
is calculated as Eq. 9. As shown in Eq. 9, c(m) = 2

√
ln(m), where m is the mini-

batch size. And range(z) = max(z) − min(z). With RBN, the computation of
variance is eliminated, which includes a lot of multiplication and square root
operations. Besides, RBN solves the problem of data overflowing in variance
computation, so that lower data width can be applied to training. Therefore,
RBN saves hardware resources and reduces the execution time of the BN layer
in training. But RBN will not reduce the network accuracy [7].

RBN in Inference. The process of RBN in inference is similar to forward
propagation of RBN in training, i.e. Algorithm 1. The difference is that the mean
μ and standard deviation σ used in RBN in inference are calculated from all
training pictures after training, which are called the global mean and the global
standard deviation respectively. So we merged and simplified the coefficients as
a and b calculated as follows:

a =
γ

σglobal
(10)

b = β − a ∗ μglobal (11)

3 Proposed Architecture

Input feature
map Weight Sum

Systolic Array

Input Buffer

W
eight

B
uffer

Control

FIFO

RBN RBN RBN RBN

RBN Array

U
nified

B
uffer

Input feature
map Weight Sum

Fig. 2. Block diagram of the overall architecture.

122 Z. Yang et al.

3.1 Overview

In this paper, we integrate systolic array and RBN array into an accelerator
design which can support the BN and convolution operations in training. Due
to the high parallelism and high data reusability, systolic array is suitable for
serving as the core computing unit of CNNs to support convolution computation,
which is computationally intensive. Besides, because the BN function is generally
performed after the convolutional function, the inputs of BN function are sums
produced systolic array. Therefore, using systolic array naturally matches the
RBN array which receives results generated from systolic array.

Figure 2 is the overall architecture of our implementation. It has three com-
ponents. A systolic array with input and weight buffers for the convolution com-
putation, an RBN array for the BN computation, and the unified buffer. The
systolic array is used to compute convolution and matrix multiplication. RBN
array is used to support the BN layer computation. The unified buffer is used
for data exchanging with off-chip host. A FIFO serves as an intermediate buffer
between systolic array and RBN array so that these two parts can be executed
in the form of the pipeline.

Our accelerator has four working modes for different processes in training and
inference. The mode selection signal is generated by the controller according to
the current working process.

Mode 1 is for the forward propagation of training. In this mode, the activation
and weights are fed into the systolic array to compute the sums. Sums enter
RBN array to be normalized. Mode 2 is for the backpropagation of training.
In this mode, errors and weights are fed into the systolic array to compute the
errors of the previous layer. RBN array performs updates to the γ and β. Mode
3 is for the inference. In this mode, the input feature maps and weights are
input to the systolic array to compute the sums. Sums enter RBN array to be
normalized according to the parameters obtained in training. Mode 4 is for the
condition which the systolic array works but the RBN array does not. This mode
is corresponding to the network structure without the BN layer.

We will introduce the design of the systolic array and the RBN array in
details in the following sections.

PE PE PE PE part sum reg

input reg

w
ei

gh
t r

eg

*+

PE PE PE PE

PE PE PE PE

PE PE PE PE

=0?

control Processing
Element

input or error

weight

Fig. 3. Block diagram of the systolic array and details of PE design.

PRBN: A Pipelined Implementation of RBN for CNN Training 123

3.2 Systolic Array

In our design, an 8 * 8 systolic array is used to accelerate the convolution and
matrix multiplication in forward propagation and backpropagation in training.

The systolic array receive weights, input feature maps or errors from its sur-
rounding buffer. In the array, each processing elements (PE) is connected with
its left, upper, lower PEs to deliver weights, input feature maps and accumu-
lation sums respectively. And each PE has the function of multiplication and
accumulation (MAC).

The workflow of the systolic array is as follows. As shown in Fig. 3, in the
forward propagation (mode 1, 3 and 4), the activations are transmitted into
the array from the buffer located below the array, passed vertically and reused
between PEs. Weights are transmitted into the array from the buffer on the right,
passed horizontally, from right to left, and reused between PEs. The obtained
sums are transmitted vertically and finally transfered out of the array.

PE PE PE PE

PE PE PE PE

FIFO

RBN RBN RBN RBN

RBN Array

SU
M
s

...

Fig. 4. The shared relationship between PEs and RBN units and the dataflow of the
sums.

During the backpropagation (mode 2), errors are transmitted from the input
buffer into the systolic array. It is passed in the same way as activation. The
weight is passed in the same way as it does in forward propagation.

The function of the PE is to receive input from the adjacent units below
and to the right. And then cache the input and pass it to the adjacent units
above and the left in the next cycle. The two inputs are multiplied and added
together with the partial sum in PE. Before multiplication, PE will determine if
the input is 0 to skip unnecessary operations to save energy. Finally, when the
control signal is received, PE outputs the sum.

It is worth noting that in our previous work [10], we integrated the RBN unit
directly into the PE. However, it brought too much overhead. In addition, the
sums are transmitted in columns from the systolic array. So in our architecture,
for the systolic array, the PEs in each column share a RBN unit. As shown in
Fig. 4, sums produced by PEs in the same column are transferred to the same
RBN unit to carry BN computation. And in order to reduce the exchange of

124 Z. Yang et al.

data with off-chip host and increase the reuse of on-chip data, our arrangement
strategy is based on [11].

3.3 Implementation of Batch Normalization

In this design, RBN array is implemented for the computation of batch normal-
ization layer. It has two modules to perform batch normalization computation in
inference and training respectively. And there is a multiplexer which can output
results according to the mode control signal.

RBN in Training. The computation of the BN layer in the forward propa-
gation of training (mode 1) can be divided into three parts: forming statistics,
normalization, and updating partial results of global statistics. They are exe-
cuted by three pipelines respectively.

The workflow and the coordination of these three pipelines is described as
follows.

>max?

<min?

+
z_

buffer

x

part sum

- *ln½(N)<<1

*(1/N)

Iterate m=64 times to get the standard deviation and average of one mini batch.

stan
dev

avg

stan
dev
reg

avg
reg

SUM CAL WB

x

valid_x

Pipeline 1

Fig. 5. Block diagram of the pipeline 1.

The pipeline 1 is used to compute the statistics, i.e. the mean and standard
deviation. As shown in Fig. 5, the first stage receives the sums and their valid
signals from the systolic array, then updates the maximum and minimum values,
accumulates, and stores inputs in the buffer in stage SUM. When all the data
for the entire mini-batch has been entered, the maximum, minimum and sum of
input can be obtained. So the mean and the standard deviation can be computed
based on the mentioned equations of the RBN algorithm. At last, they are stored
in special registers waiting to be used in the next two pipelines.

The pipeline 2 is used for normalization. As shown in Fig. 6, after the exe-
cution of the pipeline 1, the pipeline 2 reads the mini batch’s statistics from the
registers and the stored sums from the buffer. First, the sums are adjusted to

PRBN: A Pipelined Implementation of RBN for CNN Training 125

x_
buffer

-

÷

γ
reg

β
reg

*
+

Iterate m=64 times to get the normalized output of one mini batch.

stan
dev

avg

y of BN in training
per mini batch

result
buffer

stan
dev
reg

avg
reg

x

NOR ADJRD WB

Pipeline 2

Fig. 6. Block diagram of the pipeline 2.

N(0, 1), i.e. the normal distribution with a mean of 0 and a variance of 1. And
then they are adjusted by γ and β, which allows them to be distributed in a
linear region of the activation function, increasing the effectiveness of activation.
Finally, the normalized results are either stored in the result buffer or used as
input of the next layer.

avg

* var
+

*(N-1/N)

*(1/N)

*(1/N)

*(N-1/N)
+

g_var Sqare Root g_stan_dev

g_avg

γ
reg
β
reg

÷
σ g

γ

μ g

-

÷

β

-

Iterate total number of mini batches times to
get gloabal average and global variance.

Operate only once in whole training to get the a and
b for use of BN layer computation in inference.

stan
dev

avg

stan
dev
reg

avg
reg

a
reg

b
reg

SQAR CAL_AB WBUPDSQA

Pipeline 3

Fig. 7. Block diagram of the pipeline 3.

The pipeline 3 is used to update partial results of the global statistics and
finally get the global statistics. As shown in Fig. 7, after the execution of the
pipeline 1, pipeline 3 reads the mini batch’s statistics from the registers. Based
on Eq. (3) and Eq. (4) , the partial results of the global mean and global variance
are updated in stage UPD and saved. After all the mini-batches data have been
entered, the global mean and global variance can be obtained. According to Eq.
(10) and Eq. (11) , the simplified parameters of the BN layer in inference, a and
b can be computed and saved in stage CAL AB (Fig. 8).

The BN layer is simple during the backpropagation of training (mode 2),
which only needs to update the parameters γ and β stored in their registers
respectively according to the chain rule.

126 Z. Yang et al.

RBN in
inference

RBN in
training

MUX

RBN unit

* +

a reg b reg result reg

RBN in Inference
#mode

Fig. 8. Block diagram of the RBN unit.

RBN in Inference. After the parameters a and b are obtained in training, the
BN layer in inference (mode 3) performs multiplication and addition according
to the last step of the BN algorithm, that is, scale and shift. Thus this module
has two registers to store a and b.

4 Evaluation

4.1 Experiment Setup

In this work, the PRBN is implemented in the RTL-level Verilog code. The
detailed hardware configuration is as follows. The weight buffer and input buffer
is 1.1 KB and the z buffer in each RBN unit is 128 B. The unified buffer is 18 KB.
The size of the systolic array is 8 * 8. The size of the RBN array is 1 * 8. The
operands are 16-bit, fixed-point. The maximum size of a mini-batch supported
by a RBN unit is 64. The simulation and synthesis tool is Vivado 2017.02. The
FPGA platform was PYNQ-Z1. The network we use is MobileNet V1 [6]. The
software framework used for CPU baseline is PyTorch in CPU version. The
dataset we use is CIFAR-10.

In the experiment, we show a comparison of the hardware resource overhead
of different parts of the PRBN for reference to the discussion of extensibility.
Then we discuss the comparison of the performance of RBN array and CPU
in BN layer computation in training. At last, we discuss the performance and
energy efficiency of the PRBN compared to CPU during training.

Table 1. Hardware utilization comparison of implementations.

Module LUT FF DSP LUTRAM

Systolic array 1643 3775 64 0

RBN array 6496 2576 32 88

Unified buffer 26720 34055 0 0

FIFO 776 599 0 0

Total 35635 41005 96 88

Utilization (%) 67.0 38.5 43.6 0.5

PRBN: A Pipelined Implementation of RBN for CNN Training 127

4.2 Experiment Results

Resource Utilization. For the researcher to understand the hardware imple-
mentation overhead of each module of the whole accelerator, we show the
resource utilization of each module in Table 1. PYNQ-Z1 is a low-cost device in
the ZYNQ family and has ultra-low power, making it suitable for edge devices.

Fig. 9. The speedup of the RBN array to the CPU in the computation of the BN layer
in forward propagation of the training.

Performance and Energy Efficiency. To demonstrate the speedup of our
RBN implementation to the CPU I5 7500, we compare their performance at
each layer of the network. As shown in Fig. 9, the speedups are similar at all

Fig. 10. The speedup of PRBN to the CPU in training of all layers of MobileNet V1,
where minibatch = 8.

128 Z. Yang et al.

layers. Under different minibatch conditions, the speed up keeps rising. But the
rising trend gradually slows down. Because our implementation is pipelined, the
larger the size of the minibatch, the more benefits our implementation will get.
And this phenomenon is determined by the characteristics of the pipeline.

Figure 10 shows the performance of the PRBN versus the CPU. Our imple-
mentation can achieve 3.24×–3.31× speedup over i5 7500 CPU@3.40 GHz. Our
implementation’s working frequency is 50 MHz, its power is 0.346 W and the
energy efficiency is 28.9 Gops/W. Thus, it can achieve 8.5× energy efficiency to
CPU i5 7500.

Figure 11 shows the energy breakdown of each module of our engine at each
layer of the network. We choose mini-batch as 8 because if the mini-batch size is
too big, there will be much overhead of data exchanging for that storage resource
is limited on-chip. It can be found in Fig. 9 that the energy of the systolic array
domains. Because systolic array has 64 processing elements for multiplication
and accumulation, its power consumption and energy consumption are relatively
high. The RBN array has a lower energy footprint because it is pipelined and
uses the RBN algorithm, which reduces a lot of multiplication and square root
operations compared with the conventional BN algorithm.

Fig. 11. The energy breakdown of the PRBN in training all layers on MobileNet V1,
where minibatch = 8.

5 Related Works

There are lots of previous work aiming at deep learning efficient hardware imple-
mentation on edge devices. However, to the best of our knowledge, researchers have
not paid enough attention to efficient hardware implementation of BN layer com-
putation. Whatmough, P, N. et al. [12] implement efficient hardware for mobile
computer vision via transfer learning, but it only supports the inference (Table 2).

Sledevic, Tomyslav, et al. [14] integrates multiplication and accumulation
(MAC) and computation of the BN layer into a DSP and verifies the effect on

PRBN: A Pipelined Implementation of RBN for CNN Training 129

Table 2. Comparison of related work and our design.

Work Freq. Prec. Power Platform BN(Inf) BN(Tra)

[13] 200M 8 bit 12.4 W VU9P No No

[14] 224M 16 bit N.A. ARTIX7 Yes No

Ours 50M 16 bit 0.35W PYNQ-Z1 Yes Yes

FPGA. But it only supports BN computation in inference. Xiong, Feng, et al. [13]
focus on the training of efficient compact networks and design efficient hardware
for it and Xie, F. et al. [15] use the edge server and FPGA for collaborative
training to improve training efficiency and reduce training time. However, none
of them focus on the efficient hardware implementation of BN layer computation
in training.

6 Discussion

Our implementation provides a possible solution for low-power and resource-
constrained edge devices such as smart cameras to train CNNs. And recently
training CNNs on edge devices attracts researchers’ attention [13,15]. There are
three reasons for this. The first reason is the domain shift problem [16]. Domain
shift problem refers to the severe reduction in the recognition accuracy of CNNs
deployed on edge devices due to environmental or equipment problems. So re-
training is necessary. An example of the domain shift problem is the viewpoint
problem [17]. It refers to the recognition failure caused by the difference between
the shooting angles of the pictures in the training dataset and the shooting angles
in the actual inference. Therefore, retraining the network with the multi-angle
datasets collected by the edge devices can improve the recognition accuracy.
Because these new datasets are similar to the original training dataset, so a lot
of low-level information can be shared. The second reason is user privacy [18].
Sensitive information, such as users’ faces, cannot be transmitted over the net-
work and must remain local. At this point, training on edge avoids data leakage
so it protects users’ privacy. The third reason is the transfer delay. Because of
the rise of the 5G and the IoTs, more data are created by widely distributed edge
devices instead of large-scale cloud data centers [19]. If all of the training tasks
are performed on cloud servers, a significant transfer delay will be introduced,
thereby reducing the quality of service.

7 Conclusion

CNNs achieve high accuracy in image recognition tasks. Because of transmis-
sion latency, privacy, and domain shift problems, researchers begin to focus on
training CNNs on edge devices. However, training is more complex and requires
more computation and storage resources than inference. Although the BN layer

130 Z. Yang et al.

can accelerate the convergence of training, it contains a large number of com-
putations and complex control processes and conventional edge devices still use
inefficient CPUs for BN layer computation. In this work, we propose PRBN,
which can support the BN and convolution in training for edge devices. The sys-
tolic array is used for accelerating the convolution and matrix multiplication in
forward propagation and backpropagation in training. And pipelined RBN array
based on the hardware-friendly RBN algorithm is used to support the computa-
tion of BN layers. The experimental results show this chip achieves 3.3× speedup
in performance and 8.9× improvement in energy efficiency when compared with
CPU i5 7500. In our future work, we will focus on implementing an end-to-end
coprocessor which supports training on edge devices.

References

1. He, K., et al.: Deep residual learning for image recognition. In: Computer Vision
and Pattern Recognition, pp. 770–778 (2016)

2. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller,
K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8 25

3. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456 (2015)

4. Huang, G., et al.: Densely connected convolutional networks. In: Computer Vision
and Pattern Recognition, pp. 2261–2269 (2017)

5. Jung, W., et al.: Restructuring batch normalization to accelerate CNN training.
arXiv preprint arXiv:1807.01702 (2018)

6. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

7. Banner, R., et al.: Scalable methods for 8-bit training of neural networks. In: Neural
Information Processing Systems, pp. 5145–5153 (2018)

8. Kung, H.T., Leiserson, C.E.: Systolic arrays (for VLSI). In: Sparse Matrix Pro-
ceedings, vol. 1, pp. 256–282. Society for Industrial and Applied Mathematics,
Philadelphia (1978)

9. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc.
IEEE 86(11), 2278–2324 (1998)

10. Yang, Z., et al.: Bactran: a hardware batch normalization implementation for CNN
training engine. IEEE Embed. Syst. Lett. 1 (2020)

11. Yang, Z., et al.: Systolic array based accelerator and algorithm mapping for deep
learning algorithms. In: Zhang, F., Zhai, J., Snir, M., Jin, H., Kasahara, H., Valero,
M. (eds.) NPC 2018. LNCS, vol. 11276, pp. 153–158. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05677-3 16

12. Whatmough, P.N., et al.: FixyNN: efficient hardware for mobile computer vision
via transfer learning. arXiv preprint arXiv:1902.11128 (2019)

13. Xiong, F., et al.: Towards efficient compact network training on edge-devices. IEEE
Computer Society Annual Symposium on VLSI, pp. 61–67 (2019)

14. Sledevic, T.: Adaptation of convolution and batch normalization layer for CNN
implementation on FPGA. In: 2019 Open Conference of Electrical, Electronic and
Information Sciences (eStream), pp. 1–4. IEEE (2019)

https://doi.org/10.1007/978-3-642-35289-8_25
http://arxiv.org/abs/1807.01702
http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/978-3-030-05677-3_16
http://arxiv.org/abs/1902.11128

PRBN: A Pipelined Implementation of RBN for CNN Training 131

15. Xie, F., et al.: Edge intelligence based co-training of CNN. In: 2019 14th Interna-
tional Conference on Computer Science & Education (ICCSE), pp. 830–834. IEEE
(2019)

16. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic
visual recognition, vol. 50, no. 1, pp. 1–647 (2013)

17. Kukreja, N., et al.: Training on the edge: the why and the how. In: International
Parallel and Distributed Processing Symposium, pp. 899–903 (2019)

18. Paul, G., Irvine, J.: Privacy implications of wearable health devices. In: Proceedings
of the 7th International Conference on Security of Information and Networks. ACM
(2014)

19. Deng, S., et al.: Edge intelligence: the confluence of edge computing and artificial
intelligence. Networking and Internet Architecture. arXiv (2019)

Processor, Memory, and Storage
Systems Architecture

Network-on-Chip Aware Task Mappings

Xiaole Sun1, Yong Dong1, Juan Chen1(B), and Zheng Wang2

1 National University of Defense Technology, Changsha, China
{sunxiaole18,yongdong,juanchen}@nudt.edu.cn

2 School of Computing, University of Leeds, Leeds, UK
z.wang5@leeds.ac.uk

Abstract. Energy and power density have forced the industry to intro-
duce many-cores where a large number of processor cores are integrated
into a single chip. In such settings, the communication latency of the
network on chip (NoC) could be performance bottleneck of a multi-
core and many-core processor. Unfortunately, existing approaches for
mapping the running tasks to the underlying hardware resources often
ignore the impact of the NoC, leading to sub-optimal performance and
energy efficiency. This paper presents a novel approach to allocating NoC
resource among running tasks. Our approach is based on the topology
partitioning of the shared routers of the NoC. We evaluate our approach
by comparing it against two state-of-the-art methods using simulation.
Experimental results show that our approach reduces the NoC commu-
nication latency by 5.19% and 2.99%, and the energy consumption by
17.94% and 12.68% over two competitive approaches.

Keywords: Network on Chip · Performance optimization · Many-cores

1 Introduction

The network-on-chip (NoC) is an essential component of multi-core processor
architectures. As parallelism is the best way to utilize multi-cores, parallel work-
loads are now commonplace on such systems. In such a setting, the NoC is often
a performance bottleneck of a multi-core system and responsible for performance
slowdown of parallel workloads [1]. The NoC is also a major energy consumer
of modern multi-core systems. It can consume over 28% of the total energy
consumption of a multi-core processor [2], and even account for over 40% of the
CPU energy consumption for multimedia applications [3]. As we are moving into
a many-core era, with an increasing number of processor cores integrated into
a single chip, the NoC will play an increasingly important role for performance
and energy optimization of computing systems.

There have been efforts on exploring hardware and software techniques to
perform performance and energy optimization, specifically targeting the NoC.
For example, Chen et al. [4] reduce the power consumption of the NoC, by
closing idle routers to without blocking communication. Other works exploit a
software-centric technique to partition the router resources of the NoC among
running tasks [5]. Software-based approaches have the advantage of not requiring
hardware modification and can work on commercial off-the-shelf chips.
c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 135–149, 2020.
https://doi.org/10.1007/978-981-15-8135-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_10&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_10

136 X. Sun et al.

Existing work on task mapping often ignores the real-time occupation of
routers of an NoC. This is a significant drawback for multi-programmed work-
loads, where multiple tasks or jobs use the shared routers concurrently. In such
scenarios, existing approaches can over-subscribe the shared resources, leading
to resource contention and overall performance slowdown and increased energy
consumption for competing workloads.

Because of the subtle interaction among concurrently running tasks, it is
important to consider the occupancy of shared routers for resource allocation.
The key to minimize network congestion of the NoC is to reduce the overlap
in using shared routers among concurrently running tasks. Doing so can reduce
communication latency and the related energy consumption of the NoC.

This paper presents a novel software-based approach to perform power and
performance optimization for the NoC. Our work dynamically allocates com-
puting resources to match the concurrent tasks to the underlying hardware to
minimize the share of routers among running tasks. We achieve this by exploiting
the NoC topology to perform shared router resource partition. By always trying
to assign idle routers first, our approach can reduce the resource contention,
which in turn leads to faster performance and lower energy consumption among
running tasks.

We evaluate our approach using the NIRGAM simulator [6]. We compare
our approach against three alternative methods, including a random allocation
scheme, INC [5], and CASqA [7]. Experimental results show that our approach
is able to reduce the communication by 59.73%, 5.19% and 2.99% and energy
consumption by 53.34%, 17.94% and 12.68%, over the random scheme, INC, and
CASqA, respectively.

This paper makes the following contributions:

– It is the first to leverage the topology partition theory to model the resource
requirement among multiple jobs for NoC.

– It presents a novel heuristic to reduce the resource contention of shared routers
among multiple jobs, using the partial topology partition theory.

2 Background

2.1 The Problem of Shared Routers

In this section, a simple example is offered to show the impact of Shared routers
on communication latency and energy consumption. Figure 1 shows the results of
mapping job1 and job2, to a 5×5 mesh NoC under the XY routing rule. Suppose
job1 maps before job2. Figures 1a and 1b show the different results caused by
two mapping method. The mapped area and communication distance for each
job is the same. However, Fig. 1a has more shared routers than Fig. 1b, where
the two blue routers in the red area are the shared routers.

La represents the average actual communication latency of job1 and job2 in
Fig. 1a. Lb represents it in Fig. 1b. Accordingly, Ea and Eb respectively represent
the energy consumed by all routers and their links occupied by jobs in Fig. 1a

Network-on-Chip Aware Task Mappings 137

routers used by job2routers used by job1

tasks for job1 tasks for job2

job1 job2job2

�

�

�

�

�

job1

�

�

�

�

�

�

�

�

�

�

�

�

�

�� ��

��

a b

Fig. 1. The results of the two job map-
ping methods. (a) result with shared
routers, and (b) result without shared
router

Fig. 2. rlatency and renergy change with
SRR (Color figure online)

and 1b. Compared with Fig. 1b, communication latency increases by 3.14% and
energy consumption increases by 3.81% in Fig. 1a. The Shared routers (Fig. 1a)
can influence the communication latency and energy consumption.

2.2 Communication Latency Caused by Shared Routers

Furthermore, we quantitatively analyze the rise in communication latency caused
by the increase in Shared routers. According to the SchedulingMethod [8], a
packet containing n flits transfer from s to d, and the latency calculation formula
is as follows:

Tpkt cont(s, d) = (Treceive + Thandle + Tsend) × R(s, d)
+Ttransfer × (n − 1) × MD(s, d) + Thandle × M × R(s, d)shared

(1)

This includes the time it takes for R(s, d) routers to receive, handle and send
header flits from s to d (the first item in formula 1), the transfer time of the
remaining flits at MD(s, d) communication distance (the second item in formula
1), and the time it takes R(s, d)Shared routers to handle M packets in FIFO
queues (the third item in formula 1). For Fig. 1b, the third item in formula 1
is 0, because two jobs do not share the router. However, for Fig. 1a, it is not 0
because of the existence of shared routers. Therefore, the communication latency
in Fig. 1a is higher than it in Fig. 1b.

Next, we quantitatively analyze the variation of the communication latency
under different numbers of shared routers, which are generated by different map-
ping methods. The number of Shared routers is measured through the shared
router ratio (SRR). Random mapping method is used to allocate resources for
two jobs in an 8 × 8 NoC. We get different SRR and sort them in ascending
order. The red line in the Fig. 2 shows how the average actual communication
latency increments ΔL changes as SRR increases.

ΔL =
La − Lb

Lb
× 100% (2)

138 X. Sun et al.

It can be seen that with the increase of SSR, DeltaL increases significantly.
According to Formula (1), the third item will rise when SRR increase. When the
SRR is 0.2, DeltaL = 4.46%, when SRR increases to 0.87, ΔL = 13.44%.

2.3 Communication Energy Caused by Shared Routers

The shared routers will not only impact communication latency but will also,
increase the energy consumption of the NoC. The energy consumption of router
buffering data increases because of Shared routers in Fig. 1a. That means Ebf

increases in Formula 3.
A message contains N packets and the size of one packet is Lpk bits. It

transfers from processor s to processor d. The communication energy Ecom is
calculated by the Formula 3 [8].

Ecom(s, d) = [(Exbar + m × Ebf) × R(s, d) × N + Ec−>r + Er−>r

× (R(s, d) − 1) + Er−>c] × Lpk × N + Ehandle × R(s, d) × N
(3)

It contains three terms. The first item is the energy consumed by N routers.
Exbar is the average energy to transfer a bit through a crossbar. Ebf is the
average energy for buffering a bit. The second item is the energy consumed by
the link. Ec−>r and Er−>c respectively represent the transmission energy from
the source core to the direct router, and from the last router to the destination
core. Er−>r represents the average energy to transfer a bit through an electrical
interconnect between routers. The third item represents the energy consumption
for the router to make decisions for a packet. Ehandle is the energy of the router
to handle header flits. When there are Shared routers, the energy consumed to
buffer packets increases due to network contention, that is the part of Ebf in
Formula 3.

We further quantitatively analyze the variation of the energy consumption
increment ΔE in the case of the different number of Shared routers. The blue
line in Fig. 2 shows how the energy increment ΔE consumed by all the occupied
routers and links changes as SRR increases.

ΔE =
Ea − Eb

Eb
× 100% (4)

It can be seen that with the increase of SSR, ΔE increases significantly. When
the SRR is 0.2, ΔE = 4.66%, when SRR increases to 0.87, ΔE = 18.83%.

Different mapping methods can produce different numbers of shared routers.
How to design the mapping method that products as few shared routers as
possible is the concern in this paper. At present, most mapping strategies usu-
ally allocate resource according to the idle cores and often ignore the real-time
occupation of routers. So the situation with shared routers in Fig. 1a is easy to
happen. Besides, it is inevitable for routers to be shared by multiple jobs because
of the large number of jobs, the limited cores, and the fragmentation in alloca-
tion. To solve this problem, the mapping strategy must be reconsidered. The
utilization of routers should be one of the crucial conditions for job mapping.

Network-on-Chip Aware Task Mappings 139

Here are the challenges: How to characterize the occupancy of routers on the
chip? How to keep the number of Shared routers as small as possible?

Here are our solutions: Topology partition theory is used to depict routers for
each job as well as the shared routers among multiple jobs. A heuristic algorithm
based on topology partition is designed to reduce the number of shared routers.

3 Mapping Algorithm Based on Topology Partition

Suppose that a N × N 2D Mesh structure is designed for multi-core processor.
There are already k jobs in the system, noted with JM . The k + 1 job Jk is
mapped on the NoC at t0. Our job mapping algorithm based on topology par-
tition is used to allocate resources for Jk. The algorithm is divided into two
parts: core allocation and core mapping. Core allocation is to find a region sat-
isfying the conditions for Jk, that is, to obtain a set of core CJk

. Core mapping
implements the one-to-one mapping of processes in Jk to cores in CJk

.

3.1 Examples of Core Region Selection

Here is an example to show the basic idea of region selection. There are 4 ordered
jobs, J1, J2, J3, J4. The number of processes is n1 = 4, n2 = 6, n3 = 3, n4 = 6,
respectively. They will be mapped in a 5×5 NoC. Figure 3 is the selected region
for this group of jobs under our mapping method.

A bidirectional balanced mapping based on application size is used to guide
the selection for a job: a small job seeks an appropriate area according to ascend-
ing order of idle routers. Instead, a large job according to descending order. For
a N × N NoC, this paper takes nth = N as the boundary to distinguish a job,
that is, if njob > nth, it is denoted as a large job, if not, it is denoted as a small
job. For 5 × 5 NoC, nth is 5.

Figure 3a shows the region selected for J1. Since n1 < 5, select the region
from the minimum idle router R1. Start with R1 and seek for a rectangular
region with four idle cores (square is optimum). R1 is the top left vertex. Once
found, the cores in the region are got, which are c1, c2, c6, c7. Figure 3b shows the
region selected for J2 and now J1 is a part of JM . Since n2 > 5, select the region
from the maximum idle router R24. Start with R24 and seek for a rectangular
region with six idle cores (square is optimum). Then get the cores number in the
region c24, c23, c19, c18, c14, c13. Figure 3c shows the region selected for J3, Since
n3 = 3, Start from the minimum idle router and seek for a rectangular region
with three idle cores (square is optimum). Then get c3, c4, c8, c9. Do the same
steps for J4 and select the region as Fig. 3d.

The use of a specific router is determined by routing rules and communica-
tion between processes. For example,the region selected for J3 is c3, c4, c8, c9, but
actually J3 only needs 3 cores. Therefore, its communication should to be con-
sidered during the core mapping, and CoreMapping() in Algorithm 1 is used to
realize the mapping of job process to core in the selected region. Finally c3, c4, c8
are selected for processes for J3.

140 X. Sun et al.

dc

ba

used cores by JM used routers by JM

cores and routers for Jnew

Fig. 3. The result of core allocation for
J1, J2, J3, J4. (a) core allocation for J1;
(b) core allocation for J2; (c) core allo-
cation for J3; (d) core allocation for J4

(d)

(c)

(b)

(a)

p0

c0 c1 c2

c4c3

c0 p1 c2

c4c3

p2 p1 c2

c4c3

(g)

p2 p1 p0

p3p4

p1 p2

p3

p4

(e)

p2 p1 p0

c4c3

(f)

p2 p1 p0

p3c3

Fig. 4. Core Mapping for job. (a) com-
munication graph for job; (b) The
selected mapping region; (c) map p1 to
c1; (d) map p2 to c0; (e) map p0 to c2;
(f) map p3 to c4; (g) mapping results for
all processes

3.2 Single Job Mapping Algorithm Based on Topology Partition

The job mapping algorithm based on topology partition is shown in Algo-
rithm1. The input includes state information of current NoC (used processor
cores Cused, unused processor cores Cunused, routing rule), job information (the
number of processes n, the process ordered set based on the total communication
volume Pcomm) and threshold to distinguish jobs-nth. The output consists of a
set of cores assigned to Jnew-CJnew

and the corresponding relationship between
the job process and core-MAP . In step 1, FindUsedRouters gets the avail-
able routers Runused by routing rules and the used core. Runused, an ascending
sequence sorted by the number, is used in CoreAllocation to select a set of pro-
cessor core whose region is a rectangle or close to a rectangle. Steps 2 to 4 deter-
mine the order of the traversal of CoreAllocation according to the number of
processes. For a large job, reverse the sequence, that finds the region from a large
number of the router. The fifth step is to call the algorithm CoreAllocation, and
select the mapping region for Jnew. The optimal allocation is the minimum rect-
angular region containing n processor cores, and the output of CoreAllocation
is the set of processor cores in the selected region. According to the communi-
cation relationship between processes and the connection relationship between
cores on NoC, CoreMapping gets the specific mapping between process and core
MAP = {pi ← cj |pi ∈ Pcomm, cj ∈ CJnew

, 0 ≤ i < n, 0 ≤ j < n}.

Network-on-Chip Aware Task Mappings 141

Algorithm 1. Single job mapping algorithm based on topology partition
Require:

used processor cores Cused; unused processor cores Cunused;
routing Rule routing = XY routing;
process numbers of Jnew n
the process ordered set based on the total communication volume
Pcomm =< p0, p1, ..., pn >;
threshold to distinguish jobs nth;

Ensure:
A set of processor cores assigned to Jnew CJnew ;
The corresponding relationship between the job process and CJnew

MAP = {pi ← cj |pi ∈ Pcomm, cj ∈ CJnew , 0 <= i < n, 0 <= j < n}.
1: Runused = FindUsedRouters(G,Cused, routing); //Runused is an ascending

sequence sorted by the idle router number
2: if n > nth) then
3: Runused = Reverse(Runused); //Reverse the sequence Runused

4: end if
5: CJnew = CoreAllocation(n,Cunused, Runused);//Core allocation algorithm, get a

set of processor cores
6: MAP = CoreMapping(Pcomm, CJnew);// Core Mapping algorithm, map each

process to the corresponding core

CoreAllocation: As shown in Algorithm 2, CJnew
is obtained according to the

number of Jnew’s process n, the router sequence Runused, and the idle cores
Cunused. In step 1–14, search for the smallest rectangular area containing m
cores first (m ≤ n). Through GetRctange in step 3, obtain the rectangular
region containing m cores with router vertex as the top-left vertex. If it can be
found, return the cores in the region Crect; If not, use the next vertex in Runused

to get the region. If the final returned rectangle contains less than n cores, an
additional n − m cores are still needed to meet the assignment requirement of
Jnew. Steps 12–22 are the steps to find them. The basic idea is to find the other
n−m cores closest to Cpart (the found region with m cores). This n−m idle cores
are searched one by one through the while loop (step 15–21), and then added
to Cpart. Since the number of idle cores is assumed greater than or equal to n,
the n − m idle cores can be found when the loop is over. In step 17, select the
idle core, which is closest to Cpart and has the fewest unused neighbours around
by MinmdAndneighbor. The neighbour here means the core with a Manhattan
Distance of 1.

CoreMapping: In this paper, core mapping is based on the algorithm in Chou
[5]. The process of mapping each process to the core is divided into two steps.
First, an unmapped process is selected in pcomm. Then a suitable on-chip core
is selected for it. But it’s different between our method and Chou’s in process
selection: Chou defines 3 states of the process, white, gray, and black, two actions
to switch between states: DISCOV ER and FINISH. If the neighbors (the
processes that communicate with each other are neighbors) of the process p are
all white, DISCOV ER it and select all available cores on the slice and convert p
to gray; If p’s neighbour is gray or black, FINISH it and select a particular core
and convert p to black. Go back to the first node of the ordered set, change the

142 X. Sun et al.

state for nonblack process until they all black. For it takes two steps for a process
mapping to a core, we get rid of gray. To reduce the communication distance
among processes with high traffic, we strengthen condition for the FINISH
action. The basic idea is as follows: start by selecting the process with the largest
traffic volume to map, and mark it black. If the neighbour process with the largest
traffic of process p is white, choose p to be pnext, the next process that needs to
be mapped. And p is pneighbor, the core for p is cneighbor. The process with the
most traffic has already been mapped, so such a pnext can certainly be found.
Select a specific core for pnext such that the distance between pnext and cneighbor
is minimized. If more than one core gets the minimum distance closest to pnext,
we choose the core that the number of whose neighbors closest to the number of
nonblack neighbors of pnext.

Algorithm 2. CoreAllocation

Require:
the number of Jnew’s process n;
the router sequence Runused;
the idle cores Cunused;

Ensure:
A set of processor cores assigned to Jnew CJnew ;

1: for m=n,n-1,n-2,...,1 do
2: //Look for a rectangle with n points, if not, look for a rectangle with n-1

points, and so on.
3: Cpart = ∅;
4: for each vertex in Runused do
5: Crect = GetRectangle(vertex,m);

//Return a rectangle with m-points with vertex as the vertex
6: if (Crect! = ∅) then
7: Cpart = Crect;
8: return;
9: end if

10: end for
11: end for
12: if (the rectangle contains less than n cores then
13: //The size of the rectangle is less than n, so still need to find an additional

n-m cores
14: Cunused = Cunused − Cpart;
15: while m < n do
16: //seek for the other n-m cores one by one. The rule is to look for other idle

cores closest to Cpart

17: c = MinmdAndneighbor(Cunused, Cpart);//select the idle core in Cunused,
which is closest to Cpart and has the fewest unused neighbors

18: join c to Cpart;
19: remove c from Cunused;
20: m = m + 1;
21: end while
22: end if
23: CJnew = Cpart;
24: END

As shown in Fig. 4, job with five processes in (a) is mapped to the selected
region shown in (b). (c), (d), (e), (f) and (g) are its mapping processes. Assume
now that, based on the total communication volume, the process ordered set is

Network-on-Chip Aware Task Mappings 143

pcomm = <p1, p2, p0, p3, p4>. We start with p1, since it has the largest commu-
nication volume. And it is mapped to c1 who has the most neighbors, as shown in
(c), p1 ← c1 is joined to MAP . At this time, p2, the process that have the most
traffic with p1, is chosen as pnext. pneighbor is p1, cneighbor is c1. The unmapped pro-
cess that communicate with p2 is p0. Select the core closest to c1 and the available
neighbor is 1. c0 and c4 are both meet the requirements. Select the one with the
smaller number, and as shown in (d), p2 ← c0 is added to MAP . Follow this step
to get p0 ← c2, p3 ← c4, p4 ← c3, and the mapping result is shown in (e).

3.3 Computation Complex

CoreAllocation: A job with n processes is allocated to N × N NOC, where
n ≤ N2. Scanning the Runused list executes |n| times. For each router in Runused,
GetRectangle and while loop (in line 15) executes |n| times. So the total run
time for CoreAllocation has a complexity of O(n2).

CoreMapping: An ACG for a job with n processes and e edges is mapped to
the selected region. The total run time of our algorithm has a complexity of
O(n2 + e) the same with Chou [5].

4 Experimental Results

4.1 Experimental Platform

Simulation Environment. In this paper, NIRGAM [6] is used to simulate an
8 × 8 mesh NoC. Table 1 is the configuration of NIRGAM in this experiment:

Table 1. Configuration for NIRGAM platform

Parameter name Values Description

TOPOLOGY MESH 2-d mesh topology
NUM ROWS 8 8 rows
NUM COLS 8 8 columns
RT ALGO XY XY routing algorithm
NUM BUFS 16 The number of buffers in input channel FIFO is 16
CLK FREQ 1 GHz Clock frequency is 1 GHz
PKT SIZE 32 Packet size is 32 bytes
FLIT INTERVAL 1 Interval between succesive flits is 1 clock

144 X. Sun et al.

Job Sequence Generation. Several sets of jobs with 4 to 16 tasks are gener-
ated using the TGFF [9]. It’s 4 to 8 for small-scale-job, 9 to 16 for large-scale-job.
Adjusting the proportion of large jobs to 0%, 25%, 50%, 75% and 100%, we get
5 sets of jobs. An arrival sequence is generated in each set. These sequences are
used to simulate the order in which the OS allocates resources for actual jobs.
NPB [10] traces with 4 and 8 (9 for BT and SP) and 16 processes are get by
HPC-NetSim [11]. An arrival sequence is generated for NPB.

The mapping algorithms we compare include random, INC [5], CASqA [7]
and the Job mapping algorithm based on topology partition (JMATD) pro-
posed in this paper. FT2000+ under the condition of not binding cores, allo-
cates resource for jobs in a random way by default. INC is a convex region
mapping algorithm, which can reduce communication energy consumption and
improve the application’s performance. CASqA has multiple mapping levels by
adjusting threshold (α), where set α = 0 to improve performance and reduce
communication energy consumption and latency.

4.2 Experimental Result

The Number of Shared Routers. The number of Shared routers produced by
the four algorithms is different. In order to compare the differences, the number
of shared routers in the five job sequences is statistically analyzed. (a), (b), (c),
(d), (e), (f) in Fig. 5 respectively reflect the change in the number of Shared
routers per job sequence during the mapping process. For random, the number
of Shared routers is the largest due to the overlap of jobs. JMATD reduces
the number of Shared routers by partitioning the topology when a single job is
mapped. For each job sequence, JMATD has a good optimization effect. In (d),
the number of Shared routers in random, INC and CASqA is 9.56x, 3.48x and
2.10x higher than that in JMATD, respectively. For both INC and CASqA, due
to the continuous convex mapping region, the same effect can be achieved with
JMATD for the job sequences with more fragment, as shown in (b). Figure 7
shows the average number of Shared routers in the mapping results for each
group of job sequences. On average, the number of Shared routers generated by
random, INC and CASqA is 5.78x, 1.25x and 0.67x higher than that of JMATD.

Communication Power for Jobs. JMATD is effective in reducing the number
of Shared routers. We measured the communication power curve changing under
different mapping algorithms for each set of jobs, and the results are shown in
Fig. 6(a), (b), (c), (d), (e), (f) represent different job sequences.Although the power
curve of each mapping method fluctuates somewhat, JMATD method is relatively
low compared with other methods on the whole. Figure 8 shows the average power
consumption in the job mapping process. On average, Compared with random,
INC, and CASqA, the communication energy consumption is decreased by 53.34%,
17.94%, 12.68%, respectively. Run time is assumed to be the same for a job in dif-
ferent mapping method. Therefore, the communication energy consumption of the
job sequence is proportional to the power consumption.

Network-on-Chip Aware Task Mappings 145

Fig. 5. Changes in the number of Shared routers per job sequence, (lower is better);
(a) l% = 0%; (b) l% = 25%; (c) l% = 50%; (d) l% = 75%; (e) l% = 100%; (f) NPB

Fig. 6. Changes in communication power during each job sequence mapping, (lower is
better); (a) l% = 0%; (b) l% = 25%; (c) l% = 50%; (d) l% = 75%; (e) l% = 100%; (f)
NPB

Communication Latency for Jobs. The communication latency of a job is
an important factor affecting performance. To compare the effect of JMATP in
reducing communication latency, the average latency of each job is calculated.
As shown in Fig. 9, the data is normalized.According to the average results of
the five job sets, the latency of random, INC, CASqA method is 59.73%, 5.19%,
2.99% higher than that of JMATP, respectively.

146 X. Sun et al.

4.3 Discussion

The experiment shows that the number of Shared routers has an effect on the
communication power consumption of the system, and the trend in Fig. 8 is con-
sistent with that in Fig. 7. However, when l% = 25%, the router is shared equally
in INC, CASqA and JMATP, but the communication power is quite different.
JMATP has lower power. We compared the communication distances of the jobs
in each algorithm. In this article, weighted Manhattan distance (WMD, the sum
product of MD and the corresponding weight of communicating processes) [12] is
a metrics of the quality of the job mapping. Figure 10 is the WMD comparison of
4 mapping methods adopted for 6 sets of jobs. From the perspective of single job
mapping, compared with other algorithms, JMATP can effectively reduce the
communication distance between job processes by 63.82%, 22.39% and 19.07%
respectively for random, INC and CASqA in WMD. JMATP not only reduces
the number of Shared routers but also reduces the communication distance of
jobs.

Formula 1 indicates that the latency is related to the router and the commu-
nication distance of the process where the contention occurs. Since the packet
transmission is concurrent, the latency is not wholly positive related to the rela-
tionship between the two. It means that the marginal benefits of optimizing
communication latency from reducing communication distance are not high.
Therefore, it is necessary to optimize shared routers while reducing the com-
munication distance.

The influencing factors of communication latency include external congestion
(router and link contend by different jobs) and internal congestion (router and
link contend by packets of the same job). Memory [13] and disks [14] also impact
the communication. Because of the interaction of these factors, communication
latency optimization is not significant compared to communication power. It
inspires us to work on what we’re going to do next: How to reduce resource
contention between job processes. How job communication characterizations [15]
affect communication latency.

5 Related Work

The performance of NoC is closely related to network congestion, which not
only increases network latency but also affects the communication power con-
sumption. That is why there are many works to diminish network congestion
from software and hardware aspects. Ebragimi [16] optimizes communication
from routing algorithms to reduce network conflicts. Jiang [17] proposed a new
switching mechanism to reduce network latency. Based on the STT-RAM router,
Yang [18] reduces communication latency by calculating the contended flit.

Job mapping is one of the effective ways to reduce network conflicts. Two
types of congestion can be defined during dynamic application mapping: external
and internal congestion. External congestion occurs when a network channel is
competing with packets from different applications; internal congestion is related
to packets from the same application.

Network-on-Chip Aware Task Mappings 147

Fig. 7. Average number of Shared routers
for jobs (lower is better)

Fig. 8. Average communication power
for jobs (lower is better)

Fig. 9. Average latency for jobs (lower is
better)

Fig. 10. WMD comparison for jobs
(lower is better)

To decrease the external congestion probability by mapping algorithm Chou
[5] proposes an incremental (INC) approach. They first select the near convex
region to reduce communication links and try to keep both the selected region
and remaining nodes contiguous, then allocation node according to the total com-
munication volume inside the selected region. Das [19] proposes new mapping
policies to improve system performance by reducing inter-application interfer-
ence in the on-chip network and memory controllers. Cores are clustered into
a subnetwork. Fattah in [12], proposed a SHiC algorithm to guide how to find
the optimum first node among all the available nodes for the run-time applica-
tion. Then, in [7] they proposed a run-time mapping algorithm, CASqA. In this
algorithm, the contiguousness of the allocated processors can be adjusted in a
fine-grained fashion according to α. Zhu [20] proposed an efficient heuristic-based
algorithm to balance minimized on-chip latency in multi-application mapping.

Internal congestion can also be reduced by the mapping algorithm. In [8], a
heuristic algorithm, unified priority-based scheduling (UPS), is put forward to
effectively solve the contention problem in polynomial time by assigning priorities
to messages. Once an instruction is waiting for the data from other PE, the extra
delay caused by NoC congestion postpone the instruction issue and decrease the
performance. An [21] proposed C-Map for the delay of the instructions existing
in CGRA, which improves the effectiveness of CGRA mapping in the perspective
of reducing network congestion and enhancing the continuity of the data-flow.

148 X. Sun et al.

6 Conclusion

This paper analyzes the influence of Shared routers among multiple jobs on
communication latency and energy consumption. When the number of Shared
routers increases significantly, it affects the communication latency of a single job
and the energy consumption of NoC. To reduce this impact, this paper proposes
a task mapping method based on topology partition. When allocating resources
for a single job, cores connected to an idle router are considered first to minimize
the number of shared routers between multiple jobs. NIRGAM Simulator is used
to compare the mapping method proposed in this paper and three other typical
ones (including random, INC, and CASqA). Communication latency and energy
consumption of the jobs under each mapping method are get based on an 8 × 8
NoC. The communication performance is improved to 59.73%, 5.19%, 2.99%
and energy consumption is decreased by 53.34%, 17.94%, 12.68%, respectively.
Shared routers exist not only between jobs but also between processes in a job.
Next, We focus on how to reduce Shared routers in the same application. We
also consider the impact of memory and disks on communication.

References

1. Liu, W., et al.: Thermal-aware task mapping on dynamically reconfigurable
network-on-chip based multiprocessor system-on-chip. IEEE Trans. Comput.
67(12), 1818–1834 (2018)

2. Kahng, A.B., Li, B., Peh, L., Samadi, K.: Orion 2.0: a fast and accurate NoC power
and area model for early-stage design space exploration, pp. 423–428 (2009)

3. Wu, C., et al.: An efficient application mapping approach for the co-optimization
of reliability, energy, and performance in reconfigurable NoC architectures. IEEE
Trans. Comput. Aid. Des. Integr. Circ. Syst. 34(8), 1264–1277 (2015)

4. Chen, L., Zhu, D., Pedram, M., Pinkston, T.M.: Power punch: towards non-
blocking power-gating of NoC routers, pp. 378–389 (2015)

5. Chou, C., Ogras, U.Y., Marculescu, R.: Energy- and performance-aware incre-
mental mapping for networks on chip with multiple voltage levels. IEEE Trans.
Comput. Aid. Des. Integr. Circ. Syst. 27(10), 1866–1879 (2008)

6. NIRGAM: A simulator for NoC interconnect routing and application modeling.
https://nirgam.ecs.soton.ac.uk/

7. Fattah, M., Liljeberg, P., Plosila, J., Tenhunen, H.: Adjustable contiguity of run-
time task allocation in networked many-core systems, pp. 349–354 (2014)

8. Yang, L., Liu, W., Jiang, W., Li, M., Yi, J., Sha, E.H.M.: Application mapping
and scheduling for network-on-chip-based multiprocessor system-on-chip with fine-
grain communication optimization. IEEE Trans. Very Large Scale Integr. Syst.
24(10), 3027–3040 (2016)

9. TGFF. http://ziyang.eecs.umich.edu/∼dickrp/projects/tgff/index.html
10. NAS parallel benchmarks. https://www.nas.nasa.gov/publications/npb.html
11. Zhou, W., Chen, J., Cui, C., Wang, Q., Dong, D., Tang, Y.: Detailed and clock-

driven simulation for HPC interconnection network. Front. Comput. Sci. China
10(5), 797–811 (2016)

12. Fattah, M., Daneshtalab, M., Liljeberg, P., Plosila, J.: Smart hill climbing for agile
dynamic mapping in many-core systems. In: 2013 50th ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1–6, May 2013

https://nirgam.ecs.soton.ac.uk/
http://ziyang.eecs.umich.edu/~dickrp/projects/tgff/index.html
https://www.nas.nasa.gov/publications/npb.html

Network-on-Chip Aware Task Mappings 149

13. Wu, F., et al.: A holistic energy-efficient approach for a processor-memory system.
Tsinghua Sci. Technol. 24(4), 468–483 (2019)

14. Dong, Y., Chen, J., Tang, Y., Wu, J., Wang, H., Zhou, E.: Lazy scheduling based
disk energy optimization method. Tsinghua Sci. Technol. 25(2), 203–216 (2019)

15. Chen, J., et al.: Analyzing time-dimension communication characterizations for
representative scientific applications on supercomputer systems. Front. Comput.
Sci. 13(6), 1228–1242 (2018). https://doi.org/10.1007/s11704-018-7239-1

16. Ebrahimi, M., Daneshtalab, M., Farahnakian, F.: HARAQ: congestion-aware learn-
ing model for highly adaptive routing algorithm in on-chip networks. In: 2012
IEEE/ACM Sixth International Symposium on Networks-on-Chip, pp. 19–26, May
2012

17. Jiang, G., Li, Z., Wang, F., Wei, S.: A low-latency and low-power hybrid scheme
for on-chip networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(4),
664–677 (2015)

18. Yang, L., Liu, W., Guan, N., Dutt, N.: Optimal application mapping and scheduling
for network-on-chips with computation in STT-RAM based router. IEEE Trans.
Comput. 68(8), 1174–1189 (2019)

19. Das, R., Ausavarungnirun, R., Mutlu, O., Kumar, A., Azimi, M.: Application-to-
core mapping policies to reduce memory system interference in multi-core systems.
In: 2013 IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), pp. 107–118, Febuary 2013

20. Zhu, D., Chen, L., Yue, S., Pinkston, T.M., Pedram, M.: Balancing on-chip network
latency in multi-application mapping for chip-multiprocessors, pp. 872–881 (2014)

21. An, S., et al.: C-map: improving the effectiveness of mapping method for CGRA by
reducing NoC congestion. In: High Performance Computing and Communications,
pp. 321–328, August 2019

https://doi.org/10.1007/s11704-018-7239-1

Dissecting the Phytium 2000+ Memory
Hierarchy via Microbenchmarking

Wanrong Gao, Jianbin Fang(B), Chuanfu Xu, and Chun Huang

College of Computer, National University of Defense Technology, Changsha, China
{gaowanrong,j.fang,xuchuanfu,chunhuang}@nudt.edu.cn

Abstract. An efficient use of the memory system on multi-cores is criti-
cal to improving data locality and achieving better program performance.
But the hierarchical memory system with caches often works in a “black-
box” manner, which automatically moves data across memory layers,
and makes code optimization a daunting task. In this article, we dis-
sect the memory system of the Phytium 2000+ many-core with micro-
benchmarks. We measure the latency and bandwidth of moving cache-
lines across memory levels on a single core or two distinct cores. We
design a set of micro-benchmarks by using the pointer-chasing method
to measure latency, and using the chunk-accessing method to measure
bandwidth. During measurement, we have to place the cacheline on the
specified memory layer and set its initial consistency state. The experi-
mental results on Phytium 2000+ provide a quantified form of its actual
memory performance, and reveal undocumented performance data and
micro-architectural details. To conclude, our work will provide quantita-
tive guidelines for optimizing the Phytium 2000+ memory accesses.

Keywords: Phytium 2000+ · Memory hierarchy · Microbenchmark

1 Introduction

Compared with single-core processors, multi-core processors have to deal with
significantly more concurrent memory accesses [4]. The memory system has thus
introduced a multi-level caching hierarchy to “lock” the frequently accessed data,
aiming to minimize the accesses to the off-chip memory. Modern cache features,
such as the number of cache layers, each layer’s capacity, to use the inclusive
or exclusive policy, and so on, vary across multi-core architectures. In addition,
the memory system of modern multi-cores often works in the form of a “black
box”, i.e., many implementation details are not disclosed. And the official tech-
nical specifications only reveal theoretical numbers and is of little significance
in guiding the actual performance engineering. All these bring programmers a
huge challenge of optimizing codes on the cache-coherent multi-core architec-
tures. Therefore, it is significant to dissect the working mechanism of multi-core
memory systems through quantifying the actual performance behaviours.

Prior works have demonstrated how well the memory hierarchy performs
on the conventional multi-core architectures. The STREAM benchmarks focus on
c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 150–162, 2020.
https://doi.org/10.1007/978-981-15-8135-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_11&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_11

Dissecting the Phytium 2000+ Memory Hierarchy 151

Fig. 1. The Mars II microarchitecture and the panel structure of Phytium 2000+ .

measuring the memory throughput, i.e., data loading/storing bandwidth with
a single-core or multi-cores [5]. McVoy and Staelin present a set of micro-
benchmark suite (lmbench) to quantify the performance of various computer
components [6]. In particular, they use pointer-chasing to measure the overhead
of moving data across cache layers. But lmbench ignores the communication
overhead of moving cachelines across processing cores. Such performance num-
bers are essential when optimizing parallel programs concerning shared memory
accesses, producer-consumer or thread migration. For this, Molka et al. provide a
set of microkernels (BenchIT) to characterize memory systems [7]. But BenchIT
is only applicable to the x86 architecture and its memory hierarchy.

In this work, we dissect the memory hierarchy and quantify the achiev-
able performance on Phytium 2000+ (an ARMv8-based cache-coherent 64-core
architecture). We measure the communication performance of moving cachelines
between distinct cores in terms of latency and bandwidth, through microbench-
marking (Sect. 3). We obtain undisclosed performance data and reveal many
micro-architecture details of Phytium 2000+ on both bandwidth (Sect. 4) and
latency (Sect. 5). Our evaluation results provide a quantitative reference for ana-
lyzing, modelling, and optimizing the performance of parallel codes on multi-core
processors. To the best of our knowledge, this is the first effort of dissecting the
memory hierarchy of the Phytium 2000+ architecture.

2 Phytium 2000+ and Its Memory Hierarchy

Phytium 2000+ uses the Mars II architecture [8]. Figure 1(a) gives a high-level
view of the Phytium 2000+ processor. It features 64 high-performance ARMv8
compatible processing cores. These cores are organized into 8 panels, where
each panel connects a memory control unit (MCU).

The panel architecture is shown in Fig. 1(b). Each panel has eight Xiaomi
cores, and each core has a private L1 cache of 32 KB for data and instructions,
respectively. Every four cores form a core group and share a 2 MB L2 cache.

152 W. Gao et al.

Note that, the L2 cache of Phytium 2000+ uses a inclusive policy, i.e., the data
cachelines stored in the L1 cache are also present in the L2 cache.

Each panel contains two Directory Control Units (DCU) and one routing
cell. The DCUs on each panel act as dictionary nodes of the entire on-chip
network. With these function modules, Mars II conducts a hierarchical on-chip
network, with a local interconnect on each panel and a global connect for the
entire chip. The former couples cores and L2 cache slices as a local cluster,
achieving a good data locality and short communication distance. The latter is
implemented by a configurable cell-network to connect panels to gain a better
scalability. Phytium 2000+ uses a home-grown Hawk cache coherency protocol to
implement a distributed directory-based global cache coherency across all panels.

3 Our Approach

This section introduces the design and implementation details of our benchmarks
to measure the bandwidth and latency of the Phytium 2000+ memory hierarchy.

3.1 Benchmarks Design

We measure the sustainable bandwidth by continuously accessing a chunk of
data elements, which is shown in Fig. 2(a). In contrast, we use pointer-chasing to
measure the latency of loading a cacheline by randomly accessing discontinuous
data elements (Fig. 2(b)). In this way, we aim to mitigate the impact of hardware
and/or software prefetching.

Fig. 2. The data accessing schemes for measuring bandwidth and latency: (a) accessing
contiguous data elements to measure bandwidth, and (b) accessing randomly linked
data elements to measure latency.

During the measurement, we use multiple threads to move data between
cores. To ensure that the buffer allocated by a thread belongs to a fixed core,
we pin each thread to a fixed core, i.e., thread n always runs on core n (cn).

Dissecting the Phytium 2000+ Memory Hierarchy 153

Besides, we have to control coherency states (modified, exclusive, shared)
of cachelines. We use the methods stated in [7], to set the initial coherency state.
To determine which level the data is suited in, we control the size of the input
datasets to be accessed. And we use a cache flush routine to replace the data in
this cacheline with dummy data to evict the measurement data to the next-level
cache. The benchmarking steps of measuring latency are shown in Algorithm 1.
Here we assume that c0 loads data from cn. The steps of measuring bandwidth
are the same, except the way of preparing the initial data.

Algorithm 1. The benchmarking steps of measuring latency
Require: n ≥ 0
1: for t = 1 to n do
2: initialize a thread Threadt
3: cpu set(mem bind[t])
4: thread[t].status ⇐ WAIT
5: end for
6: for t = 0 to n do
7: // Prepare data and set the initial coherency state of the cacheline
8: if n == 0 then
9: // Access local caches

10: prepare memory(thread[t])
11: else
12: // Access caches on other cores
13: thread[t].status ⇐ PREPARE MEMORY
14: prepare memory(thread[t])
15: thread[t].status ⇐ DONE
16: end if
17: // The cache flush routine
18: if n == 0 then
19: flush caches(thread[t])
20: else
21: thread[t].status ⇐ FLUSH
22: flush caches(thread[t])
23: thread[t].status ⇐ DONE
24: end if
25: // Measurement
26: use assembly instruction to access data
27: end for

3.2 Benchmarks Implementation

When implementing benchmarks on the Phytium 2000+ processor, we have to
address the following architecture-specific details.

154 W. Gao et al.

Enabling the Clock-Wise Timing. Our benchmarks are designed to measure
the performance of the Phytium 2000+ memory system. For such an measure-
ment, we need a clock-wise timer. It is straightforward to do so by using the
rdtsc instruction to read the timestamp on the x86 architecture. Similarly, we
can enable the clock-wise timing with the Performance Monitors Cycle Count
Register (PMCCNTR EL0) on the ARMv8-based architecture. But this register is
only accessible in the kernel mode. To address the issue, we use a kernel module
to activate the performance monitoring unit. The key steps of this kernel module
are summarized as follows.

– Reading the contents of the control register PMCR EL0.
– Activating the user mode by writing PMUSERENR EL0.
– Resetting all hardware counters by writing PMCR EL0.
– Enabling the performance counter by writing PMCNTENSET EL0.

With this kernel module, the PMCCNTR EL0 register can be accessible through
the mrs instruction to obtain the starting and ending timestamps.

Using the Vector Instructions. To obtain the maximum bandwidth, we
have to use the vector instructions to read/write data from/to the memory
system. The ARMv8-based architecture extends NEON with 32 128-bit vector
registers, while keeping the use of the same mnemonics as general registers [1].
The vector instructions are thus supported on the Phytium 2000+ processor.
In the implementation of its SIMD instruction, registers can hold one or more
elements of the same size and type. In assembly instructions, the register can
identify the vector format including Vn (128-bit scalar), Vn (.2D, .4S, .8H, .16B)
(128-bit vector) and Vn (.1D, .2S, .4H, .8B) (64-bit vector). When moving data
between registers and memory, we use the LD1/ST1 instruction of the ARMv8
architecture, similar to movqda on the x86 architecture. The selected vector
format is 4 single-precision floating-point words (.4S).

Using Special Instructions. Beside the general instructions, we use special
instructions shown in Table 1. DC CIVAC is used to invalidate specified cachelines.
It is useful when controlling the initial coherency state of cachelines. To put tar-
get data into the right cache space, we use DMB to ensure that the Phytium 2000+
processor does not optimize the execution order of the fetch instructions. In addi-
tion, we use the ALIGN instruction to avoid unaligned memory accesses.

Table 1. The special ARMv8 instructions [10].

DC CIVAC Data or unified cacheline clean and invalidate by
VA to PoC

DMB Data memory barrier acts as a memory barrier
that Explicitly enables the exeuction of memory
access instructions in front of it

ALIGN Align instruction or data storage address

Dissecting the Phytium 2000+ Memory Hierarchy 155

Table 2. c0 read bandwidth (GB/s).

Exclusive Modified Shared RAM

L1 L2 L1 L2 L1 L2

c0 33.6 18.5 33.6 18.5 33.6 18.5 6

c1 13.3 13.3 18.5

c4 10.5 10.9 10.5 10.9 10.9

c8 9.2 9.7 9.2 9.7 9.3 5.1

4 Bandwidth Results

In this section, we measure the read bandwidth on the Phytium 2000+ architec-
ture. Figure 3 show the bandwidth of c0 loading cachelines which are exclusive,
modified, or shared in different cores and different cache levels. Table 2 gives
a high-level view of the bandwidth numbers. We measure the bandwidth of c0
loading data from its local cache, from c1 sharing a L2 cache with c0, from c4
on the same panel, and from c8 on a different panel.

In Fig. 3 we find that the read bandwidth results show a clear phase change
as the size of the data set increases. Moreover, the size of the data set when
the staged change occurs is basically consistent with the size of various levels
of cache. Compared with the first change occurring exactly at 32k (size of L1
cache), the second change occurres earlier than 2M (size of L2 cache). This is
because L1 cache is a data cache explicitly, while L2 cache is a hybrid cache
including data and instructions both.

Local Accesses. Whatever the state of the cachelines, data can be loaded from
c0’s local caches. The obtained bandwidth has nothing to do with the coherency
state of the accessed data. The read bandwidth to its local L1 cache can reach
33.6 GB/s, while reading data from the local L2 cache can reach a bandwidth of
18.5 GB/s. Given that the L1 read port of Phytium 2000+ is 128 bits in width
and runs at 2.2 GHz, we calculate the theoretical L1 read bandwidth as

2.2 × 128 ÷ 8 = 35.2GB/s (1)

We see that the measured bandwidth is close to its theoretical counterpart
(33.6 GB/s vs. 35.2 GB/s). The measured write bandwidth stays about 17.4 GB/s
for L1. We note that the write bandwidth is around a half of the read bandwidth.
This is because storing data into L1 occurs at 64 bits per cycle.

Within a Core Group. Given that c1 and c0 shares the same L2 cache slice,
data can be loaded from the local L2 cache when the cacheline is shared. And
the memory bandwidth of accessing the local L2 can reach 18.5 GB/s. The band-
width stays the same when cachelines are exclusive or modified and suited
only in the local L2. But the bandwidth is reduced to be around 13.3 GB/s when
c0 loading exclusive or modified cachelines suited in c1’s local L1 cache.

156 W. Gao et al.

0

5

10

15

20

25

30

35

16k 32k 2M

ba
nd

w
id

th
 [G

B
/s

]

data set size [Byte]

Read Bandwidth

c0
c1
c4
c8

(a) Exclusive

0

5

10

15

20

25

30

35

16k 32k 2M

ba
nd

w
id

th
 [G

B
/s

]

data set size [Byte]

Read Bandwidth

c0
c1
c4
c8

(b) Modified

0

5

10

15

20

25

30

35

16k 32k 2M

ba
nd

w
id

th
 [G

B
/s

]

data set size [Byte]

Read Bandwidth

c0
c1
c4
c8

(c) Shared

Fig. 3. Read bandwidth of c0 accessing the local or another core (c1, c4 or c8)

Dissecting the Phytium 2000+ Memory Hierarchy 157

This is a notable difference from the x86 processor that the data can be loaded
directly from the shared cache slice, when the cacheline is exclusive initially.
Only when the cacheline is modified, the data has to be loaded from the remote
higher level cache. But on the Phytium 2000+ processor, we observe that data
have to be loaded from a higher cache level for both exclusive and modified
cachelines.

Within a Panel. When c0 loads data from c4 of the same panel, where the
two cores share no common cache slices, the bandwidth will be limited by cross-
group links. As can be seen from Fig. 3, the bandwidth is significantly smaller
(by around 40%) than the case when sharing the same L2 cache slice.

Similarly to c1, when performing cross-group access to c4 for exclusive or
modified cachelines, the bandwidth for reading the remote L1 cache is always
smaller than accessing the remote L2. This is also because data can be obtained
directly from the L2 cache only when its state is shared initially.

Across Panels. c8 does not share a common L2 cache slice with c0, and the
two cores have to be communicated via the cross-panel routing cells. The read
bandwidth of c0 accessing c8 ranges from 9.2 GB/s to 9.7 GB/s, which is smaller
than the bandwidth of accessing c1 or c4 within a panel.

Memory. Since c0, c1, c4 are within the same panel, they are connected directly
to the same MCU and memory module. When accessing data in the local mem-
ory module for c1 and c4, the bandwidth can reach around 6 GB/s. On the
other hand, c8 is connected directly to another MCU and memory module. The
bandwidth of c0 loading data from c8’s memory module is around 5.1 GB/s.

To summarize, there is another difference between the Phytium 2000+ pro-
cessor and the x86 processor when accessing the shared cachelines. The x86 pro-
cessor uses an extension of the MESIF protocol, which requires data to be fetched
from the core with the latest copy (forward). Meanwhile, the Phytium 2000+
processor uses a MOSEI-like coherency protocol. There is no need to find the
forward copy, but it can directly obtain the data with an arbitrary shared copy.

5 Latency Results

This section shows the latency for the Phytium 2000+ memory hierarchy. The
performance numbers are measured when the cachelines are modified initially.

5.1 Overview of the Latency Results

Figure 4 shows the latency results when c0 loading data from its local cache, from
c1 sharing a L2 cache slide with c0, from c4 on the same panel, and from c8 on
a different panel. Table 3 shows an overview of the measured latency results.

158 W. Gao et al.

0

50

100

150

200

250

300

350

400

450

16k 32k 2M

la
te

nc
y

[c
yc

le
s]

data set size [Byte]

Latency

c0
c1
c4
c8

Fig. 4. Read latency of c0 accessing the local (c0) or another core (c1, c4 or c8).

Table 3. c0 read latency (cycle (ns)).

L1 L2 RAM

c0 3 (1.4) 21 (9.5) 271 (123.2)

c1 18 (8.2)

c4 34 (15.5) 94 (42.7)

c8 49 (22.3) 127 (57.7) 310 (141.4)

We see that, the latency of accessing the local L1 and L2 cache are 3 cycles
(1.4 ns) and 21 cycles (9.5 ns), respectively. For the Mars II architecture, there
is no public specification documenting such numbers. The specification of the
first generation Mars describes that accessing the local L1 and L2 takes 2 ns
and 8 ns, respectively, which is in accordance with our measured results [11].
When c0 loading data from c1, the latency is same as accessing the local L2
cache. Figure 4 shows that, no matter which memory layer the data is in, loading
cachelines across core groups or panels takes many more cycles than accessing
the local cache slices. Thus, loading data within a core group is the fastest.

5.2 Across-Panel Latency Results

We evaluate the performance impact of panel distance on latency when access-
ing cores fixed to different panels. Figure 5 shows the latency results when c0
accessing the cores on p1 (panle 1)–p7 (panel 7), respectively.

Dissecting the Phytium 2000+ Memory Hierarchy 159

 0

 100

 200

 300

 400

 500

 600

16k 32k 2M

la
te

nc
y

[c
yc

le
s]

data set size [Byte]

Latency

c8(p1)
c16(p2)
c24(p3)
c32(p4)
c40(p5)
c48(p6)
c56(p7)

Fig. 5. Read latency of c0 accessing p1–p7.

We see that the latency numbers vary over the panel distance, with the
latency difference of up to 105 cycles. Besides, the latency numbers of c0 on p0
accessing c8 on p1 and c32 on p4 are the same. This is because p1 and p4 are
at the same distance to p0 (Fig. 1). This result also agrees with the theoretical
latency results [11].

5.3 With Different Page Sizes

We investigate the performance impact of the TLB page size on latency. Figure 6
shows the latency measured with the 4KB page, and the other configurations
stay the same as that for Fig. 4.

Phytium 2000+ provides the usage of 4 KB and 2 MB pages. With 2 MB
page (Fig. 4), the latency of each cache level looks stable. While using the 4 KB
pages (Fig. 6), although the gap between different cache levels is still visible, the
latency increases over the amount of data being accessed. This is because the
latency measurement uses the pointer-chasing method. In the data preparation
stage, the next-to-be accessed address is randomly generated, resulting in a poor
locality for the linked-list access. When using small pages, there will generate
too many page table entries, leading to frequent TLB misses and resulting in a
large memory access overhead. The bandwidth measurement does not have this
issue because its access is consecutive.

160 W. Gao et al.

0

50

100

150

200

250

300

350

400

450

16k 32k 2M

la
te

nc
y

[c
yc

le
s]

data set size [Byte]

Latency

c0
c1
c4
c8

Fig. 6. Read latency of c0 accessing the local (c0) or another core (c1, c4 or c8) using
4 KB pages.

6 Related Work

Although the effective use of the memory systems is essential to obtain the
best performance, vendors seldom provide the details of the memory hierarchy
or the achieved performance. For this reason, researchers have to obtain such
performance results and implementation details through measurements.

Babka et al. [2] propose experiments that investigate detailed parameters of
the x86 processors. The experiment is built on a general benchmark framework
and obtains the required memory parameters by performing one or a combi-
nation of multiple open-source benchmarks. It focuses on detailed parameters
including the address translation miss penalties, the parameters of the addi-
tional translation caches, the cacheline size, and the cache miss penalties.

McCalpin et al. [5] present four benchmark kernels (Copy, Scale, Add, and
Triad), STREAM, to access memory bandwidth for a large variety current com-
puters, including uniprocessors, vector processors, shared-memory systems, and
distributed-memory systems. STREAM is one of the most commonly used memory
bandwidth measurement tools in Fortran and C. But it focuses on throughput
measurement without considering the latency metric.

Molka et al. [7] propose a set of benchmarks, including to study the per-
formance details of the Nehalem architecture. Based on these benchmarks, they
obtain undocumented performance data and architectural properties. This is
the first work to measure the core-to-core communication overhead, but it is
only applicable to the x86 architectures. Fang et al. extend the microkernels to
Intel Xeon Phi [3]. Ramos et al. [9] propose a state-based modelling approach

Dissecting the Phytium 2000+ Memory Hierarchy 161

for memory communication, allowing algorithm designers to abstract away from
the architecture and the detailed cache coherency protocols. The model is built
based on the measurement numbers of the cache-coherent memory hierarchy.

7 Conclusion

A variety of cache organizations and coherency protocols make modern multi-
cores complicated, diverse, but hard-to-use. As the cache-based memory sys-
tem is a critical factor that affects the overall performance, it is important to
know its working mechanism and the achieved performance. This article focuses
on dissecting the memory hierarchy of the Phytium 2000+ architecture with
microbenchmarks. Specifically, we quantify the on-core and core-to-core com-
munication performance when cachelines are in different states and located in
various cache levels. We choose Phytium 2000+ as our experimental platform
to access the performance of its memory system and dissect its working mecha-
nism. The experimental results provide a detailed and quantitative performance
description of the Phytium 2000+ memory hierarchy. We also compare architec-
tural properties between Phytium 2000+ and the x86 architecture. For future
work, we will use the hardware counters in our micro-benchmarks to collect
detailed performance data, aiming to obtain more details of the memory sys-
tem, e.g., on the TLB miss rate.

Acknowledgment. This work was funded by the National Key Research and Devel-
opment Program of China under Grant No. 2018YFB0204301, the National Natural
Science Foundation of China under Grant agreements No. 61972408 and 61602501.

References

1. ARM, A.: NEON programmer’s guide (2013)
2. Babka, V., Tůma, P.: Investigating cache parameters of x86 family processors.

In: Kaeli, D., Sachs, K. (eds.) SBW 2009. LNCS, vol. 5419, pp. 77–96. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-93799-9 5

3. Fang, J., Sips, H.J., Zhang, L., Xu, C., Che, Y., Varbanescu, A.L.: Test-driving
intel Xeon Phi. In: Lange, K., Murphy, J., Binder, W., Merseguer, J. (eds.)
ACM/SPEC International Conference on Performance Engineering. (ICPE 2014),
Dublin, Ireland, 22–26 March 2014, pp. 137–148. ACM (2014). https://doi.org/10.
1145/2568088.2576799

4. Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. IEEE Comput. 41(7),
33–38 (2008). https://doi.org/10.1109/MC.2008.209

5. McCalpin, J.D., et al.: Memory bandwidth and machine balance in current high
performance computers. IEEE Comput. Soc. Tech. Committee Comput. Archit.
(TCCA) Newsl. 2(19–25) (1995)

6. McVoy, L.W., Staelin, C.: lmbench: portable tools for performance analysis. In:
Proceedings of the USENIX Annual Technical Conference, 22–26 January 1996,
San Diego, California, USA, pp. 279–294. USENIX Association (1996)

https://doi.org/10.1007/978-3-540-93799-9_5
https://doi.org/10.1145/2568088.2576799
https://doi.org/10.1145/2568088.2576799
https://doi.org/10.1109/MC.2008.209

162 W. Gao et al.

7. Molka, D., Hackenberg, D., Schöne, R., Müller, M.S.: Memory performance and
cache coherency effects on an intel nehalem multiprocessor system. In: PACT 2009,
Proceedings of the 18th International Conference on Parallel Architectures and
Compilation Techniques, 12–16 September 2009, Raleigh, North Carolina, USA,
pp. 261–270. IEEE Computer Society (2009). https://doi.org/10.1109/PACT.2009.
22

8. Phytium: Mars II - microarchitectures. https://en.wikichip.org/wiki/phytium/
microarchitectures/mars ii

9. Ramos, S., Hoefler, T.: Modeling communication in cache-coherent SMP systems:
a case-study with Xeon Phi. In: Proceedings of the 22nd International Symposium
on High-Performance Parallel and Distributed Computing, pp. 97–108 (2013)

10. Rutland, M.: Stale data, or how we (mis-) manage modern caches (2016)
11. Zhang, C.: Mars: a 64-core ARMv8 processor. In: 2015 IEEE Hot Chips 27 Sym-

posium (HCS), pp. 1–23. IEEE (2015)

https://doi.org/10.1109/PACT.2009.22
https://doi.org/10.1109/PACT.2009.22
https://en.wikichip.org/wiki/phytium/microarchitectures/mars_ii
https://en.wikichip.org/wiki/phytium/microarchitectures/mars_ii

TSU: A Two-Stage Update Approach
for Persistent Skiplist

Shucheng Wang and Qiang Cao(B)

Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information
Storage System, Engineering Research Center of Data Storage Systems

and Technology, School of Computer Science and Technology, Huazhong University
of Science and Technology, Ministry of Education of China, Wuhan, China

{wsczq,caoqiang}@hust.edu.cn

Abstract. Skiplist, a widely used in-memory index structure, could
incur crash inconsistency when running on emerging NVRAM (Non-
Volatile Random Access Memory). Logging or strict serialization can
ensure crash consistency at the cost of severe performance degradation.
In this paper, we propose TSU, a Two-stage update approach to improve
the performance of persistent skiplist while preserve crash consistency.
TSU exploits space locality of skiplist and atomic write of NVRAM,
thus effectively reducing expensive cache line flush (clflush) operations.
To this end, we category all four crash inconsistent states into two types:
recoverable and unrecoverable. TSU could guarantee the crash state is
recoverable by constraining the memory access order for insertion and
deletion. We further design a persistency algorithm to reduce clflush by
preserving the memory persistent order of skiplist update. In addition,
we develop a concurrent search for TSU. The evaluation result shows
that TSU can reduce cache line flush with up to 47.6%, and decrease
the average request latency by up to 36% for insertions compared to the
strict serialization.

Keywords: Skiplist · NVRAM · Crash consistency

1 Introduction

Skiplist is a popular in-memory index structure and prevalently employed in
key-value (KV) stores approaches [6,7,13,21] to speed up query. Meanwhile,
emerging non-volatile random access memory (NVRAM), such as PCM [26],
STT-RAM [9] and 3D-Xpoint [15] presents DRAM-like read latency but could
store data persistently. Therefore, a persistent skiplist running on NVRAM is
desired to keep data even after a failure.

However, conventional skiplist directly deployed in NVRAM cannot ensure
crash consistency. A skiplist update operation involves multiple memory accesses,
which could be partly complete on crashing, leading to inconsistency in NVRAM.
Traditionally, write-ahead-logging (WAL) and strict serialization could ensure

c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 163–177, 2020.
https://doi.org/10.1007/978-981-15-8135-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_12&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_12

164 S. Wang and Q. Cao

crash consistency in memory, and have been used to realize persistent B+-tree
[27] and B-Tree [14]. Unfortunately, these two mechanisms are expensive. WAL
writes all the updates twice. The strict serialization needs plenty of memory
barriers and cache line flushes.

To address the crash inconsistency problem for skiplist, we propose TSU, a
Two-Stage update approach to reduce the cache line flush (clflush) operations of
skiplist update while ensuring crash consistency. The key idea of TSU is to exploit
space locality of skiplist by effectively leveraging atomic write of NVRAM. We
first reveal there are four crash inconsistent states for a skiplist. These four states
can be divided into two types: recoverable and unrecoverable. Second, we design
Two-stage update to ensure the crash states of skiplist are recoverable.

The rest of the paper is organized as follows: in Sect. 2, we present the back-
ground and challenges in designing a persistent skiplist. In Sect. 3, we propose
the implementation of Two-stage Update. Section 4 evaluates the performance
of TSU and Sect. 5 discusses related work. In Sect. 6, we conclude this paper.

2 Background and Challenge

2.1 Skiplist

Skiplist is originally introduced by Pugh et al. [17]. It has been extensively
adopted to current prevalent key-value (KV) stores, such as HBase [6], LevelDB
[7], MemSQL [21], because it is simple to build bottom-up and it maintains
highly stabilizable index structure without complex rebalancing like B-tree in
runtime.

Fig. 1. Example of a skiplist with 4 levels

In a skiplist as shown in Fig. 1, a node contains a key that uniquely represents
this node and internal pointers that point to its successor nodes. For a node,
there exist external pointers in its forward nodes pointing to it. Each node has
a level count, which is the number of internal pointers the node contains [17].
The level i internal pointer points to the successor node at level i. The level of
a node is generated randomly by the probability factor k. For example, k = 4
means the level of a node will be 2 in the probability of 25%, and be 3 in the
probability of 12.5%.

TSU: A Two-Stage Update Approach for Persistent Skiplist 165

In a vertical view, a skiplist is comprised of multiple levels of linked lists.
The bottom level is an ordinary ordered linked list containing real KV data.
We define it as basic list for it is the cornerstone of skiplist. All the internal
and external pointers except the basic list are index pointers. When inserting or
deleting a node, a skiplist has to update both the basic list and all index pointers
in a transactional way.

2.2 NVRAM

Emerging NVRAM (Non-Volatile Random Access Memory) such as PCM [26],
STT-MRAM [9] and 3D Xpoint [15] are byte-addressable and non-volatile.
The read access latency of NVRAM is comparative to DRAM, but the write
latency could be 5–10x slower [16]. When compared with SSD (Solid State Disk),
NVRAM is expected to provide 10-100x lower read and write latency [12]. Addi-
tionally, NVRAM commonly provides memory interfaces such as load and store,
instead of block interface for storage.

2.3 Challenge

The challenge in designing a persistent skiplist is that it is hard to guaran-
tee crash consistency. As mentioned in Sect. 2.1, the skiplist update demands a
transaction containing multiple memory accesses. Without keeping transactional
updates to NVRAM, the skiplist can partially update and persist under power
failure, thus leading to an inconsistent state in NVRAM.

Crash Inconsistency States. Crash inconsistency refers to the inconsistent
state caused by partial and disordered persisted data after a system crash. Three
main reasons for the inconsistency are listed as follows: (1) The skiplist update
operations contain multiple memory accesses. (2) Modern processors reorder

Fig. 2. Four crash inconsistent states of a conventional skiplist during inserting key 17.

166 S. Wang and Q. Cao

memory operations [10]. (3) The CPU Cache is still volatile and all memory
writes that are not persisted in NVRAM will be lost.

For instance, if we insert key 17 to a conventional skiplist without ordering
memory writes, any update for key, internal or external pointers in skiplist could
be lost after a system failure. It causes four inconsistent states as shown in
Fig. 2(a)–2(d).

The Non-key Node in Fig. 2(a) is the node without a valid key. The Non-basic-
pointer Node is the node with an uninitialized internal pointer in basic list, which
could lose previously existing nodes like node 25 in Fig. 2(b). Figure 2(c) shows
a Non-index-pointer node with uninitialized internal index pointer, which could
point to an illegal address and cause fatal memory leak. All of them cause wrong
result of search or update operations, and need to be repaired immediately after
crash. Thus we categorize them into the unrecoverable type. Besides, missing
external pointer like Fig. 2(d) is recoverable type of inconsistent state. It violates
the basic semantics of the skiplist, but just affects search performance.

Therefore, when updating skiplist, we should carefully constrain the mem-
ory write order to avoid crash inconsistency. If all the unrecoverable states are
avoided, the skiplist could be used immediately after a crash without reconstruc-
tion. We explicitly make use of memory fence and cache line flush instructions
(mfence and clflush in Intel x86 architecture) [3,10,11,27].

Granularity Mismatch. NVRAM could replace conventional DRAM placed
on the memory bus, which makes a cache line (64 bytes in Intel x86 architec-
ture) as a basic unit switching between cache and memory. We could use Intel’s
Restricted Transactional Memory (RTM) and Hardware Lock Elision (HLE) to
support atomic cache line writes to NVRAM [18]. However, the demands for
failure atomicity in NVRAM is at a smaller granularity (8 bytes). When updat-
ing skiplist with strict serialization by performing an atomic write to NVRAM,
we have to flush a cache line for each memory write. This scheme could lead to
a 64-bytes cache eviction for merely an 8-bytes update, which could cause low
cache hit rate. To alleviate such cost, we should flush a cache line containing
multiple dirty data. Besides, even the strict serialization model could not atom-
ically flush multiple cache lines [20]. If a system crashes while flushing multiple
cache lines, the consistency could not be guaranteed. Therefore, it is necessary
to constrain the cache flush order as long as the skiplist node size is larger than
a single cache line.

3 Two-Stage Update

3.1 Design of TSU

To guarantee the crash state is always recoverable, we divide the insertion oper-
ation into two consecutive stages as shown in Fig. 3: the Node modification stage
updates the basic list and internal pointers in the target node. The Index mod-
ification stage updates other external pointers in its involving forward nodes.

TSU: A Two-Stage Update Approach for Persistent Skiplist 167

Fig. 3. Two-stage update when inserting node 17. The insertion consists of two stages:
the node modification phase and the index modification stage.

These two stages serialize globally: one stage must complete before the other so
all dirty cache lines produced in the previous stage could persist in NVRAM.

The node modification stage is a KV persistent process that ensures KV data
to be both recoverable and visible. For insertion, it allocates the new node but
doesn’t initialize all elements immediately. In order to keep recoverable crash
states, the basic list should modify first before others. Then the new list node
in the basic list should persist with clflush. At that time, the node with durable
KV is visible for search operations even if it is incomplete, which doesn’t affect
concurrent search. This is because the search threads could visit the new node
just through the basic list in the bottom level, and other uninitialized pointers
will not be used. At the end of this stage, we update and persist other internal
pointers in high levels. Then, the index modification stage updates all the exter-
nal pointers except the one in the basic list. For insertion, it requires a specific
bottom-up order to modify external pointers to preserve consistency while lever-
aging the external pointer locality. For deletion, the process is reversed. We will
describe the detail in the next section.

3.2 The Persistency Algorithm in TSU

In both node and index modification stage, we need to determine the update
order of pointers to avoid inconsistent state. One intuitive way is strict seri-
alization with clflush for each memory write, which is expensive. In Fig. 4, we
evaluate the clflush counts produced in 100k random insertion with 8-bytes key
under strict serialization. We change the average level of skiplist by adjusting
the factor k as mentioned in Sect. 2.1. We observe that with a different value of
k, each insertion needs 5.2 to 7 times of clflush operations.

In order to reduce the number of clflush operations, we design a persistency
algorithm for TSU to combine multiple memory writes into a cache line when
updating index pointers. We observe that some of the updating pointers are
continuous in memory address and exhibit obvious space locality, and there is
no semantic dependency between them. It is widely common when updating a
skiplist. If we do not explicitly perform clflush, the CPU could evict dirty cache
lines randomly [10]. It means CPU could reorder these pointer updates into
multiple physical memory flushes and break the potential locality. Therefore,

168 S. Wang and Q. Cao

Fig. 4. The clflush counts produced by 100k random insertion with different probability
factor k, which is counted in index modification stage and node modification stage
respectively.

to leverage the locality of pointers, we design an algorithm to insert a copy
operation between consecutive memory writes. The copy operation reads the
value of first write, and then copies it to the destination of the following write,
which will update with a new value finally. The extra copy explicitly produces
Write-After-Write (WAW) and Read-After-Write (RAW) dependency between
the two updates. CPU with TSO does not reorder WAW and RAW at the same
memory address [19]. As a result, if one pointer updates successfully, its preceding
pointers must have been flushed [25]. Besides, the copy leads to a read-hit and
a write-hit in cache, avoiding extra actual memory access. With this approach,
TSU can persist all of them simultaneously with an atomic clflush operation.

If the node size spans across multiple cache lines, TSU writes a cache line
and flushes it with mfence before writing next cache line. This approach ensures
the flush order is not to change.

Detectable Duplicate Pointer. The extra copy approach results in duplicate
pointers, which means that its adjacent pointer updates incorrectly. This incon-
sistency is recoverable but needs to be identified. However, conventional skiplists
allow pointers with same value in a node. To avoid the duplicate pointers in tra-
ditional practices, we define the internal pointers merely point to its successor
pointer at the same level instead of the successor node. Therefore, a pointer in
each node has different value in normal cases, thus removing duplicate point-
ers in the general process. The duplication case uniquely represents a transient
inconsistency that can be easily detected. Please note the method could lead to
indirect read access to a node. A macro (e.g., the container of() in Linux) is used
to get the address of the node by calculating the memory offset of its internal
pointer.

Insertion. The insertion operation of TSU shown in Fig. 5 is an example of
inserting a KV pair (17, value) into skiplist. A similar procedure could apply to
deletion.

First, once the new node allocates, the corresponding node modification
stage begins. TSU initializes the new KV and internal pointer in the basic list

TSU: A Two-Stage Update Approach for Persistent Skiplist 169

Fig. 5. The persistency algorithm in TSU when inserting the node 17. The insertion
first updates and persists the basic list, then updates other internal and external point-
ers with the persistency algorithm.

(assuming their total size less than a cache line) with clflush + mfence. After
that, TSU atomically updates forward pointer P9.0. At this point, the node has
been inserted in the basic list as Fig. 5(a) shows.

Next, TSU updates the node’s other internal pointers at a high level. There
are three steps explained in Fig. 5(b)–5(d). First, TSU initializes the pointer
P17.1. Since other internal pointers in the same node also need to update, TSU
does not perform clflush immediately. Second, before updating the next pointer
P17.2, TSU copies P17.1 and overwrites P17.2 like Fig. 5(c). The copy pro-
duces a RAW to P17.1, and creates a memory write to P17.2 at the same time.
Third, TSU updates P17.2, which causes a WAW similarly. This process builds
a dependency constraint on the execution order of memory write based on TSO.
Finally, in Fig. 5(d), there is no uninitialized internal pointer in node 17, TSU
atomically flushes cache line with multiple dirty pointers in it. Similarly, TSU
updates external pointers (P5.1, P5.2) in the index modification stage as shown
in Fig. 5(e)–(g) to realize crash consistency.

Suppose crash occurs at the state in Fig. 5(c) or 5(f). Although the duplicate
pointers can be detected in NVRAM, they violates our rule. At this point, one
of the duplicate pointers is correct, and the inconsistent state can recover by
detecting and ignoring the wrong pointer (P17.2 and P5.2 in this example). In
addition, if crash occurs at the state in Fig. 5(b), it is a recoverable state. This
is because the uninitialized internal pointers could not be accessed by previous
index at the same level. If a crash happens when the index modification stage is
like Fig. 5(e) shows, it will result in a recoverable and tolerable state as shown
in Fig. 2(d).

Recovery. To perform recovery after a crash, we should first find the entrance of
skiplist in NVRAM, then repair the inconsistency in it. The entrance of skiplist
can be defined as a specific address in NVRAM. This function is supported by
previous work such as Makalu [1].

170 S. Wang and Q. Cao

Then, the recovery procedure traverses the skiplist to find the inconsistent
states. With TSU, the recovery could just check two kinds of recoverable incon-
sistent states in the skiplist after power failure:

1. There are duplicate pointers in a node.
2. There are missing index pointers at top-level as Fig. 2(d) shows.

For state 1, one of the duplicate pointers is pointing to a successor pointer
at different level, which is a illegal pointer. To repair it, the recovery modifies
the illegal pointer by pointing it to its successor pointer at the same level. For
instance, if the duplicate pointers are generated by insertion, the illegal pointer
is the one at a higher level, and it is reverse for deletion. For state 2, the recovery
repairs all the missing pointers by pointing them to their successor pointers at
the same level.

3.3 Concurrent Search

In TSU, the persistency algorithm could lead to duplicate pointers when inserting
a node, which could affect the correctness of original concurrent search manner.
An intuitive solution is to design a lock-based skiplist to maintain concurrency
between search and insertion. However, lock is a heavyweight operation that
limits the scalability of concurrency. To implement the concurrent search for
TSU without lock, search operation should detect and tolerate duplicate pointers
to ensure correct result when it traverses to the node in updating. As mentioned
above in Sect. 3.2, one of the duplicate pointers is illegal that could lead to wrong
search results. If searches detect the illegal pointer, it could continue searching
by the other one. Search threads could detect the illegal pointer by determining
whether it has the same level as its successor pointer. This process performs an
atomic memory reads and doesn’t need an extra lock.

4 Evaluation

We run experiments on a server that has two Intel Xeon E5-2696 v4 proces-
sors (2.20 GHz, 22 CPUs) and 64 GB DRAM. We use a DRAM-based NVRAM
latency emulator-Quartz [23] that is widely used in previous studies [10,24].
We compare three variants of persistent skiplist. The DRAM-SS is a conven-
tional skiplist that uses clflush and mfence for each memory write to keep crash
consistency. The TSU-SS issues a Two-stage update and strict serialization in
the index modification stage. TSU-Atomic further updates multiple external
pointers in the index modification stage with the persistency algorithm.

4.1 Performace

We warm up with 500k 8-bytes random integer keys, then execute 100k random
insertions and measure the average request latency (i.e., the process time of
an operation) and clflush counts. The skiplist nodes is aligned with cache line

TSU: A Two-Stage Update Approach for Persistent Skiplist 171

Fig. 6. The average request latency and clflush counts of random insertions with three
different kinds of persistent skiplist. The latency of insertion is divided into three parts:
the index modification stage, the node modification stage and search.

and the maximum node size is set to 4 cache lines (256 bytes). The NVRAM
read/write access delay is set to 600 ns.

Figure 6 shows that TSU-Atomic and TSU-SS reduce the request latency
compared with DRAM-SS in the node modification stage and the index modifi-
cation stage, respectively. Figure 6(a) shows that TSU-SS reduces 52.9% latency
of the node modification stage compared with DRAM-SS and 26.3% of the insert
operation. This is because TSU-SS uses the persistency algorithm for TSU, which
reduces 65.8% clflushes in the node modification stage as shown in Fig. 6(b).
Moreover, TSU-Atomic effectively reduces more than 18% latency of the index
modification stage compared with TSU-SS. In general, TSU-Atomic decreases
the total insertion latency by 30.6% compared with DRAM-SS.

4.2 NVRAM Latency Effect

We demonstrate how NVRAM write latency affects the insert performance as
shown in Fig. 7. We set NVRAM read access delay to 300 ns while increasing only
the write access delay from 300 ns to 1200 ns, and measure the average latency

Fig. 7. Different read-write delay ratio could effect the average latency for each index
modification stage and insertion.

172 S. Wang and Q. Cao

for each insertion operation (with the -insertion suffix) and index modification
stage (with the -index suffix) in different skiplist.

When we change the write latency of NVRAM, the insertion time decreases
from 22% to 36% in TSU-Atomic compared with DRAM-SS, and the average
latency of the index modification stage decreases from 11.9% to 19.5%. This
is because the main cost in both node and index modification stages is cache
line flush and memory write, which is more sensitive to memory write latency.
Therefore, the persistent skiplist with TSU is more applicable to NVRAM with
asymmetric latency, such as PCM.

4.3 Concurrency

In the experiment described in Fig. 8, we evaluate the throughput of three con-
current persistent skiplists. LOCK is a basic concurrent version of DRAM-SS,
which requires read-write lock. TSU-SS and TSU-Atomic could support con-
current searches without locks, although they still need write locks to serialize
insertions. The search operation of TSU-SS does not need to tolerate duplicate
pointers while the TSU-Atomic has to, for TSU-SS does not cause duplicate
pointers in the index modification phase. Our write lock uses the STD::mutex
class in c++ 11 and read-write lock uses the boost::shared mutex class. We
compile the TSU program set with –O0 optimization option here because the
compiler optimization could reorder instructions and affect the correctness of
lock-free concurrent search [10]. In this experiment, the NVRAM latency is set
to 600 ns. We insert 500k 8-bytes random keys to warm up, and then launch
multiple searches and a single insertion with 8:2 search and insert load.

Fig. 8. The throughput performance with varying number of concurrent threads.

Result in Fig. 8 shows that TSU-Atomic and TSU-SS could benefit from
concurrent search, and their throughput performs 7.1x and 6.8x speed-up when
the number of search threads increases from 1 to 16, respectively. TSU-Atomic
decreases the throughput slightly but has no affect on the concurrency extendibil-
ity. This is because TSU-Atomic modifies the search operation and causes a little

TSU: A Two-Stage Update Approach for Persistent Skiplist 173

Fig. 9. Concurrent performance of TSU-Atomic and TSU-SS with 300k search load
and varying numbers of insertion load.

overhead (i.e., less than 0.4% throughput reduction for an single thread) as men-
tioned in the previous Sect. 3.3. For LOCK, the speed-up becomes saturated at 4
search threads, because read-write locks do not allow concurrency between read
and write, so the throughput is limited by insertion.

Figure 9 presents that TSU-Atomic could reduce the adverse impact caused
by insertion under read-write concurrency. We compare the performance of TSU-
Atomic and TSU-SS with single insertion thread and multiple search threads. We
use the same settings as shown above, then launch 300k random search with vary-
ing numbers of insertions respectively at the same time. As the insertion oper-
ation inserts more nodes, the overall throughput decreased for the search time
extends. TSU-Atomic could tolerate these declines more than TSU-SS because
it shortens the insertion time in the index modification stage, which allows con-
current search to utilize high-level index pointers earlier. In addition, when we
insert more than 120,000 (60,000 with two search threads in Fig. 9(b)) keys, the
throughput decreases significantly because the overall execution time of insertion
exceeds search at this point.

Fig. 10. Overall throughput of persistent skiplists with YCSB workloads.

174 S. Wang and Q. Cao

4.4 YCSB

To evaluate the performance of TSU under real world scenarios, we use the
YCSB [4] benchmark and run the following workloads: A (update heavy: 50/50),
B (read mostly: 95/5), C (read only), D (read recently), E (range query) and F
(read-modify-write). We first launch a warm-up with 500k insertions and then
perform 100k records. We use YCSB version 0.12.0 to generate workloads and
replay them with 16 threads.

Figure 10 presents the throughput of three different kinds of persistent
skiplists. TSU is more effective with larger proportion of insertions. It improves
throughput performance up to 4.6x in workload A, 2.6x in workload B and 2.5x
in workload F compared with LOCK, respectively. Among the read-only work-
loads C, D and E, the max throughput of TSU is 1.2x larger than LOCK. This
is because the read-write lock in LOCK has extra memory access cost than the
concurrent TSU. In addition, TSU-SS and TSU-Atomic have little difference of
performance in all five YCSB workloads. TSU-Atomic improves 6.5% through-
put in the update heavy workload A but decreases 3.5% under the read only
workload C compared with TSU-SS. This is because TSU-Atomic performs less
clflushes in insertion, while having a constant overhead in searching.

5 Related Work

Index Structures for Block Devices. Several studies attempt to redesign
persistent B-tree and B+-tree for NVRAM [3,10,14,16,22]. There are different
challenges between persistent B-tree and skiplist. Inserting a new KV entry into
a B-tree node will shift half of the existed entries on average, while skiplist does
not move any existed elements. To maintain crash consistency, B-tree or B+-tree
has to perform multiple clflush and mfence operations for each entry shift. The
wB+-Tree [3] designs unsorted nodes to avoid shifting entries, and it introduces
a bitmap as metadata in each node to make search efficient. However, the clflush
produced by wB+-Tree is too much mainly because the metadata brings extra
persistent demands. FAST&FAIR [10] intends to solve granularity mismatch
problem in B+-Trees. It keeps entries in sorted order without setting metadata
like the wB+-Tree, and it could persist multiple entry shift operations with a
single clflush to keep crash consistency. This method inspires our work. DPTree
[28] designs a two-level persistent index architecture for B+-Tree in DRAM-
NVRAM hybrid systems. It batches multiple writes in DRAM and later merges
them into NVRAM to reduce persistence overhead.

Index Structures in Memory. Some studies [11,12] design persistent skiplists
of Log-Structure Merge Trees (LSM-Trees) to deliver low search latency and high
throughput. They set no consistency mechanism for the index pointers of skiplist
because they could be reconstructed upon system crash. Similarly, NV-skiplist
[2] designs a persistent skiplist with separated data and indexes. It sets up the
basic list in NVRAM for data persistence and builds index pointers in DRAM to

TSU: A Two-Stage Update Approach for Persistent Skiplist 175

retain performance. However, all index pointers will be lost after system crash,
which could be expensive to recover in a large-scale skiplist.

Concurrent Skiplist. Skiplist can support concurrent workload [21] to enhance
throughput. Related works [5,8] utilize the Compare And Swap (CAS) synchro-
nization primitive to provide lock-free skiplist for high concurrency. However, it
is too complex to make it satisfy crash consistency. Therefore, we design a sim-
ple implementation with concurrent read and single write, which is not totally
lock-free but could be adequate to our environment.

6 Conclusion

In this work, we present TSU, a Two-stage update approach for persistent
skiplist. TSU keeps crash consistency without logging or strict serialization. It
constrains the update order of skiplist, thus guaranteeing that the crash incon-
sistent state is recoverable. By leveraging the space locality of the skiplist and
memory order constrains following Total Store Ordering, we design a persistency
algorithm for TSU that could perform failure atomic skiplist update. The algo-
rithm ensures that multiple dirty pointers in skiplist can atomically write back
to NVRAM. Besides, we enable a concurrent search without locks.

Acknowledgment. This work is supported in part by National key research
and development program of China under Grant 2018YFA0701804 and Grant
2018YFA0701805, in part by the Creative Research Group Project of NSFC No.
61821003.

References

1. Bhandari, K., Chakrabarti, D.R., Boehm, H.J.: Makalu: fast recoverable allocation
of non-volatile memory. In: ACM SIGPLAN Notices, vol. 51, pp. 677–694. ACM
(2016)

2. Chen, Q., Yeom, H.: Design of skiplist based key-value store on non-volatile mem-
ory. In: 2018 IEEE 3rd International Workshops on Foundations and Applications
of Self* Systems (FAS* W), pp. 44–50. IEEE (2018)

3. Chen, S., Jin, Q.: Persistent B+-trees in non-volatile main memory. Proc. VLDB
Endow. 8(7), 786–797 (2015)

4. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154. ACM (2010)

5. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: Proceedings
of the Twenty-Third Annual ACM Symposium on Principles of Distributed Com-
puting, pp. 50–59. ACM (2004)

6. George, L.: HBase: The Definitive Guide: Random Access to Your Planet-Size
Data. O’Reilly Media, Inc., Sebastopol (2011)

7. Ghemawat, S., Dean, J.: LevelDB (2011)

176 S. Wang and Q. Cao

8. Herlihy, M.: A methodology for implementing highly concurrent data objects. ACM
Trans. Program. Lang. Syst. (TOPLAS) 15(5), 745–770 (1993)

9. Huai, Y., et al.: Spin-transfer torque MRAM (STT-MRAM): challenges and
prospects. AAPPS Bull. 18(6), 33–40 (2008)

10. Hwang, D., Kim, W.H., Won, Y., Nam, B.: Endurable transient inconsistency in
byte-addressable persistent B+-tree. In: 16th USENIX Conference on File and
Storage Technologies. (FAST 2018), Oakland, CA, pp. 187–200. USENIX Associ-
ation (2018)

11. Kaiyrakhmet, O., Lee, S., Nam, B., Noh, S.H., Choi, Y.: SLM-DB: single-level
key-value store with persistent memory. In: 17th USENIX Conference on File and
Storage Technologies, (FAST 2019), Boston, MA, pp. 191–205. USENIX Associa-
tion (2019)

12. Kannan, S., Bhat, N., Gavrilovska, A., Arpaci-Dusseau, A., Arpaci-Dusseau, R.:
Redesigning LSMS for nonvolatile memory with NoveLSM. In: 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 2018), pp. 993–1005 (2018)

13. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

14. Oukid, I., Lasperas, J., Nica, A., Willhalm, T., Lehner, W.: FPTree: a hybrid SCM-
DRAM persistent and concurrent B-tree for storage class memory. In: International
Conference on Management of Data (2016)

15. Packard, H.: Understanding the Intel/Micron 3D Xpoint Memory (2015)
16. Ping, C., Lee, W.C., Yuan, X.: Making B+-tree efficient in PCM-based main mem-

ory (2014)
17. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM

33(6), 668–677 (1990)
18. Rao, D.S., et al.: System software for persistent memory. In: Bulterman, D.C.A.,

Bos, H., Rowstron, A.I.T., Druschel, P. (eds.) Ninth Eurosys Conference 2014,
(EuroSys 2014), Amsterdam, The Netherlands, 13–16 April 2014, pp. 15:1–15:15.
ACM (2014)

19. Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P., Owens, J.D.: Memory access
scheduling. ACM SIGARCH Comput. Archit. News 28(2), 128–138 (2000)

20. Seo, J., Kim, W., Baek, W., Nam, B., Noh, S.H.: Failure-atomic slotted paging
for persistent memory. In: Chen, Y., Temam, O., Carter, J. (eds.) Proceedings
of the Twenty-Second International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, (ASPLOS 2017), Xi’an, China, 8–12
April 2017, pp. 91–104. ACM (2017)

21. Shamgunov, N.: The MemSQL in-memory database system. In: IMDM VLDB
(2014)

22. Venkataraman, S., Tolia, N., Ranganathan, P., Campbell, R.H.: Consistent and
durable data structures for non-volatile byte-addressable memory. In: USENIX
Conference on File and Storage Technologies (2010)

23. Volos, H., Magalhaes, G., Cherkasova, L., Li, J.: Quartz: a lightweight performance
emulator for persistent memory software. In: Proceedings of the 16th Annual Mid-
dleware Conference, pp. 37–49. ACM (2015)

24. Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: lightweight persistent memory. In:
ACM SIGARCH Computer Architecture News, vol. 39, pp. 91–104. ACM (2011)

25. Wang, Y., et al.: Robustness in the salus scalable block store. In: Proceedings
of the 10th USENIX Symposium on Networked Systems Design and Implemen-
tation, (NSDI 2013), Lombard, IL, USA, 2–5 April 2013, pp. 357–370. USENIX
Association (2013)

TSU: A Two-Stage Update Approach for Persistent Skiplist 177

26. Wong, H.S.P., et al.: Phase change memory. Proc. IEEE 98(12), 2201–2227 (2010)
27. Yang, J., Wei, Q., Cheng, C., Wang, C., Leong, K., He, B.: NV-tree: reducing

consistency cost for NVM-based single level systems. In: USENIX Conference on
File and Storage Technologies (2015)

28. Zhou, X., Shou, L., Chen, K., Hu, W., Chen, G.: DPTree: differential indexing for
persistent memory. Proc. VLDB Endow. 13(4), 421–434 (2019)

NV-BSP: A Burst I/O Storage Pool
Based on NVMe SSDs

Qiong Li1(B), Dengping Wei1, Wenqiang Gao2, and Xuchao Xie1

1 College of Computer, National University of Defense Technology, Changsha, China
qiong joan li@aliyun.com

2 Beijing Memblaze Technology Co., Ltd., Beijing, China

Abstract. The High-Performance Computing (HPC) systems built for
future exascale computing, big data analytics, and artificial intelligence
applications raise an ever-increasing demand for high-performance and
highly reliable storage systems. In recent years, as Non-Volatile Memory
express (NVMe) Solid-State Drives (SSDs) are deployed in HPC stor-
age systems, the performance penalty paid for the legacy I/O software
stack and storage network architecture turns out to be non-trivial. In
this paper, we propose NV-BSP, an NVMe SSD-based Burst I/O Stor-
age Pool, to leverage the performance benefits of NVMe SSD, NVMe
over Fabrics (NVMeoF) Protocol, and Remote Direct Memory Access
(RDMA) networks in HPC storage systems. NV-BSP disaggregates
NVMe SSDs from HPC compute nodes to enhance the scalability of
HPC storage systems, employs fine-grained chunks rather than physi-
cal NVMe SSD devices as the RAID-based data protection areas, and
exploits high concurrent I/O processing model to alleviate the perfor-
mance overhead from lock contentions and context switches in critical
I/O path . We implement NV-BSP in Linux and evaluate it with syn-
thetic FIO benchmarks. Our experimental results show that NV-BSP
achieves scalable system performance as the number of NVMe SSD and
CPU core increases and obtains much better system performance com-
pared with the built-in MD-RAID in Linux. Compared with node-local
SSDs in HPC, NV-BSP provides a full system solution of storage disag-
gregation, delivers comparable performance, and significantly improves
system reliability.

Keywords: Burst I/O Storage Pool · NVMe SSD · NVMe over
Fabrics · High-Performance Computing

1 Introduction

High-Performance Computing (HPC) has proven its great power in facilitat-
ing data-driven scientific discovery [10]. Future HPC systems will be not only
built for large-scale scientific computing, but also for big data analytics and
artificial intelligence applications, which raises an ever-increasing demand for
high-performance and highly reliable storage systems [13,15].
c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 178–191, 2020.
https://doi.org/10.1007/978-981-15-8135-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_13&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_13

NV-BSP: A Burst I/O Storage Pool Based on NVMe SSDs 179

Conventional Hard Disk Drive (HDD)-based RAID architectures [2] have
been used as a key component of HPC storage systems over the past 30 years.
However, due to the inherent mechanical characteristics of the rotating media in
HDDs, HDD-based storage arrays are unable to meet the high IOPS, high band-
width, and low latency requirements of the HPC applications with data-intensive
problems [7,20,24]. The new emerging NAND Flash-based Solid-State Drive
(SSD) provides orders of magnitude lower latency and consumes less power than
HDDs [17–19]. SSDs are considered to entirely replace HDDs in future HPC stor-
age systems. SSDs are first designed as the drop-in replacements of traditional
hard disks with interfaces like SATA and SAS. However, the interface protocols
were designed for hard disks which significantly limit the output performance of
SSDs. This promotes the design and development of the Non-Volatile Memory
express (NVMe) protocol that is capable of leveraging the internal parallelism of
SSDs and reducing the software overhead in the I/O path [14,16,22,23]. NVMe
SSDs have been rapidly emerging on the storage market and will be widely
deployed in both data center and HPC storage systems soon.

As HPC systems have an urgent need for high-performance and highly reli-
able large-scale storage systems, using NVMe SSDs to build All Flash Array
(AFA) can effectively meet the requirements simultaneously. However, existing
storage array architectures have critical limitations in terms of software over-
head in I/O path and parallelism exploitation of NVMe SSDs [18,19,21,23]. The
workload characteristics of a certain HPC application can be latency-sensitive
or throughput-oriented or continuously changing during the application lifes-
pan. As the aggregate bandwidth can be easily achieved in large-scale parallel
storage systems, obtaining low latency is more challenging. As the scalability of
the PCI express (PCIe) bus cannot satisfy the connections of a large amount
of NVMe SSDs in large-scale storage systems, NVMe over Fabrics (NVMeoF)
protocol is proposed to extend the advantages of NVMe protocol to shared stor-
age architecture [4,6]. NVMeoF offers a solution that separates storage from
HPC compute node (CN) and connects storage to CN through a network fabric.
Currently, NVMeoF can adequately support fabric transports like Remote Direct
Memory Access (RDMA), TCP, and Fibre Channel (FC), how to efficiently inte-
grate NVMeoF with in-house interconnection networks of specific HPC systems
remains stagnant.

In this work, we consolidate the storage array trend towards integrating
NVMe SSDs and NVMeoF target in a single storage server. We propose NV-
BSP, an NVMe SSD-based Burst I/O Storage Pool, to leverage the performance
benefits of NVMe SSD, NVMeoF Protocol, and RDMA networks in HPC storage
systems. Specifically, NVM-BSP disaggregates NVMe SSDs from HPC compute
nodes, which improves the storage resource utilization and enhances the scalabil-
ity of HPC storage systems. NV-BSP employs fine-grained chunks rather than
physical NVMe SSD devices as the RAID-based data protection areas, which
avoids an entire NVMe SSD participating data reconstruction and achieves load
balance without data redirection or migration. NV-BSP exploits a high con-
current I/O processing model to alleviate the performance overhead from lock

180 Q. Li et al.

contention and context switch in critical I/O path, which enables the perfor-
mance of NV-BSP increasing linearly with the number of NVMe SSDs and CPU
cores.

We implement NV-BSP in Linux and evaluate it with synthetic FIO bench-
marks. Our experimental results show that NV-BSP achieves scalable system
performance as the number of NVMe SSD and CPU core increases and obtains
better system performance compared with the build-in MD-RAID in Linux.
Compared with node-local SSDs in HPC, NV-BSP provides a full system solution
of storage disaggregation, delivers comparable performance, and significantly
improves system reliability.

The rest of this paper is organized as follows. Section 2 provides an overview
of NV-BSP, Sect. 3 describes the high concurrent I/O processing mechanism in
NV-BSP. We evaluate the performance of NV-BSP in Sect. 4 and summarize the
related work in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 NV-BSP Overview

In this section, we give an overview of the system architecture, storage manage-
ment, and storage disaggregation designs of NV-BSP.

2.1 System Architecture

The system architecture of NV-BSP is shown in Fig. 1. The hardware of NV-
BSP includes the NVMe SSDs connected to CPU via PCIe bus, NVMeoF net-
work interface for NVMeoF purpose, and other common components of storage
servers, i.e., CPU, RAM, etc. The software of NV-BSP mainly composes of
the storage resource manager, I/O processing handlers, and NVMeoF target.
NV-BSP manages the data to underlying NVMe SSDs in the block layer in the
I/O path. The storage resource manager is responsible for managing all the stor-
age resources in NV-BSP and exporting virtual disks (VDisk) to applications,
which will be discussed in detail in Sect. 2.2. I/O processing handlers will produce
and activate independent threads to serve I/O requests, reconstruction requests,
and error events, etc. NVMeoF target provides NVMe over RDMA communica-
tion between HPC compute nodes (CN) and VDisks in NV-BSP, which will be
further discussed in Sect. 2.3.

2.2 Resource Management

Figure 2 describes the storage resource management mechanism in NV-BSP. The
storage resource management mechanism can be divided into four levels include
storage pool management, resource allocation, data protection, and VDisk man-
agement. In NV-BSP, NVMe SSDs are first organized as a storage pool, in which
the logical address space of all the NVMe SSDs is divided into fixed-size chunks.
The storage pool manager maintains the states of all the fine-grained chunks. Dif-
ferent from traditional RAID, NV-BSP completely separates physical resources

NV-BSP: A Burst I/O Storage Pool Based on NVMe SSDs 181

Fig. 1. NV-BSP system architecture.

and RAID-based data protection areas through chunk-level resource virtualiza-
tion. Therefore, the data reconstruction operations in NV-BSP no longer relies
on the entire SSD device to participate. Furthermore, through fine-grained divi-
sion, the data written to the VDisks from the same NV-BSP will be evenly
distributed on each NVMe SSD, which achieves load balancing among NVMe
SSDs without data redirection and migration.

At the time of creating a VDisk from the storage pool, Resource allocator
groups several chunks into a container which is divided into finer-stripes based
on the configured data protection level (e.g.., RAID 0/1/5/6). Stripe is the basic
granularity of read and write operations in NV-BSP. VDisk is a collection of
containers and will be exported as a logical volume in the operating system.
The corresponding logical volume of the VDisk will provide storage services for
upper-layer applications through a standard block device interface.

2.3 Storage Disaggregation

In NV-BSP, a single storage pool can export several VDisks simultaneously and
the VDisks can be carved into NVMe namespaces with each namespace allocated
to a specific HPC compute node. The I/O processing handlers are responsible for
serving I/O requests concurrently. In NV-BSP, the NVMeoF target dynamically
and arbitrarily attaches virtual disks with needed capacity and performance via
QoS management technology directly to the compute node where the application
runs on. As NVMeoF initiators, computing nodes send NVMeoF read/write com-
mands through the RDMA network to the destination NV-BSP. The NVMeoF

182 Q. Li et al.

Fig. 2. Storage resource manager in NV-BSP.

target in NV-BSP parses the received NVMeoF commands and converts them
into NVMe commands to a VDisk that exported from NV-BSP. The storage
resource manager in NV-BSP manages all the VDisks, and finally transmits each
NVMe command into multiple NVMe commands to the corresponding NVMe
SSDs. Each NVMe SSD completes the subsequent read data from the NVMe
SSD to the memory, or write data into the NVMe SSD, finally transmits the
read/write completion message to NV-BSP. NV-BSP combines the arrived com-
pletion messages into a single NVMe response. Finally, the NVMeoF target in
NV-BSP returns the NVMeoF response to corresponding compute nodes over
the NVMeoF storage network.

3 High Concurrent I/O Processing

In this section, we describe the details of the high concurrent I/O processing
model in NV-BSP.

3.1 Task Grouping

In NV-BSP, task grouping is designed to achieve high concurrent I/O process-
ing. As NV-BSP serves as both NVMeoF target and RAID array simultaneously,
significant CPU competitions between the two tasks will be introduced when

NV-BSP: A Burst I/O Storage Pool Based on NVMe SSDs 183

NVMeoF target and RAID array services are all enabled. In NV-BSP, CPU
cores are divided into two different groups, i.e., NVMeoF Target Group (NT-
Group) and RAID Array Group (RA-Group). The CPU cores in NT-Group will
only be assigned for the NVMeoF target while that in RA-Group only assigned
for the RAID array task. In this case, two different tasks will not run on the
same CPU core anymore, which effectively alleviates CPU conflicts caused per-
formance overhead and improves the concurrency of I/O processing.

In RA-Group, each CPU core occupies an independent data structure when
performing an I/O handler. Thus, the CPU cores in RA-Group will no longer
need to compete for a data structure and the lock contention overhead is elim-
inated. As shown in Fig. 3, for the I/O handlers that perform RAID tasks on
N cores (indicated as CPU1 to CPUN), each I/O handler uses an independent
data structure to avoid lock contentions among CPU cores, which enables the
I/O performance increases linearly with the increase of the number of CPU cores
in NV-BSP.

Fig. 3. High concurrent I/O processing model in NV-BSP.

3.2 I/O Handler Allocation

In NV-BSP, I/O handlers are responsible for handling I/O requests, including
read and write requests from application and data reconstruction requests within
NV-BSP. Each I/O handler thread processes I/O requests of different logical
address areas in VDisk. The logical address space of a VDisk is divided into
multiple regions that do not overlap with each other. I/O requests to a region are

184 Q. Li et al.

processed by the corresponding I/O handler thread. As shown in Fig. 3, when an
application accesses the VDisk in NV-BSP, several I/O handler threads will wake
up according to the hash algorithm. Since there is no access correlation between
the requests handled by different I/O handlers, these I/O handler threads can
run on multiple CPU cores concurrently. Furthermore, each I/O Handler can be
bounded to a dedicated CPU core to reduce the performance overhead caused
by context switches.

3.3 I/O Request Processing

In NV-BSP, each I/O request is processed in two phases. In the first phase,
I/O request is distributed into I/O handler command queue according to its
target logical address region. In the second phase, the corresponding I/O handler
processes the request based on the RAID request handling tree model, as shown
in Fig. 4. The I/O request processing acts in accordance with the tree changes.
The tree grows when an I/O request arrives at the corresponding VDisk and the
tree shrinks as I/O requests being served successfully.

Fig. 4. I/O request processing in NV-BSP.

All the I/O operations to NV-BSP can be divided into two categories, i.e.,
basic operation and combo operation. A basic operation only involves in a single
stripe and can be easily accomplished. A combo operation consists of one or
more basic operations. For example, for the reconstruction combo operation, it
consists of two basic operations, i.e., read a stripe to memory and write the
reconstructed data from memory to the spare space. Each combo operation
corresponds to a sequentially executed state machine. The combo operation is
converted into multiple basic operations and executed recursively according to
the state machine until all the basic operations are accomplished.

NV-BSP: A Burst I/O Storage Pool Based on NVMe SSDs 185

4 Performance Evaluation

In this section, we evaluate the detailed behavior of NV-BSP under synthetic
FIO workloads.

4.1 Experimental Setup

The experimental setup consists of a server with two Intel Xeon Gold 6128 CPUs
(each with 6 physical cores and 12 logical cores in Hyper-Threading mode),
192 GB of DDR4 RAM, 8 NVMe SSDs with 1.8 TB NAND Flash. The operat-
ing system is CentOS Linux 7.7 with the kernel version of 4.19.46. NV-BSP is
implemented as a kernel module in Linux and rely on FIO of version 3.7 for per-
formance evaluation. In the following experiments, all the workloads generated
by FIO use Linux Asynchronous I/O (libaio) engine and enable direct IO.

4.2 Experiment Results

Performance Scalability Measurement. To understand the system perfor-
mance of NV-BSP with a different number of NVMe SSDs, we measure the
IOPS of the VDisks from storage arrays equipped with 3 to 8 NVMe SSDs. In
this experiment, we configure FIO workloads to 4 KB read-intensive (30% write
and 70% read) and write-intensive (70% write and 30% read) I/O, 8 threads
with 64 queue depth per thread.

Figure 5 shows the comparison of the IOPS of VDisks from the NV-BSPs
with a different number of NVMe SSDs. NV-BSP generally achieves obvious
performance improvement for both read-intensive and write-intensive workloads
as more NVMe SSDs are equipped in NV-BSP. Specifically, for the read-intensive
workload, IOPS improves 86.94% when the number of NVMe SSDs increases
from 3 to 6, and 97.82% when the number of NVMe SSDs increases from 4 to
8. For the write-intensive workload, IOPS improves 87.04% when the number of
NVMe SSDs increases from 3 to 6, and 97.98% when the number of NVMe SSDs
increases from 4 to 8.

To further evaluate the performance benefits from the high concurrent I/O
processing design in NV-BSP, we configure a different number of I/O handlers in
a VDisk from an NV-BSP epuipped with 8 NVMe SSDs and measure both the
IOPS under 4 KB random read/write and the bandwidth under 128 KB sequen-
tial read/write workloads of the VDiks.

As shown in Fig. 6, both random read and random write performance of the
VDisk improves linearly until the number of I/O handlers increases to 16, where
the 4 KB random performance of the VDisk reaches the bottleneck and appears
little improvement. Figure 7 depicts the sequential read and write bandwidth
of the VDisks with a different number of I/O handlers. Similar to the random
read and write performance, NV-BSP shows a good acceleration ratio with the
increasing number of I/O handlers, especially for the sequential read perfor-
mance. We can clearly see that the maximum read bandwidth of a single VDisk
can be more than 20 GB/s, which indicates outstanding performance scalability
of NV-BSP.

186 Q. Li et al.

Fig. 5. IOPS comparison for different number of NVMe SSDs in NV-BSP.

Fig. 6. IOPS comparison for different number of I/O Handlers in NV-BSP.

Performance Comparison with MD-RAID. We compare the performance
of NV-BSP with the build-in MD-RAID in Linux. Two different VDisks cre-
ated by NV-BSP and MD-RAID are evaluated in this experiment. Figure 8 and
Fig. 9 show the average I/O latency and bandwidth comparisons for different I/O
request sizes respectively. As shown in Fig. 8, the average I/O latency of NV-
BSP is much lower than that of MD-RAID. As the I/O request size increases
from 4 KB to 128 KB, the average I/O latency of NV-BSP is at least 4.75x lower
than that of MD-RAID. Similarly, the bandwidth of the VDisk from NV-BSP
is much higher than that of MD-RAID. As the I/O request size increases from
4 KB to 128 KB, the bandwidth of NV-BSP is 1.64x to 11.06x higher than that

NV-BSP: A Burst I/O Storage Pool Based on NVMe SSDs 187

Fig. 7. Bandwidth comparison for different number of I/O Handlers in NV-BSP.

of MD-RAID. Apparently, both the I/O latency and bandwidth confirm that
the performance of NV-BSP significantly outperforms that of MD-RAID.

Fig. 8. Latency comparison for different I/O request sizes.

5 Related Work

The increasing number of CPU cores in modern storage servers enables a single
storage server to host a large amount of high-performance NVMe SSDs [5,8].
However, the scalability issues of storage software stack significantly prevent

188 Q. Li et al.

Fig. 9. Bandwidth comparison for different I/O request sizes.

the output performance of the NVMe SSDs on a server. Several studies have
tried to sequentially write data into the storage array to improve system perfor-
mance and achieve wear-leveling among NVMe SSDs [11]. SWAN [7] introduces
a log-structured storage management logic at the host level to sequentialize the
written data to RAID stripes. SWAN is specially designed for NVMeoF target by
balancing the output performance of NVMe SSDs and network interface perfor-
mance. Purity [3] developed by Pure Storage proposes to adopt an LSM-tree [12]
based log-structured indexes and data layouts in storage array, thus data can
be written in large sequential chunks for better performance. Besides, purity
also integrates compression and deduplication to make better use of NVMe SSD
capacity. Different from purity and SWAN, NV-BSP proposes to alleviate the
overhead from lock contentions and context switches in the critical I/O path to
achieve the high concurrent I/O processing.

Integrating flash storage disaggregation techniques (e.g.., iSCSI and NVMeoF)
into storage array designs shows great benefits of improving storage resource uti-
lization and aggregating the performance of a bunch of storage devices [1,9]. Stor-
age array manufacturers like Huawei, Pure Storage, Apeiron Data Systems, Kami-
nario, Pavilion Data Systems have released their storage array products and solu-
tions that integrate NVMeoF target logic respectively. For example, OceanStor
Dorado V6 uses NVMe over FC and RDMA as the front end interfaces of RAID
2.0 storage pools. E8 Storage combines the high performance of NVMe drives,
the high availability and reliability of centralized storage, and the high scalability
of scale-out solutions in a single storage array. The E8-D24 and E8-S10 products
of E8 Storage can deliver up to 10 million IOPS with 40 GBps throughput using
100 GbE or 100 Gbps InfiniBand connectivity.

NV-BSP: A Burst I/O Storage Pool Based on NVMe SSDs 189

6 Conclusion

This paper presents NV-BSP, an NVMe SSD-based Burst I/O Storage Pool
that leverages the performance benefits of NVMe SSD, NVMeoF Protocol, and
RDMA networks in HPC storage systems. NV-BSP disaggregates NVMe SSDs
from HPC compute nodes to enhance the scalability of HPC storage systems,
employs fine-grained chunks rather than physical NVMe SSD devices as the
RAID-based data protection areas, and exploits high concurrent I/O processing
model to alleviate the performance overhead from lock contentions and context
switches in critical I/O path. We evaluated and analyzed the detailed behav-
ior of NV-BSP. Compared with node-local SSDs in HPC, NV-BSP provides a
full system solution of storage disaggregation, delivers comparable performance,
and significantly improves system reliability. Compared with the built-in MD-
RAID in Linux, NV-BSP achieves much better system performance. In future
work, we will study global wear-leveling in NV-BSP to enhance the endurance of
NVMe SSDs and QoS management scheme to create VDisk from NV-BSP with
customized capacity and performance.

Acknowledgment. The authors would like to thank the anonymous reviewers. This
work was supported in part by the Advanced Research Project of China under grant
31511010202 and the National Key Research and Development Program of China under
Grant 2018YFB0204301.

References

1. Amvrosiadis, G., et al.: Data storage research vision 2025: report on NSF visioning
workshop held May 30–June 1, 2018. Technical report, USA (2018)

2. Balakrishnan, M., Kadav, A., Prabhakaran, V., Malkhi, D.: Differential raid:
rethinking raid for SSD reliability. ACM Trans. Storage 6(2), 1–22 (2010). https://
doi.org/10.1145/1807060.1807061

3. Colgrove, J., Davis, J.D., Hayes, J., Miller, E.L., Sandvig, C., Sears, R., et al.:
Purity: building fast, highly-available enterprise flash storage from commodity com-
ponents. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2015, pp. 1683–1694. Association for Computing
Machinery, New York (2015). https://doi.org/10.1145/2723372.2742798

4. Guz, Z., Li, H.H., Shayesteh, A., Balakrishnan, V.: NVMe-over-fabrics performance
characterization and the path to low-overhead flash disaggregation. In: Proceedings
of the 10th ACM International Systems and Storage Conference, SYSTOR 2017.
Association for Computing Machinery, New York (2017). https://doi.org/10.1145/
3078468.3078483

5. Jackson, A., Turner, A., Weiland, M., Johnson, N., Perks, O., Parsons, M.: Eval-
uating the arm ecosystem for high performance computing. In: Proceedings of the
Platform for Advanced Scientific Computing Conference, PASC 2019. Association
for Computing Machinery, New York (2019). https://doi.org/10.1145/3324989.
3325722

6. Jin, Y.T., Ahn, S., Lee, S.: Performance analysis of NVMe SSD-based all-flash
array systems, pp. 12–21 (2018)

https://doi.org/10.1145/1807060.1807061
https://doi.org/10.1145/1807060.1807061
https://doi.org/10.1145/2723372.2742798
https://doi.org/10.1145/3078468.3078483
https://doi.org/10.1145/3078468.3078483
https://doi.org/10.1145/3324989.3325722
https://doi.org/10.1145/3324989.3325722

190 Q. Li et al.

7. Kim, J., Lim, K., Jung, Y., Lee, S., Min, C., Noh, S.H.: Alleviating garbage collec-
tion interference through spatial separation in all flash arrays, pp. 799–812 (2019)

8. Kim, J., Ahn, S., La, K., Chang, W.: Improving I/O performance of NVMe SSD on
virtual machines. In: Proceedings of the 31st Annual ACM Symposium on Applied
Computing, SAC 2016, pp. 1852–1857. Association for Computing Machinery, New
York (2016). https://doi.org/10.1145/2851613.2851739

9. Klimovic, A., Litz, H., Kozyrakis, C.: Reflex: remote flash local flash. In: Pro-
ceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2017, pp. 345–359.
Association for Computing Machinery, New York (2017). https://doi.org/10.1145/
3037697.3037732

10. Liao, X., Xiao, L., Yang, C., Lu, Y.: Milkyway-2 supercomputer: system and appli-
cation. Front. Comput. Sci. 8(3), 345–356 (2014)

11. Oh, Y., Choi, J., Lee, D., Noh, S.H.: Improving performance and lifetime of the
SSD raid-based host cache through a log-structured approach. In: Proceedings
of the 1st Workshop on Interactions of NVM/FLASH with Operating Systems
and Workloads, INFLOW 2013. Association for Computing Machinery, New York
(2013). https://doi.org/10.1145/2527792.2527795

12. Oneil, P., Cheng, E.Y.C., Gawlick, D., Oneil, E.: The log-structured merge-tree
(LSM-tree). Acta Informatica 33(4), 351–385 (1996)

13. Patel, T., Byna, S., Lockwood, G.K., Tiwari, D.: Revisiting I/O behavior in large-
scale storage systems: the expected and the unexpected (2019)

14. Qian, J., Jiang, H., Srisa-An, W., Seth, S., Skelton, S., Moore, J.: Energy-efficient
I/O thread schedulers for NVMe SSDs on NUMA. In: Proceedings of the 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid 2017, pp. 569–578. IEEE Press (2017). https://doi.org/10.1109/CCGRID.
2017.24

15. Shi, X., Liu, W., He, L., Jin, H., Li, M., Chen, Y.: Optimizing the SSD burst buffer
by traffic detection. ACM Trans. Archit. Code Optim. 17(1), 1–26 (2020). https://
doi.org/10.1145/3377705

16. Tavakkol, A., et al.: Flin: enabling fairness and enhancing performance in modern
NVMe solid state drives. In: Proceedings of the 45th Annual International Sym-
posium on Computer Architecture, ISCA 2018, pp. 397–410. IEEE Press (2018).
https://doi.org/10.1109/ISCA.2018.00041

17. Xie, X., Li, Q., Wei, D., Song, Z., Xiao, L.: ECAM: an efficient cache management
strategy for address mappings in flash translation layer. In: Wu, C., Cohen, A.
(eds.) APPT 2013. LNCS, vol. 8299, pp. 146–159. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45293-2 11

18. Xie, X., Wei, D., Li, Q., Song, Z., Xiao, L.: CER-IOS: internal resource utilization
optimized I/O scheduling for solid state drives. In: 2015 IEEE 21st International
Conference on Parallel and Distributed Systems (ICPADS), pp. 336–343. IEEE
(2015)

19. Xie, X., Xiao, L., Wei, D., Li, Q., Song, Z., Ge, X.: Pinpointing and scheduling
access conflicts to improve internal resource utilization in solid-state drives. Front.
Comput. Sci. Chin. 13(1), 35–50 (2019)

20. Xie, X., Yang, T., Li, Q., Wei, D., Xiao, L.: Duchy: achieving both SSD durability
and controllable SMR cleaning overhead in hybrid storage systems. In: Proceedings
of the 47th International Conference on Parallel Processing, p. 81. ACM (2018)

https://doi.org/10.1145/2851613.2851739
https://doi.org/10.1145/3037697.3037732
https://doi.org/10.1145/3037697.3037732
https://doi.org/10.1145/2527792.2527795
https://doi.org/10.1109/CCGRID.2017.24
https://doi.org/10.1109/CCGRID.2017.24
https://doi.org/10.1145/3377705
https://doi.org/10.1145/3377705
https://doi.org/10.1109/ISCA.2018.00041
https://doi.org/10.1007/978-3-642-45293-2_11

NV-BSP: A Burst I/O Storage Pool Based on NVMe SSDs 191

21. Xu, G., et al.: RFPL: a recovery friendly parity logging scheme for reducing small
write penalty of SSD raid. In: Proceedings of the 48th International Conference on
Parallel Processing, ICPP 2019. Association for Computing Machinery, New York
(2019). https://doi.org/10.1145/3337821.3337887

22. Xu, Q., et al.: Performance characterization of hyperscale applications on on NVMe
SSDs. In: Proceedings of the 2015 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS 2015, pp.
473–474. Association for Computing Machinery, New York (2015). https://doi.
org/10.1145/2745844.2745901

23. Xu, Q., et al.: Performance analysis of NVMe SSDs and their implication on real
world databases. In: Proceedings of the 8th ACM International Systems and Stor-
age Conference, SYSTOR 2015. Association for Computing Machinery, New York
(2015). https://doi.org/10.1145/2757667.2757684

24. Zhang, B., Yang, M., Xie, X., Du, D.H.C.: Idler: I/O workload controlling for bet-
ter responsiveness on host-aware shingled magnetic recording drives. IEEE Trans.
Comput. 69(6), 777–788 (2020)

https://doi.org/10.1145/3337821.3337887
https://doi.org/10.1145/2745844.2745901
https://doi.org/10.1145/2745844.2745901
https://doi.org/10.1145/2757667.2757684

Pin-Tool Based Execution Backtracking

Shuangjian Wei1, Weixing Ji1(B), Qiurui Chen2, and Yizhuo Wang1

1 Beijing Institute of Technology,
Beijing 100081, China

{sjw,jwx,frankwy}@bit.edu.cn
2 Science and Technology on Special System Simulation Laboratory,

Beijing Simulation Center, Beijing 100854, China
qiuruich@126.com

Abstract. Checkpoint/restart is a common fault tolerant technique
which periodically dump state to reliable storage and restart applications
after failure. Most of existing checkpoint/restart implementations only
handle volatile state and lack of support for persistence state of applica-
tions. Even the algorithm specifically designed for file checkpointing may
not support complex operations and some need to modify source code.
This paper presents a new checkpoint technique, which use dynamic
instrumentation to temporarily cache disk operations in memory, and
use existing memory checkpoint tool to dump or restore process state at
runtime. We show that not only can this method create regular check-
points for both volatile and persistence state, but also has important
applications in execution backtracking.

Keywords: Checkpointing · Dynamic instrumentation · Execution
backtracking · Volatile state · Persistence state

1 Introduction

Checkpoint/Restart (C/R) is a mainstream fault-tolerant technique. It generates
checkpoints periodically to save execution state and recovers from checkpoints
after process fails. The behavior of a process has three parts: volatile data, per-
sistent data, and OS environment [1]. Among them, volatile data refers to data
in memory and registers, and they are lost after power-off. Persistent data refers
to the data stored in stable storage, such as files and databases. OS environment
refers to the resources that user processes must access at runtime, such as swap
space and monitors. In this paper, we focus on the C/R of both volatile data
and persistent data.

The consistency of volatile and persistent data is a prerequisite for process
restart. Unlike incorrect recovery of volatile state (which usually leads to obvious
process failures), incorrect rollback of persistent state usually leads to more
serious losses due to difficulty in tracing, so it has become a major concern for
many users. Unfortunately, most existing mainstream checkpoint tools do not
support or do not fully support file checkpoints. Fault-tolerant systems that use
c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 192–206, 2020.
https://doi.org/10.1007/978-981-15-8135-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_14&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_14

Pin-Tool Based Execution Backtracking 193

such tools roll back the volatile state to the previous checkpoint after a process
fails, while keeping the file state unchanged. If the process has modified these
files, such as writing, deleting, renaming, etc., it will cause erroneous results.
There are many types of these errors, and the following figures show two common
cases.

che c kpo in t i ;
f d = open (”doc” ,

OWRONLY|O APPEND) ;
w r i t e (fd , buf , b u f s i z e) ;
/∗ f a i l u r e occurs ∗/
che c kpo in t i +1;

Fig. 1. A process writes same data
multiple times.

f d = open (”doc” , ORDWR) ;
ch e c kpo in t i ;
read (fd , buf , b u f s i z e) ;
l s e e k (fd , 0 , SEEK SET) ;
w r i t e (fd , buf , b u f s i z e) ;
/∗ f a i l u r e occurs ∗/
che c kpo in t i +1;

Fig. 2. A process reads dirty data and
causes error.

In Fig. 1, the program opens the file “doc” after checkpoint i, and writes data
at the end of the file in appending mode, then an error occurs right before check-
point i + 1. During the rollback, since the information of “doc” is not recorded
in checkpoint i, the rollback algorithm will not truncate “doc”, so that the con-
tent will be added again after the execution is resumed. In Fig. 2, the program
performs the read-before-write operation at the same position on the “doc”
after checkpoint i, and then an error occurs before checkpoint i + 1. During the
rollback, because there is no “doc” information in checkpoint i, the rollback
algorithm will not restore the file state, which causes the program to read dirty
data after recovery. The above two errors are also known as RARE (Rollback
After Real time Event) and RARW (Rollback After Reading and Writing the
same area) [2].

Over the past 20 years, many checkpoint algorithms and tools have been
proposed. These algorithms and tools play an irreplaceable role in tasks such
as scheduling management, process migration, and load balance. Nonetheless,
checkpoint related work is far from over, especially in the field of file checkpoints.
There are three main shortcomings in existing file checkpoint algorithms:

– Only idempotent operations and very few non-idempotent operations are sup-
ported. Idempotent operations include all operations that do not change the
consistency state of the file, such as read. User applications that use this type
of checkpoint tool can only access files in read-only and appending modes.

– Only active files are supported. Active files are those files that were open at
the time the checkpoint was created. Such tools traverse all open file handles
and record the current file length when a checkpoint is created.

– The user application source code must be modified to fit the file checkpoint
feature. Currently, most of the file checkpoint tools are provided as libraries,
and they are implemented by encapsulating file interfaces. User programs that

194 S. Wei et al.

have been built must modify the source code to accommodate these libraries.
This method will not only increase the workload of developers, but also leave
security risks for the system.

Although kernel-level checkpointing tools can address all of these issues, they
can also introduce significant overhead for applications that do not require check-
pointing. This article mainly has the following three contributions. First, this
article introduces a new C/R technique that neither modifies program source
code nor restricts process file access operations. Secondly, a method to dump
the complete state of the process using only the memory checkpoint tool is pro-
posed. Finally, the checkpoint method proposed in this paper not only can set
up regular checkpoints, but also assist in execution-backtracking, that is, roll
back the process state to any point in the execution history.

In addition to this section, application scenarios are discussed in Sect. 2 and
related work is given in Sect. 3. The architecture overview is introduced in Sect. 4,
and Sect. 5 presents system implementation details. The evaluation is in Sect. 6
and Sect. 7 is the summary.

2 Application Scenario

To describe the usage scenarios of the ideas presented in this article, it is neces-
sary to first explain how the existing checkpoint tools work. Existing checkpoint
tools, such as MOB [2,16] and CprFS [20] mentioned in the following section, will
automatically create process checkpoints at regular intervals. When the process
execution fails, the system will automatically select the most recent checkpoint,
such as checkpoint i in Fig. 1 and Fig. 2, and restart the program from this check-
point. Restarting the process from checkpoint i discards all changes made to the
file during erroneous execution and minimizes work loss, which is also the ulti-
mate purpose of checkpoint tools. Although multiple checkpoints are set during
process execution, only one checkpoint (checkpoint i) is involved in the entire
C/R process. The process cannot roll back the state to checkpoint i− 1 or i− 2,
because all file modification data before checkpoint i has been discarded when
setting checkpoint i. Therefore, we can conclude that the existing checkpoint
tool is to ensure that the target process can be safely and error-freely executed
to the end in one execution. Only one checkpoint (the most recent checkpoint)
is required to ensure the execution of the process.

Unlike the existing checkpoint tools for program fault tolerance, the check-
point method proposed in this paper can also be used for execution backtracking.
Execution backtracking refers to the operation of rolling back the process state
to any moment in its execution history. Taking the simulation programs as an
example, in order to obtain the simulation results under different parameters,
users need to execute the same simulation program multiple times and enter dif-
ferent parameters for it. To reduce the time it takes to re-execute, we can set a
checkpoint before setting the parameters and restart the process from the check-
point in the next execution. It should be emphasized that the program started
from the checkpoint can also set the checkpoint again. These checkpoints will

Pin-Tool Based Execution Backtracking 195

Fig. 3. Tree structure formed by checkpoints

eventually form a tree structure (see Fig. 3), and the process can be restarted
and executed from any node in the tree. The non-leaf nodes in the tree in Fig. 3
refer to checkpoints, and the leaf nodes represent program execution results. The
strategy proposed in this paper can not only ensure the correct execution of the
process, but also meet the requirements of process traceback, that is, restart the
program from any checkpoint in the checkpoint tree.

3 Related Work

3.1 Checkpointing

The BLCR (Berkeley Lab’s Linux Checkpoint/Restart project) presented in [3–
7] is a robust kernel-level checkpoint/restart implementation that can support
a variety of parallel scientific codes. In terms of file processing, BLCR only
records the file size when creating a checkpoint and simply truncates the file
to its original length during recovery. Although this strategy is very lightweight
and effective in log-only scientific calculations, it is not applicable in practical
applications.

The ftIO system [8] is implemented by encapsulating the standard file inter-
face. In order to avoid file access errors between two adjacent checkpoints, ftIO
has designed a new file access protocol. This protocol is based on the copy-on-
write [9] concept, where the entire file is copied upon the first write operation.
Subsequent file operations are performed on the replica. During checkpointing,
the modifications are committed by simply replacing the original file with its
replica. The ftIO algorithm is concise and effective, but it introduces a huge
time and space overhead when processing large files, which can seriously drag
down user processes.

The core idea of Libckp mentioned in [1,10,11] is to use lazy-coordination
and shadow copy to solve the problem of inactive files. The basic concept of lazy
coordination is that file data is not processed immediately when a checkpoint is

196 S. Wei et al.

created, but is deferred until the file content actually changes. Just record the
file size when the file becomes active, and make a shadow copy of the file when
the file content is about to be modified. Libckp’s strategy to reduce runtime and
space overhead is to perform shadowing page by page.

Libfcp [12] uses in-place updates [13] with undo logs to checkpoint files. It
intercepts all file operations except read-only files through the encapsulated file
interface. When a file is opened for modification, the size of the file is recorded
and a truncated undo log of the file is generated. When the contents of a file
are modified, it generates an undo log that restores the contents of the file.
Libfcp RM [14] enhances Libfcp by adding transaction management. It uses
transactions to atomize a sequence of file updates in the application. Libra [15]
combines a “copy-on-change” strategy with an undo log to keep track of what
really changed to reduce the log size.

The MOB (Modification Operation Buffer) mentioned in [2,16] buffers all
modification operations after one checkpoint until the next checkpoint, so that
all operations between two checkpoints become atomic. MOB’s basic buffering
strategy is to append new content directly after the existing buffer. If the same
area of the file is modified more than twice, the buffer will not append new
content, but update the original data in the buffer. MOB transfers the execu-
tion of file operations to memory, which can significantly reduce file access time
overhead. In addition, MOB uses a disk buffer to limit the amount of memory
occupied by the algorithm.

The VFO (Virtual File Operation) proposed in [17] buffers all the write oper-
ations after a checkpoint until the next one, making all the operations between
two checkpoints atomic. The read and write operations of the user process do
not directly interact with the disk file, but access to the virtual file operation
management table entries, just like inserting a virtual file layer between the user
and the file. Unlike MOB, VFO manages file data in blocks, reducing space
overhead. Metamori [18] is an another MOB-like file checkpointing algorithm. It
adds support for file streams on top of MOB, which only supports file descrip-
tors. In addition, it also optimizes the related data structure and uses a B-tree
to manage the buffer mapping table to improve retrieval efficiency.

CprFS [20] uses the FUSE [21] module in the Linux system to create a file
system that executes in user space. For checkpoint, an atomic transaction is con-
sidered to be the execution of a program between two consecutive checkpoints.
The program either commits its state during checkpointing or aborts at some
point during execution, in which case it can be recovered from the last check-
point. CprFS has high execution efficiency, and does not need to modify the
program source code.

3.2 Execution Backtracking

Execution backtracking is the process of restoring the state of a program to any
earlier point in its execution history. It is used to facilitate program debugging.
The Spyder mentioned by [26] is a system for selective checking of computational
sequences. It allows users to step back from the checkpoint without having to

Pin-Tool Based Execution Backtracking 197

re-execute the program to reach the most recent previous state. [27] describes a
debugging method that uses a combination of re-execution and backtracking to
find the first difference in the calculation, which may eventually lead to incorrect
values indicated by the user. [28] provides a debugging model based on dynamic
program slicing and execution backtracking technology that easily lends itself to
automation.

Fig. 4. System architecture diagram

4 Architecture Overview

The traceback system architecture is shown in Fig. 4, where the user interface
refers to the client of the system, which displays system status information to
users and receives instructions from the users. In addition to this, the user inter-
face is also responsible for managing the tree formed by checkpoints, as well as
issuing commands to the checkpoint tool and inputting parameters to the user
process. Users can issue checkpoint setting commands through the interface,
or select a checkpoint from the tree to restart a process. The checkpoint tool
used in the system is CRIU (Checkpoint/Restore In Userspace) [22], which is an
open source software on GitHub. CRIU works on the Linux operating system.
It can freeze the target process after receiving user commands, and then dump
the process data to disk. CRIU completes the checkpoint restarting process by
transforming itself into a task to be restored.

Pin [25] allows a tool to insert arbitrary code (written in C or C++) in arbi-
trary places in the executable. The best way to think about Pin is as a “just in
time” (JIT) compiler. The input to this compiler is not bytecode, however, but a
regular executable. Here, we use Pin to build a tool (Pin-tool in Fig. 4) for inter-
cepting and caching file operations. Pin-tool is mainly composed of three parts,

198 S. Wei et al.

a list for managing open files, a series of instrumentation codes for intercepting
file operations, and a buffer for buffering file contents. The three components
of Pin-tool form a virtual file layer, which can load the contents of the disk file
into the buffer, and can also transparently cache the data written by the user
process. After CRIU receives the user’s request to set a checkpoint, it directly
dumps the volatile data of Pin-tool and user application to disk. Because the
file modification information is stored in the virtual file layer, each checkpoint
created by CRIU contains all the information of the process.

5 Implementation

The disk file always remains the same to ensure that the process can be correctly
executed back to any point in the execution history. We use the virtual file
layer mentioned in the previous section to buffer all file changes made by the
process. Unlike existing methods, we use dynamic instrumentation to intercept
and replace the corresponding functions in the process, thereby avoiding the work
and risks caused by modifying the source code. Instrumentation is to insert some
probes into the program to collect the tested program information on the basis
of ensuring the original logical integrity of the tested program. These probes are
essentially code segments for information collection, which can be function calls
that distribute information or collect information. The code is added dynamically
while the executable is running. The functions we intercept and replace include:
open, close, read, write, create, dup, dup2, dup3, fcntl, lseek, remove,
etc.

Table 1. Data structure for storing file information.

Name Description Name Description

fd File descriptor flags File access mode

path File path closed Whether the file is closed

flags real Real file access mode pos wd File write pointer

pos rd File read pointer len acc File accessible length

len cur Current file length pages File content buffer

5.1 Data Structure

For each opened file, a global data structure is created to store its information.
We call this data structure FileEntry. As shown in Table 1, fd and flags rep-
resent the file descriptor and file open mode, respectively. path refers to the file
path, closed is used to describe whether the file has been closed. To ensure that
the disk file remains unchanged, the virtual file layer will change the file open

Pin-Tool Based Execution Backtracking 199

mode and record the mode in flags real. The following pos rd and pos wd are
file read and write pointers, while len acc and len cur are the file’s accessible
length and current length. The open mode of the file will affect the value of
len acc, and the process of writing will change the value of len cur. The virtual
file layer manages the file contents in pages and loads the corresponding pages
into pages when needed.

5.2 Virtual File Layer

This section discusses how to transparently perform file operations in the buffer.
The virtual file layer is composed of a set of file access functions and a buffer. The
main purpose of its existence is to unify memory and disk file so that memory
checkpoint tool dumps all process data. The way it works is to intercept all file
operations performed by the process and transparently execute the operations
in the buffer, so the dynamically inserted code has a completely different role
from the native code.

Algorithm 1. New file open function
1: function NewOpen(filename, flags,mode)
2: if flags = O RDONLY then return open(filename, flags,mode)
3: end if
4: if Find(filename, fety) then return ChangeMode(fety)
5: end if
6: if access(filename, F OK)= -1 And (flags&O CREAT) then
7: open(filename,O CREAT,mode)
8: end if
9: fety. fd ← open(filename,O RDONLY)

10: fety. closed ← false
11: fety. path ← filename
12: fety. flags ← flags
13: fety. posrd, fety. poswd ← 0
14: if flags&O TRUNC then
15: fety. len acc ← 0
16: fety. len cur ← 0
17: else
18: fety. len acc ← lseek(fety. fd, 0L, SEEK END)
19: fety. len cur ← fety. len acc
20: end if
21: if flags&O APPEND then fety. pos wd ← fety. len cur
22: end if
23: g files vec.push back(fety)
24: return fety. fd
25: end function

Each file opened by the user process has an independent buffer containing mul-
tiple fixed-size pages. The file just opened by the process does not load any data

200 S. Wei et al.

into the buffer, and data loading is delayed until the file is actually written or
read. To avoid memory overflow caused by excessive file size, the file data always
loaded in pages. The file read/write pointer and read/write size jointly deter-
mine which page needs to be loaded immediately. The virtual file layer does not
handle read-only files, because even if the instrumentation code does nothing,
the disk file will not change.

NewOpen is a function for replacing open in the virtual file layer. It is
used to transparently open a file and return the file descriptor after record-
ing the file information. The virtual file layer does not record any information
about files opened in read-only mode, and directly calls open and returns the
result. For a newly opened file, create a FileEntry instance (fety) and initial-
ize its contents according to the open mode and file status, and finally insert
it into the global list. Its detailed description is shown in Algorithm1, where
g files vec is the global list used to store information about all open files. The
Find function is responsible for finding the current file information in g files vec
to determine whether the file was previously opened. For the file that has been
opened, the virtual file layer no longer creates a new FileEntry instance, but uses
the ChangeMode function to change the file information based on the existing
fety.

NewClose is a function for replacing close in the virtual file layer, and is
responsible for closing the opened file descriptor. For files present in g files vec,
first set the closed flag to true, then close the file descriptor. The reason why
the data of the closed file is not deleted is that the user process may reopen the
file in the subsequent execution.

Algorithm 2. New file read function
1: function NewRead(fd, buf, count)
2: if Find(fd, fety) then return fety.ReadFromPages(buf, count)
3: else
4: return read(fd, buf, count)
5: end if
6: end function
7: function ReadFromPages(buf, count)
8: page str ← pos rd/PAGE SIZE
9: page end ← (pos rd + count − 1)/PAGE SIZE

10: read num ← 0
11: for i = page str → page end do
12: LoadOnePage(i)
13: read num += ReadFromOnePage(buf + read num, count − read num)
14: end for
15: return read num
16: end function

NewRead is a function for replacing read in the virtual file layer to read a
certain number of bytes and return the number of bytes read. When NewRead

Pin-Tool Based Execution Backtracking 201

is called, it first obtains the handle fety used to manipulate the file. If fety does
not exist, it directly calls native read and return. As shown in lines 9 and 10
of Algorithm 2, using the pos rd of the current file and the parameter count
can calculate the pages that may need to be loaded. Then use LoadOnePage
and ReadFromOnePage to load and read out the data in the file (as shown
in lines 12 to 17 of Algorithm 2), and finally return the number of bytes read.
The judgment of the file boundary (len cur) and the change of the read pointer
(pos rd) are made in ReadFromOnePage. The return value may be less than
count when touching the file boundary. Because the preset page size is often
much larger than the read size, the read operation after a page loads will be
much faster than reading directly from the file. The page loaded in the read
operation will also speed up the program write operation.

Algorithm 3. New file write function
1: function NewWrite(fd, buf, count)
2: if Find(fd, fety) then return fety.WriteToPages(buf, count)
3: else
4: return write(fd, buf, count)
5: end if
6: end function
7: function WriteToPages(buf, count)
8: page str ← pos wd/PAGE SIZE
9: page end ← (pos wd + count − 1)/PAGE SIZE

10: write num ← 0
11: for i = page str → page end do
12: LoadOnePage(i)
13: write num += WriteToOnePage(buf +write num, count−write num)
14: end for
15: return write num
16: end function

The execution flow of the NewWrite function used to replace write is similar
to NewRead, and the corresponding page needs to be loaded before writing.
The difference is that if the page to be loaded does not exist, LoadOnePage
will create a blank page instead of doing nothing for writing new data. Unless
the memory overflows or other errors occur, the return value is always the same
as count.

The core idea of this paper is to use memory buffer file operations to unify
volatile and persistent data so that the memory checkpoint tool can dump all
the data of the process. The advantage of this strategy is that it is simple and
effective for processes that have sufficient memory space or access to files that
are not too large, and will not negatively affect the execution speed. But for large
files, it may cause a shortage of memory space. It is unrealistic to completely
buffer the contents of larger files into memory. If the file accessed by a process
is too large, the virtual file layer will write back buffered data to the disk, and
at the same time create a file backup on the disk for process backtracking.

202 S. Wei et al.

In addition to the above four basic file operations, the virtual file layer also
supports operations such as remove, rename, and redirect. When the user
program calls the remove function, the virtual file layer will first close the
corresponding file descriptor, then release the file buffer, and finally set the file
accessible length to 0. For the rename operation of the user process, the virtual
file layer will change the value of path in the file entry. User process redirection
operations, such as freopen, dup, dup2, dup3, etc., will cause the original file
descriptor to be closed and create a new file descriptor (or use the specified file
descriptor) instead.

6 Evaluation

In this section, we use micro-benchmarks and real-world applications to evaluate
our method to prove that dynamic instrumentation and checkpoint overhead are
tolerable. The experiment was conducted on a computer with Intel(R) Core(TM)
i7-8550U CPU @ 1.80 GHz, 4 GB RAM and a 20 GB disk space. The operating
system used was CentOS-7 with kernel 3.10.0-693.el7. The file system for local
disk was xfs.

6.1 IOzone Test

How to dump files is the core problem to be solved in process backtracking. The
method used in this paper is to insert a virtual file layer between the disk and
process through dynamic instrumentation technology. The access speed of the
process to the file, especially the speed of writing the file is closely related to the
execution speed of the program. We use IOzone [23] to evaluate the execution
efficiency of instrumentation code. The experiment uses the original IOzone and
the IOzone after dynamic instrumentation to write 1GB data in different block
sizes, and then records the writing speed. The experimental results are shown in
the figure (see Fig. 5).

The experiment tested the write speed of the xfs file system in different states,
where xfs-a and xfs-b respectively represent the write speed of the file system
with and without calculating the flush time. The black bar shows the writing
speed of the file system after dynamic instrumentation. From the data shown in
the figure, we can find that the file access speed after dynamic instrumentation
is similar to the native file system, and in most cases is slightly higher than the
native file system. Therefore, we believe that the impact of the new virtual file
layer on the simulation program is positive, as can be seen from the total time
of the simulation program execution in the previous section.

6.2 Pin-Tool Overhead

An important part of the implementation of the backtracking strategy based on
checkpoints is dynamic instrumentation. Dynamic instrumentation allows devel-
opers to intercept or replace existing methods in the original program without

Pin-Tool Based Execution Backtracking 203

Fig. 5. Write speed of virtual file layer

changing the source code. Obviously, this requires additional memory overhead.
In order to detect memory overhead, we instrument the existing program and
then sample during the program execution. The test program we use is BWA [24],
which is a software package for mapping DNA sequences against a large reference
genome (such as the human genome). We can find its source code on GitHub.
Figure 6 shows the memory overhead information of the process using 9 samples.

Fig. 6. Memory overhead caused by dynamic instrumentation.

The upper and lower two lines in the figure present the memory occupation
trend of the BWA program after dynamic detection and the original BWA pro-
gram during execution. Since the memory usage of the BWA program in the
steady state does not change much during execution, the lower line is almost
horizontal. Correspondingly, the memory overhead of the BWA program in the
stable state after dynamic instrumentation is also displayed as a horizontal state,
which indicates that the memory overhead caused by dynamic instrumentation
is an approximately fixed value and does not change with the process size and

204 S. Wei et al.

execution status. The gap between the upper and lower lines (the difference is
about 30M) is the overhead caused by dynamic insertion. This fixed overhead is
acceptable for the program.

6.3 Checkpointing Performance

A typical application scenario of process backtracking is simulation backtrack-
ing. Setting checkpoints for the simulation program is the core content of the
simulation backtracking, and its efficiency is closely related to the backtracking
efficiency. We chose a CISE-based [19] simulation program with a run time of
approximately 150 s to find the impact of checkpoints on the simulation pro-
gram execution. The memory checkpoint tool we use is CRIU [22]. We execute
the simulation program after instrumentation, then set multiple checkpoints uni-
formly during its execution, and finally record the execution time of the entire
simulation program. The experimental results we recorded are shown in Fig. 7.

Fig. 7. The performance of the checkpoint setting on the simulation program.

The abscissa in the figure represents the number of checkpoints set on the
simulation program. The abscissa is 0 means the time required to execute the
simulation program itself. A single checkpoint has a limited impact on the exe-
cution time of the simulation program. With the increase in the number of
checkpoints, the execution time of the simulation program increases linearly and
slowly. For simulation programs that require frequent backtracking, the time
overhead of setting checkpoints multiple times is tolerable.

7 Conclusion

We have described a new checkpoint idea, which can not only create process
checkpoints, but also help process traceback (this is very useful for simula-
tion programs). The system uses dynamic instrumentation tools to intercept

Pin-Tool Based Execution Backtracking 205

the native file access interface and insert a virtual file layer to unify the volatile
and persistent data of the process without modifying the imitation source code.
Although performance is the most important issue of the process, our experi-
mental results on micro-benchmarks and practical applications show that the
cost of introducing dynamic instrumentation and virtual file layer is acceptable,
and the impact on the process itself is very limited. Our experience shows that
the use of dynamic instrumentation tools to insert virtual file layer can satisfy
the checkpoint setting requirements of conventional processes, and also provides
a solution for process backtracking.

References

1. Wang, Y.M., Huang, Y., Vo, K.-P., Chung, P.-Y., Kintala, C.: Checkpointing and
its applications. In: Proceedings of the Twenty-Fifth International Symposium on
Fault-Tolerant Computing, p. 22. Institute of Electrical and Electronics Engineers,
Inc., Washington, DC (1995)

2. Pei, D.: Modification operations buffering: a low overhead approach to checkpoint
user files. In: Proceedings of IEEE 29th Symposium on Fault-Tolerant Computing,
Madison USA, pp. 36–38 (1999)

3. Duell, J.: The design and implementation of Berkeley Lab’s Linux check-
point/restart. Berkeley Lab Technical report, LBNL-54941 (2002)

4. Duell, J., Hargrove, P., Roman, E.: Requirements for Linux checkpoint/restart.
Berkeley Lab Technical report, LBNL-49659 (2002)

5. Roman, E.: A survey of checkpoint/restart implementations. Berkeley Lab Tech-
nical report, LBNL-54942 (2002)

6. Sankaran, S., et al.: The LAM/MPI checkpoint/restart framework: system-
initiated checkpointing. In: LACSI Symposium, LBNL-53808 (2003)

7. Paul H., Duell, J.: Berkeley Lab Checkpoint/Restart (BLCR) for Linux clusters.
In: Proceedings of SciDAC 2006, LBNL-60520 (2006)

8. Lyubashevskiy, I., Strumpen, V.: Fault-tolerant file-I/O for portable checkpointing
systems. J. Supercomput. 16, 69–92 (2000)

9. Rashid, R., et al.: Machine-independent virtual memory management for paged
uniprocessor and multiprocessor architectures. IEEE Trans. Comput. 37(8), 896–
908 (1998)

10. Zhong, H., Nieh, J.: CRAK: Linux checkpoint/restart as a Kernel module. Techni-
cal report CUCS-014-01, Department of Computer Science, Columbia University
(2001)

11. Osman, S., Subhraveti, D., Su, G., Nieh, J.: The design and implementation of Zap:
a system for migrating computing environments. In: Proceedings of the Fourth
Symposium on Operating Systems Design and Implementation. ACM SIGOPS
Operating Systems Review (2002). https://doi.org/10.1145/844128.844162

12. Chung, P.E., Huang, Y., Yajnik, S.: Checkpointing in CosMiC: a user-level pro-
cess migration environment. In: Proceedings of the 1997 Pacific Rim International
Symposium on Fault-Tolerant Systems. IEEE Computer Society (1997)

13. Weihl, W.E.: Transaction-processing techniques. In: Distributed Systems, pp. 329–
352. ACM Press/Addison-Wesley Publishing, New York (1993)

14. Wang, Y.M., Chung, P.E., Huang, Y.: Integrating checkpointing with transaction
processing. In: Proceedings of 27rd Fault-Tolerant Symposium, Seattle, Washing-
ton, pp. 24–27. IEEE Computer Society (1997)

https://doi.org/10.1145/844128.844162

206 S. Wei et al.

15. Ouyang, J., Maheshwari, P.: Supporting cost-effective fault tolerance in distributed
message-passing applications with file operations. J. Supercomput. 14, 207–232
(1999)

16. Pei, D., Wang, D., Shen, M., Zheng, M.: Design and implementation of a low-
overhead file checkpointing approach. In: Proceedings of the Fourth International
Conference/Exhibition on High Performance Computing, Asia-Pacific Region, pp.
439–441 (2000)

17. Liu, S., Wang, D., Zhu, J.: A files checkpointing approach based on virtual file
operations. J. Softw. 13(8), 1528–1533 (2002)

18. Jeyakumar, A.R.: Metamori: a library for incremental file checkpointing. Master’s
thesis, Virgina Tech, Blacksburg (2004)

19. Qing, D., et al.: Research of component-based integrated modeling and simulation
environment. J. Syst. Environ. 04, 900–904 (2008)

20. Xue, R., Chen, W., Zheng, W.: CprFS: a user-level file system to support con-
sistent file states for checkpoint and restart. In: Proceedings of the International
Conference on Supercomputing, pp. 114–123 (2008)

21. FUSE Doc. https://www.kernel.org/doc/html/latest/filesystems/fuse.html.
Accessed 28 Apr 2020

22. CRIU Homepage. https://criu.org/Main Page. Accessed 28 Apr 2020
23. IOzone Homepage. http://www.iozone.org/. Accessed 29 Apr 2020
24. BWA Homepage. https://github.com/lh3/bwa. Accessed 29 Apr 2020
25. Pin Doc. https://software.intel.com/sites/landingpage/pintool/docs. Accessed 29

Apr 2020
26. Agrawal, H., Demillo, A.R., Spafford, H.E.: An execution-backtracking approach

to debugging. IEEE Softw. 8(3), 21–26 (1991)
27. Matthews, G., Hood, R., Johnson, S., Leggett, P.: Backtracking and re-execution

in the automatic debugging of parallelized programs. In: Proceedings 11th IEEE
International Symposium on High Performance Distributed Computing, Edin-
burgh, UK, pp. 150–160 (2002)

28. Agrawal, H., DeMillo, R.A., Spafford, E.H.: Debugging with dynamic slicing and
backtracking. Softw. Pract. Exper. 23(6), 589–616 (1993)

https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://criu.org/Main_Page
http://www.iozone.org/
https://github.com/lh3/bwa
https://software.intel.com/sites/landingpage/pintool/docs

Model, Simulation and Evaluation
of Architecture

Directory Controller Verification Based
on Genetic Algorithm

Li Luo(B), Li Zhou, Hailiang Zhou, Quanyou Feng, and Guoteng Pan

College of Computer, National University of Defense Technology, Changsha 410073, China
li_luo@nudt.edu.com

Abstract. Directory protocol is the most widely used implementation cache con-
sistency method in large-scale shared memory multi-core processor which is very
complex and difficult to verify. In this paper, we propose a random test genera-
tion method based on genetic algorithm to verify directory controller of a type of
64-core processor, analyze the test features to code the symbols of genetic algo-
rithm, and evaluate the merits of the test using the fitness function based on func-
tional coverage. We establish the relationship between coverage and test vector,
analyze the relationship between coverage and test stimulus through a genetic
algorithm. The experimental results show that compared with the pseudo-random
method, the functional coverage rate of this method is increased by nearly 20%–
30%, the detection rate of bugs is relatively high, and the verification efficiency
and quality are also improved.

Keywords: Directory-based protocol · Directory controller · Functional
coverage · Genetic algorithm (GA) · Coverage directed test generation (CDG)

1 Introduction

Cache is a key component of microprocessor. With the development of processor struc-
ture to multi-core and many-core, cache consistency protocol is becoming more and
more complex. How to ensure the correctness of consistency protocol has always been
the focus of industry and academia. With the increase of the number of processor cores,
the cache consistencyprotocol is themost commonly implementationmethod.Compared
with the snoopy protocol, it has good scalability and reliability, and sends consistency
requests accurately adopting peer-to-peer mode [1, 2]. Because of the state space explo-
sion of directory consistency protocol, software simulation verification method has been
a common verification means. The biggest challenge of software simulation method is
how to generate high-quality test stimuli to cover function points. At the same time,
the quality and progress of verification are usually measured by coverage. The goal of
this paper is to verify the function of a 64-core processor directory controller. There are
1764 protocol message attribute function points, 58 key status registers in the directory
controller, and 1822 functional points in total. The key problem of directory controller
verification is how to generate effective test stimuli to cover functional points.

© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 209–220, 2020.
https://doi.org/10.1007/978-981-15-8135-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_15&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_15

210 L. Luo et al.

The manual test stimuli take exhausting time, and the random test stimuli cover the
function points with great blindness. We propose an approach for automatic coverage
directed test generation (CDG) based on genetic algorithm, aim at constructing efficient
test generators for checking the important behavior and specification of the design under
test (DUT), improving the coverage progress rate; and designing stimulus that can reach
uncovered tasks (coverage points). We establish the relationship between coverage and
test vector, analyze the relationship between coverage and test through a genetic algo-
rithm. The experimental results illustrate the effectiveness of the proposed algorithm in
achieving the goals of CDG. Compared with the pseudo-random method, the functional
coverage rate of this method is increased by nearly 20%–30%. The discovery rate of
bugs is also improved effectively.

The rest of this paper is as follows. Section 2 reviews relatedwork. Section 3describes
target DUT. Section 4 presents the details of the proposed genetic algorithm. Section 5
illustrates the experimental results. Finally, Sect. 6 concludes the paper.

2 Related Work

The software simulation method has always been a common verification method in the
chip research. The test stimulus of software simulation mainly includes manual test,
random test and coverage directed test generation (CDG). The manual test stimulus
takes exhausting time and cost. Sometimes it is difficult to meet the needs of a large
number of test vectors covering a wide range in regression.

Nagamani, A.N. [3] presented the first implementation of a generation framework
that used feedback from coverage analysis to direct microarchitecture simulation, during
the verification of IBM z-series servers, a CDG system had the potential to bring consid-
erable advantages for a reasonable price. For models of a larger scale, the contribution
was even greater. These advantages can save machine and personal time, and thus save
money overall.

Fine S et al. put forward a random test generationmethod based onBayesian network.
Thismethodwas successfully applied to verify the PowerPCNorthstar pipeline. Through
improving the parameters of the training network, the verification efficiency and the hit
rate of the simulation vector were effectively improved [5, 6].

Ilya Wagner etc. [7] used a random instruction generator driven by a Markov chain
model, which has higher error efficiency compared with the random instruction test
generation technology.

Yi Jiang-fang [8] used Bayesian network to describe the relation between the inputs
and the branch statements. The new simulation vectors were generated by reasoning on
the network. Experiments results indicated that the average vector length generated by
the Bayesian network using different reference algorithms is about 10% of the original
one, but the best path coverage even exceeds the original one.

Ai Yang-yang [9] discuss the Cache coherency protocol, analyze the coverage
directed test generation (CDG)methodbased onBayesian network reasoning and applied
themethod to Cache consistency verification. Taking the verification of the Cache coher-
ence protocol of the FT processor as an example, the results show that the CDG method
can increase coverage by nearly 30% in comparison with the pseudo-random test.

Directory Controller Verification Based on Genetic Algorithm 211

BoseM. [10] presented a genetic algorithm based framework to automatically gener-
ate biases. They targeted utilization of specific buffers for a new version of the PowerPC
architecture. The results showed that the GA is effective in achieving high buffer uti-
lization. Also, in targeting multiple objectives, the best approach to be used depends on
whether the objectives were related.

Wang Shu-peng [11] proposed a coverage-directed test generation based on genetic
algorithm (GA), which was used to verify two high-performance 32-bit multi-core pro-
cessors. Results show that the proposed method can significantly reduce simulation time
and improve verification efficiency.

Shen Hai-hua [12] presented genetic algorithm (GA) based coverage directed test
generation (CDG), and built a coverage directed test generation platform. Experimental
results showed that CDG can apparently accelerate the verification process and improve
the reached coverage from 83.3% to 91.7%, which implied that verification efficiency
was greatly improved and skilled manpower was cut down dramatically.

Nagamani, A.N [13] proposed a genetic algorithm based on heuristic test set gener-
ation method for fault detection in Reversible Circuits, which avoided the need for an
exhaustive search. The approach validated on benchmark circuits considering missing-
gate fault (complete and partial), bridging fault and stuck-at fault with optimum coverage
and reduced computational efforts.

Genetic algorithms are intelligent approach to automate the generation of effective
solution for black-box optimization without requirements of experience knowledge and
resources. Only according to the input and output of DUT, Genetic algorithms learn
the relationship between the feedback test vector and the coverage point automatically,
which improves the automation of verification.

Directory-based protocols are very complex, which need rich test vector test to meet
the requirement of functional verification, and random test produces a lot of redundant
stimulus. In order to break through the bottleneck of verification, the genetic algorithm
does not traverse the whole search space, we use genetic algorithm to mine the relation-
ship between the coverage and the stimulus, and then guide the generation of random test
stimulus, improve the growth rate of coverage, reduce the simulation time of redundant
stimulus, and increase the efficiency of verification.

3 Background

Our research background is a 64-core processor developed, which is global shared mem-
ory and CMP structure, as shown in the Fig. 1, including processor core, cache, network
on chip (NOC), directory control unit (DCU) and memory control unit (MCU).

Core: CPU core, which completes the scheduling and execution of instructions.
Cache: Two cores share one cache.
NOC: Interconnection network on chip, which provides information message

exchange between caches and between cache and external memory of the CPU.

212 L. Luo et al.

Fig. 1. Target system of 64-core CMP structure

DCU: directory controller, which records the usage of data block copies in each
cache, and completes the maintenance of data consistency between each cache.

MCU: memory controller, attaching External DRAMmemory, to achieve read-write
access control of memory.

IOU: IO controller, connecting the PCIe device controller and other IO devices.

Twocores share a cache, and each cache line data has four states ofMESIO (Modified,
Exclusive, Shared, Invalid, Owned). The function of the directory controller is to support
global data sharing, track and record the use of each cache line data, generate access
requests to the memory controller MCU, process cache consistency protocol messages,
send snoopy requests, accept cache snoopy responses, and complete cache requests.

The directory controller records the tags of all cache line dates and the using status
of data copies in the cache, it tracks and modifies them according to the current received
message commands and directory status to maintain the cache consistency among the
caches in the whole processor.

The directory controller adopts the distributed directory implementationmethod. The
directory protocol implementation method is divided into centralized and distributed
[14], the centralized directory design is simple, the network traffic around the target
controller is often the access hotspot, thus affecting the consistent transmission delay,
resulting in the network power consumption hotspot. In order to improve the directory
parallel processing ability of multi-core processors, the cache consistent transactions of
the target system are evenly distributed to theDCU, and aDCUhas the same address code
for the samememory. In order to further improve the parallel processing performance, the
DCU is divided into two individual banks, which are cross accessed by 6th address bit,
16 DCUs are designed on the 64-core chip. The directory table adopts the configurable
group associationmode, and the test configuration is 24-way 64 entries group association
organization. The directory table is shown in the Fig. 2.

The organization and addressing mode of directory entry are the same as that of the
cache tag. Before filling the cache line data, DCU allocates a directory entry to record
using status of cache line data. If the cache line is replaced or does not retain the data
copy, the directory will retrieve the corresponding directory entry (Fig. 3).

DCU entry mainly includes tag, busy, valid, vector, ECC bits and other information.
The tag of the DCU entry, that is, the high 24-bit of the memory address. The busy
defines the busy status of the directory entry. If the snoopy request is not completed, the
new request with the same address cannot be processed. Valid means that the directory

Directory Controller Verification Based on Genetic Algorithm 213

Fig. 2. Directory table structure of DCU

V B tag vector ECC

Fig. 3. Content of DCU entry content

entry is valid, at least one cache line has data copy. Vector defines which cache has data
copy. ECC check bit is the Hamming check bit of the catalog entry.

The 16 DCUs of the target system are relatively independent, and DCU0 manages
the cache consistency record mapping the memory access space of mcu0. Therefore, the
functional verification of the directory controller can be tested against an independent
DCU0.

A simulation environment is built for dcu0, as shown inFig. 4.Cache is an IPdesign, it
is replaced by cache model in DCU simulation environment, which is a functional model
with an accurate clock, realizes the cache function in the processor. IOU andMCU select
the function model with an accurate clock, simulates IO transaction and memory access
transaction.

Fig. 4. Simulation environment of DCU0

214 L. Luo et al.

DCU0 can receive requests from 32 caches or 2 IO controllers, MCU response,
cache snoopy response, output cache snoopy request, or memory access or IOU access
request. These input and output cache consistency information of dcu0 is transmitted in
the format of on-chip network message, which can be divided into four categories: read
or write request of cache/IOU, snoopy request, read or write response/snoopy response.

The main verification of DCU0 is the correct processing of cache consistency mes-
sage and the directory table function, including directory entry hit, replacement, directory
entry busy hit, directory table full hit, directory entry misses and other function points.
There are 1764 protocol message attribute function points, 58 important status registers,
and 1822 functions in total. Random test is used in the simulation process, redundancy
test vectors often appear, which is easy to occur the verification period, the coverage of
function points increases slowly. The key of DCU verification is how to generate effec-
tive test stimulus automatically, in order to break through the bottleneck of coverage and
speed up the function verification.

We use a genetic algorithm to mine the relationship between the coverage and the
stimulus, and then guide the generation of random test stimulus, improve the growth
rate of coverage, reduce the simulation time of redundant stimulus, and increase the
efficiency of verification. The effective stimulus generation is abstractly transformed
into a genetic algorithm with improving coverage evolution.

4 Test Generation Based on Genetic Algorithm

The main process of genetic algorithm can be described as follows: the possible solu-
tion code of the problem is expressed as chromosome, and a chromosome population is
randomly generated. Then, the chromosome individuals in the population are placed in
a certain environment, and according to the survival principle of the fittest, the individ-
uals with better adaptation environment are selected for replication, crossover, mutation
and other operations, the next generation of individuals who are more adaptable to the
environment. Such a generation evolves and keeps the offspring with large adaptive
function. When the fitness function reaches the threshold, the evolution stops, and the
optimal solution is obtained.

The essential feature of genetic algorithm is to code chromosomes through feasible
solutions of the problem, to maintain optimization of crossover and mutation operators
between generations, to define fitness function fitness in genetic algorithm, to judge the
quality of chromosomes in the population, and to achieve multi-directional and global
search to find the optimal solution of the problem.

4.1 Question Encoding

When genetic algorithm is used to solve the optimization problem, it is necessary to map
the feasible solution of the problem from the solution space to the search space that the
genetic algorithm can deal with, that is, to code the feasible solution of the problem with
chromosome code.

The test generator is based on a genetic algorithm, its genetic code is related to the test
stimulus. The genetic code is transformed into a feature vector, i.e. gene, by extracting
the features of test stimulus. The gene sequence is built to obtain a chromosome.

Directory Controller Verification Based on Genetic Algorithm 215

Test stimulus features mainly come from the following aspects: first, opcode, non-
cacheable read, shared read, noncacheable write, and cache maintenance commands of
the message, etc.; second, the number of send SENDID, which indicates which cache
and IO controller the data comes from, the third is address correlation of each message
contained, if it is relevant, then the read and write addresses are the same. The fourth
is bank number, the fifth is length encoding, whether the message request is 1 byte, 2
bytes, 16 bytes or 64 bytes data. So, gene expression includes five feature vectors.

In the implementation of genetic algorithm, genetic coding adopts symbol coding,
and each bit field represents a feature vector. Using symbol coding corresponds to the
problem itself, which is simple, easy to understand, and faster and more stable than
binary coding in solving optimization problems. For example, gene expression is shown
in Fig. 5. For gene coding (4,5,1,1,0), it can determine that cache4 sends a request that
the opcode is op5. In this chromosome, the address is the same as the first gene address,
access the directory table bank1 and read 1 byte of data.

4 5 1 1 0

Fig. 5. An example of gene

A test stimulus consists of multiple test vectors, i.e. forming a chromosome. We
define 32 genes to form a chromosome.As shown in Fig. 6, the chromosome is composed
of 32 genes, Gene 0 is cache4, which sends out a request that the opcode is op5. The
address is at the first address of this chromosome address, that is, random address. Access
directory bank1, and read 1 byte of data. Gene 1 is cache0 which sent out a request with
opcode OP1, the address is the same as the first gene address of this chromosome, access
the directory table bank1, and read 64 bytes of data; gene 31 is the request of IOU 2 that
the opcode is op0, the address is different from the first gene address of this chromosome,
and read 16 bytes of data.

Fig. 6. An example of chromosome

4.2 Fitness Function

Genetic algorithms use a fitness value to evaluate the quality of chromosome. The eval-
uation of solutions represented by fitness values is important to guide the learning and
evolution process in terms of speed and efficiency. The function verification based on
simulation is to get the maximum function coverage in a short period of time. Differ-
ent scenarios and functions defined by test stimulus are reflected by the population of
chromosomes. Fitness function in genetic algorithms is used to judge the quality of

216 L. Luo et al.

chromosomes in the population. Therefore, in the application of this study, the fitness
function is to reach the most function points. In genetic algorithms, a chromosome C
represents a test stimulus, and there are N function points to be tested and covered in
the DCU0. For a chromosome C, its fitness function fitness. Its fitness function is the
number of function points of coverage. The number of function points included in chro-
mosome C isM, the gene i of chromosome C covering the jth function point is defined as
cov[i, j], and Covering the jth function point of chromosome C is defined as follows:

⎧
⎨

⎩

cov
[
j
] = |(cov[i, j]), for, i = 1, 2,M

s.t. cov
[
i, j

] = 1, Gene i covers the jth function;
else cov

[
i, j

] = 0, Gene i does not cover the jth function
(1)

Fitnessc = max(
∑N

j=1
(wj ∗ cov

[
j
]
))/N (2)

wj represents theweight and importance of the jth function point. Its value can be adjusted
according to the design features. For example, when only the module of the directory
table bank0 is tested, the function point weight of bank1 can be set to 0.

4.3 Mutation Operator and Crossover Operator

The mutation of genetic algorithm itself is a kind of local random search, which is
combined with random and crossover operators to ensure the effectiveness of genetic
algorithm, make genetic algorithm have the ability of local random search, and keep the
diversity of population, so as to prevent premature convergence. In order to avoid invalid
operation, we adopt fixed-point mutation. The position of mutation operation is the first
and second position of gene, as shown in Fig. 7, an example of mutation operation.

Fig. 7. Example of mutation operation

An example of mutation operation shown in Fig. 7 is to perform the mutation opera-
tion on chromosome T1. If there is a mark “*” in the characteristic position, the mutation
will occur. T1 generates a new chromosome T2 through mutation. We select the muta-
tion feature as opcode and SENDID. We need to pay attention to the legitimacy of the
variation, such as the legality of opcode. IO devices can only send non-cacheable read
and non-cacheable write requests, such as sending cacheable requests, this must be an
illegal operation and needs to be deleted.

The crossover of genetic algorithm is the operation of replacing and recombining
part of the structure from the parent to generate new individuals. Its purpose is to gener-
ate new individuals in the next generation, just like the process of human evolution, so

Directory Controller Verification Based on Genetic Algorithm 217

that the search ability of genetic algorithm can be improved greatly. Crossover is carried
out according to probability. The higher the frequency of crossover, the faster the opti-
mal solution can converge, but too high will lead to premature convergence. Common
crossover includes single point crossover, multi-point crossover, uniform crossover, etc.
we select single point crossover, and the crossover operator will randomly exchange
some feature bits of two chromosomes according to the crossover rate, so as to generate
a new feature combination. The purpose of crossover is to combine the useful features
together to produce more effective and active coverage of function points. The specific
operation is to set a crossing point in the chromosome code, then exchange the partial
structure of the two chromosome codes before and after the crossing point, and form
two new chromosome codes, that is, two new test stimuluses. Figure 8 introduces an
example of a single point crossing, through which two chromosomes T1 and T2 in Fig. 9
can be changed into two new chromosomes T′1 and T′2.

Fig. 8. Chromosomes before cross operation

Fig. 9. New chromosomes after cross operation

4.4 Parameters of Genetic Algorithm

The genetic algorithm needs to determine the size of the test set, that is, the number
of genetic populations POPSIZE. When the POPSIZE value is small, the calculation
time of the algorithm is short, but the probability of the algorithm converging to the
optimal solution is low, that is, the global search ability is small, and the local optimal
solution may be obtained instead of the global optimal solution. With the increase of
POPSIZE, the probability of convergence to the optimal solution will increase, but the
calculation time of the algorithm will also increase significantly. Our algorithm defines
the population size as 32 chromosomes.

Genetic algorithm crossover is built on probability. The higher the crossover fre-
quency is, the faster the optimal solution can converge, but too high will lead to prema-
ture convergence. Mutation is kind of local random search, at the same time, it makes
the genetic algorithm keep the diversity of the population, so as to prevent the premature

218 L. Luo et al.

convergence. In the mutation operation, the mutation rate cannot be too large. Otherwise
it may degenerate into random search. At this time, some important mathematical char-
acteristics and search ability of the genetic algorithm no longer exist. In a compromise,
the crossover probability PC = 0.8 and the mutation probability PM = 0.1 are defined
here.

5 Experimental Results

The parameters of the genetic algorithm are set as follows: population size POPSIZE =
32, Maximum number of evolutionary iterations MAXGENERATION = 10, crossover
probability PC = 0.8, mutation probability PM = 0.1. According to fitness function of
Formula-1 and Formula-2, chromosome evaluation in genetic algorithm is realized, The
simulation scenario of testbench1 is 32 caches and two IOUdevices accessing a directory
controller DCU0, sending out 4 K requests, simulating 90 K cycles, obtaining 100%
coverage, pseudo-random test stimulus reaches 73%, as shown in Fig. 10, testbench2
simulation scenario 2 is 4 caches and two IOU devices accessing DCU0, sending out 256
requests, simulating 1 K cycles. At the same time, the pseudo-random test motivation
reaches 81% of the functional coverage, as shown in Fig. 11.

In the regression test of directory simulation, there are 24 bugs found by testbench1
of genetic algorithm, 5 bugs of high quality, and 21 bugs found by testbench2 of genetic
algorithm. The results and performance comparison of the algorithm are shown in
Table 1.

Fig. 10. A coverage comparison of testbench1 simulation scenario

Directory Controller Verification Based on Genetic Algorithm 219

Fig. 11. B coverage comparison of testbench2 simulation scenario

Table 1. Performance comparison of algorithms

Test scenario Algorithm Simulation time
(cycles)

Test vector Functional
coverage

Detecting bugs
in regression test

TestBench1 Genetic
algorithm

90k 4k 100% 24

TestBench1 Pseudorandom
algorithm

90k 4k 73% 19

TestBench2 Genetic
algorithm

10k 1k 100% 21

TestBench2 Pseudorandom
algorithm

10k 1k 81% 15

6 Conclusions

In this paper, we propose a random test generation method based on genetic algorithm to
verify directory controller of a type of 64-core processor, which uses a fitness function
based on function coverage to evaluate the quality and value of verification. The genetic
algorithm is used to establish the relationship between the coverage analysis results and
the effective stimulus to direct the generation of higher quality tests. The experimental
results demonstrate that compared with the pseudorandom test generator, the proposed
test generator can achieve higher function coverage in a short time, reduce the verification
time and improve the verification efficiency. The parameters of the genetic algorithm
in this paper are fixed, which is likely to cause the genetic algorithm to fall into the
local optimal solution. In the future, we will do further research on the adaption of the
parameters and test weight of the genetic algorithm, further expand the local optimal
solution space of the genetic algorithm, and generate higher quality tests.

220 L. Luo et al.

Acknowledgments. Thiswork is supported byNationalKeyResearch andDevelopment Program
of China No. 2018YFB0204301.

References

1. Hill,M.D., Sorin, D.J.,Wood, D.A.: A Primer onMemory Consistency and Cache Coherence.
Synthesis Lectures on Computer Architecture, November 2011

2. Simoni, R., Horowitz, M.: Modeling the performance of limited pointers directories for cache
coherence. In: Proceedings of the 18th International Symposium on Computer Architecture,
pp. 309–318 (1991)

3. Nativ, G., Mittennaier, S., Ur, S., Ziv, A.: Cost evaluation of coverage directed test generation
for the IBMmainframe. In: Proceeding of the 2001 International Test Conference, Baltmore,
pp. 793–802 (2001)

4. Fine, S., Ziv, A.: Coverage directed test generation for functional verification using Bayesian
networks. In: Design Automation Conference, pp. 286–291 (2003)

5. Braun, M., Fine, S., Ziv, A.: Enhancing the efficient of Bayesian network based coverage
directed test generation. In: Proceedings of IEEE International High-Level Design and Test
Workshop, Sonoma, pp. 75–80 (2004)

6. Fine, S., Freund, A., Jaeger, I., Naveh, Y., Mansour, Y.: Harnessing machine learning to
improve the success rate of stimuli generation. IEEE Trans. Comput. 55(11), 1344–1355
(2006)

7. Wagner, I., Bertacco, V., Austin, T.: Microprocessor verification via feedback-adjusted
Markovmodels. IEEETrans. Comput.-AidedDes. Integr. Circ. Syst. 26(6), 1126–1138 (2007)

8. Yi, J., Dong, T., Xu, C.: An efficient approach to simulation vector generation using Bayesian
network. J. Comput.-Aided Des. Comput. Graph. 19(5), 616–621 (2007). (in Chinese)

9. Ai, Y., Luo, L., et al.: A Bayesian network based test generation method for cache coherency
protocol verification. Comput. Eng. Sci. 39(8), 1397–1402 (2017). (in Chinese)

10. Bose, M., Shin, J., Rudnick, E.M., et al.: A genetic approach to automatic bias genera-
tion for based random instruction generation. In: Proceedings of Congress on Evolutionary
Computation, Seoul, pp. 442–448 (2001)

11. Wang, S., Huang, K., Yan, X.: Coverage directed test generation based on genetic algorithm.
J. Zhejiang Univ. (Eng. Sci.) 50(3), 581–588 (2016)

12. Shen, H., Wang, P., et al.: A coverage directed test generation platform for microprocessors
using genetic approach. J. Comput. Res. Dev. 46(10), 1612–1625 (2009)

13. Nagamani, A.N., et al.: A genetic algorithm-based heuristic method for test set generation
in reversible circuits. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 37(2), 324–335
(2018)

14. Ros, A., Acacio, M.E., García, J.M.: A scalable organization for distributed directories. J.
Syst. Archit. 56(2–3), 77–87 (2010)

Prediction and Analysis Model of Telecom
Customer Churn Based on Missing Data

Rui Zeng(B), Lingyun Yuan, Zhixia Ye, and Jinyan Cai

School of Information Science and Technology, Yunnan Normal University, Kunming, China
zengruyn@126.com, blues520@sina.com, yezxleaf@aliyun.com,

jinyanninhao@126.com

Abstract. In the field of business data analysis, customer churn prediction anal-
ysis plays an important role. This paper combines traditional statistical prediction
methods and artificial intelligence predictionmethods to propose a customer churn
prediction analysis model based on missing data in an attempt to explore a new
solution in this field. Based on the missing data in this model, factor analysis
method and data mining technique are used to generate key factor sets and their
values to form input neurons and their initial values. The number of hidden layer
neurons was determined by combinatorial prediction. Using the improved genetic
algorithm, the initial weight and threshold of BP network are determined. Finally,
the prediction results and key attribute data related to the prediction results are
generated for decision makers to analyze the problem. The experiment evaluates
the model from the aspects of accuracy, precision, recall, and f-measure, which
proves that the model is effective.

Keywords: Factor analysis · Data mining · Genetic algorithm · Predictive
analysis

1 Introduction

In the increasingly competitive environment, the cost of retaining old customers is 20% -
10% of developing new customers. Compared with new customers, loyal old customers
can bring more benefits to enterprises. Therefore, it is very important for telecom com-
panies to adopt a defensive marketing strategy. Customer churn analysis and prediction
play an important role in defensive marketing strategies. The problem of customer churn
is a two classification problem based on the limited characteristics of customers.With the
research on this issue, the intelligence of building models has gradually deepened. The
forecasting methods mainly include traditional statistical forecasting methods, artificial
intelligence forecasting methods, and statistical theoretical forecasting methods. The
algorithms used in traditional statistical prediction methods include decision trees [1],
logistic regression [2], Bayesian classifiers [3], and clustering [4]. The papers [5, 6], and
[7] respectively build prediction models based on traditional statistical prediction meth-
ods. Decision tree is a traditional statistical prediction method with better effect. The

© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 221–232, 2020.
https://doi.org/10.1007/978-981-15-8135-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_16&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_16

222 R. Zeng et al.

advantage of decision tree is simple and fast, especially suitable for large-scale data pro-
cessing. However, its algorithm has poor anti-noise performance, and its performance is
not good when processing data with strong feature correlation. Statistical theory predic-
tion methods mainly involve support vector machine. SVM has many unique advantages
in solving nonlinear and high-dimensional pattern recognition problems, but it is difficult
to implement for large-scale training samples. Artificial intelligence prediction methods
mainly include artificial neural networks [8], evolutionary learning algorithms [9], and
self-organizing maps [10]. Article [11] discussed the best method of ANN in predic-
tive analysis and established a predictive model. Neural network has good coordination
adaptability, distributed storage and great fault-tolerant performance, which makes it
play an increasingly important role in the field of data analysis. How to realize analysis
and prediction simply and effectively is the focus of this modeling work. BP neural
network is a simple and effective neural network, which can effectively make up for the
shortcomings of decision tree and support vector machine. But BP neural network has
its limitations. Therefore, this model intends to improve BP neural network to realize
the analysis and prediction of customer churn in a simple and effective way.

Missing data is an important factor that affects the prediction effect. This model
uses factor analysis and improved clustering analysis to effectively solve the problem
of missing data’s impact on prediction results. Based on factor analysis, improved clus-
tering analysis and improved BP neural network, this paper proposes a customer churn
prediction analysis model based on missing data in an attempt to explore a new solu-
tion in this field. Experiments based on historical telecom operation data prove that this
solution is indeed effective.

2 Model Implementation

This model consists of four parts: the input neuron determination module, hidden layer
neuron determination module, the initial weight and threshold determination module,
and the analysis and prediction module, as shown in Fig. 1.

Fig. 1. System model and flow chart

Prediction and Analysis Model of Telecom Customer Churn 223

The input neuron determination module uses the factor analysis method and data
mining technology to generate a set of factors and their values basedon themissing data to
form the input neuron and its initial value. The hidden layer neuron determinationmodule
uses the combined prediction method to determine the number of hidden neurons. The
initial weight and threshold determination module uses an improved genetic algorithm
to determine the initial weight and threshold of the BP network. Input the result data of
the three modules into the analysis and prediction module, use BP network to generate
prediction results and key attribute data related to the prediction results for decision
makers to analyze the problem.

2.1 Input Neuron Determination Module

The input neuron determination module first determines the module parameters. Then
determinewhether there ismissing data. If there ismissing data, factors based onmissing
data will be completed using factor analysis and improved clustering algorithms. If the
data is complete, factors based on complete data will be generated using factor analysis.
All the factors generated by this module constitute a factor set based on the problem of
churn prediction analysis. The module flow chart is shown in Fig. 1.

2.1.1 Generation of Module Parameters

The work of this module is divided into two parts. In the first part, the model parameters
are obtained based on the factor analysis method,including factor loading matrix,special
factor matrix, high-load attributes constituting factor Fi and weight βij. In the second
part, we use the improved clustering algorithm to obtain the model parameters: each
factor cluster set.

2.1.1.1. Factor Load Matrix, Special Factor Matrix
Factor analysis is a statistical technique for extracting common factors from attribute
groups. The basic purpose is to group several closely related attributes into the same class,
and each class becomes a factor. Use a few factors to reflect most of the information of
the attribute class. Each attribute can be expressed as a linear function of factors and a
specific factor, and expressed as a matrix:

x = AF + ε (1)

In the above A = aij is the factor loading matrix, F = Fi(i = 1, · · · , n) is the
factor matrix, and, ε = εi(i = 1, · · · , n) is the special factor matrix. In this module,
the complete data in the data set is taken as the data sample for factor analysis to obtain
the factor load matrix A and the special factor matrix.

224 R. Zeng et al.

2.1.1.2. High Load Attribute and its Weight
When the load matrix is rotated, only a few attributes of each factor have high load, and
the load of other attributes is small. Therefore, the factors can be expressed as a linear
combination of high-load attributes, that is, a factor score function, such as formula 2.

Fi=βi1X1 + . . . + βijXj(i = 1, 2, . . . ,m) (2)

The high load attributeXj and its weight βij constituting the factorFi can be obtained
from the above formula.

2.1.1.3. Factor Cluster Set
Clustering analysis is to classify data samples according to the similarity of features, so
that the data of the same group are as similar as possible, and the data of different groups
are as different as possible. This module improves the k-means algorithm to obtain the
clustering set of factors.

K-means algorithm is one of the classic algorithms in partitioningmethods. Based on
the provided features, the algorithm iteratively allocates data with high similarity mea-
sures into k clusters. The similarity measure of this algorithm uses Euclidean distance.
Euclidean distance refers to the real distance between two points inm-dimensional space.
In the definition of Euclidean distance, each attribute contributes equally to Euclidean
distance, so Euclidean distance is not satisfactory in practical applications. In this mod-
ule, the Euclidean distance is improved by giving different weights to each attribute to
produce Euclidean distance which reflects the characteristics of different factors. The
rationality of weight setting is a problem that must be solved. Factor analysis can solve
this problem perfectly. The attributes in the improved Euclidean distance are composed
of high-load attributes xi(i = 1, . . . , n) in the factor, and the weights are the weights
βi(i = 1, . . . , n) of the high-load attributes xi. The formula is as follows:

d(x, y) =
√

β1(x1 − y1)2 + β2(x2 − y2)2 + . . . + βn(xn − yn)2 (3)

The above formula xi(i = 1, . . . , n) and yi(i = 1, . . . , n) are the two sample points
of the ith high-load attribute of the factor Fj(j = 1, . . . ,m) and βi is the weight of the
ith high-load attribute.

There are two problems in the application of K-means algorithm. First, it is very
sensitive to the selection of the initial point, which may lead to the k-means algorithm
converging to the local optimum. Second, divide the data into k clusters, and how to
determine the value of k. The improved bisecting k-means algorithm does not need to
pre-determine k value and solve local optimal problem.

In this algorithm, SSE (sum of the squared errors) is used to measure the quality of
clustering. SSE is the clustering error of all samples. With the increase of the number of
clusters k, the sample division will be more refined, the degree of aggregation of each
cluster will gradually increase, and SSE will gradually decrease. When k is less than the
real number of clusters, the SSE decreases greatly due to the increase of k, which will
greatly increase the degree of aggregation of each group. However, when k reaches the
real number of clusters, the decrease of SSE tends to be smooth with the increase of k
value.

Prediction and Analysis Model of Telecom Customer Churn 225

The improved bisecting k-means algorithm is as follows:

Initialize all data into a cluster and divide the cluster into two clusters.
Repeat

a) Calculate the SSE of each cluster.
The formula of SSE is as follows, where SSEj represents the SSE of the jth cluster,
xi represents the ith high-load attribute of the factor, βi represents the weight of
xi, and x∗ represents the average of all points in the cluster.

SSEj =
∑n

i=1
βi

(
xi − x∗) (4)

b) For all clusters with SSE > &, find the cluster with the largest SSE.& represents
the threshold of the SSE. As the number of clusters k continues to increase, the
SSE value when the SSE becomes smoothly is the threshold.

c) For the cluster with the largest SSE value, arbitrarily select two sample points as
the initial centers of the two new clusters, and the cluster was divided into two
clusters.
Repeat

i. According to the average value of sample points in the two newly divided clusters,
the sample points are divided into new clusters. Improved Euclidean distance is
used to calculate the distance, as shown in formula 3.

ii. Update the average value of the sample points in each cluster.
Until two clusters no longer changes

Until all SSE <= &, stop dividing.

2.1.2 Factor Completion

In this model, the missing factor refers to the attribute of the constituent factor including
the missing attribute. Formula 3 is used to calculate the distance from the missing factor
to the cluster of factor cluster set. The cluster with the shortest distance is the one with
this missing factor. The average value of the cluster is given to the missing factor to
complete the missing factor.

2.1.3 Acquisition of Key Factor Sets and Their Values

The high-load attributes and theirweights are generated based on the input intact attribute
data. Factors based on complete data will be generated. The factors generated by the
complete data and the factors generated by the missing data constitute the factor set.

2.2 Hidden Layer Neuron Determination Module

There is no positive correlation between the increasing number of hidden layers of BP
neural network and the improvement of network performance. Based on the two-class
classification problem of customer churn analysis, this module uses a three-layer BP
neural network with stable performance for modeling.

226 R. Zeng et al.

In the BP neural network, the choice of the number of hidden neurons is very impor-
tant. It not only greatly affects the performance of the established neural network model,
but also is the direct cause of overfitting. At present, there is no scientific and universal
method to determine the number of hidden neurons. If the number of neurons is too
large, not only the training time will be increased, but also the irregular content in the
sample will be taken into account, which will cause the problem of overfitting and the
generalization ability of the network will be reduced.

In order to solve the above problems, scholars at home and abroad have proposed
a variety of methods to determine the number of hidden layer units, mainly including
trial and error method, empirical formula method, growth method, genetic algorithm
and three-point search and other comprehensive optimization methods [12]. The above
methods have their limitations. Trial and error method tests by continuously selecting
the number of network neurons. Its computing cost is very large and its computing
efficiency is low. The growth method starts from a minimum neural network structure,
and increases the number of neurons in the hidden layer until it gets a satisfactory number.
However, there is no unified solution to the problem of how to terminate the growth.
Genetic algorithm, due to its inherent poor climbing ability and slow convergence speed,
will cause the search results in the flat area to fall into the local minimum. The three-
point search may miss the whole optimal solution. Empirical formula method, whose
formula is from the experience of projects and experiments, can only be effective for
specific data sets, and cannot be used as a general method for determining the number
of hidden neurons. Empirical formula is the simplest and has a certain effect for specific
application scenarios.

The study found that each empirical formula has advantages and disadvantages, and
it is difficult to achieve the best performance in predictive analysis. Combined prediction
is to synthesize the advantages of each single algorithm and make the original sequence
comprehensive prediction through different prediction algorithms. In this model, the
number of neurons in the hidden layer is determined by the weighted combination
of effective empirical formula that verified by experiments. Based on the application
scenario of this model, the specific formula is as follows

Nhid = β ·
(

2
√
Nout + Nin + a

)
+ (1 − β)

(
Ntrain

/
δ × (Nin + Nout)

)
(5)

In the above formula, a(1 ≤ a ≤ 10) and δ(2 ≤ δ ≤ 10) are constants, β(0 <

β < 1) expressed as weight.
The key issue in the combination forecast is the determination of the weight. The

determination of the weight of the combination forecast in this model uses the following
methods:

Let the variance of the training errors of the two prediction algorithms is σ1, σ2. The
error of the combined prediction model is as follows:

e = βσ1 + 1 − βσ2 (6)

Because the two prediction algorithms are independent of each other, the variance
of the combined prediction model error is:

σ(e) = β2σ1 + (1 − β)2σ2 (7)

Prediction and Analysis Model of Telecom Customer Churn 227

Introducing Lagrange multiplier to find the minimum value of σ(e) to get formula 8

β =
(

σ1

2∑
i=1

σ−1
i

)−1

, σ (e) =
(

2∑
i=1

σ−1
i

)−1

(8)

Formula 9 for calculating the weight of the combination algorithm of this module
can be obtained from formula 8.

β = σ−1
1 σ(e) (9)

2.3 The Initial Weight and Threshold Determination Module

Genetic algorithm (GA for short) is a heuristic algorithm based on the free selection of
biological genetics and genetic theory, which simulates the evolution of natural organ-
isms. It seeks the global optimal solution by combining the new individuals generated by
mutation and exchange in the population and natural rules of survival of the fittest [12].
Genetic algorithm is mainly composed of the following elements: 1) population individ-
ual coding. Encoding forms mainly include binary coding, real coding, floating-point
coding, etc.; 2) selecting the appropriate fitness function; 3) genetic operation (selection,
crossover and variation). 4) operating parameters. The module algorithm flowchart is
shown in Fig. 1.

2.3.1 Population Initialization

In this model, the individual is in the form of binary code, which is composed of four
parts: the connectionweight between input layer and hidden layer, the connectionweight
between output layer and hidden layer, hidden layer threshold and output layer threshold.
The individual in the population can be expressed asWi, WhereWi = [w1,w2, · · · ,wk],
wj ∈ [0, 1], k is determined by formula 10.

k = n1 × n2 + n2 × n3 + n2 + n3 (10)

In the above formula, n1, n2, n3 is the number of nodes in the input layer, hidden
layer and output layer of the neural network.

2.3.2 Fitness Function

In genetic algorithm, fitness function is used to measure the excellence degree of each
individual in the population close to the optimal solution. This model uses the error
between the actual output and the expected output of the predictive analysis module to
construct the fitness function, as shown in formula 11

fi = 1∑n
j=1

∣∣yj − oj
∣∣ + ε (11)

In the above formula, fi represents the fitness of the ith individual, n is the upper
bound of the training set, yj expected output of the jth test of theBPneural network, and oj
is the actual output of the jth test. ε is a small number, so that the worst individuals in the
population still have a chance to reproduce and increase the diversity of the population.

228 R. Zeng et al.

2.3.3 Genetic Manipulation

Genetic operation mainly includes selection, crossover and variation. In the genetic
operation, we mainly improve the selection operation.

Genetic algorithms needs different selection pressures at different stages in the evo-
lution of the population. In the early stages, the selection pressure is small to maintain
the diversity of the population. In the later stages, the selection pressure is large, so
it is necessary to quickly search the optimal solution in a small range. The selection
probability of the roulette method has the same selection pressure at different stages in
the evolution of the group. In order to dynamically adjust the selection pressure during
the evolution of the group, this model uses Boltzman’s idea to construct the selection
probability pi of the individual i in the roulette method as follows:

pi = efi/T∑M
i=1 e

fi/T
(12)

In the above formula,M is the population size, fi is the fitness of the ith individual, T
is the temperature, T = T0

(
0.99g−1

)
, g is the number of iterations of genetic algorithm.

T0 is the initial temperature, T0 = 10(fmax − fmin), fmax is the maximum fitness, fmin is
the minimum fitness.

2.3.4 The Operation Parameters

In this module, the operation parameters are mainly improved for the cross probability
pc and the variation probability pm.

When the crossing probability pc is large, the new individuals will be generated
faster, which will lead to the destruction of high fitness individuals. When the value of
pc is small, the speed of generating new individuals will slow down, which will cause the
search process of the algorithm to slow down. It is not easy to produce new individuals
when the value of pm is small. When the value of pm is large, the genetic algorithm will
become a search algorithm. Srinvivas proposed an adaptive genetic algorithm. When
the individual fitness in the population tends to be the same, the value of pc and pm will
increase. When the individual fitness in the population is relatively scattered, the value
of pc and pm will decrease. However, this calculation formula does not consider the value
range of pc and pm. In this model, the adaptive genetic algorithm is improved by limiting
the value range of pc and pm. According to the experience, pc = 0.6 ∼ 0.99, pm =
0.005 ∼ 0.01. The formulas for pc and pm for are as follows:

Pc =
{
0.8 ≤ k1(fmax−f)

fmax−favg
< 0.99, f ≥ favg

0.6 ≤ k2 < 0.8 f < favg
(13)

Pm =
{
0.0075 ≤ k3(fmax−f ′)

fmax−favg
< 0.01, f ′ ≥ favg

0.005 ≤ k2 < 0.0075 f ′ < favg
(14)

In the above formula, fmax represents the maximum fitness in the population, favg
represents the average fitness in the population, f represents the maximum fitness
in two cross individuals, and f ′ represents the fitness in the variation individuals.
k1, k2, k3 and k4 are constants.

Prediction and Analysis Model of Telecom Customer Churn 229

2.4 Analysis and Prediction Module

The analysis and prediction module realize three functions: 1) BP neural network is
used to assist the improved genetic algorithm to obtain the optimal initial weight and
threshold. 2) BP neural network is used to predict the input data. 3) According to the
prediction results, the customer analysis is realized by using the high load attribute of
the constituent factors.

BP network (back propagation), which was proposed by a team of scientists led
by Rumelhart and McCelland in 1986, is a multilayer feedforward network with error
back propagation. It has the advantages of strong nonlinear mapping ability, but the
uncertainty of the number of neurons in the hidden layer and the random generation of
initial weights and thresholds are all the factors that restrict it to obtain better solutions.
The improvement of BP neural network are as follows: determining the number of input
neurons and their values, determining the number of hidden neurons and obtaining the
optimal initial weights and thresholds. The flow chart of this module is shown in Fig. 1,
and the specific algorithm is as follows:

Let n denote the number of neurons in the input layer and h denote the number
of neurons in the hidden layer.wij represents the weights of the ith input neuron to the
jth hidden layer neuron. wj represents the weight of the jth hidden layer neuron to the
output neuron. aj(j = 1, 2, · · · , h) represents the threshold value of the jth hidden layer
neuron, b is the output threshold. Tk represents the expected output of k test samples, yk
represents the output of k test samples through BP network.

➀ Obtain h from the hidden neuron determination module.
➁ Get n from the input neuron determination module.
➂ The initial aj, b, wij and wj are obtained from the initial weight and threshold

determination module, (j = 1, 2, · · · , h, i = 1, 2, · · · , n).
➃ Input the training sample set to train the BP network.
➄ Judge if the initial values of a, b, wij and wj are optimal. If yes, go to step ➆.
➅ Input the sample of test set to the trained BP network to calculate

∑m
k |Tk − yk |,

and input the calculation results into the initial weight and threshold determination
module to assist calculation the fitness, and go to step ➂.

➆ Input the prediction sample to the trained BP network to obtain the prediction value.
➇ The formula 2 is used to obtain the high-load attributes of the prediction samples.

The high-load attributes and prediction results constitute the analysis and prediction
data.

3 Experimental Verification

In the two classification problem, the prediction accuracy cannot be the only criterion of
themodel performance. So in the experiment, we use precision, recall and f-measuring to
evaluate themodel. Recall refers to the proportion of correctly predicted churn customers
in the real churn customers. Precision indicates the proportion of correctly predicted
churn customers among the predicted churn customers.

230 R. Zeng et al.

The recall and precision are usually contradictory, and a high recall sometimes lead
to the decrease of precision. In the evaluation of the model, the f-measure index is used
to maximize the precision while controlling the recall. As shown in the formula 15.

f −measure =
(
β2 + 1

) × P × R

β2p + R
(15)

In the above formula, P represents the precision and R represents the recall. When
β = 1, f -measure is common F1. When the value of F1 is larger, the performance of
the prediction model is higher.

Seven models were established in this experiment. They are the models proposed
in this paper (referred to as M1), decision tree model (referred to as M2), SVM model
(referred to as M3), BP neural network without improvement (referred to as M4), M1
model of random initial threshold andweight (referred to asM5),M1model for obtaining
the number of neurons in the hidden layer by a single test formula (referred to as M6)
and M1 model of raw data as input neuron (referred to as M7).

The sample set of this experiment involves 60000 pieces of complete sample data
of a telecom enterprise from January 2018 to January 2019, which randomly makes
the customer’s consumption information missing at a proportion of 20%. The sample
data set is divided into two parts, one is training set for training model, and the other is
for testing model. The training sample data were randomly selected from the training
sample set, and sevenmodels were trained with the same sample data. Then 7000 sample
data are randomly selected from the test sample set, and seven models are input with the
same sample data to obtain the prediction results. The above experiments were carried
out 6 times in total. Finally, the average values of the accuracy, recall, precision and
f-measurement are used to evaluate the model. The experimental results of M1, M2, M3
and M4 are shown in Table 1.

Table 1. Summary of evaluation indexes of five models

Model Average
number of
iterations

Average
accuracy rate

Average recall Average
precision

Average
f-measure

M1 588.45 86.56% 83.23% 85.43% 0.8422

M2 71.32% 68.32% 73.01% 0.7059

M3 68.76% 71.04% 70.19% 0.7061

M4 701.48 73.67% 72.32% 73.34% 0.7288

According to Table 1, the average number of iterations of model M1 is significantly
lower than M4, and it is concluded that the improvement of model M1 can effectively
improve the convergence speed of neural network. The average accuracy rate of model
M1 is significantly higher than other models, indicating that the improvement of model
M1 can effectively improve the prediction accuracy of the model. The average f-measure

Prediction and Analysis Model of Telecom Customer Churn 231

of model M1 is significantly is higher than other models, and it is concluded that the
performance of model M1 is better than other models.

The performance comparison diagram of theM1,M5,M6 andM7 is shown in Fig. 2.
The following conclusions can be drawn from the evaluation of precision and f-measure
index. The performance of model M1 is better than that of model M7, which shows that
the method of determining the input neuron of this model can effectively improve the
performance of BP neural network. The performance of model M1 is better than that of
model M6, which shows that the combination prediction can effectively determine the
number of neurons in the hidden layer. The performance of model M1 is better than that
of model M5, which shows that the improved genetic algorithm is one of the effective
ways to improve the performance of BP neural network. In conclusion, M1 model can
effectively solve the problemof customer churn prediction and analysis based onmissing
data.

Fig. 2. Performance comparison chart of five models

4 Summary

This paper combines traditional statistical prediction methods and artificial intelligence
prediction methods to propose a customer churn prediction analysis model based on
missing data. In this model, the factor analysis method and data mining technology are
used to generate key factor sets and their values related to predictive analysis problems
based on missing data to form input neurons and their initial values. The number of
hidden layer neurons was determined by combinatorial prediction. Using the improved
genetic algorithm, the initial weight and threshold of BP network are determined. Finally,
the prediction results and key attribute data related to the prediction results are generated
for decisionmakers to analyze the problem. The experiment evaluates themodel from the
aspects of accuracy, precision, recall, and F1, which proves that the model is effective.

Acknowledgment. This work was financially supported by the national natural science founda-
tion of China (61561055).

232 R. Zeng et al.

References

1. Barros, R.C., Basgalupp, M.P., Freitas, A.A., et al.: Evolutionary design of decision-tree
algorithms tailored to microarray gene expression data sets. IEEE Trans. Evol. Comput.
18(1), 873–892 (2014)

2. Dong, Y., Guo, H., Zhi, W., Fan, M., et al.: Class imbalance oriented logistic regression. In:
Cyber-Enabled Distributed Computing and Knowledge Discovery, Shanghai, pp. 187–192
(2014)

3. Tang, L., Liu, H.: Bias analysis in text classification for highly skewed data. In: Fifth IEEE
International Conference on Data Mining, New York, p. 4 (2005)

4. Zhang, Z., Cheng, H.: Clustering aggregation based on genetic algorithm for documents
clustering. In: IEEE World Congress on Computational Intelligence, Hong Kong, pp. 3156–
3161 (2008)

5. Immon, W.H.: Building the data warehouse. (2003)
6. Louis, A.C.: Data mining and causal modeling of customer behaviors. Telecommun. Syst.

21(2–4), 349–358 (2002). https://doi.org/10.1023/A:1020911018130
7. Chum modeling for mobile telecommunications. http://docs.salford-systems.com/--chumwi

nF08.pdf
8. Ning, Y., Zheng, X.: Notice of retraction forecasting the natural forest stand age based on arti-

ficial neural network model. In: Computer and Communication Technologies in Agriculture
Engineering, Chengdu, pp. 536–539 (2010)

9. Yang, Z., Shi, X.: An agent-based immune evolutionary learning algorithm and its application.
In: Intelligent Control and Automation, Shenyang, pp. 5008–5013 (2014)

10. Chaudhuri, A., De, K.: A study of the traveling salesman problem using fuzzy self organizing
map. In: International Conference on Industrial and Information Systems, Kharagpur, pp. 1–5
(2008)

11. Zhang, Y.: Cluster-based majority under-sampling approaches for class imbalance learning.
In: IEEE International Conference on Information and Financial Engineering, Chongqing,
400–404 (2010)

12. Beigy, H., MeybodiM, R.: A learning automata-based algorithm for determination of the
number of hidden units for three-layer neural networks. Int. J. Syst. Sci. 40(1), 101–118
(2009)

13. Liu, B., Guo, HX.: Matlab Neural Network Super Learning Manual. People’s Posts
Telecommun. Publishing House, BeiJing (2014)

14. Ahmed, A.A., Maheswari, D.: Churn prediction on huge telecom data using hybrid firefly
based classification. Egypt. Inform. J. 18(3), 215–220 (2017)

15. Rizopoulos, D., Kuhn, M., Johnson, K.: Applied predictive modeling. Biometrics 74(1),
383–393 (2018)

https://doi.org/10.1023/A:1020911018130
http://docs.salford-systems.com/{-}{-}chumwinF08.pdf

How to Evaluate Various Commonly Used
Program Classification Methods?

Xinxin Qi, Yuan Yuan, Juan Chen(B), and Yong Dong

National University of Defense Technology, Changsha, China
{qixinxin19,yuanyuan,juanchen,yongdong}@nudt.edu.cn

Abstract. Understanding the characteristics of scientific computing
programs has been of great importance due to its close relationship
with the design and implementation of program optimization methods.
Generally, scientific computing programs can be divided into three cat-
egories according to their computing, memory access and communica-
tion characteristics, namely compute-intensive, memory-intensive and
communication-intensive, respectively. There are more than one com-
monly used program classification methods, particularly for compute-
intensive and memory-intensive programs. In most cases, all kinds of
classification methods have consistent results but occasionally different
classification results also occur. Why are there occasionally inconsistent
classification results and where? How to understand such inconsistencies
and what is the reason behind that? We answer these questions by ana-
lyzing four representative program classification methods (IPC, MPKI,
MEM/Uop and Roofline) on two platforms. Firstly, we discover some
occasional inconsistency cases, the inconsistency from various indicators,
the inconsistency from multi-phase characteristics and the inconsistency
from various platforms, followed by some possible reasons. Secondly, we
explore the impact of threshold settings on classification inconsisten-
cies. All the experiment and analysis results and the data collected from
other references prove that different classification methods have the same
classification results in most cases but occasionally bring about incon-
sistencies especially for in-between programs that are between memory-
intensive and compute-intensive programs, which have a bad impact on
some optimization algorithms.

Keywords: Workload characterization · Program classification ·
Compute-intensive · Memory-intensive · In-between programs

1 Introduction

Understanding the characteristics of scientific computing programs has been
important for the design and implementation of optimizations [14,23,24]. Due to

This work is supported in part by the Advanced Research Project of China under grant
number 31511010203 and the Research Program of NUDT grant number ZK18-03-10.

c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 233–248, 2020.
https://doi.org/10.1007/978-981-15-8135-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_17&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_17

234 X. Qi et al.

various reasons, we have more than one program classification method to deter-
mine which type a program belongs to compute-intensive, memory-intensive or
communication-intensive. Each classification method has its preference to some
extent. How to evaluate various classification methods is what we are concerned
about in this paper. We believe classification methods have consistent results
in the majority of cases. But we find there are some inconsistencies in some
cases. How to understand such inconsistent classification results and what is the
reason behind that? When do the inconsistent classification results happen and
are there any adverse influences? Because there are very few methods for identi-
fying communication-intensive programs from the non communication-intensive
programs [6,15], in this article we only focus on the classification methods for
compute-intensive and memory-intensive programs.

To better evaluate various program classification methods, we focus on the
following two issues.

– Issue 1. There are about five classic classification methods and their pref-
erences are a little bit different. How to fairly compare them and discover
the inconsistency between various classification methods? Take STREAM as an
example, [3] and [20] use three different classification methods to categorize
STREAM and have the consistent results. Why these research works don’t use
the same classification method? On the one hand, they choose the most rele-
vant classification method to assist the design of algorithms and models and
to provide convenience for their research. For example, Reference [9] uses
cache hit rates to classify programs because the cache hit rate is used to
model memory bandwidth in their work. And Reference [3] uses Last Level
cache miss rates as a classification indicator and builds a performance model
with it to predict the ideal number of cores for OpenMP memory-intensive
applications. On the other hand, some studies, such as the Roofline model
[21], are devoted to providing easy-to-understand models for classification
that offer performance guidelines. All these reasons lead to more than one
classification method and different preferences. Another case is for bzip2,
there is also more than one classification method. bzip2 is categorized as
memory-intensive in [12] but compute-intensive in [25]. Different classifica-
tion methods produce inconsistent classification results, which reminds us
to compare and identify the possible differences between these classification
methods and explore the reasons for the inconsistency of the classification
results.

– Issue 2. The threshold setting of classification indicators is important in
almost all the classification methods. Even if the same classification indica-
tor is used in different studies, the threshold setting is quite different. What
factors affect the threshold setting? Classification methods sometimes depend
on the hardware platform too much, which makes a lot of time spent on pro-
filing and searching an appropriate threshold when changing to a different
platform. Moreover, a multi-phase program usually has a distinct fluctua-
tion in characteristics across different phases, which further makes the clas-
sification threshold unreasonable from the perspective of a whole program.

How to Evaluate Various Commonly Used Program Classification Methods? 235

Furthermore, whatever threshold you set, how to cope with the programs
whose indicator values are very close to the threshold? Those in-between pro-
grams are more likely to belong to neither compute-intensive nor memory-
intensive. All these questions inspire us to explore the thresholds of classifi-
cation indicators.

The corresponding solutions are explained as follows.

– Solution to Issue 1. We choose only the four representative classification meth-
ods, i.e. IPC (instructions per cycle), MPKI (cache misses per kilo instruc-
tions), MEM/Uop and Roofline, from existing numerous classification meth-
ods. Each of them has its own preference. To fairly compare these representa-
tive classification methods, we compare the differences between these classifi-
cation methods by using a group of benchmarks and two platforms. We find
out some occasionally inconsistent classification results and then figure out
the possible reasons from the three aspects, classification indicators, multi-
phase characteristics and hardware platforms (Sect. 3).

– Solution to Issue 2. We use the Roofline model to automatically identify
the classification threshold so as to better show the impact of the hardware
platform on the threshold setting. To evaluate the threshold setting, we take
a multi-phase program as an example to analyze the influence of threshold
settings on the classification results. In addition, we show more cases to prove
that the threshold setting indeed has an impact on the in-between programs,
which are between compute-intensive and memory-intensive (Sect. 4).

2 Experiment Platform

Hardware. Platform A contains 24 computing nodes, each of which consists
of two Intel(R) Xeon(R) E5-2640 v2 CPUs. Platform B is a high performance
computing cluster with 64 computing nodes. Each node is a dual-socket server,
which consists of two Intel(R) Haswell(R) 10-core E5-2660 v3 CPUs. Table 1
provides a list of the hardware specifications in detail of platforms A and B.

Table 1. Characteristics of two hardware platforms

Platform A Platform B

CPU Xeon E5-2640 v2 Haswell E5-2660 v3

Total threads 16 20

Total cores 16 20

Total sockets 2 2

GHz 2.0 2.6

Peak GFlops 256 416

Peak bandwidth 51.2GB/s 68.4GB/s

LLC 20MB 25MB

DRAM types DDR3 800/1066/1333/1600MHz DDR4 1600/1866/2133MHz

236 X. Qi et al.

Benchmarks. We use two benchmark suites to evaluate different program clas-
sification methods, namely HPCC [18], NAS Parallel Benchmark (NPB) [4].

Tools and Metrics. We use Intel VTune [1] and Perf [2] to collect the status
information of the relevant performance monitoring counters(PMCs) during the
execution of the program. The performance monitoring events used in the paper
are shown in Table 2.

Table 2. Performance monitoring events

Name Performance monitoring event

IPC IPC

Clock CPU CLK UNHALTED.THREAD

Instructions INST RETIRED.ANY

Cache miss LLCMisses

L3 cache misses MEM LOAD UOPS RETIRED.L3 MISS

Uops retired Uops Retired.all

3 Solution to Issue 1: Discover the Occasional
Inconsistency

3.1 Overviews of Representative Program Classification Methods

It is the complexity in program classification that leads to inconsistencies in
classification results. The complexity of program classification is not only caused
by the characteristic behavior of the application itself, but also by the hardware
platform running the application. In this paper, five commonly used program
classification methods are selected from various existing program classification
methods, i.e. IPC [11,14], MPKI [9–11] MEM/Uop [13], Roofline Model [21],
and CCR (Communication-to-Computation Ratio) [6], and the basic ideas of
these methods are explored. The rest of this section describes these classification
methods in detail.

IPC. IPC metric uses the instructions per clock cycle, which reflects the number
of instructions completed in each cycle. It is expected that the IPC for memory-
intensive workloads is low due to the nature of long memory load latency while
those that have small memory footprints tend to have very high IPC since all of
their memory accesses are from the L2 or L3 caches [19]. In general, when IPC is
greater than 1.0, it means the program is compute-intensive, and the program is
memory-intensive conversely. The IPC metric is also used in the study of phase
characteristics of programs [11,14]. Phase behavior in application characteristics
has long been observed and exploited [7], where the program is divided into
several phases and performance monitoring counters (PMCs) to monitor the

How to Evaluate Various Commonly Used Program Classification Methods? 237

dynamic changes of each phase are used. Finally, the average IPC of each phase
is calculated to determine the category of the program.

MPKI. MPKI metric uses MPKI as the indicator that indicates the LLC misses
per kilo instructions to determine the memory boundness of programs. In [9] and
[11], if MPKI of a program is greater than 5, it is a memory-intensive program.
And if MPKI is greater than 10, it is highly memory-intensive.

MEM/Uop. The metric uses two PMCs, one of which is used to monitor the
number of the retired micro-ops (Uops) to trigger the performance monitoring
interrupt at the specified instruction granularity, and another is used to track
memory bus transactions [13,23]. The ratio MEM/Uop of memory bus trans-
actions to the retired Uops is defined as a measure of memory boundness for
each phase. The metric mentioned in [13] classifies according to the range of
MEM/Uop, and defines six categories. Conceptually, category 1 corresponds to a
highly compute-intensive mode and category 6 corresponds to a highly memory-
intensive mode.

Roofline Model. The Roofline Model [21] is a 2-D graph model, which ties
floating-point computing performance, operational intensity, and memory per-
formance. The horizontal line in the Roofline model represents the peak floating-
point performance, and the slash represents the peak memory bandwidth that
the memory system of the computer can support under the given operation inten-
sity. These two lines intersect at the point of peak computational performance
and peak memory bandwidth. If we think of operational intensity as a column
that hits the roof, either it hits the flat part of the roof, which means perfor-
mance is compute-intensive, or it hits the slanted part of the roof, which means
performance is ultimately memory-intensive. Based on the Roofline model, the
Quadrant-Split model [16] is proposed for heterogeneous platforms. Different
from the Roofline model, the Quadrant-Split model uses DRAM bandwidth as
the x-axis instead of operational intensity.

CCR. The communication-to-computation ratio refers to the ratio of time to
perform communication and computation [6].

3.2 Difference of Various Classification Methods

The differences of various program classification methods are explored from three
aspects: classification types, applicable platforms and granularity.

– Types. Some program classification methods can be used to categorize pro-
grams as memory-intensive or compute-intensive and others are used to cat-
egorize programs as communication-intensive.

– Platforms. Some classification methods apply to CPU platforms, some apply
to GPU platforms and others apply to the above two types of platforms.

– Granularity. There are two kinds of granularity involved in this paper, one is
the whole program, the other is a part of the program, which we call phase.
As mentioned in [13], we divide the program into many phases according to
every 1000 instructions.

238 X. Qi et al.

Table 3. Comparison of representative program classification methods

Method Indicator Type Platform Granularity

IPC IPC Memory, compute CPU, GPU Phase

MPKI LLC misses Memory, compute CPU, GPU Phase

MEM/Uop UOPS RETIRED,
BUS TRAN MEM

Memory, compute CPU Phase

Roofline GFLOPS, DRAM
bandwidth

Memory, compute CPU Program

CCR Computation-to-
communication
ratio

Communication CPU, GPU Program

Table 3 theoretically compares the differences between several classification
methods. Classification indicators, types, applicable platforms and classification
granularity of selected classification methods are listed in Table 3. According
to Table 3, the five classification methods use completely different indicators,
which have been introduced in Sect. 3.1. In terms of classification types, the
first four metrics in Table 3 are used to determine the compute intensiveness
and memory intensiveness of the program, while the CCR is used to determine
the communication intensiveness. From the perspective of applicable platforms,
the three methods, IPC, MPKI and CCR metrics, apply to both CPU and
GPU platforms, while Mem/Uop and Roofline models do not apply to GPU
platforms, because the GPU platform does not support the measurement of
relevant indicators. We can use IPC, MPKI, and MEM/Uop metrics to assign a
category to each phase (which can be extended to the whole program). However,
the Roofline model and CCR are only applicable to the classification of the
whole program, and these methods cannot describe the dynamic behavior of the
program during execution.

3.3 Exploration of Occasional Classification Inconsistency

We implement several program classification methods on the hardware platform
mentioned in Sect. 2. To compare the relationship between different classification
methods, here we only compare the classification methods designed for memory-
intensive and compute-intensive programs, instead of communication-intensive
programs, because there are no other representative classification methods for
communication-intensive programs other than CCR. We use Perf and Intel(R)
VTune to measure PMCs when the program executes. To implement the phase
methods, we set the sampling interval as 1000 instructions. We explore and com-
pare experiment results from the three aspects: indicators, multi-phase charac-
teristics and hardware platforms.

Inconsistency 1: Indicators. Table 4 lists the measured values of classifica-
tion indicators of HPCC and NPB benchmarks with the same size of and the

How to Evaluate Various Commonly Used Program Classification Methods? 239

Table 4. Classification results for NPB and HPCC on platform A. [C] represents
compute-intensive and [M] represents memory-intensive.

Benchmark IPC MPKI MEM/Uop

Thresholds 1.0 [M→C] 10.0 [C→M] 0.0005 [C→M]

RandomAccess 0.27 [M] 147.99 [M] 0.0730 [M]

STREAM 0.50 [M] 43.85 [M] 0.0066 [M]

CG 0.99 [M] 9.56 [C] 0.0030 [M]

EP 1.09 [C] 0.55 [C] 0.0000 [C]

FFT 1.52 [C] 8.94 [C] 0.00053 [M]

SP 1.59 [C] 10.26 [M] 0.0006 [M]

PTRANS 1.65 [C] 4.25 [C] 0.0017 [M]

LU 1.90 [C] 3.42 [C] 0.0000 [C]

BT 2.12 [C] 10.78 [M] 0.0002 [C]

MG 2.41 [C] 3.50 [C] 0.0002 [C]

FT 2.49 [C] 4.64 [C] 0.0002 [C]

DGEMM 2.55 [C] 6.35 [C] 0.0001 [C]

same number of processors on the platform A. The letters in square brack-
ets are the categories of programs, where C represents a compute-intensive
type, and M represents a memory-intensive type. We set the thresholds of
each metric according to the threshold setting methods mentioned in the clas-
sification methods described in Sect. 3.1. The thresholds of IPC, MPKI, and
MEM/Uop metrics are as follows. IPCthreshold = 1.0, MPKIthreshold = 10.0, and
MEM/Uopthreshold = 0.0005. When IPC of a program higher than IPCthreshold,
it is compute-intensive and memory-intensive conversely. When MPKI of a pro-
gram higher than MPKIthreshold, it is memory-intensive and compute-intensive
conversely. When MEM/Uop of a program higher than MEM/Uopthreshold, it is
memory-intensive and compute-intensive conversely. From Table 4, we find that
the results of different classification methods are occasionally inconsistent. That
shows the selection of classification indicators has an impact on the classifica-
tion results. Can we consider most of the classification results of a program as
the right classification results and other inconsistent classification results as the
wrong one?

To better observe the relationships between the classification indicators, we
rank programs according to the order of IPC from low to high as Table 4 shows.
Generally, the program is considered to be compute-intensive when IPC is high
and MPKI is low, and to be memory-intensive when IPC is low and MPKI is
high. So, if we sort the programs by the order of IPC from low to high, we expect
to have the values of MPKI to be ordered from high to low. However, there are
some exceptional values, such as SP (IPC ↑), CG (MPKI ↓), BT (MPKI ↑), FFT
(MEM/Uop ↑), PTRANS (MEM/Uop ↑).

240 X. Qi et al.

Observation 1: Sometimes only IPC fails to have an accurate classification result.
Combining IPC with MPKI is expected to have a more accurate classification
results. According to the MPKI and MEM/Uop metrics, SP is memory-intensive.
But IPC metric has the opposite result. That is an example to show only IPC
sometimes cannot have the accurate program categories. References [11] and [5]
also mentioned this, in which both IPC and MPKI metrics are used to determine
the category of a program. When we comprehensively consider IPC and MPKI
metrics, we think the following principles should be followed. i) A program with
low IPC and high MPKI is memory-intensive, while a program with high IPC
and low MPKI is compute-intensive. ii) When a program has low IPC and low
MPKI, it indicates that the program itself contains very little memory access
and very few instructions for computation, and we consider the program to
be compute-intensive. iii) If a program has the characteristics of high MPKI
and high IPC, it means that the program contains a lot of instructions for
computation and has intensive memory access. We don’t exclude the fact that
programs are both compute-intensive and memory-intensive, which has been
mentioned in [25]. Therefore, sometimes the program will be subdivided into
many phases, and the categories of each phase will be judged.

Observation 2: Those programs whose metrics are very close to thresholds easily
have wrong classification results. The MPKI values of CG, SP and BT are very
close to MPKI thresholds. The MEM/Uop values of FFT (0.00053) is very close
to its threshold (0.0005). Classification error possibilities for these programs are
higher than other programs. A small fluctuation when setting thresholds will
change classification results. The metric (MPKI or MEM/Uop) value near to
the threshold exactly proves the program has an ambiguous type feature that
falls in between compute-intensive and memory-intensive. Aided by IPC metric,
CG, BT and FFT can be classified to the right program types.

Observation 3: The use of MEM/Uop metric results in the inclusion of “concur-
rent execution” information for the program, which further improves the accu-
racy of the program classification results. In our experiments, the classification
results of both IPC and MPKI show that PTRANS is a compute-intensive program.
But Reference [8] mentioned that PTRANS is a memory-intensive program that
involves a lot of access to remote memory. Neither IPC nor MPKI can reflect the
concurrent execution information of the program, which leads to inaccurate clas-
sification. Compared with IPC and MPKI, MEM/Uop can provide additional
concurrent execution information, because MEM/Uop is the ratio of memory
bus transactions to uops retired, which implies the ratio of uops to instructions
reflects the concurrent execution information of the program. The more detailed
and accurate information provided by MEM/Uop can help the program classifi-
cation more accurately.

Inconsistency 2: Multi-phase Characteristics. For some complex pro-
grams, their program behaviors can be easily divided into different phases (called
multi-phase programs) instead of only one phase (called single-phase programs).

How to Evaluate Various Commonly Used Program Classification Methods? 241

Figure 1 shows an example of these two kinds of programs. RandomAccess in
Fig. 1(a) is a single-phase program where its performance indicators stable dur-
ing the whole execution process. PTRANS in Fig. 1(b) is a multi-phase program
where its performance characteristics are separated by several different phases.

Due to the complexity of multi-phase programs, we cannot classify them
by a unique type. Some phases of multi-phase programs perhaps belong to the
compute-intensive type and other phases maybe can be classified as memory-
intensive. There exists some phased classification methods, such as MPKI [13]
and phased IPC [14]. MPKI has the feature of phased classification methods
because MPKI counts the LLC misses per 1000 instructions. When we adopt
these phased classification methods instead of classification methods for the
whole program, will phased classification methods have the same results? We
choose MPKIphase and MPKIprogram as examples to illustrate the impact
of multi-phase characteristics on the classification results. MPKIphase refers
to a classification method for phases, which are divided according to every
1000 instructions. MPKIprogram refers to a classification method for the whole
program. Table 5 shows a comparison for MPKIphase and MPKIprogram.
Nearly all the programs have the same classification results for MPKIphase
and MPKIprogram except FFT.

(a) RandomAccess with a single phase

(b) PTRANS with multiple phases

Fig. 1. Phase behavior comparison for a single-phase program (RandomAccess) and a
multi-phase program (PTRANS).

242 X. Qi et al.

Table 5. Classification results of phased MPKI and traditional MPKI. The value of
100/8 represents 100 phases for compute-intensive and 8 phases for memory-intensive.

Benchmark Number of phases (C/M) MPKIphase MPKIprogram

DGEMM 100/8 C C

RandomAccess 1/63 M M

STREAM 1/29 M M

FFT 10/20 M C

PTRANS 63/8 C C

Every program in Table 5 is divided into many phases, such as DGEMM
with 109 phases, RandomAccess with 64 phases, STREAM with 30 phases, FFT
with 30 phases and PTRANS with 71 phases. The second column in Table 5
shows the number of phases. Furthermore, these phases are separated into two
types, one for compute-intensive and the other for memory-intensive. For exam-
ple, DGEMM is identified by 100 phases for compute-intensive and 8 phases for
memory-intensive. MPKIphase determines the whole program type by the num-
bers of compute-intensive phases and memory-intensive phases. If the number
of compute-intensive phases is greater than the number of memory-intensive
phases, the program is regarded as compute-intensive, otherwise it is a memory-
intensive program.

FFT is classified as the memory-intensive when using MPKIphase but the
compute-intensive when using MPKIprogram. As can be seen from Table 5, FFT
has 1/3 possibility for the compute-intensive and has 2/3 possibility for the
memory-intensive. The phased classification method can find out the potential
computing density and memory density of FFT. However, classification methods
for the whole program can not fully reveal all the possible computation and
memory access behaviors of a program, which leads to inaccurate or even wrong
classification results.

Inconsistency 3: Platform. Different hardware platforms have different phys-
ical memory bandwidth and physical floating-point computing performance, so
the characteristics of the same program running on different hardware platforms
may be different. The different thresholds for various platforms are expected.
We compare the same classification methods on two platforms (Platform A and
Platform B) to explore the impact of the hardware platform on program classifi-
cation as Table 6 shows. To more intuitively compare the two platforms, we rank
programs in Table 6 according to the order of IPC of platform B from low to
high. We set the thresholds of IPC, MPKI, and MEM/Uop on platform B as fol-
lows. IPCthreshold = 1.0, MPKIthreshold = 10.0, and MEM/Uopthreshold = 0.03,
respectively.

The inconsistencies caused by hardware platform are bolded in Table 6, BT
and CG. See more explanations as follows.

How to Evaluate Various Commonly Used Program Classification Methods? 243

Table 6. Classification results for NPB and HPCC on two platforms.

Benchmark IPC MPKI MEM/Uop

Platform A Platform B Platform A Platform B Platform A Platform B

Thresholds 1.0 1.0 10.0 10.0 0.0005 0.03

RandomAccess 0.27 [M] 0.62 [M] 147.99 [M] 131.20 [M] 0.073 [M] 0.084 [M]

STREAM 0.5 [M] 0.74 [M] 43.85 [M] 17.55 [M] 0.0066 [M] 0.035 [M]

EP 1.09 [C] 1.21 [C] 0.55 [C] 0.31 [C] 0.0000 [C] 0.001 [C]

MG 2.41 [C] 1.65 [C] 3.5 [C] 3.22 [C] 0.0002 [C] 0.0009 [C]

FFT 1.52 [C] 1.69 [C] 8.94 [C] 9.84 [C] 0.0005 [M] 0.01 [M]

PTRANS 1.65 [C] 1.81 [C] 4.25 [C] 3.68 [C] 0.0017 [M] 0.012 [M]

DGEMM 2.55 [C] 1.86 [C] 6.35 [C] 7.11 [C] 0.0001 [C] 0.0063 [C]

FT 2.49 [C] 2.11 [C] 4.64 [C] 4.73 [C] 0.0002 [C] 0.0027 [C]

SP 1.59 [C] 2.15 [C] 10.26 [M] 1.03 [C] 0.0006 [M] 0.003 [M]

LU 1.9 [C] 2.22 [C] 3.42 [C] 0.93 [C] 0.0000 [C] 0.0035 [C]

BT 2.12 [C] 2.29 [C] 10.78 [M] 7.1 [C] 0.0002 [C] 0.0022 [C]

CG 0.99 [M] 2.38 [C] 9.56 [C] 2.1 [C] 0.0030 [M] 0.044 [M]

– The first inconsistency happens on program BT when using the MPKI metric.
BT is classified as compute-intensive on platform B because of lower MPKI
than MPKIthreshold. According to the Observation 2 in Subsection incon-
sistency 1:indicators, the MPKI value of BT is close to the threshold, which
makes BT have a higher risk of having a wrong classification result. BT on plat-
form A has a 50% probability of belonging to the compute-intensive and the
memory-intensive. From this perspective, the classification results on both
platforms A and B are consistent.

– The second inconsistency is about CG. The number of compute-intensive type
is the same as that of memory-intensive type. It is hard to identify which
type CG belongs to. CG shows the half-half intensive characteristics. The fol-
lowing two facts prove this. Firstly, as mentioned in Subsection inconsis-
tency 1:indicators, the IPC of CG (0.99) is very close to the threshold (1.0),
which means CG has a 50% probability of belonging to compute-intensive
and memory-intensive. Furthermore, platform B has higher peak floating-
point computing performance and faster CPUs, which contributes higher
IPC, so CG becomes compute-intensive by IPC metric when the platform
changes from A to B. Secondly, both MPKI and MEM/Uop metrics remain
the same classification results for two platforms. One explanation is that CG
not only has a high instruction number per cycle and but also has a high
LLC misses per kilo instructions. To summarize, we prefer to classify CG as
an in-between type (half-half intensive) between the compute-intensive and
the memory-intensive. There indeed exists such a category, neither typical
compute-intensive nor typical memory-intensive [22]. The authors in [22] take
the in-between programs as a special case to optimize and have a quite dif-
ferent result compared to the traditional classifications.

244 X. Qi et al.

The above analysis shows it is important and difficult to find out the dividing
line (thresholds) between the compute-intensive and the memory-intensive. In
the next section, we will discuss the problem of exploring the threshold.

4 Solution to Issue 2: Explore the Threshold

What factors influence the threshold setting? (Sect. 4.1) And if there are no
clear dividing lines for some half-half intensive programs, how to consider these
in-between programs? (Sect. 4.2).

4.1 The Impact of Thresholds

We use the Roofline model to analyze the impact of various platforms on classifi-
cation thresholds. The Roofline model is built in terms of hardware specifications,
which is sensitive to the platform and also threshold changes. Figure 2 uses NPB
benchmarks to show Roofline model classification results and threshold changes.
Roofline model clearly marks the peak floating-point computing performance
with a horizontal line (256 GFLOPS, 416 GFLOPS) and the peak memory band-
width with an oblique line (51.2 GB/s, 68.4 GB/s) on two platforms. Roofline
model also can describe the execution feature of a program, such as operational
intensity (X-axis). A group of lines parallel to the Y-axis represents different NPB
programs with various operational intensities. The joint point of the horizontal
line and the oblique line divides programs into two types, the compute-intensive
(black dotted lines to the right of red line) and the memory-intensive (black dot-
ted lines to the left of red line). The two platforms have the same classification
results. However, The place of joint points is different for the two platforms.
The different platforms result in various classification thresholds of operational
intensity, 5.0 flops/byte on platform A and 6.04 fops/byte on platform B.

Different from the Roofline model, IPC, MPKI, and MEM/Uop methods can-
not automatically identify appropriate thresholds to categorize programs, which
aggravates the difficulty of program classification. Some other research works
also show the threshold will change when the platform changes. For example,
IPC threshold in [11] is 1.0, while the IPC threshold becomes 1.2 in [14] when
the platform changes. Usually, researchers decide the threshold by their expe-
riences and sometimes have uncertain optimization results. In Sect. 3, we show
that the selection of thresholds has an impact on the classification results for
the two types of programs, single-phase and multi-phase programs.

For a multi-phase program, whether a classification threshold is appropriate
will greatly affect the classification result of each phase and further affect the
category of the whole program. Figure 3 shows an example. The blue dashed
horizontal line and the red one shows the two thresholds, MPKIthreshold = 10
and MPKIthreshold = 50. When the threshold of MPKI is increased from 10 to
50, the number of memory-intensive (compute-intensive) phases will be changed
from 29 (1) to 15 (15), and the category will be changed from the memory-
intensive to the non-memory-intensive, an in-between type. The categories of

How to Evaluate Various Commonly Used Program Classification Methods? 245

(a) Roofline Model for Platform A. (b) Roofline Model for Platform B.

Fig. 2. Comparison of roofline model of platforms A and B (Color figure online)

Fig. 3. The impact of threshold on multi-phase program STREAM.

in-between programs is really hard to be identified. The next section will reveal
more cases for in-between programs.

4.2 Discussions About In-between Programs

One case for an in-between program is that it involves not only a lot of compu-
tation, but also a lot of memory access. The programs can be regarded as both
the compute-intensive and the memory-intensive from this point of view. For
such programs, classification results are often inconsistent. For example, bzip2
is categorized as a compute-intensive program in [17,25], but as an in-between
program in [12].

Another case occurs when the metric value is very close to the thresh-
old. From Table 4, CG is categorized as a compute-intensive program because
its lower MPKI than MPKIthreshold. But MPKI of CG is very close to the
MPKIthreshold, which shows CG also involves intensive access to memory.

246 X. Qi et al.

Classifying the in-between programs mainly depends on what optimization
goal you focus on. There is no unique rule. Exploiting more program behavior
characteristics and combining them with the metrics you are concerned about
maybe will be helpful to the optimization methods. For example, Reference
[22] used four in-between programs, namely canneal, facesim, ferret, and
streamcluster, which they refer to as weakly memory-intensive programs in
the paper. Initially, they categorized these four in-between programs as memory-
intensive and adopted optimizations that are designed for memory-intensive pro-
grams to them. However, they found that the optimization methods brought an
average performance loss of 2.9% to these four in-between programs, and the
maximum performance loss could reach to 5.6% (facesim). Although these four
benchmarks were classified as memory-intensive programs, the memory band-
width was relatively low. So they turned to adopt the optimizations for compute-
intensive programs. It is surprising that the average performance improvement
for these four in-between programs was 9.9%, and the maximal performance
improvement was up to 13.2% (canneal). Thus it can be seen that the classifi-
cation of in-between programs is extremely difficult, and a deeper understanding
of the characteristic behavior of programs can lead to flexible and effective opti-
mization of these programs.

5 Conclusions

Understanding the characteristics of scientific computing programs has always
been important for the design and implementation of optimizations. In this
paper, we explore and compare several representative classification methods
from existing classification methods theoretically and experimentally. In most
cases, all kinds of classification methods have consistent results but occasionally
different classification results also occur. To figure out why there are inconsis-
tent classification results and what are the reasons behind that? We analyze
the causes of inconsistencies from three aspects: indicators, multi-phase char-
acteristics and platforms, and we gain some valuable observations. To further
understand these inconsistencies, we focus on the selection of thresholds and
analyze its influencing factors. It is found that in-between programs are easily
affected by the threshold setting and produce the wrong classification, which has
a bad impact on optimizations.

References

1. Intel R© vtuneTM amplifier (2019). https://software.intel.com/en-us/vtune
2. Perf (2019). https://perf.wiki.kernel.org/index.php/Main Page
3. Alcaraz, J., Sikora, A., Cesar, E.: Dynamic tuning of openmp memory bound

applications in multisocket systems using mate. In: Proceedings of the 47th Inter-
national Conference on Parallel Processing Companion, ICPP 2018. Association
for Computing Machinery, New York (2018). https://doi.org/10.1145/3229710.
3229748. https://doi-org-s.nudtproxy.yitlink.com/10.1145/3229710.3229748

https://software.intel.com/en-us/vtune
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1145/3229710.3229748
https://doi.org/10.1145/3229710.3229748
https://doi-org-s.nudtproxy.yitlink.com/10.1145/3229710.3229748

How to Evaluate Various Commonly Used Program Classification Methods? 247

4. Bailey, D., et al.: The NAS parallel benchmarks. Int. J. High Perform. Comput.
Appl. 5, 63–73 (1991). https://doi.org/10.1177/109434209100500306

5. Begum, R., Werner, D., Hempstead, M., Prasad, G., Challen, G.: Energy-
performance trade-offs on energy-constrained devices with multi-component DVFs.
In: 2015 IEEE International Symposium on Workload Characterization (IISWC)
(2015)

6. Crovella, M., Bianchini, R., LeBlanc, T., Markatos, E., Wisniewski, R.: Using
communication-to-computation ratio in parallel program design and performance
prediction. In: Proceedings of the Fourth IEEE Symposium on Parallel and Dis-
tributed Processing, pp. 238–245 (1992)

7. Denning, P.J.: The working set model for program behavior. Commun. ACM 11(5),
323–333 (1968)

8. Ge, R., Zou, P., Feng, X.: [IEEE 2017 46th International Conference on Parallel
Processing (ICPP) - Bristol, United Kingdom (14 August 2017–17 August 2017)]
2017 46th International Conference on Parallel Processing (ICPP) - Application-
Aware Power Coordination on Power Bounded Numa Multicore, pp. 591–600
(2017)

9. Hashemi, M., Mutlu, O., Patt, Y.: Continuous runahead: transparent hardware
acceleration for memory intensive workloads, pp. 1–12 (2016). https://doi.org/10.
1109/MICRO.2016.7783764

10. Hashemi, M., Mutlu, O., Patt, Y.N.: Continuous runahead: transparent hardware
acceleration for memory intensive workloads (2016)

11. Hashemi, M., Patt, Y.N.: Filtered runahead execution with a runahead buffer.
In: Proceedings of the 48th International Symposium on Microarchitecture, pp.
358–369 (2015)

12. Huang, S., Feng, W.: Energy-efficient cluster computing via accurate workload
characterization. In: 9th IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, CCGrid 2009, Shanghai, China, 18–21 May 2009 (2009)

13. Isci, C., Contreras, G., Martonosi, M.: Live, runtime phase monitoring and predic-
tion on real systems with application to dynamic power management, pp. 359–370
(2006). https://doi.org/10.1109/MICRO.2006.30

14. Jang, H., Lee, J., Kong, J., Suh, T., Chung, S.: Leveraging process variation for
performance and energy: in the perspective of overclocking. IEEE Trans. Comput.
63, 1 (2014). https://doi.org/10.1109/TC.2012.286

15. Chen, J., et al.: Analyzing time-dimension communication characterizations for
representative scientific applications on supercomputer systems. Front. Comput.
Sci. 13(6), 1228–1242 (2019)

16. Konstantinidis, E., Cotronis, Y.: A practical performance model for compute and
memory bound GPU kernels (2015). https://doi.org/10.1109/PDP.2015.51

17. Loew, J., Ponomarev, D.: Two-level reorder buffers: accelerating memory-bound
applications on SMT architectures. In: 2008 37th International Conference on Par-
allel Processing, pp. 182–189 (2008)

18. Luszczek, P., et al.: The HPC challenge (HPCC) benchmark suite, p. 213 (2006).
https://doi.org/10.1145/1188455.1188677

19. Maron, B., Chen, T., Vianney, D., Olszewski, B., Kunkel, S., Mericas, A.: Workload
characterization for the design of future servers. In: IEEE International. 2005 Pro-
ceedings of the IEEE Workload Characterization Symposium, pp. 129–136 (2005).
https://doi.org/10.1109/IISWC.2005.1526009

https://doi.org/10.1177/109434209100500306
https://doi.org/10.1109/MICRO.2016.7783764
https://doi.org/10.1109/MICRO.2016.7783764
https://doi.org/10.1109/MICRO.2006.30
https://doi.org/10.1109/TC.2012.286
https://doi.org/10.1109/PDP.2015.51
https://doi.org/10.1145/1188455.1188677
https://doi.org/10.1109/IISWC.2005.1526009

248 X. Qi et al.

20. Tikir, M.M., Carrington, L., Strohmaier, E., Snavely, A.: A genetic algorithms
approach to modeling the performance of memory-bound computations. In: SC
2007: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp.
1–12 (2007)

21. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual per-
formance model for multicore architectures. Commun. ACM 52, 65–76 (2009).
https://doi.org/10.1145/1498765.1498785

22. Wu, F., et al.: A holistic energy-efficient approach for a processor-memory system.
Tsinghua Sci. Technol. 24(4), 468–483 (2019)

23. Wu, Q., et al.: A dynamic compilation framework for controlling microprocessor
energy and performance. In: Proceedings of the 38th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (2005)

24. Dong, Y., Chen, J., Tang, Y., Wu, J., Wang, H., Zhou, E.: Lazy scheduling based
disk energy optimization method. Tsinghua Sci. Technol. 25(2), 203–216 (2020)

25. Zhou, H., Conte, T.M.: Enhancing memory-level parallelism via recovery-free value
prediction. IEEE Trans. Comput. 54(7), 897–912 (2005)

https://doi.org/10.1145/1498765.1498785

A Performance Evaluation Method
for Machine Learning Cloud

Yue Zhu1(B) , Shazhou Yang2, Yongheng Liu3, Longfei Zhao4,
and ZhiPeng Fu3

1 Beijing Institute of Technology, Beijing 100081, China
gongchensu@gmail.com

2 School of Computer Science, National University of Defense Technology,
Changsha 410073, China

3 Peng Cheng Laboratory, Shenzhen 518055, China
4 The Fifth Electronic Research Institute of MIIT, Guangzhou 510610, China

Abstract. In recent years, the application of machine learning algo-
rithm is more and more extensive, and the combination of cloud platform
and machine learning algorithm is closer. With the popularity of cloud
platform, more and more cloud platform providers, the comparison of
performance of different cloud platforms becomes crucial. The cloud plat-
form performance benchmark can provide a relatively objective reference
for consumers, However, the current mature cloud platform performance
benchmarks cannot meet the requirements of testing the machine learn-
ing capabilities of cloud platforms, while the recent ones just only test the
performance of machine learning. Based on the previous cloud platform
performance testing methods, this paper designed a cloud platform per-
formance evaluation method for machine learning applications based on
the combination of AI-based testing benchmark and CPU-based testing
benchmark, which can not only evaluate the performance of cloud plat-
form in terms of CPU, but also test the performance of cloud platform
in terms of GPU, running machine learning algorithms.

Keywords: Evaluation method · Cloud benchmark · Machine learning

1 Introduction

Cloud computing has taken off since Amazon launched Amazon webservices
cloud computing in 2005 and launched cloud services such as EC2 the follow-
ing year. With the close combination of big data and cloud computing in 2013,
cloud computing is even stronger. It is an inevitable trend to process big data
with artificial intelligence algorithms such as neural network. Cloud computing,
big data and artificial intelligence have become the basis of modern business [1].
Internet companies such as Google, Amazon and China’s Baidu are all work-
ing to combine cloud platforms with artificial intelligence. Earlier, DELOITTE

Supported by Peng Cheng Laboratory.

c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 249–259, 2020.
https://doi.org/10.1007/978-981-15-8135-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_18&domain=pdf
http://orcid.org/0000-0002-2774-0426
https://doi.org/10.1007/978-981-15-8135-9_18

250 Y. Zhu et al.

Global predicted that enterprises will accelerate the use of cloud-based AI soft-
ware and services in 2019. By 2020, the penetration rate of integrated AI and
cloud-based AI platforms among companies using AI software will reach 87% and
83%, respectively [2]. The combination of cloud platforms and artificial intelli-
gence will be inevitable, while cloud platforms that support machine learning
algorithms will become mainstream. Just like the development of cloud plat-
forms, cloud platforms supporting machine learning applications need to have
corresponding benchmark standards to evaluate the performance of AI cloud
platforms, to promote the development of artificial intelligence cloud platform.
Based on Spec Cloud, an evaluation method for cloud platform performance, and
MLPerf benchmark for AI application performance testing, this paper designs
a benchmarking method for cloud platform supporting machine learning appli-
cation, which can make a complete evaluation of cloud platform performance
including the performance in terms of AI application. And the test experiment
on the domestic cloud platform proves that the performance evaluation method
designed in this paper can comprehensively evaluate the performance of the
cloud platform in terms of CPU and GPU.

2 Correlational Research

Performance benchmarks for infrastructure as a service cloud platform can be
broadly divided into ML benchmark, which is still in development, and Com-
pute benchmark, which is more mature. Google’s own cloud platform benchmark,
PerfKit Benchmarker [3], is a mature benchmark of Compute benchmark. But
PerfKit contains a lot of redundant performance data that does not measure
the performance of the cloud platform’s machine learning algorithms. The most
authoritative benchmarks for evaluating cloud platform performance are those
published by SPEC [4] and TPC [5]. TPC can be regarded as an application-
level benchmark on the cloud platform, primarily as a basis for evaluating the
actual performance of standard transaction programs on machines published on
IaaS. SPEC can evaluate the performance of the cloud platform, providing a fair
and effective set of metrics for the cloud platform market so that business cus-
tomers can choose the right cloud platform based on these results [6]. Although
Spec Cloud is a relatively mature benchmark for evaluating the performance of
Cloud platforms, it does not consider enough about the performance testing of
AI applications and cannot reflect the support of Cloud platform for AI appli-
cations. ML benchmark which can be used to test cloud platform is MLPerf [7],
the industry’s first objective artificial intelligence benchmark suite, combines
the standards of many previous benchmarks, such as the program by SPEC, the
way SORT is used to compare and foster new ideas, DeepBench’s assessment of
software applications, and DAWNBench’s precision standards. Although MLPerf
can also help facilitate the development of machine learning algorithms, it can-
not evaluate the performance of cloud platform in terms of CPU. The cloud
platform performance evaluation method designed in this paper fully considers
the comprehensiveness of performance evaluation. It can not only test the CPU

A Performance Evaluation Method for Machine Learning Cloud 251

performance and scalability of the cloud platform, but also test its ability to
support artificial intelligence algorithms.

3 Design of Cloud Platform Performance Evaluation
Method

This article’s cloud platform performance evaluation method of design can be
divided into three aspects: the first is performance evaluation for the CPU hard-
ware of cloud platform, the second is performance evaluation for GPU of the
cloud platform, finally is the resource dispatching capability evaluation of the
cloud platform itself. The purpose of this article is to design a method that can
comprehensively evaluate the performance of cloud platform from these three
aspects. One of the mature Cloud platform performance benchmarks is the SPEC
Cloud benchmark. The SPEC Cloud is based on the CBTOOL tool [8] and can
be deployed automatically to test the CPU performance of the Cloud by using
Apache Cassandra’s YCSB and Apache Hadoop structured k-means workloads,
to test the performance of the cloud platform on the CPU side from read, write,
and compute. At the same time, SPEC Cloud tests the elasticity and scalabil-
ity of the Cloud platform by constantly adding random read and write loads
to the Cloud platform during the scale-out phase. The SPEC Cloud emulates
the standard social media NoSQL database application scenario, thus partially
demonstrating its support for AI algorithmic performance testing in data stor-
age. But SPEC Cloud still does not visually evaluate the capabilities of the
Cloud platform in terms of machine learning algorithms. The new benchmark
suite, MLPerf, can measure a range of machine learning workloads. It can test
the performance of a cluster in machine learning, but it can only measure the
performance of a machine learning algorithm, not the overall performance of a
cloud platform. Therefore, this paper intends to design a cloud platform per-
formance evaluation method that can automate to deploy loads to evaluate the
cloud platform performance and get an evaluation result more comprehensively.
Based on the main framework of SPEC Cloud, this paper designs an evaluation
method based on SPEC Cloud that can measure the performance of AI Cloud
platform. The main structure of this evaluation method is shown in the figure,
which is divided into two parts: control node and workload. The control node
will automate the entire benchmarking process, deploy the workload in the cloud
platform, test in two phases, and finally collect and generate the final report by
the control node. The workload to test the performance of the cloud platform is
a virtual machine cluster deployed on the cloud platform to perform algorithm
tasks. To automate the performance evaluation process, the control node needs
to meet the following functions:

– Starts and stops the application instances and workload generator.
– Collects and aggregate the results.
– Determines if a run was successful.
– Generate a full disclosure report.

252 Y. Zhu et al.

SPEC Cloud benchmarks use the Cloud Rapid Experimentation and Analysis
tool (CBTOOL) to automate the benchmarking process, and this article contin-
ues to use this tool to provide the ability to schedule and launch benchmarks.
It is an Apache 2.0-licensed cloud benchmarking tool that exposes an API that
is used by the baseline and scale-out drivers to perform the two phases of the
benchmark and then use the report generator to generate reports for the baseline
and scale-out phases of the benchmark.

3.1 Workload

In the Cloud platform performance evaluation method designed in this paper,
there are three workloads, among which YCSB and k-means workloads are the
two workloads adopted by SPEC Cloud itself, and an MLPerf is added as the
third workload. The three workloads are compute-intensive, I/O intensive and
machine learning, testing the performance of the cloud platform from three
aspects: CPU reading or writing and computing, and artificial intelligence algo-
rithm running.

I/O Intensive Workload: Yahoo! Cloud Serving Benchmark (YCSB)
with Apache Cassandra. Social network sites are one of the most popular
applications for large cloud computing. Social network sites contain many types
of computing services, of which NoSQL database is a key component and is I/O
intensive. With Apache 2.0 support, YCSB can simulate many types of database
transactions, including a read-based transaction that mixes most typical social
media database activity. This article uses the YCSB workload D (95% read, 5%
insert) used by SPEC Cloud IaaS 2018 benchmarks to simulate simple social
network user activity. For NoSQL databases, the Apache Cassandra database
was used as the underlying NoSQL database because the Apache Cassandra
database proved to be more sensitive to I/O and CPU resource constraints dur-
ing benchmark development. Figure 1 shows the structure of the YCSB applica-
tion instances in the designed benchmark. The YCSB driver instance generates
load on the Cassandra cluster. The Cassandra cluster comprises six instances.
Together, these seven instances comprise the YCSB application instance for
the benchmark. The choice of six instances for Cassandra represents a tradeoff
between a trivial cluster size (e.g., two) and large cluster sizes (e.g., twenty)
twenty), and having more than one workload generators to saturate the cluster,
which will be required for large cluster sizes. Cassandra supports two types of
nodes in its cluster configuration, namely, seeds and data nodes. Seeds during
startup work to discover the other seeds/data nodes that make up the cluster
[Reference: CassandraSeedsOne]. One design option was to use three seeds and
three data nodes. The data nodes take a non-deterministic time to join the clus-
ter. Moreover, multiple data nodes joining at the same time is potentially prob-
lematic. The Cassandra documentation at the time of benchmark development,
recommended a gap of two minutes between multiple 9 Cassandra data nodes
that join an existing cluster [Reference: CassandraAddDataNodes]. Therefore,
YCSB application instance uses six seeds as the six Cassandra instances.

A Performance Evaluation Method for Machine Learning Cloud 253

Fig. 1. YCSB/Cassandra application instance.

Compute-Intensive Workload - K-Means with Apache Hadoop. The
K-Means algorithm is a popular clustering algorithm used in machine learning.
SPEC Cloud IaaS 2018 Benchmark uses Intel HiBench K-Means implementation
[Reference: HiBenchIntro]. K-Means is one of the nine Hadoop workloads that
are part of the HiBench suite. HiBench was selected as the benchmark suite as
it provides multiple Hadoop workloads and has a uniform interface for running
these workloads. HiBench uses Apache Mahout [Reference: ApacheMahout] for
K-Means implementation. The HiBench K-Means workload was selected based
on its range of workload models, and built-in data generator to drive the load.
The workload comprises a Hadoop name node instance, which also runs the
Intel HiBench workload driver. The data is processed on five Hadoop data
nodes. Together, these six instances comprise the K-Means application instance
in SPEC Cloud IaaS 2018 Benchmark. Figure 2 shows the logical architecture of
K-Means application instance in SPEC Cloud IaaS 2018 Benchmark.

Artificial Intelligence Training Workload. This is a newly developed
method to evaluate the performance of hardware and software running artificial
intelligence algorithm training and reasoning. The purpose of training or reason-
ing test is to measure how quickly a system can train the model to achieve target
quality or complete inference, so the final unit of measurement is time. MLPerf
has two types of benchmarks, closed and open. Closed versions require the same
preprocessing, model, and training methods to be used as reference implemen-
tations, primarily to compare performance across platforms. MLPerf allows sub-
mitters to reimplement the reference implementations aiming to encourage inno-
vation in software as well as hardware. MLPerf has two Divisions, one is the

254 Y. Zhu et al.

Fig. 2. K-Means application instance.

Closed division which is intended to compare hardware platforms or software
frameworks and requires using the same model and optimizer as the reference
implementation. The Open division is intended to foster faster models and opti-
mizers and allows any ML approach that can reach the target quality. However,
the open version still needs to use monitoring or enhanced machine learning, and
one of the models is iterative improvement based on training data, simulation,
or self-comparison. Therefore, the open version of MLPerf is more a comparison
of machine learning algorithms, with the purpose of optimizing artificial intel-
ligence algorithms. This paper adopts The Closed version, which specifies the
model to be used and limits the values of super parameters such as batch size or
learning rate, which is very fair for comparing hardware and software systems
of different cloud platforms, and is very suitable as a workload to test the per-
formance of machine learning algorithms running on cloud platforms. MLPerf
is divided into two suites which are Training and Inference, corresponding to
the two main parts of machine learning algorithms. There are five benchmarks
about reasoning, seven benchmarks about training. The cloud platform perfor-
mance evaluation method designed by this paper is to use lightweight object
detection of seven Training benchmarks as the workload to test the performance
of cloud platform in Training of artificial intelligence algorithms. MLPerf Train-
ing benchmarks are defined by a Dataset and Quality Target. Implementation
models are optional, but almost every benchmark provides a reference implemen-
tation model. Training is the process of solving in machine learning algorithm,
so the training process can better represent the performance of cloud platform.
The more classical object detection algorithm and the use of lightweight data
sets make it easier to deploy workload in the cloud platform. This paper finally
adopts the Training of target detection algorithm (light weight) and the COCO

A Performance Evaluation Method for Machine Learning Cloud 255

2017 data sets and realize it by ssd-resnet34 model. The final Target Quality to
be achieved is 23% mAP.

4 Cloud Platform Performance Evaluation Method
Implementation

In this paper, design of the machine learning workload can be run on more than
one GPU, in order to make the machine learning workload can take advantage
of the cloud platform, to speed up the training process and save the time of
the evaluation method, the default size of the cluster deployed by workload is
3. It means that machine learning workload will be deployed on a cluster of
three instances. This paper intends to deploy the machine learning workload on
the cloud platform using the Horovod [10] distributed framework. Horovod is a
distributed machine learning training framework compatible with mainstream
computing frameworks, mainly based on ring AllReduce algorithm released by
Baidu in 2017. Using Horovod as a distributed framework can improve the effi-
ciency of machine learning training algorithm and make full use of the perfor-
mance of cloud platform, thus reducing the test time of the performance eval-
uation method designed in this paper. Choose the lightweight object detection
training of MLPerf as the machine learning workload. To enable the machine
learning workload to be automatically scheduled like the two workloads of the
SPEC Cloud itself and automatically deployed in the Cloud platform, it needs
to call the API interface of the CBTOOL to schedule the cloud platform [9]. The
images of workloads which includes the machine learning workload designed by
this paper must be prepared firstly before we run The SPEC Cloud Bench-
mark. We can prepare the first two images according to the UserGuide of the
SPEC Cloud benchmark. Then we need to prepare the images of machine learn-
ing workload designed by this paper. The control node then needs to use the
CBTOOL tool to create the instances with an image of the crafted machine
learning workload. In general, the larger the number of instances that repre-
sent the larger the cluster of machine learning workloads, the shorter the test
time will be. The default number of the instances designed in this paper is 3.
The running of the machine learning workload starts with the creation of the
instances, and the entire process from starting this workload to the completion
of the training to the collection of results is automatically completed by run-
ning the script on control of the control node. Machine learning workloads are
performed on multiple instances to take advantage of the performance of the
cloud platform, which requires a better distributed framework to shorten the
completion time of machine learning algorithms. As a result, the results of cloud
platform performance evaluation can be obtained more quickly. In this paper,
Horovod framework is selected and the advantages of the two papers, “Training
ImageNet in 1 h” of Facebook and “Bringing HPC techniques to deep learning”
of Baidu are combined in this paper. Ring-allreduce, a new gradient synchro-
nization and weight synchronization algorithm, and data transfer based on MPI
can greatly improve the performance of the cluster. After the cluster of instances

256 Y. Zhu et al.

is created, the script gets the IP which is from intranet of instances and start the
service about Horovod. The training process will run as a loop on the cluster of
instances. The control node collects the results after the training ends to obtain
the running time of the entire cluster of machine learning workload as a measure
of the performance of the cloud platform in terms of AI algorithms. If we do
not make changes to the SPEC Cloud project to create a mirror, many errors
will be reported because the aarch64 architecture is not supported. To make the
cloud platform performance evaluation method designed in this paper support
Arm architecture, it is necessary to adapt CBTOOL to the Arm architecture.
We add the following code in get linux distro() function in osgcloud/lib/auxil-
iary/dependencies.py:

e l i f \ l i n ux \ d i s t r o \ kind . count (”Kylin ”) :
\ l i n ux \ d i s t r o \ kind = ”ubuntu”
\ l i n ux \ d i s t r o \ name = ” xen i a l ”

The 3.0.1 version of Redis will cause CBTOOL to run incorrectly in Arm system,
which can be solved by changing the version of Redis to 2.10.3. Finally, the
performance evaluation method designed in this paper is successfully adapted
to Arm cloud platform, so it can also support the performance evaluation of
domestic cloud platform.

5 Results and Discussion

This chapter is mainly about the experimental results of the simulation exper-
iment on the domestic Arm cloud platform, and the analysis of the results.
And this paper tested the performance evaluation method of the cloud platform
designed in this paper on the cloud platform built by TaiShan 2280 v2 server
and the cloud platform built by Great Wall optimus D F720 Feiteng server. The
test results are as follows (Tables 1, 2, 3, 4, 5, 6, 7 and 8):

Table 1. Cloud configuration

Cloud vendor Peng cheng laboratory

Cloud type/SUT type Private/white box

Hardware platform Arm64

Hypervisor KylinVM

Cloud infrastructure Kylin cloud

A Performance Evaluation Method for Machine Learning Cloud 257

Table 2. Hardware configuration

Parameter Value

Server TaiShan 2280 v2

Cores num 48 cores

CPU version Hi1620

Memory 512 G

Disk size 446 GB SSD + 4TB SATA

Table 3. Instance configuration

Parameter Value

CPU 8

Memory 8 GB

Disk size 80 GB

Table 4. Software configuration

Parameter Value

Python version 2.7.12

JVM version 1.7.0 95

Hadoop version 2.7.5

Cassandra version 2.1.18

Table 5. Baseline summary results for YCSB

Throughput
(ops/s)

Insert
latency
99% (ms)

Read
latency
99% (ms)

AI
provisioning
time (s)

Average 26621.3 1.947 6.897 152.4

Table 6. Baseline summary results for KMeans

Completion time (s) AI provisioning time (s)

Average 152.88 176.0

Table 7. Scale-out summary results for YCSB for 5 valid AIs

Av.
throughput
(ops/s)

Av. insert
latency 99%
(ms)

Av. read
latency 99%
(ms)

Av. AI
provisioning
time (s)

Performance
score

Relative
scalability
(%)

Average 3.860 6.338 197.4 3.57 73.44

258 Y. Zhu et al.

Table 8. Scale-out summary results for KMeans for 7 valid AIs

Av.
completion
time (s)

Av. AI
provisioning
time (s)

Performance
score

Read relative
scalability (%)

152.7 189.7 5.82 93.41

And the machine learning workload takes 330350 s to accomplish the specified
precision using three instances in the cloud. So, we can get the performance of
the cloud platform in terms of CPU and GPU. The entire process is controlled
and automated by a cbharness to run the load and then generate results, helping
enterprise users objectively evaluate the performance of the cloud platform and
make reasonable choices. The performance evaluation method designed in this
paper can also support the domestic cloud platform and the above results are
tested on the domestic Kylin Cloud.

6 Conclusion

The traditional approach to evaluating cloud platform performance is to test
the performance of the cloud platform in terms of CPU performance, such as
read-write, computing, and ability of scaling the cloud platform itself. MLPerf
is the most representative benchmark that can test the performance of machine
learning algorithms in the cloud platform. There is no method to test the per-
formance of cloud platform automatically and comprehensively. Therefore, this
paper intends to design and implement a cloud platform performance evaluation
method based on SPEC and MLPerf. After testing on Kylin cloud platform with
domestic Arm architecture, the method designed in this paper has been proved
to be able to run automatically and obtain more comprehensive performance
test data of cloud platform. The shortage is that only time is selected as the
metric of the machine learning load. Although it is intuitive and effective, it
cannot reflect the performance of cloud platform in machine learning algorithm
in a more detailed way. What we can do in the future work is to design new
metrics, such as the PR curve with more detailed accuracy and recall rate.

References

1. Yan, Z.: White Paper on Cloud Computing and Artificial Intelligence Industry
Applications. Institute of Internet Industry, Tsinghua University (2018)

2. Deloitte artificial intelligence: from expert-only to everywhere. https://www.
deloitte.co.uk/tmtpredictions/predictions/artificial-intelligence/

3. Google. PerfKit benchmarker. https://github.com/GoogleCloudPlatform/
PerfKitBenchmarker

4. Standard Performance Evaluation Corporation. http://spec.org/
5. TPC: Transaction Processing Performance Council

https://www.deloitte.co.uk/tmtpredictions/predictions/artificial-intelligence/
https://www.deloitte.co.uk/tmtpredictions/predictions/artificial-intelligence/
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
http://spec.org/

A Performance Evaluation Method for Machine Learning Cloud 259

6. Ficco, M., Rak, M., Venticinque, S., et al.: Cloud evaluation: benchmarking and
monitoring. In: Quantitative Assessments of Distributed Systems (2015)

7. MLPerf. https://mlperf.org
8. Silva, M., Hines, M.R., Gallo, D., et al.: CloudBench: experiment automation for

cloud environments. In: ACM Symposium on Cloud Computing. ACM (2012)
9. Cloud rapid experimentation and analysis toolkit. https://github.com/ibmcb/

cbtool
10. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in

TensorFlow. arXiv preprint arXiv:1802.05799 (2018)

https://mlperf.org
https://github.com/ibmcb/cbtool
https://github.com/ibmcb/cbtool
http://arxiv.org/abs/1802.05799

Parallelization and Optimization of Large-Scale
CFD Simulations on Sunway TaihuLight System

Hao Yue , Liang Deng, Dehong Meng(B), Yuntao Wang, and Yan Sun

Computational Aerodynamics Institute, China Aerodynamics Research and Development
Center, Mianyang, China

haoeryue@hotmail.com

Abstract. TRIP is an in-house Computational Fluid Dynamics (CFD) software
that can simulate subsonic, transonic, and supersonic flows with complex geome-
tries. With the increase of computation and memory requirement for large-scale
CFD simulations, it is an inevitable trend to use massively parallel computers for
parallel computing. In this paper, with a dual-level hybrid and heterogeneous pro-
grammingmodel usingMPI+OpenACC,we port and optimize the TRIP software
on the Sunway TaihuLight supercomputer. A series of optimization techniques,
including data reconstruction, data packing, loop refactoring and array swapping,
are explored. In addition, a grid preprocessing tool is developed for reducing
the load imbalance caused by the non-cube shape of sub grids. Scalability tests
show that TRIP can achieve 66.9% parallel efficiency of strong scaling and 96%
efficiency of weak scaling when the cores are increased from 10,400 to 665,600.

Keywords: CFD · TRIP · Parallelization · Optimization · Sunway TaihuLight ·
OpenACC

1 Introduction

Computational Fluid Dynamics (CFD) is a traditional application in the field of high
performance computing, and its high-efficiency has greatly reduced the cycles for devel-
oping aerospace vehicles. TRIP, as the first domestic CFD platform with completely
independent copyright, has been successfully promoted to many research institutions
which dedicated to the development of aircrafts and weapons [1]. It has almost covered
all the functions of the other mainstream structural grid CFD software, and has partic-
ipated in a sequence of tasks of verification and validation, such as DPW, HiLift series
and other standardmodels. From low to supersonic flow, TRIP has shown its outstanding
performance compared with the similar software in this field. So, it is widely used for the
real-world CFD simulation, such as conventional aerodynamic characteristics analysis,
integrative calculation of internal and external flow, aerodynamic noise and aeroelas-
ticity problems, etc. However, with the increasing of accuracy requirements, the grid
must be designed more and more finely. Therefore, it is of crucial importance to develop
highly scalable tools for extreme-scale CFD simulations on state-of-the-art computing
platforms.

© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 260–274, 2020.
https://doi.org/10.1007/978-981-15-8135-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_19&domain=pdf
http://orcid.org/0000-0003-1562-9007
https://doi.org/10.1007/978-981-15-8135-9_19

Parallelization and Optimization of Large-Scale CFD Simulations 261

As the first super computer system with a peak performance of over 100 Pflops [2],
Sunway TaihuLight provides a favorable condition for the large-scale parallel algorithm
of CFD. Constrained by factors such as power consumption, many-core heterogeneous
processors have gradually become the mainstream architecture of high-performance
computing. For many applications, the traditional hybrid MPI and OpenMP parallel
model cannot satisfy the requirements of new computing models anymore. Therefore,
various studies have been conducted on large-scale parallel program optimization for the
Sunway TaihuLight and achieved a series of success [3–5]. In recent years, some efforts
have been made to port CFD software to many-core systems. Such as GKUFS [6] and
SWLBM, both are based on Boltzmann equation and use particle velocity distribution
function as the physical quantity, have achieved great adaptability on many-core plat-
form. These types of software can get good performance are due to the complete data
independence and the choice of explicit timemethod. There are also some CFD software
based on solving the N-S equations have been ported Sunway many-core system. Such
as the direct numerical simulation software OpenCFD, which is developed by the Insti-
tute of Mechanics, Chinese Academy of Sciences, and achieved great scaling due to its
high calculation memory ratio and calculation communication Ratio [7]. Another open
code OPENFORM has been ported to TaihuLight, in their study, the mixed-language
application was designed to overcome the compilation incompatibility problem and the
speedup of 184.9× on 256 CGs was achieved [8]. However, in many studies, they used
designed dataset or regular grid with single block in order to suit for the architecture.

Compared with homogeneous system, there are two main challenges for us to port
TRIP on TaihuLight. Firstly, unlike the traditional x86 processor, the design of the CPEs
does not contain a cache, but a 64 KB user-controlled Scratch Pad Memory (SPM),
which means it is vital to manage the local data memory (LDM) carefully in order to
reduce the severe performance degradation caused by the frequent accesses to main
memory. Secondly, due to the complex shape, we can’t always design the regular mesh
with single zone during the pre-processing period. So, it is inevitable that unwished
non-cube sub-grids appear when splitting the original grid, which will increase the load
imbalance.

In order to tackle above challenges, targeted parallel strategieswere exploited for ker-
nel functions with different degrees of data dependency in our work, such as grid-node,
grid-line and grid-plane level. And a series of optimization methods such as data recon-
struction, data packing, loop refactoring and array transposition were used to achieve
effective many-core parallelism. As for the potential load imbalance of large-scale, an
automatic pre-processing tool for rotating local sub-grid coordinate was proposed. The
result shows that the kernel function of flux computation can achieve up to about 28.85×
speedup on a single Core-Group (CG), and the kernel function of implicit time method
LU-SGS can achieve up to 3× speedup. After using the automatic local coordinate tool,
a significant improvement of parallel efficiency can achieve.

262 H. Yue et al.

2 Background

2.1 Sunway TaihuLight Architecture

The Sunway TaihuLight supercomputer provides a theoretical peak performance of
125PFlops. Each computer node contains a SW26010 heterogeneous many-core pro-
cessor. The architecture of the Sunway processor is shown in Fig. 1, which is composed
with 4 CGs. Each CG contains a Management Processing Element (MPE, or Host) and
64 Computing Processing Elements (CPE, or Device).

In terms of the memory architecture, each CG has 8 GBmain memory, which makes
up the 32 GB main memory in a SW26010 processor. Each MPE has a 32-KB L1 data
cache and a 256-KB L2 instruction/data cache, and each CPE has its own 16-KB L1
instruction cache and a 64-KB LDM (also known as SPM as a user-controlling fast
buffer). The CPE has two types of memory access to the main memory: DMA and
Global load (Gld). According to a Stream benchmark test, when being accessed by Gld
instructions, themaximumbandwidths are only 3.88GB/s. Correspondingly, when using
DMA mode, the maximum Copy bandwidth reaches 27.9 GB/s [2].

2.2 The Euler Equations

For simplicity, theEuler equation [9] is used in followingdiscussion.TheEuler governing
equation in generalized curvilinear coordinate system is expressed

∂˜Q

∂τ
+ ∂˜F

∂ξ
+ ∂˜G

∂η
+ ∂˜H

∂ς
= 0 (1)

Where,˜Q is the conservation variable in generalized curvilinear coordinate system, ˜F,˜G
and ˜H are the convection flux vectors in the generalized curvilinear coordinate, τ, ξ, η
and ζ correspond to t, x, y and z in the Cartesian coordinate, respectively.

Taking a unit cell whose center is denoted by (i, j, k) in the generalized curvilinear
coordinate system, we have a semi-discretized system in the form of

(

∂˜Q

∂τ

)

i,j,k
= −

(

˜Fi+ 1
2 ,j,k − ˜Fi− 1

2 ,j,k + ˜Gi,j+ 1
2 ,k − ˜Gi,j− 1

2 ,k + ˜Hi,j,k+ 1
2

− ˜Hi,j,k− 1
2

)

(2)

In order to simplify the expression, here �ζ, �η, �ζ is 1.

2.3 Spatially Discretization

Define the spatially discretization (right item of Eq. (2)) as RHS, and it refers to the
process of convection flux in the Euler equation. In this paper, a third-order upwind
scheme based on Roe’s approximate Riemann solver was used. For simplicity, we just
discuss the x component, and the other components are similar. It can be expressed

˜Fi+1/2 = 1/2
[

F(QL
i+1/2) + F(QR

i+1/2)
]

− 1/2
∣

∣

∣

˜A
(

QL
i+1/2,Q

R
i+1/2

)∣

∣

∣(QR
i+1/2 − QL

i+1/2)

(3)

Parallelization and Optimization of Large-Scale CFD Simulations 263

Where, QL
i + 1/2 and QR

i + 1/2 are interpolated by the several left and right adjacent nodes
along i-dimension respectively, and˜A(QL

i + 1/2,Q
R
i + 1/2) is the matrix of Roe average. In

particularly, the third-order precision Muscl scheme is used to interpolate QL
i + 1/2 and

QR
i + 1/2, its form is

QL
i+1/2 = gL(Qi−1,Qi,Qi+1); QR

i+1/2 = gL(Qi,Qi+1,Qi+2) (4)

2.4 Time Discretization

After discretizing and linearizing the time item of Eq. (2), we can get a large-scale system
of linear equations just like

Ax = b (5)

Where, A denotes LHS matrix, b denotes RHS matrix and x denotes solution vector.
When using LU-SGS scheme to solve Eq. (5), matrix A can be decomposed as

A = D + L + U ≈ (D + L)D−1(D + U) (6)

Where D is the diagonal vector, L is a lower triangular matrix and U is an upper
triangular matrix. So Eq. (5) can be expressed

(D + L)D−1(D + U)x = b (7)

Using a temporary variable y, the Eq. (7) can be reconstructed to two symmetrical
Gauss-Seidel functions as Eq. (8) shown. The former function is for forward updating
and the latter for backward updating.

(D + L)y = b; (D + U)x = Dy (8)

Finally, the solution can be gotten by using the back-generation method.

2.5 The Workflow of TRIP

The algorithm flow chart is illustrated in Fig. 2. The first step is the initialization of flow
field, which specifies the cell number of grids, the cell coordinates, and the cell values.
Then, the kernel iteration process of the algorithm LU-SGS is executed until the results
are converged.When running, the flux computation of RHS accounts for 46.3% of entire
time, implicit time scheme LU-SGS accounts for 37.75% and other items accounts for
15.94%.

When using parallel mode, TRIP adopts static data assignmentmethod, whichmeans
that the original grid must be decomposed into multiple sub-grids before running. So, an
in-house tool Trip_mbsplit is used, and the tool will produce three files for each process
respectively, including grid coordinate file (*.grd), boundary information file (*.inp) and
communication file (*.msg).When running, each process reads its own information from
corresponding sub-grid files separately, then runs step by step according to the flow in
Fig. 2. In order to exchange the boundary information of sub-grids, the MPI point-to-
point communication mechanism is used. Finally, after all processes finished, the MPI
collective communication is used to merge the flow field and integrate the aerodynamic
force.

264 H. Yue et al.

Memory

Network on Chip

Memory Memory

Memory

MC

MC

CPE
Cluster
(8*8)

CPE
Cluster
(8*8)

CPE
Cluster
(8*8)

CPE
Cluster
(8*8)

MC

MPE

MPE

MC

MPE

MPE
CG CG

CG CG

Fig. 1. General architecture of the
SW26010 process.

Initialization

Calculation of
Geometric variables

Time step iteration

Zone calculation

Boundary condition Space discretization
Time discretizationError calculation

All zone done

Aerodynamic force

Convergence

End

NO

NO

Yes

Yes

Fig. 2. TRIP workflow chart

3 Parallelization Strategies

In order to port TRIP to Sunway TaihuLight, a hierarchical domain partition strategy
for parallelization is employed. At the process level, the whole computational domain
is decomposed to multiple subdomains, with each assigned into a MPI process and
running on a single CG. In particularly, the boundary information is exchanged among
processes before updating the flow field in each subdomain. At a CG level, according to
the difference of date dependency in kernel functions, corresponding parallel strategies
based on OpenACC are exploited. In what follows, the specific strategies are discussed.

3.1 Parallelization of Kernel Functions with Data Independency

The functions with completely independent data structure are the easiest parts to achieve
many-core parallelization. Such as the function used to converse the conservation vari-
ables into original variables, and the function used to correct the pressure density, etc. For
these types of kernel functions, the data can be transferred to CPEs directly according to
the limited LDM, and implement parallelization at the grid-node level easily, as shown
in Fig. 3 (left). If the calculation of every node is relatively simple in each step, a strategy
with grid-line level or grid-plane level can be used to guarantee sufficient computation.
As shown in Fig. 3 (middle) and Fig. 3 (right), each CPE solves a line or plane of grid
respectively. Since the threads and data are scheduled in the smallest unit, great speedup
and bandwidth performance can be obtained.

3.2 Parallelization of Kernel Functions with Weak Data Dependency

For some kernel functions, the variables updating must depend on the data of their
adjacent nodes, such as rhs_ch_i, rhs_ch_j and rhs_ch_k and rabc, etc. Specifically,
rhs_ch_i, rhs_ch_j and rhs_ch_k are used to calculate the convection flux along x,

Parallelization and Optimization of Large-Scale CFD Simulations 265

x(i)
y(j)

z(k
)

x(i)
y(j)

z(k)

x(i)
y(j)

z(k)

Fig. 3. Parallelization strategy of different level (Figure from left to right refers to strategy based
on grid-node, grid-line, and grid-plane respectively)

y and z dimension respectively, and rabc is used to calculate the spectral radius of
coefficient matrices in the subroutine LU-SGS. Although these calculations depend on
their neighbors, they will not affect the result as long as the relative data is copied to the
LDM in advance. In particular, the reason why the flux calculation is divided into three
one-dimensional functions along x, y and z component is for minimizing the duplication
of redundant data. For example, when calculating the flux ˜Fi + 1/2,j,k through the surface
ABCD, as shown in Fig. 4 (left), variables at cell center (i − 1, j, k), (i, j, k), (i + 1,
j, k) and (i + 2, j, k) are requested according to the algorithm mentioned in Sect. 2.3.
In order to take advantage of the continuity of the array in low dimensions, the grid-
line parallelization scheme was mainly used. As shown in Fig. 4 (right), the tasks were
scheduled in the outer j and k dimensions and the cells of i dimension were calculated
sequentially by each CPE. Here, batch_size refers to the number of cells can be copied
once, and it will be discussed later to maximize the sustained performance.

A

B

C

D

(i-1,j,k) (i,j,k) (i+1,j,k) (i+2,j,k)

(i+1/2,j,k)

x(i)

y(j)
z(k)

x(i)
y(j)

z(k)

Fig. 4. Parallelization strategy for weak data-dependent functions (Left illustration shows the
dependence of flux computation and the right is the corresponding grid-line parallelization)

3.3 Parallelization of Kernel Functions with Strong Data Dependency

Calculation with strong data dependency mainly exists in the implicit time scheme LU-
SGS. As shown in Fig. 5 (left), during the forward (lower triangular matrix) updating
process of LU-SGS, the updating node (i, j, k) depends on its adjacent updated nodes (i−
1, j, k), (i, j − 1, k) and (i, j, k − 1). On the contrary, the nodes (i + 1, j, k), (i, j + 1, k) and
(i, j, k + 1) are needed to update the node (i, j, k) during the backward (upper triangular

266 H. Yue et al.

matrix) updating. In this paper, a parallel algorithm based on diagonal-hyperplane was
used to implement thread-level parallelization for LU-SGS. As shown in Fig. 5 (right),
the strategy mainly utilizes the independence of the nodes on the diagonal-hyperplane
to implement the many-core parallelization. In other words, the nodes on the hyperplane
can be calculated concurrently by 64 CPEs, then, the whole domain is calculated plane
by plane. In particularly, the subscripts i, j, k on the diagonal-hyperplane add up to a
constant. So, it is easy to find their association based on this character.

(i,j,k)

(i,j,k-1)
(i,j-1,k)

(i-1,j,k)

i+j+k=Const

x(i)
y(j)

z(k)

Fig. 5. Parallelization strategy for LU-SGS (Left illustration shows the dependence of LU-SGS
and the right shows the corresponding diagonal-hyperplane parallelization strategy)

4 Optimization Within a CG

4.1 Refactoring the Loop Structure

TRIP is developed based on Fortran language, and most of data-structures (arrays) are
four-dimensional arrays with the layout of (n, i, j, k). Such as array flw(mfl, i, j, k),
which stores ρ, u, v, w, p respectively when mfl takes 1 to 5. The elements of array in
Fortran are stored in column-major order, so, it is best to access array from low to high
dimension. In original code, there are many non-compact sub-loops nested in the main
loop of RHS, and these sub-loops contain big data access. As shown in Algorithm1,
there are four main parts to update the flux in k-dimension, which are copying array,
calculating ˜Hi,j,k + 1/2, calculating �˜H and updating rhs. And the second one is the most
time consuming part. Since the start and end index of k-dimension in the sub-loops are
different, the inner-layer loop cannot be merged into a whole loop, so that the entire
memory access is not continuous. To achieve continuous memory access, the original
loop is refactored to two continuous four-dimensional loops reasonably, as shown in
Algorithm 2. Where, subroutine f1 is used to calculate ˜Hi,j,k + 1/2, and the result is saved
in fu4d(:, i, j, k). Another subroutine f2 is used to calculate �˜H and updating rhs. Then,
it is easy to use OpenACC to implement parallelization. It must be mentioned that the
relative data of adjacent nodes (i, j, k − 1), (i, j, k), (i, j, k + 1) and (i, j, k + 2) needs to
be transferred into subroutines f1 or f2 due to the data dependency.

Parallelization and Optimization of Large-Scale CFD Simulations 267

4.2 Data Transfer and Batch_Size Determination

As for the reason why the subroutines f1 and f2 are created is for transferring data more
accurately. In fact, the data like flw, cnk, rhs are all organized as pointers type, and
sometimes, the data requirement is complex when transferring data to LDM. So, it is
difficult to make right analysis automatically for compiler by just using simple acc copy
directive at outer loop. Therefore, when adopting this method, it can be more explicit
and more accurate to transfer data by using acc data copy directive in the subroutine f1
and f2.

Due to the limited LDM, the whole data of i-dimension cannot be transferred into
LDM at one time. So, a further decomposition for i-dimension needs to be done. Assume
batch_size is the amount of data can be transferred to LDM at one time, in order to
maximize the sustained performance of LDM, the batch_size can be estimated byEq. (9).
Where, Var_nneed refers to the amount of requirement data requirement in a single step.

Var_nneed × batch_size × 8Byte ≤ 64KB × 1, 024 (9)

4.3 Other Optimizations

Array Swapping. For some arrays with discontinuous access, the swapin clause is used
in order to avoid inefficientmemory access. For example, when transferring array btem(i,
j, k, n) to LDM, the loop order is n, i, j, k from inside to outside, it is easy to guarantee
the continuous access by using clause swapin(btem(dimension order: 4, 1, 2, 3)).

Data Pre-sorting. When using the diagonal-hyperplane parallel strategy for LU-SGS
parallelism, the data required on the hyperplane is not continuous. So, they cannot be
transferred into LDM directly because the data chunk is not regular. In order to avoid
massive discrete access of CPEs, the data on the hyperplane is sorted in advance on the
host. Its essence is to allocate a new array for storing sorted data.

268 H. Yue et al.

Data Packing. For data transmission, the transmission efficiency of scattered variables
is worse than the efficiency of batch data copying, so packing the scattered variables into
one large variable can reduce the cost of data copying. In this paper, the packin clause
is used to improve the data transmission efficiency.

5 Load Balancing for Large-Scale Parallelization

5.1 Load Balancing Analysis

In large-scale CFD parallel computing, load balancing is one of the key factors to scale
application efficiently. Typically, for the heterogeneous systems, the load balance needs
to be measured from three aspects, which are computing balance, communication bal-
ance and communication calculation ratio, for which three quantitative indicators were
specified [6, 10], as shown in Eq. (10–12).

σv = Vmax − Vave

Vave
× 100% (10)

σs = Smax − Save
Save

× 100% (11)

ri = Si/Vi × 100% (12)

Where, σv, σs and ri refer to factor of volume balance, area balance and area volume
ratio, respectively. Vmax andVave refer to themax and average volume among sub-grids
respectively. Smax and Save refer to the max and average area among sub-grids. Si and
Vi refer to the area and volume of the i-th sub-grid. According to these three factors, it is
easy to find that the sub-grids with a close cube shape are best. Because a cube-shaped
sub-grid has the advantage of smallest communication calculation ratio. However, in
a real case, especially for large-scale parallel computing with complex shapes, it is
inevitable to produce non-cube sub-grid due to the limit of complex physical conditions
or other limits. Compared to other system, it is more severe when using the grid-line
parallelization strategy in this paper.

Assume the amount of nodes in a sub-grid is sizei, sizej and sizek along i, j, k-
dimension respectively, and the maximum capacity of LDM at each time is batch_size
in a kernel function. Then, the actual amount can be transmitted to LDM once will be:

block_size =
{

sizei, batch_size ≥ sizei
batch_size, batch_size < sizei

(13)

Where, block_size refers to the actual amount of nodes can be transferred to LDM at one
time. So,whenfinished transferring the entire sub-grid, the number ofDMAtransmission
(NDMA) can be calculated via the Eq. (14)

NDMA = sizej × sizek/64 × sizei/block_size (14)

Parallelization and Optimization of Large-Scale CFD Simulations 269

As shown in Fig. 6 (left), assuming the size of sub-grid A is 8 × 200 × 100, and the
batch_size can be 120 for a kernel function according to the Eq. (9). Nevertheless, the
sub-grid has only 8 grid nodes along the i-dimension, so that the actual block_size can
only be 8 according to Eq. (13), and the number of DMA transmission is 313 according
to Eq. (14). For another sub-grid B, which is the same volume as A but its size is 200
× 100 × 8, as shown in Fig. 6 (right), according to above equations, only 26 DMA
transmissions are required.

z(k)

y(j)
x(i)

size =200

CPE(0,0)

si
ze

=1
00

size =200

si
ze

=1
00

CPE(0,7)

y(j)

x(i)
z(k)

batch_size=120
CPE(0,1)

CPE(0,0)
CPE(1,0)

Fig. 6. Illustration of data transmission for different sub-grids (Left illustration is sub-grid Awith
size 8 × 200 × 100, the right is sub-grid B with size 200 × 100 × 8)

In order to measure the deviation degree between the sizei of sub-grid n with sizei
of the same volume cube sub-grid, the index σ i is defined, as shown in Eq. (15).

σi = sizei/
3
√

Vn (15)

Where, Vn refers to the volume of sub-grid n and sizei refers to the amount of grid nodes
along i-dimension of this sub-gird. According to the analysis above, when the parallel
tasks for outer loop are sufficient, for two sub-grids with same volume but different
σi, the sub-grid with bigger σi will be better because its NDMA is much less. Since the
number of CPEs within a CG is only 64, the parallel tasks of j and k dimension are
sufficient for most situations. So, for the sub-grid with smaller σi just like A shown in
Fig. 6 (left), if it could be transformed into B as shown in Fig. 6 (right), the load-balance
would be better.

5.2 Improvement of Load Balancing

In the original partitioning algorithm of Trip_mbsplit, the influence of σ v, σ s and ri has
been taken into consideration, so a close cube-shaped sub-grid is prior. However, if it was
inevitable to produce some sub-grids like A-shaped due to the special limits, in order to
reduce load imbalance but still retain the advantages of original partitioning algorithm,
a grid preprocessing tool Trip_trans for optimizing A-shaped sub-grids was developed.

When using Trip_mbsplit tool for static decomposition, the first step is dividing the
flow field into multiple sub-region, and then establishing a local coordinate I-J-K system
in each region, after that, each process starts calculating its local field independently.
Since the process of reading and calculating of the sub-region is independent among

270 H. Yue et al.

the processes, it is possible to convert A-shaped sub-grid into B-shaped sub-grid shown
in Fig. 6 just by changing its local coordinate system. Before TRIP starts running,
Trip_trans will check all the sub-grids divided by Trip_mbsplit and filter out the sub-
grids whose σi is less than 1, then, it will adjust these sub-grid’s local coordinate to
ensure i-dimension contains the most nodes. In particularly, the key to use the tool is
to deal with the problem of information exchange between the processes which contain
share mating surfaces, which means that the tool will not only adjust the file *.grd, but
also adjust its corresponding boundary file *.inp and communication file *.msg.

6 Evaluation

6.1 Evaluation Within a CG

In order to evaluate the optimizations in a single CG, three small cases with same volume
but different shapes were set up, which were 160 × 160 × 160, 1,600 × 160 × 16, and
16× 160× 1,600 respectively. Since the runtime of kernel functions with complete data
independency is relatively less, detailed tests and analysis of these types of functions are
not showed here. While, the performance of flux computation and LU-SGS are mainly
talked about at following analysis.

Figure 7 shows the optimization result of flux calculation within single CG, where,
Host_v0 represents the benchmark on the host, Host_v1 represents the optimized ver-
sion1 on the host by refactoring loop structure and other methods, and OpenACC repre-
sents the optimized parallelization version accelerated by CPEs. Firstly, it can be seen
that the non-cube grid takes longer time than cube grid. After host optimization, the
runtime of flux computation is almost same, which eliminates the load imbalance at
host level. Secondly, compared with Host_v1, the magnitude of speedup by using Ope-
nACC is consistent with the magnitude of σ i, which verifies the conclusion mentioned
in Sect. 5.1, that is to say, the larger the value of σ i, the greater the acceleration of
OpenACC.

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0

1600×160×16 160×160×160 16×160×1600

R
un

tim
e(

s)

Flux Computation
Host_v0
Host_v1
OpenACC

37.73X 28.85X 13.28X

1.63X 1.43X 1.67X

23.20X 20.06X 7.90X

0.00

0.50

1.00

1.50

2.00

2.50

1600×160×16 160×160×160 16×160×1600

R
un

tim
e(

s)

Host_v1
OpenACC

6.43X 6.40X
2.95X

Lu_rabc Computation

Fig. 7. Optimization result of kernel functions with weak data dependency (The left illustration
shows speedup of flux computation, the right shows speedup of lu_rabc)

Parallelization and Optimization of Large-Scale CFD Simulations 271

The LU-SGS method mainly contains three kernel functions, which are lu_rabc,
lu_lowr and lu_upper. Where, the first one contains weak data dependence but the latter
two contain strong data dependence. As shown in Fig. 7 (right), since lu_rabc is not
decomposed into one-dimension like flux, it needs more adjacent nodes, its speedup is
only 6.40× when the grid size is 160 × 160 × 160, which is less than the speedup of
flux computation. But Similarly, the speedup of these three cases are consistent with
their σ i.

For the kernel functions of lu_lowr and lu_uper, although data pre-sortingmentioned
in Sect. 4.3 can reduce the Gld access of CPEs, it needs redundant calculation to prepare
data on the host. Therefore, the parallel efficiency is reduced inevitably. For grid with
size of 160× 160× 160, although the speedup is more than 17× in the actual calculation
part, the final speedup only achieves about 3× because the data pre-sorting and recover
process occupies most of time.

Although for grids with same volume, the grid with larger σ i can obtain better
speedup, it is still worse than a close cube-shaped grid, because it will take longer time
in the boundary calculation, as shown in Fig. 8. Further, if the non-cube grid involves
inter-communicationwith other process in a large-scale test, correspondingly, it will take
longer time due to its larger halo area. Therefore, the result shows that it is undesirable
to divide all sub-grids into strip-shaped blindly. That also verifies the rationality that
we just use Trip_trans tool to adjust the non-cube grid produced under the inevitable
situation but without changing the original cube-prior partition algorithm.

0.310 0.100
0.420

0.41
0.49

1.22

0.00

0.50

1.00

1.50

2.00

1600×160×16 160×160×160 16×160×1600

R
un

tim
e(

s)

Flux Computation

Boundary Computation

Fig. 8. Optimization results of flux and boundary control computation

6.2 Evaluation of Large-Scale Parallelization

In this paper, a large-scale test is performed based on the real AGARD445.6wingmodel.
The model’s aspect ratio is 1.6525, the taper is 1.5207, and the quarter-chord angle is
45°. The original coarse grid consists of 70 zones, and the total number of grid cells is
3,207,936. Refining the grid through our in-house software to generate a series of finer
grids for scalability test.

Strong Scaling Test. Refining the original grid along i, j, k-directions by 7× respec-
tively in order to generate the finer grid with a total cells number of 1,100,322,048 for
strong scalability test. Specifically, two comparative tests were set in order to verify the

272 H. Yue et al.

strong scaling with processes increased from 160 to 10,240 by a factor of 2. Where, one
was adjusted by Trip_trans and another one wasn’t. As shown in Fig. 9, when adjusting
sub-grids by Trip_trans, the efficiency has been greatly improved compared with before,
especially for scale increased from 1,280 to 5,120 processes, the parallel efficiency has
been improved about 20% to 30%. In particularly, the most time-consuming process
of each scale is picked up, as shown in Fig. 9 (right), obviously, the final efficiency is
mainly limited by the slowest process. In order to show the reason why these processes
are slow to calculate, their corresponding sub-grid information is listed, as shown in
Table 1. Where, version0 represents the information before adjustment by Trip_trans
and version1 represents the one after optimization. Obviously, before the adjustment,
although the volume of each sub-grid is smaller than the average volume of all sub-
grids, the running speed is still the slowest since σ i is very small. While, after the
adjustment, the slowest process is no longer dominated by σ i, but depend on the actual
larger grid volume of the sub-grid. In addition, the parallel efficiency can stay above
80%when 332,800 cores are used, but drop to 66.9%when 665,600 cores are used. This
is expected because, as more processes are used, the subdomain size decreases and the
ratio of communication to computation becomes large and eventually hinders the overall
performance.

Fig. 9. Result of strong scaling test (The left and middle illustration are speedup and efficiency
of hybrid MPI+OpenACC respectively, the right illustration shows runtime of slowest process at
each scale. Where Version0 represents the result before adjusting sub-grids by using Trip_trans,
Version1 represents the result after adjusting)

Weak Scaling Test. The AGARD445.6 wing is also used for weak scalability test.
Figure 10 shows the results of the parallel efficiency of weak scalability before and
after the load balance optimization. Similarly, Version0 represents original result and
Version1 represents optimized one. In the test, the calculation scale is increased from
10,400 cores to 665,600 cores, and the corresponding grid magnitude is increased from
200 million to 13.1 billion. It can be clearly seen that the optimized weak scalability
has been greatly improved and the parallel efficiency can reach more than 96% when
665,600 cores are used.

Parallelization and Optimization of Large-Scale CFD Simulations 273

Table 1. Information comparison of the slowest process before and after adjustment

Process (V − Vavr)/Vavr (%)
(version0)

σi (version0) (V − Vavr)/Vavr (%)
(version1)

σi (version1)

160 −0.0004 0.292 3.4431 1.334

320 −0.0161 0.650 4.8827 1.056

640 0.1402 0.180 3.0587 1.030

1,280 −0.0194 0.080 4.8149 1.536

2,560 −0.0943 0.128 3.1283 1.103

5,120 −0.2474 0.127 4.8437 1.606

10,240 −0.0422 0.306 4.1206 2.411

Fig. 10. Result of weak scaling test (Version0 represents the result before adjusting sub-grids by
using Trip_trans, Version1 represents the result after adjusting)

7 Conclusion

This paper reports our experience on porting and optimizing the TRIP software on Tai-
huLight. Various suitable mapping schemes such as grid-node, grid-line and grid-plane
are proposed based on the degree of data dependency. Particularly, the precise data trans-
mission schemes aiming for different kernel functions utilizes the 64K SPM effectively.
By using the OpenACC directive, many kernel functions are parallelized on CPE clus-
ters. On a 160× 160× 160 grid, the spatially discretization module can achieve 28.85×
speedup and the time discretization can achieve 3× speedup. Moreover, the matching
sub-grid coordinate rotation tool Trip_trans can effectively reduce the impact of load
imbalance caused by the difference of cell number along i, j and k dimension. Finally,
a real AGARD445.6 wing model is tested, 66.9% parallel efficiency of strong scaling
and 96% efficiency of weak scaling can be achieved when the cores are increased from
10,400 to 665,600. Our work may be used as a reference for other CFD applications
based on structured grid when porting them to TaihuLight. However, due to the discon-
tinuity of memory access, the parallelization of LU-SGS based on diagonal-hyperplane

274 H. Yue et al.

strategy cannot obtain great performance, which results in the further optimization bot-
tleneck of the whole calculation. In future work, the optimization for the implicit time
algorithm still needs further exploration and implementation.

Acknowledgment. This work was supported by National Key Research and Development
Program under grant# 2016YFB0200703 and National Numerical Windtunnel Project.

References

1. Yuntao, W.: Development and application of TRIP2.0_SOLVER. Acta Aerodynamica Sinica
106(4), 2205 (2007)

2. Haohuan, F.: The Sunway Taihu Light supercomputer: system and applications. Sci. China
(Inf. Sci.) 59(07), 113–128 (2016). https://doi.org/10.1007/s11432-016-5588-7

3. Jian, Z., Chunbao, Z.: Extreme-scale phase field simulations of coarsening dynamics on
the Sunway TaihuLight supercomputer. In: International Conference for High Performance
Computing, Networking, Storage and Analysis, Salt Lake City. IEEE Press (2016)

4. Chao, Y., Wei, X.: 10M-core scalable fully-implicit solver for nonhydrostatic atmospheric
dynamics. In: International Conference for High Performance Computing, Networking,
Storage and Analysis, Salt Lake City. IEEE Press (2016)

5. Fu, H., He, C.: 18.9-Pflops nonlinear earthquake simulation on Sunway TaihuLight: enabling
depiction of 18-hz and 8-meter scenarios. In: International Conference for High Performance
Computing, Networking, Storage and Analysis, Denver. IEEE Press (2017)

6. Ahusborde, E., Glockner, S.: A 2D block-structured mesh partitioner for accurate flow
simulations on non-rectangular geometries. Comput. Fluids 43(1), 2–13 (2011)

7. Fang, L., Zhihui, L.: Research on adaptation ofCFD software based onmany-core architecture
of 100P domestic supercomputing system. Comput. Sci. 47(01), 24–30 (2020)

8. Delong,M., Minhua,W.: Porting and optimizing OpenFOAMon Sunway TaihuLight system.
Comput. Sci. 10(44), 64–70 (2017)

9. Chao,Y.: TheComputational FluidDynamicsMethod and itsApplication.BeihangUniversity
Press, Beijing (2006). (in Chinese)

10. Juan, Z., Linsheng, L.: Automatic partition algorithm based on multi-region and multi-code
problem. Comput. Eng. 36(9), 73–75 (2010)

https://doi.org/10.1007/s11432-016-5588-7

New Trends of Technologies
and Applications

Liquid State Machine Applications
Mapping for NoC-Based Neuromorphic

Platforms

Shiming Li, Lei Wang(B), Shiying Wang, and Weixia Xu

College of Computer Science and Technology,
National University of Defense Technology, Changsha, China

{lishiming15,leiwang,wangshiying18,xuweixia}@nudt.edu.cn

Abstract. Liquid State Machine (LSM) is one of spiking neural network
(SNN) containing recurrent connections in the reservoir. Nowadays, LSM
is widely deployed on a variety of neuromorphic platforms to deal with
vision and audio tasks. These platforms adopt Network-on-Chips (NoC)
architecture for multi-cores interconnection. However, a large commu-
nication volume stemming from the reservoir of LSM has a significant
effect on the performance of the platform. In this paper, we propose
an LSM mapping method by using the toolchain - SNEAP for mapping
LSM to neuromorphic platforms with multi-cores, which aims to reduce
the energy and latency brought by spike communication on the inter-
connection. The method includes two key steps: partitioning the LSM
to reduce the spikes communicated between partitions, and mapping the
partitions of LSM to the NoC to reduce average hop of spikes under
the constraint of hardware resources. This method is also effective for
large-scale of LSM. The experimental results show that our method can
achieve 1.5× reduction in end-to-end execution time, and reduce average
energy consumption by 57% on 8 × 8 2D-mesh NoC and average spike
latency by 23% on 4 × 4 2D-mesh NoC, compared to SpiNeMap.

Keywords: Mapping · Liquid State Machine · Network-on-Chip

1 Introduction

The deepening study of the neural system has driven the development of the third
generation artificial neural network (ANN) - spiking neural network (SNN) [20].
Compared with the conventional ANNs, SNNs have more biological characteris-
tics and hardware efficiency [6]. The liquid state machine (LSM) is a recurrent
SNN that was proposed to mimic actual neural activations in the brain [21].
Like other SNNs, spikes are used to transmit signals between neurons of LSM.
The neuron accumulates membrane potential after receiving a stimulus. If its
membrane potential exceeds the firing threshold, the neuron generates a spike.
LSM consist of a reservoir of neurons (“Liquid”) receiving input spike trains and
a group of readout neurons receiving signals from the reservoir. Neurons in the
c© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 277–289, 2020.
https://doi.org/10.1007/978-981-15-8135-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_20&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_20

278 S. Li et al.

reservoir are randomly connected by synapses. The reservoir is a recurrent struc-
ture. Training LSM is simpler than another feedforward neural network because
it only needs to train the readout layer. Because of this, LSM is currently widely
deployed on a variety of neuromorphic platforms such as TrueNorth [1], Loihi
[5], and so on.

In order to implement more neurons, most of the current neuromorphic plat-
forms are multi-core system-on-chip. Each core can accommodate multiple neu-
rons, and the cores use Network-on-Chip (NoC) to communicate data. Due to the
connection in the reservoir of LSM is chaotic and sparse, LSM cannot perform
efficiently with low latency and power consumption on neuromorphic platforms.
The basic solution is dividing a reservoir of LSM into many partitions, and then
place the partitions on each core of neuromorphic platform. During execution
of basic solution, a series of hardware limitations brought by the neuromorphic
platform need to be considered, such as limited cores in the neuromorphic plat-
form, and limited capacity of each core.

Currently, there are fewer mapping methods to efficiently deploy SNNs or
LSMs on NoC-based neuromorphic platforms, such as SCO [18], SpiNeMap [3],
PACMAN [8], NEUTRAMS [11], etc. But these mapping methods still have some
problems. SCO, PACMAN, and NEUTRAMS can only map fixed-structure and
feedforward SNNs, and do not support mapping LSM networks with recurrent
connections. At the same time, these three methods are not efficient in mapping.
The mapping goal of SCO is to maximize the utilization of the core, so the
sequential mapping method is adopted, but this method does not optimize the
spikes communication between cores, resulting in increased spike latency and
power consumption. PACMAN divided the SNN to reduce the number of spikes
between the cores, but after the division, it was directly mapped to the NoC, so
that there was a risk of contention on the NoC. Although SpiNeMap supports
LSM mapping and uses a two-stage optimization method to reduce the power
consumption and latency of the neuromorphic platform, the entire process will
take a huge amount of time for large-scale SNNs and only find out a local optimal
solution.

There are two challenges to the mapping LSM on the neuromorphic platform.
First, most methods do not support LSM because of its recurrent connections. At
the same time, for large-scale LSMs, the partitioning process consumes a lot of
time and hard to find the best solution with the minimized spike communications
among the cores of the neuromorphic platform; Second, the large-scale NoC will
increase the search space and reduce the efficiency of the search algorithm during
the mapping process. It takes a lot of time to find out the best mapping scheme
that minimizes the spike latency and energy of the NoC-based neuromorphic
platform.

In this paper, we propose a method for mapping a large-scale LSM onto an
NoC-based neuromorphic platform by using the mapping toolchain - SNEAP
[19]. The LSM mapping method includes three steps: profiling, partitioning,
mapping. First, the profiling step will convert the reservoir of LSM with recur-
rent connections and spike trace into a traffic graph; then, the partitioning step

LSM Mapping 279

will use multi-level graph partitioning algorithm to partition the traffic graph
into multiple partitions and aim to minimize spike communications among the
partitions; finally, in the mapping step,the simulated annealing (SA) algorithm
is used to find out a mapping scheme that places partitions on the cores of
NoC-based neuromorphic platform to optimize latency and energy.

Our contributions of this paper as follows:

– We propose a LSM mapping method to map LSM to the underlying NoC-
based neuromorphic platform.

– LSM mapping method can effectively reduce latency and energy on the plat-
form, when we deploy the LSM on the NoC-based neuromorphic platform.

– We evaluate the proposed approach from a complex (i.e., latency, energy and
end-to-end execution time) viewpoint and support our claims by experimental
data obtained from a cycle accurate NoC simulator.

Using different size of LSMs, we show that our method can achieve 1.5×
reduction in end-to-end execution time, and reduce average energy consumption
by 57% on 8× 8 2D-mesh NoC and average spike latency by 23% on 4× 4 2D-
mesh NoC, compared to SpiNeMap.

2 Background and Related Works

2.1 Liquid State Machine (LSM)

Fig. 1. The topology of LSM.

The topology of the LSM consists of three main components as shown in Fig. 1,
which are input layer, reservoir and readout layer respectively. The reservoir in
the middle is comprised of a set of neurons connected by fixed synapses generated
randomly [24]. As multiple recurrent loops are created by these synaptic connec-
tions, the reservoir features transient behavior that memorizes information of its
inputs in the past. Reservoir neurons and readout neurons are connected by plas-
tic synapses whose weights are to be adjusted according to the adopted learning

280 S. Li et al.

rule. Through its plastic synapses, each readout neuron receives a weighted sum
of input signals from the reservoir neurons.

From Fig. 1, it is clear that the input signals are processed in two steps. The
first step involves input neurons, reservoir neurons, and synapses connecting
these neurons. Since the number of neurons in the reservoir is generally larger
than that of the neurons providing inputs, in this step, the reservoir maps each
input signal to its liquid response, a higher dimensional transient state. In the
second step, the liquid response is projected to each readout neurons through
plastic synapses

Io(t) =
∑

i

wi,o · ri(t) (1)

where t is time, Io(t) is the input to a readout neuron, ri(t) is the output of the
ith reservoir neuron, and wi,o is the weight of the synapse connecting the ith
reservoir neuron and the readout neuron. Over the duration of [0, T] of an input
temporal signal, the net integrated input to the readout neuron is

∫ T

0

Io(t) =
∑

i

wi,o ·
∫ T

0

ri(t) (2)

2.2 SNN Mapping Methods

Since the architecture of each neuromorphic platform is different, a dedicated
toolchain is required to enable SNN to efficiently simulate on the neuromor-
phic platform. SpiNNaker [7] is a 2D toroidal mesh structure. PACMAN [8] was
proposed to address SNN mapping on SpiNNaker. PACMAN uses a simulated
annealing algorithm to search out the best partitioning scheme. But PACMAN
only partitions the SNN model, which leads to spike congestion on the NoC.
TrueNorth [1] also has their own mapping tool - corlet [2]. It uses the layout
and routing optimization scheme in the traditional VLSI field for the mapping
of logical SNNs to physical cores. SpiNemap [3] is proposed for the 2D-mesh
architecture of Dynapse [23]. It divides the mapping process into two phases:
partitioning and placement. They design a greedy Kernighan-Lin algorithm used
in the partitioning phase and use the particle swarm optimization algorithm in
the placement phase. For some neuromorphic platforms designed by new devices,
[18,25] were proposed to enable SNN to effectively run on these neuromorphic
platforms.

3 LSM Mapping Method

3.1 Overview

We propose a LSM mapping method to efficiently deploy the LSM into the
NoC-based neuromorphic platform. This work uses the SNN mapping toolchain -
SNEAP that we proposed earlier [19]. The SNEAP only can process the feedfor-
ward SNNs, not LSMs with recurrent connections. The LSM mapping method

LSM Mapping 281

improves SNEAP, which is extended to support SNNs with recurrent connec-
tions. As shown in Fig. 2, LSM mapping method includes three steps: 1. Profil-
ing: The SNN software simulator will randomly generate the topology of reservoir
and than train the LSM. The topology of reservoir and spike traces are extracted
to form an undirected traffic graph; 2. Partitioning: Using a multi-level parti-
tioning algorithm divides the graph into multiple partitions. It can minimize the
number of spikes between partitions within the limited capability and resource
of target hardware; 3.Mapping: The SA algorithm was used to search for a map-
ping scheme to map these partitions to the NoC-based neuromorphic platform,
which minimizes the average-hop of all spikes on NoC of target hardware.

Fig. 2. Overview of LSM mapping method.

3.2 Profiling

Fig. 3. Workflow of profiling step, spike trace file format: (Source neuron ID −> Des-
tination neuron ID: The number of spikes).

In this step, we use the SNN software simulator (Carlsim [4], Brian2 [22] and
etc.) to accurately simulate the behavior of the LSM. Most of SNN software
simulators provide programing interfaces to configure LSM information. We use
these interfaces to deploy the LSM, which provides it with some attribute infor-
mation of the LSM, such as the number of neurons, neuron dynamic model, and
network topology.

282 S. Li et al.

After the deployment, we extract the topology of the reservoir to form a
graph, treating neurons as nodes and synapses as edges. Because there is a
recurrent connection in the reservoir, the extracted graph is a directed graph,
that is, bidirectional edges will occur between two neurons, but the connection
between the neurons is unidirectional in the feedforward neural network. When
the LSM simulation finished, the simulator will generate spike behavior files.
These files contain all spike traces during the simulation. Each spike trace con-
tains the ID of the source and destination neurons and firing time. The weight
of each edge in the directed graph is the number of spikes communicated on
the edge. Finally, the weight of the bidirectional edge in the directed graph is
combined to generate an undirected traffic graph. The whole workflow is shown
in Fig. 3.

SNEAP use Carlsim to construct the traffic graph of SNNs and spike trace
file. In this paper, we use Brian2 to extract the topology of reservoir and spike
behavior. When the simulation is finished, the traffic graph and spike trace files
are generated by analyzing the files generated by Brian2. Then we use the traffic
graph and spike trace files to partition and map the reservoir of LSM onto the
NoC-based neuromorphic platform.

3.3 Partitioning

In this step, we use a multi-level graph partitioning strategy [13] to build a
partitioning algorithm. This algorithm can quickly partition the traffic graph of
the LSM and optimize the number of spikes between partitions.

The partitioning problem of LSM is a classic graph partitioning problem. Pre-
vious work used classic algorithms to solve this problem, such as the Kernighan-
Lin (KL) [15] algorithm, particle swarm optimization (PSO) [14] algorithm, etc.
However, the time required for these algorithms increases significantly as the
scale of the graph increases. The quality of the solutions found by these algo-
rithms is lower than our proposed partitioning algorithm.

Our proposed algorithm consists of three steps:Coarsening, Initial partition-
ing, Uncoarsening.

Coarsening consists of multi-level operations. The initial LSM traffic graph is
folded and compressed level by level. The folding process is to randomly select a
node in the current graph, and then combine the node corresponding to the edge
with the maximum weight among overall valid adjacent edges into a large node.
After multi-level folding operations, the original graph is folded into a coarse
graph.

Initial partitioning divides the coarse graph obtained in the previous step into
k partitions, and the sum of the weights of the nodes in each partition cannot
exceed the capacity of the neuromorphic core. A node is randomly selected from
the coarse graph to join the partition, and then selected the node corresponding
to the edge with the maximum weight among overall valid adjacent edges of the
previous selected node is added to the partition. The set of adjacent edges of this
partition is updated. This process is repeated until the weight of the nodes in

LSM Mapping 283

the partition reaches the upper limit capacity of the neuromorphic core. Finally,
the coarse graph is divided into k partitions.

Uncoarsening is similar to the coarsening step, and it is also divided into
multi-level operations. But the uncoarsing step is to expand the nodes level by
level. The partitioned coarse graph will expand up to the initial graph. In each
level of the expansion process, it is necessary to adjust the nodes in each partition
to optimize the communication between the partitions. After such uncoarsening
level by level, the optimized k partitions are finally obtained.

3.4 Mapping

After the LSM is divided into multiple partitions, the position of these partitions
on the NoC-based neuromorphic platform also affects the energy consumption
and latency of the platform. We use the SA algorithm to quickly find out a map-
ping scheme with lower energy consumption and lower latency. SA can converge
faster and effectively avoid stuck at local optima compare to other heuristic
search algorithms, such as PSO, Tabu, and etc.

The objective function of the search can be latency or energy consumption.
However, evaluating these metrics usually requires the use of hardware or a
hardware simulator, which will cause a lot of time overhead and make the entire
search process unacceptable. Lee [17] states that the average hop count can be
used for measuring the latency and energy consumption of NoC. Compared with
the above two metrics, the average hop count is easier to obtain. For the XY
routing algorithm, the number of hops between cores on NoC is the Manhat-
tan distance, so average hop can be directly calculated. This method can avoid
using hardware or hardware simulator, thereby reducing the corresponding time
overhead.

The architecture of NoC-based neuromorphic platform can be considered as
a graph A(C, I), where C is the set of neuromorphic cores and I is the set of
connections among these cores for a given interconnect topology. Mapping M
can be transformed into M : P (V,E) → A(C, I). Mapping M is represented by
a matrix mij ∈ {0, 1}|C|×|V |, where mij is defined as:

mij =
{

1 if partition ci ∈ C is mapped to core vj ∈ V
0 otherwise (3)

The optimization objective of SA is to find out the mapping scheme with the
minimum average hop count AH, i.e.

Mmin = argmin{AH(Mi)|i ∈ 1, 2, ..., N} (4)

Where N is the number of evaluated mapping schemes.
The average hop count AH can be written as:

AH =

∑
i

∑
j �=i Vijd(i, j)∑
i

∑
j �=i Vij

(5)

284 S. Li et al.

where d(i, j) is distance between router i and router j and Vij is the number of
spikes communicated between router i and router j.

For XY routing algorithm, the Manhattan distance dMH is used to compute
d(i, j), i.e.,

dMH(i, j) = |ix − jx| + |iy − jy| (6)

Algorithm 1. SA-based mapping optimization algorithm
1: Tinitial//initiate temperature
2: Tmin//minimum value of temperature
3: k//times of iteration cycle
4: θ = 0.97//the cooling rate of the temperature
5: initial.mapping = RandomMappingScheme()
6: better.mapping = initial.mapping
7: parent.mapping = initial.mapping
8: parent.averagehop = AH(parent.mapping)
9: while T > Tmin do

10: for 0 ≤ i < k do
11: child.mapping = Disturb(parent.mapping) //exchange or move the partitions
12: child.averagehop = AH(child.mapping)
13: if child.averagehop < parent.averagehop then
14: parent.mapping = child.mapping
15: if child.averagehop < better.averagehop then
16: better.mapping = child.mapping
17: end if
18: else
19: p = exp(parent.averagehop - child.averagehop/T)
20: r = random(0,1)
21: if r < p then
22: parent.mapping = child.mapping
23: end if
24: end if
25: end for
26: T = θ × Tinitial

27: end while

4 Experiment Setup

4.1 Experiment Platform

We build an experiment platform to evaluate the performance of the proposed
LSM mapping approach. The experimental platform was constructed following
two simulators.

Two simulators are SNN software simulator – Brian2 [22] and hardware sim-
ulator – extended Booksim2 [12]. Brian2 is a software SNN simulator that can be

LSM Mapping 285

used to train and test SNN networks. The behavior of spike can be analyzed from
the log file of Brian. Extended Booksim2 is a trace-driven and cycle-accurate
NoC simulator. We extend it to support the NoC structure of the neuromorphic
platform and to communicate with spikes rather than data packets. Extended
Booksim2 is used to simulate the execution of SNN on real NoC-based hardware,
so as to evaluate key performance statistics of NoC, such as average hop, latency,
and power consumption.

Our experiment uses three size of 2D-mesh NoC (4 × 4 NoC, 8 × 8 NoC and
16 × 16 NoC), and neuromorphic core adopts crossbar structure.

4.2 LSM Application

In order to evaluate the effectiveness of LSM mapping method by using SNEAP,
we use 3 realistic LSM applications, which are MNIST [16], NMNIST [9], and
FSDD [10]. MNIST is grayscale handwritten number images dataset. NMNIST is
the dynamic-vision-sensor (DVS) version of MNIST dataset. Free Spoken Digit
Dataset (FSDD) is a free open speech dataset consisting of recordings of spoken
digits in wav files at 8 kHz. We construct 3 size of LSM for every application, as
shown in Table 1.

Table 1. LSM applications

LSM’s name The number of neurons The number of spikes

NMNIST-400 [9] 400 4,738,428

NMNIST-800 [9] 800 17,814,687

NMNIST-1000 [9] 1,000 21,466,904

MNIST-400 [16] 400 2,059,330

MNIST-800 [16] 800 6,290,754

MNIST-1000 [16] 1,000 26,533,630

FSDD-400 [10] 400 5,083,309

FSDD-800 [10] 800 15,078,523

FSDD-1000 [10] 1,000 61,854,887

5 Results and Discussion

In this section, we compare the proposed method with some state-of-the-art
methods proposed by SpiNeMap and SCO. We mainly conducted experiments on
the scalability and performance of the proposed method. The proposed method
is compared with some state-of-the-art methods proposed by SpiNeMap and
SCO on a set of LSM applications. SpiNeMap uses SpiNeCluster to partition
SNNs into clusters to minimize the total number of spikes among the clus-
ters and SpiNePlacer to optimize the placement of clusters to crossbars of the

286 S. Li et al.

neuromorphic hardware to minimize energy consumption and latency. SCO uses
its framework to balance the utilization of crossbars in the hardware. We now
describe these results in detail.

5.1 Scalability

To evaluate the scalability of the proposed method, we performed several exper-
iments with LSM sizes ranging from 400 to 1000 neurons. In Fig. 4, we compare
the global traffic (the number of spikes among partitions) and the execution time
of partitioning step under different methods normalized to original(do nothing
with original LSM) when the LSM size scales up for different applications. To
avoid the impact of NoC size, we use a 4 × 4 2D-mesh NoC in these experiments.
For example, as shown in Fig. 4(a), when the LSM size scales up for NMNIST,
the execution time of the proposed method only increases slightly, but SpiNeMap
increases exponentially. The cause is that the proposed method can quickly com-
press a graph of large size LSM to reduce the execution time of the partitioning
step. The proposed method has 3% fewer average the number of spikes among
partitions than SpiNeMap. This result is similar to the improvements obtained
for other applications.

Fig. 4. Global traffic and execution time of partitioning step for increasing LSM sizes.

5.2 Performance

Latency. Figure 5 gives shows the latency on 2D-mesh NoC under different
method normalized to SCO. The statistic shows that compared with SpiNeMap
and SCO, the proposed method has a great reduction in all of LSM applications.
The proposed method results in average 23% lower than the SpiNeMap and 74%
lower than SCO on 4× 4 2D-mesh NoC. These improvements are because of the
optimization objective of our method. Our method adopts objective to minimize
the total number of spikes among the partitions and average hop.

LSM Mapping 287

Fig. 5. Comparison of latency for increasing NoC sizes.

Energy. Figure 6 gives the energy of the NoCs under different methods normal-
ized to SCO. Compared with other methods, Our method has the lowest energy
consumption. For example, as shown in Fig. 6(b), the proposed results in aver-
age 57% lower than the SpiNeMap and 66% lower than SCO on 8× 8 2D-mesh
NoC. The improvement is due to the multi-level partitioning algorithm, which
outperforms the greedy KL algorithm proposed by SpiNeMap. Fewer spikes com-
municated among the partitions, lower dynamic energy consumption.

Fig. 6. Comparison of energy for increasing NoC sizes.

End-to-End Time. In Fig. 7, we illustrate the end-to-end execution time under
different methods. Our method achieves 1.5× lower average execution time than
SpiNeMap. The causes behind this are that during the partitioning phase our
method has a reduced amount of execution time compared to SpiNeMap and
that in mapping phase SA converges faster than PSO.

288 S. Li et al.

Fig. 7. End-to-end execution time.

6 Conclusion

This paper presents a fast and efficient LSM mapping method to map the large-
scale LSM onto the NoC-based neuromorphic platform. The entire mapping
method in three phases: Profiling, Partitioning, Mapping. Firstly, we use the
SNN software simulator to extract the essential information of LSM such as
topology and the behavior of spike. By using this information, we construct
the undirected traffic graph and generate spike trace files. Then, the multi-
level graph partitioning method is adopted to quickly divided the traffic graph
into multiple LSM partitions. Our objective is to minimize the number of spikes
between partitions. Finally, we use the SA algorithm to map optimized SNN par-
titions on the physical processing unit in hardware. Combining the optimization
in the partitioning phase, mapping algorithm optimizes the energy consumption
and spike latency on the NoC-based neuromorphic platform. Using different size
of LSMs, we show that our method can achieve 1.5× reduction in end-to-end
execution time, and reduce average energy consumption by 57% on 8 × 8 2D-
mesh NoC and average spike latency by 23% on 4 × 4 2D-mesh NoC, compared
to SpiNeMap.

References

1. Akopyan, F., et al.: Truenorth: design and tool flow of a 65 mw 1 million neu-
ron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 34(10), 1537–1557 (2015)

2. Amir, A., et al.: Cognitive computing programming paradigm: a corelet language
for composing networks of neurosynaptic cores. In: The 2013 International Joint
Conference on Neural Networks (IJCNN), pp. 1–10. IEEE (2013)

3. Balaji, A., et al.: Mapping spiking neural networks to neuromorphic hardware.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(1), 76–86 (2019)

4. Chou, T.S., et al.: CARLsim 4: an open source library for large scale, biologically
detailed spiking neural network simulation using heterogeneous clusters. In: 2018
International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

5. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning.
IEEE Micro 38(1), 82–99 (2018)

LSM Mapping 289

6. Diehl, P.U., Zarrella, G., Cassidy, A., Pedroni, B.U., Neftci, E.: Conversion of artifi-
cial recurrent neural networks to spiking neural networks for low-power neuromor-
phic hardware. In: 2016 IEEE International Conference on Rebooting Computing
(ICRC), pp. 1–8. IEEE (2016)

7. Furber, S.B., et al.: Overview of the spinnaker system architecture. IEEE Trans.
Comput. 62(12), 2454–2467 (2012)

8. Galluppi, F., Davies, S., Rast, A., Sharp, T., Plana, L.A., Furber, S.: A hierachical
configuration system for a massively parallel neural hardware platform. In: Pro-
ceedings of the 9th Conference on Computing Frontiers, pp. 183–192. ACM (2012)

9. Garrick, O., Ajinkya, J., Cohen, G.K., Nitish, T.: Converting static image datasets
to spiking neuromorphic datasets using saccades. Front. Neurosci. 9, 437 (2015)

10. Jackson, Z.: Free spoken digit dataset. https://github.com/Jakobovski/free-
spoken-digit-dataset. Accessed 4 Dec 2019

11. Ji, Y., et al.: Neutrams: neural network transformation and co-design under neu-
romorphic hardware constraints. In: The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, p. 21. IEEE Press (2016)

12. Jiang, N., et al.: A detailed and flexible cycle-accurate network-on-chip simulator.
In: 2013 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 86–96. IEEE (2013)

13. Karypis, G., Kumar, V.: Multilevelk-way partitioning scheme for irregular graphs.
J. Parallel Distrib. Comput. 48(1), 96–129 (1998)

14. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning,
pp. 760–766 (2010)

15. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49(2), 291–307 (1970)

16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

17. Lee, H.G., Chang, N., Ogras, U.Y., Marculescu, R.: On-chip communication archi-
tecture exploration: a quantitative evaluation of point-to-point, bus, and network-
on-chip approaches. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 12(3),
23 (2007)

18. Lee, M.K.F., et al.: A system-level simulator for RRAM-based neuromorphic com-
puting chips. ACM Trans. Archit. Code Optim. (TACO) 15(4), 64 (2019)

19. Li, S., et al.: Sneap: a fast and efficient toolchain for mapping large-scale spiking
neural network onto NOC-based neuromorphic platform. In: Proceedings of the
2020 on Great Lakes Symposium on VLSI (2020, to be published)

20. Maass, W.: Networks of spiking neurons: the third generation of neural network
models. Neural Netw. 10(9), 1659–1671 (1997)

21. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Comput. 14(11), 2531–2560 (2002)

22. Marcel, S., Romain, B., FM, G.D.: Brian 2, an intuitive and efficient neural simu-
lator. eLife 8, e47314 (2019)

23. Moradi, S., Qiao, N., Stefanini, F., Indiveri, G.: A scalable multicore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchronous
processors (DYNAPs). IEEE Trans. Biomed. Circuits Syst. 12(1), 106–122 (2017)

24. Natschläger, T., Maass, W., Markram, H.: The “liquid computer”: a novel strat-
egy for real-time computing on time series. Special Issue Found. Inf. Process.
TELEMATIK 8(ARTICLE), 39–43 (2002)

25. Xia, Q., Yang, J.J.: Memristive crossbar arrays for brain-inspired computing. Nat.
Mater. 18(4), 309–323 (2019)

https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset

Compiler Optimizing for Power Efficiency
of On-Chip Memory

Wei Wu(B), Qi Zhu, Fei Wang, Rong-Fen Lin, and Feng-Bin Qi

Jiangnan Institute of Computing Technology, Wuxi 214083, China
ww7tc163@163.com

Abstract. As we all known, power constraint is the biggest challenge to build
an exascale computing system. Among all parts of high performance processor,
on-chip memory, including register, cache and so on, is accessed frequently and
incurs high power consumption during program executing. Due to trivial overhead
and good portability, compiling is a promising way to reduce power consumption
and thermal dissipation of processor. In this paper, we focus on compiling to save
power of on-chip memory access. A compiler optimizing on bypassing registers
is proposed to reduce the number of register access in order to lower the power of
the register files. Besides that, to save the power consumption of cache, another
compiler optimizing is proposed to elegantly adjust loop transformation to make
a better use of L0 cache. Finally, in order to evaluate the effectiveness of the
above techniques, we build a systematic evaluation platform, named as GEAT,
which consists of compiler, performance simulator and power simulator. Experi-
ment results show that our proposed techniques can effectively reduce the power
consumption of on-chip memory with trivial overhead of performance.

Keywords: Compiler optimizing · Low power · On-chip memory · Exascale
computing system

1 Introduction

Many countries and organizations, includingU.S., Japan, E.U. and China, have proposed
their developing maps of Exascale Computing. Comparing with the current supercom-
puters, there are stricter limitations on power efficiency, performance, programmability,
reliability for the future exascale computers. Among these challenges, as we all know,
power efficiency is the biggest one. For example, DoE of U.S. proposed that the per-
formance to power ratio of an exascale computer should be at least 50GFLOPS/W [1],
while the best system in the current GREEN500 [2], A64FX Prototype, can only achieve
16.8GFLOPS/W.

People have to redesign almost every part of the supercomputer to meet the power
constrain of Exascale Computing. By breaking down the current computer systems, we
can find that processors not only provide high performance, they also consume the most
power of the whole system. What’s more, in the processors, the power consumption of
on-chipmemory access is one of the biggest parts, which in turn affects the power level of

© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 290–303, 2020.
https://doi.org/10.1007/978-981-15-8135-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_21&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_21

Compiler Optimizing for Power Efficiency of On-Chip Memory 291

the whole chip. On the other hand, due to the limited area and frequent access pattern of
the on-chip memory, the power density of which is extreme high, which could incur Heat
Stoke [3] phenomenon and make processor working in the abnormal status. Therefore,
additional power control circuit, more expensive chip package are introduced in the
hardware to prevent processors from being degraded by local high thermal dissipation.

Besides the hardware supports, software efforts are indispensible for improving
power efficiency. In the modern computer system, compiler is the interface between
hardware and software. For a mainstream compiler, execution time, compilation time
and object code size are the three optimizing targets. The focus of a traditional com-
piler is mainly on how to make programs running faster. Nowadays, compilers should
take power into account. There are some questions should be answered elegantly in
the Exascale era. How to schedule instructions to execute programs with less power
consumption? How to support the innovation hardware efforts to save more power?

Inspired by the above questions, we propose compiler optimizing to make programs
more couple with the power-efficient hardware mechanisms in the on-chip memory
system. On one hand, an innovative compiler optimizing on bypassing registers is intro-
duced. After analyzing the lifecycle of the register data, the compiler decides which data
could be forwarded to the certain stage of the pipeline without updating the register files.
By avoiding the abundant access to registers, saving the power consumption of register
files. On the other hand, an innovative compiler optimizing on L0 cache is proposed.
With an elegant control on loop transformation, the frequently-executed instructions are
scheduled to stay in the L0 cache. By reducing the miss rate of L0 cache and the number
of instruction fetching, power is saved. Finally, to evaluate the proposed optimizations,
we build a systematic evaluation platform, which is based on Gcc, Gem5 and Mcpat,
named asGEAT. Gem5 is used to simulate the architecture with the support of bypassing
registers and L0 Cache. Mcpat simulates and evaluates the power consumption. And we
implement the proposed optimizing in the Gcc source code.

The main contributions of this work are listed as follows:

1. An innovative compiler optimizing on bypassing register is proposed. Due to the
bypassing registers and instruction scheduling, avoiding the unnecessary register
access to improve the power efficiency of register files.

2. An innovative compiler optimizing on L0 cache is proposed. A performance-power
tradeoff factor is introduced to build a loop evaluation model. With elegant loop
transformation, we minimize L0 cache miss, and improve power efficiency.

3. A systematic simulator, GEAT, is proposed to evaluate the optimizing. GEAT con-
sists of compiler, performance simulator and power simulator. It provides a practical
basement for the architecture people to evaluate their power efficiency work in the
Exascale era.

The rest of the paper is organized as follows. Section 2 introduces the related works.
Section 3 describes the compiler optimizing on bypassing register. Section 4 shows
the details of the compiler optimizing on L0 cache. GEAT is illustrated in Sect. 5.
Experimental results and analysis are proposed in Sect. 6. Section 7 concludes the paper.

292 W. Wu et al.

2 Related Work

In the 90s, low-power compiling has become an important research filed in the
architecture community. Many inspiring works have been done.

Compiler optimizing is implemented by passes. The mainstream compilers mainly
focus on performance. The hierarchy of optimizing (e.g. -O0/-O1/-O2/-O3/-Ofast) is
also organized concerning with performance. However, the coming of the Exascale era
has upgraded the importance of power in the supercomputer system. More and more
researches discussed how to evaluate the compiler optimizing on the metric of power.
Lima et al. proposed COSPpp [4] to evaluate compiler optimizing on the metric of
performance, power, and object code size, and to enable passes based on the different
optimizing target. A similar method was carried out by Hesham et al. [5] to reorganize
passes with the tradeoff between performance and power.

Reducing or eliminating the power consumption of the redundant units/progresses
by compiling attracts lots of people’s attention. Some research groups focused on the
Power-gatingmethod under the supervision of compiler [6, 7, 14–19]. Based on profiling,
compiler issues customized control instructions to enable or disable certain processor
units to throttling power. Due to the dramatic overhead of communication, Kathy et al.
[8] proposed a code transformation method to lower the system power by minimizing
the communication of inter-chip and intra-chip.

How to improve the power efficiency based on the on-chip memory system is an
interesting research field. On one hand, people have proposed a lot of methods to reduce
program’s demand on register files. José et al. [7] transferred the redundant register
files from the active status into the low-power status to reduced power consumption.
Similarly, Shieh W. Y. et al. [9] throttled the voltage supply of register files with low
utilization. Sanghyun Park implemented the On Demand RF Read [13] in the Intel
XScale simulator to reduce the access number of register files. In this paper, a compiler
optimizing is proposed to eliminate the redundant access to register files. With the help
of bypassing registers, some data is directly forwarded to the certain stage of pipeline
without updating registers.

On the other hand, some efforts have been made on the power efficiency of cache.
It has been shown that reducing the block number of every cache accessing can effec-
tively lower the power consumption of cache system [20–22]. Fang et al. [20] exploited
software semantics in cache design. By detecting the cache-miss in advance, they avoid
abundant associative searches to reduce dynamic power consumption. Jones et al. pro-
posed a method [21] to map the frequent executed instructions to some fixed cache
blocks, thus reducing the cache access power. Additional memory hierarchy can reduce
the access number of low level cache [23–27], thus reducing power. Kin et al. [23]
proposed to reduce L1 cache power consumption by introducing filter cache above L1
cache. Powell et al. predicted cache access pattern to reduce cache access number [24].
Ghosh et al. proposed aWay Guard [25] method to save power. With the help of Bloom
Filter structure [28], cache controller can tell whether the requested data in the certain
cache block or not, thus reducing the power consumption of cache block probing. In
this paper, we proposed a compiler optimizing to elegantly adjust loop transformation
to reduce L0 instruction cache miss rate, further to save power.

Compiler Optimizing for Power Efficiency of On-Chip Memory 293

3 Compiler Optimizing on Bypassing Registers

The group of register files is an important memory hierarchy which is the closest one to
the computing units. Tons of works have been done on how to map data in the registers
to improve program execution performance. However, the influence of register files on
system power consumption and system stability should be paid more attention.

We proposed a compiler optimizing on bypassing registers. Several compiler passes
are used to identify the data which could be bypassed and mapped to the bypassing
registers. With the help of instruction scheduling, more data would be suitable for the
bypassing optimizing, thus avoiding more abundant register updating. As shown in
Fig. 1, the proposed optimizing consists of two stages, register renaming (Sect. 3.1) and
instruction scheduling (Sect. 3.2).

R1-R13 General REGs RA-RB Bypassing REGs

Add R1, R2, R3
Sub R4, R5, R1

Add R6, R7, R8
Add R9, R10, R11
Sub R12, R13, R6

Add R1, R2, R3
Sub R4, R5, R1

Add R6, R7, R8
Add R9, R10, R11
Sub R12, R13, R6

Add RA, R2, R3
Sub R4, R5, RA

Add R6, R7, R8
Add R9, R10, R11
Sub R12, R13, R6

Idan fy
Bypassing

Data

Map
Bypassing

Data
Inst.

Scheduling

Add RA, R2, R3
Sub R4, R5, RA

Add RB, R7, R8
Sub R12, R13, RB
Add R9, R10, R11

Stage 1: Register Renaming Stage2: Instruc on Scheduling

Fig. 1. Progress of compiler optimizing on bypassing registers.

3.1 Register Renaming Based on Bypassing

The purpose of register renaming is to remap data from general register to bypassing
register, reducing the access number of registers files with the support of hardware
bypassing mechanism.

The first step of renaming is to identify the data which could be mapped in the
bypassing register. Lifecycle analysis and dependence analysis are performed at this
step. Lifecycle analysis marks the registers in which data will not be used anymore.
Dependence analysis can find out the instruction pair satisfying the data dependent
constrains, which are listed as follows.

1. There is RAW (Read-After-Write) dependence between INSN_A and INSN_B. For
example, the data in REG_A is updated by INSN_A firstly, and then is read by
INSN_B.

2. The distance between INSN_A and INSN_B is less than a threshold DIS_N.
3. The data in REG_A will not be used anymore after the accessing of INSN_A and

INSN_B.

294 W. Wu et al.

In this paper, REG_A represents a general register, INSN_A and INSN_B represent
instructions, andDIS_N is a configurable threshold describing the distance between two
instructions.

First, lifecycle analysis is taken by a compiler pass. If the data in REG_A is not used
anymore, assuming REG_A is in INSN_A, REG_A will be marked as REG_DEAD in
the intermediate representation (IR) of INSN_A. It should be noticed that the interaction
among compiler passes is complicated. The tag, REG_DEAD, may be marked insanely
or be eliminated in the other passes. To ensure the correctness of lifecycle analysis, if
the status of register is modified, the REG_DEAD tag should be updated accordingly.

Then, another compiler pass is introduced to probe the dependence between instruc-
tions related to the data in REG_A. It finds out the instruction pairs, e.g. INSN_A and
INSN_B, which meet constrains listed above. A diagnosis is carried out to see whether
the distance between INSN_A and INSN_B is less than DIS_N. If so, the tag of REG_A
will be transferred from REG_DEAD to REG_BYPASS.

As shown in Fig. 1,Add R1, R2, R3 and Sub R4, R5, R1 are two instructions satisfying
all the constraints. As a result of the lifecycle analysis, R1, marked in red in Fig. 1, will
be tagged as REG_BYPASS in the IR of both instructions.

The second step of renaming is to place data in bypassing registers. Several registers
are reserved as bypassing registers in advance, and they will not be assigned as general
registers, such as RA and RB in Fig. 1. The register tagged as REG_BYPASS will be
assigned a bypass register. For example, R1 is renamed as RA in Fig. 1. The bypassing
registers are assigned in turn. If the lifecycle of one bypassed data is overlapped with
that of another one, renaming will be forbidden to ensure semantics correctness.

3.2 Instruction Scheduling Based on Bypassing

In some cases, because the distance between instructions is longer than DIS_N, data
cannot be transferred to bypassing registers. In this section, we proposed an instruction
scheduling scheme to enlarge the range that bypassing could work.

In the mainstream compiler, instructions scheduling is based on multi-queue and
priority mechanisms. Instructions are maintained in different queues. In each queue,
instructions are ranked according to their priorities. The priority is determined by mul-
tiple factors. Briefly speaking, if an instruction is ready to issue, it will be moved to
the READY queue. And the priority indicates the instruction’s position in the READY
queue. If an instruction is issued, it will be moved from the READY queue to the ISSUE
queue.

In the scheduling scheme, the priority of instruction in the READY queue is dynami-
cally updated according to data dependence between issued instruction and ready instruc-
tion. As shown in Algorithm 1, if an instruction is issued, it will be moved to the ISSUE
queue. A compiler pass is introduced to probe instructions in the READY queue. If there
is RAW dependence between the current probed instruction and one of the last N issued
instruction, the current probed instruction will be assigned the highest priority. If not,
nothing will be done. In Algorithm 1, N presents the range of scheduling. The large N
is, the more bypassing happens, thus the more power is saved.

Compiler Optimizing for Power Efficiency of On-Chip Memory 295

Algorithm 1. Instruction scheduling based on bypassing.
READY_LIST: READY queue
ISSUE_LIST: ISSUE queue
N: Windows size of scheduling
issue_list_tail(x): The xth instruction moved to the ISSUE queue.
is_RAW(x, y): If there is RAW dependence between x and y (x updates data and y read

data), it will return 1. Other wise, 0 will be returned.
update_priority(insn_list, x): Update the priority of instructions in insn_list queue,

and the priority of x is set as the highest one.

1: for insn_ready in READY_LIST
2:for index in (1…N)
3:insn_issue = issue_list_tail(index)
4:if is_RAW(insn_issue, insn_ready)
5:update_priority(READY_LIST, insn_ready)

In Fig. 1, after swapping the last two instructions, data in R6 can be bypassed. So,
R6 is renamed as RB to enable the bypassing mechanism.

4 Compiler Optimizing on L0 Cache

L0 cache is an additional instruction buffer between L1 cache and pipeline. It over-
matches the traditional cache in four aspects. First, L0 cache stores the decoded instruc-
tion. Loading instructions from L0 cache is free of the decoding price. Second, due to the
small memory space, the static power of L0 cache is much lower than that of the others.
Third, because locality of instructions is much better than that of data, the miss rate of
L0 cache could be very small. So the dynamic power of L0 cache is also lower than the
other cache levels. Fourth, when L0 cache is accessed, there is no need to compare the
tags and data in each block.

In this section, a compiler optimizing is described to improve utilization of L0 cache.
Based on the L0 cache structure, a performance-power tradeoff factor is introduced to
parameterize loop transformations, including loop unrolling and loop peeling. Several
modes of loop transformations are performed. A loop evaluation model is built to find
the best mode with a given performance-power tradeoff factor.

The optimizing progress is shown in Fig. 2. Firstly, the performance-power tradeoff
factor is determined. The factor indicates the favor of users, performance first or power
first. Then, loop unrolling and loop peeling are performed based on the loop pattern and

Loop transformation modes

Loop unrolling
only

Loop peering
only

Loop unrolling &
Loop peering

Loop peering &
Loop unrolling

Evaluation
Model

Best loop
transformation

Loop pattern

Performance-
power tradeoff

factor

Fig. 2. Progress of compiler optimizing on L0 cache.

296 W. Wu et al.

the factor. The loop evaluation model probes all loop transformation modes and finds
the best one as output.

4.1 Performance-Power Tradeoff Factor

Traditional loop transformation mainly focuses on performance. Our proposed opti-
mizing introduces the power metric, with a tradeoff between performance and power.
Performance-power tradeoff factor, represented asPERF_POWER_RATE, is determined
by users. It is delivered to compiler as a parameter, and is used to parameterize the loop
transformations. The details of PERF_POWER_RATE are shown as follows.

1. The value of PERF_POWER_RATE is an integer which is no less than 0.
2. If PERF_POWER_RATE equals 0, the compiler optimizing on L0 cache will be

disabled.
3. If PERF_POWER_RATE is larger than 0, the proposed optimizing will be enabled.

The larger PERF_POWER_RATE is, the more performance is preferred in the opti-
mizing. When PERF_POWER_RATE equals 1, power is the only metric considered
in the optimizing.

4. PERF_POWER_RATE affects the number of loop unrolled, the block size of loop
peeled, and how loop evaluation model works.

4.2 Loop Evaluation Model

Loop evaluation model is used to probe all the loop transformation modes and find the
best one. The details of the model are described in the following statements.

For each loop transformationmode, themodel first calculates the performance-power
benefit, which can be expressed in formula (1).

LOOP_OPT_BEN =
∑n

i=1((INSNi >
(
L0Size
INSize ∗ PERF_POW_RATE

)
)?0 : 1)

n
(1)

In formula (1), n represents the number of loops which are transformed, INSNi means
the number of instructions in the ith loop, L0Size indicates the size of L0 cache, and
INSize represents the memory size of each instruction.

Based on formula (1), the model finds out the maximum value of LOOP_OPT_BEN.
And the according mode is the best one. The progress can be expressed in formula (2),
in which m is the number of modes.

max
0≤x≤m

LOOP_OPT_BENx (2)

4.3 Loop Transformations Based on L0 Cache

In this subsection, we describe how loops are transformed based on L0 cache. There are
two kinds of transformation, loop unrolling and loop peeling.

Compiler Optimizing for Power Efficiency of On-Chip Memory 297

Instruction-level parallelism and L0 cache miss rate are both considered in the loop
unrolling. Loop unrolling is a double sword. On one hand, loop unrolling frees instruc-
tions to be executed in the parallel way. On the other hand, too many instructions are
unrolled from loops may exceeds the capacity of L0 cache, incurring high miss rate.
Therefore, which loops are unrolled and how many loops are unrolled should be deter-
mined elaborately. Loop peeling transforms a big loop into several small loops. After
that, there are more candidates could be placed in the limited space L0 cache with lower
miss rate. The details of the proposed loop transformations are shown in Algorithm 2.

Algorithm 2. Loop transformations based on L0 cache
loop: The loop transformation mode to be analyzed.
loop_new: The loop transformation mode being analyzed.
best_loop: The best loop transformation mode.
LOOP_MODE_LIST: The queue of loop transformation modes.
loop_unroll_pass(x): Compiler pass performs loop unrolling.
loop_peel_pass(x): Compiler pass performs loop peeling.
compute_loop_ben(x): Evaluating the loop transformation mode.

1:for mode in LOOP_MODE_LIST
2: loop_new = loop
3: for sub_mode in mode
4: if sub_mode == LOOP_UNROLL
5: loop_new = loop_unroll_pass(loop_new)
6: if sub_mode == LOOP_PEEL
7: loop_new = loop_peel_pass(loop_new)
8:LOOP_OPT_BEN = compute_loop_ben(loop_new)
9: if LOOP_OPT_BEN <MAX_OPT_BEN
10: MAX_OPT_BEN = LOOP_OPT_BEN
11: best_mode = mode
12: best_loop = loop_new
13:loop = best_loop

Concretely, loop_unroll_pass() unrolls the inner most loop. The unroll time is
determined by the loop unroll parameters (MAX_INSNS, MAX_AVE_INSNS and so
on) and the performance-power tradeoff factor. Initially, the loop unroll parame-
ters are set as the power preferred value. If PERF_POW_RATE is larger than 1,
MAX_INSNS and MAX_AVE_INSNS will be multiplied by PERF_POW_RATE respec-
tively. If PERF_POW_RATE equals 0, performance will be the only metric considered
in the unrolling as the traditional way does. Based on the updated parameters, loop
unrolling is performed.

In loop_peel_pass(), we first build a data dependence graph. The graph is probed
to find out the producer-consumer case and the data independent case. Then, based
on the size of L0 cache and PERF_POW_RATE, the best loop body size of peeling is
determined. If PERF_POWER_RATE is no less than 1, the size of loop body will be set
as L0 cache size/instruction size * PERF_POW_RATE. If PERF_POW_RATE equals
0, performance will be the only metric considered in the peeling as the traditional way
does. Finally, based on the updated parameters, loop peeling is performed.

298 W. Wu et al.

5 GEAT—A Systematic Simulator

In this section, we describe the systematic simulatorGEAT, which is not only a platform
to evaluate the above technologies, but also a practical basement for the architecture
people to evaluate their power efficiency work in the future.

Figure 3 illustrates the framework of GEAT, which mainly consists of three parts,
compiler, performance simulator and power simulator. Compiler is used to perform code
transformation. Performance simulator consumes object code and produces performance
data, which includes the basic execution parameters (in XML format). Power simulator
takes the XML file as input, and reports the power consumption of each processor part.

Source
code

Compiler Performance
Simulator Power Simulator

Hardware Informa on

Performance
Output

Power
Output

Object Code Para. In XML

Performance
& Power

Evaluation
Platform

Fig. 3. Framework of GEAT.

Specifically, GEAT is implemented base on Gcc (compiler), Gem5 (performance
simulator) and Mcpat (power simulator). In the source code of Gcc, several passes are
inserted to implement the bypassing register optimizing and the L0 cache optimizing.
Gem5 simulates a protocol processor, named as LPU (Low-Power CPU). The core unit
of LPU is simple. So it is easy to scale the current LPU to a many-core architecture.
Based on the parameters transferred from Gem5, Mcpat estimates the power consumed
during program execution.

The performance & power evaluation platform is composed of the performance
simulator and the power simulator. As shown in Fig. 4, the platform can be logically
divided into three parts, which are performance model, interfaces and power model.

The performancemodel consists of multiple ISAs and a customizedGem5 simulator.
By modifying the existing ALPHA ISA, we build LPU, a protocol ISA. Additional parts
are inserted in the hardware structure to simulator bypassing registers and L0 cache. The
number of bypass registers is set as 4. The capacity of L0 cache is configurable, and
the default setting is 256B. In the power model, we also insert implements of bypassing
registers and L0 cache in the IFU and EXU respectively, to estimate the power consump-
tion of each LPU part. The interfaces can deliver the static architecture parameters, the
dynamic execution information, including memory access time, execution cycles and
system status.

Compiler Optimizing for Power Efficiency of On-Chip Memory 299

Performance Model

ISA LPU ARM X86 ...

Architecture of LPU

...

LPU
Core

LPU
Core

LPU
Core

Cache
L0 L1 ...

Pipeline
...

bypass

Interfaces

Architecurre
Parameters

Memory
Access Time

Co
nf

ig
ur

at
io

n
Pr

og
ra

m

St
at

us

Power Model

Core

IFU

L0
cache

EXU

Bypass RF ALU

Clocking NoC

...

...

... ...

Power

Time

...
Mem BaseNOC MC

Execution Cycles

System Status

MC

...

Wire Logic Array Clock
Network

Device Wire

Fig. 4. Details of the performance & power evaluation platform.

6 Evaluation

In this section, we evaluate the proposed complier optimizing onGEAT. The benchmark
is NPB 3.1.1. And the size of Dataset is set as CLASS S. Both metrics of performance
and power are evaluated.

6.1 Evaluation on Bypassing Register Optimizing

In this subsection, the power consumption of register files is evaluated. 4 bypassing
registers are configured in the test. Figure 5 shows the power reduction of all ten NPB
cases with the compiler optimizing on bypassing registers. The baseline is the power of
the cases without optimizing. In Fig. 5, An represents the window size of scheduling. For
example, A4 means the last 4 issued instructions are probed one by one, to see whether
there are data dependence between them and the current instruction in theREADY queue.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

BT CG DC EP FT IS LU MG SP UA

A1 A2

A4 A6

Po
w

er
 re

du
ct

io
n

Fig. 5. Power reduction of register files.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

BT CG DC EP FT IS LU MG SP UA

A1 A2

A4 A6

Pe
rf.

ov
er

he
ad

Fig. 6. Performance overhead of bypassing
register optimizing.

As shown in Fig. 5, the power reduction of register files is remarkable. The largest
reduction is 45%. There are 4 out of 10 cases save more than 10% power. And in
the cases of BT, CG, IS, LU, MG, SP and UA, when the windows size of scheduling
becomes bigger, more power can be saved. At most 3% power is reduced due to the more
aggressive scheduling.

300 W. Wu et al.

Figure 6 reveals the performance price paid for the power reduction. The baseline is
the same as that in Fig. 5. And An represents the same as that in Fig. 5. It can be seen
that in all of the ten cases, the overhead is trivial, which is no larger than 0.2%. The
evaluation shows that the bypass resister optimizing can effectively improve the power
efficiency of register files.

6.2 Evaluation on L0 Cache Optimizing

First, we show the influence of L0 cache size on power efficiency. Both performance and
power of CG are evaluated in Fig. 7. For power consumption, the value is normalized.
The blue bars represent the case without optimizing, while the red bars represent the
case with optimizing. PERF_POW_RATE is set as 1. L0 cache size increases from 128B
to 1024B. It is known to all that with a larger cache, the miss rate decreases, thus power
consumption is reduced. Comparing the blue bars and the red bars, we can find that, with
optimizing, 42% power is saved in the 128B setting, while 14.5% power is saved in the
1024B setting. Only about 3% power is saved due to the cache size increasing for the
optimizing cases, which means that the proposed optimizing is not sensitive to the cache
size. Smaller L0 cache prevents loops from being unrolled as described in Sect. 4, which
incurs performance overhead. As the green line shows in Fig. 7, the largest overhead is
9% in the 128B setting. When L0 cache becomes larger, the overhead becomes trivial.

0
0.2
0.4
0.6
0.8

1
1.2

128B 256B 512B 1024B

power consumption without opt
power consumption with opt
time ratio

Fig. 7. The influence of L0 cache size.

0%

5%

10%

15%

20%

1 2 4 8
PERF_POW_RATE

power reduction
performance overhead

Fig. 8. The influence of PERF_POW_RATE.

It can be concluded that larger L0 cache brings better power efficiency. However,
considering about the area overhead in the processor, a deliberate size of L0 cache should
be the best choice.

Then, the effect of PERF_POW_RATE is revealed, as shown in Fig. 8. We set the L0
cache size as 256B. The largest performance overhead case,UA, is taken as an example.
And the baseline is when PERF_POW_RATE equals 0, in which case, only the metric
of performance is considered. It can be found that when PERF_POW_RATE equals 1,
the power reduction is about 15%, while the performance overhead is about only 4%.
As PERF_POW_RATE increases, less power is saved and the performance overhead
becomes less too.

Finally, we provide an overall evaluation on L0 cache optimizing. In Fig. 9 and
Fig. 10, L0 cache size is set as 256B and PERF_POW_RATE equals 1. All ten cases of
NPB are evaluated. The baseline is the cases without the proposed optimizing. Figure 9
reports the power reduction and Fig. 10 reveals the performance overhead. As shown

Compiler Optimizing for Power Efficiency of On-Chip Memory 301

in Fig. 10, the largest power reduction is 36% in the CG case, and the average value is
about 18%. In Fig. 10, it shows that the performance overhead is less than 3.9%, with
an average of 1.8%. The evaluation proves that the optimizing is able to save power
consumption with trivial performance overhead.

0.0%

10.0%

20.0%

30.0%

40.0%

BT CG DC EP FT IS LU MG SP UA

Po
w

er
 R

ed
uc

tio
n

Fig. 9. Power reduction of instruction fetch
unit.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

BT CG DC EP FT IS LU MG SP UA

Pe
rf

. O
ve

rh
ea

d

Fig. 10. Performance overhead of L0 cache
optimizing.

7 Conclusion

In this paper, we focus on saving power consumption of the on-chip memory system by
compiling. First, a compiler optimizing on bypassing registers is proposed to reduce the
number of register accessing in order to lower the power of the register files. Besides that,
to save the power consumption of cache system, we propose another compiler optimiz-
ing to elegantly adjust loop transformations to achieve better use of L0 cache. Finally, in
order to evaluate the effectiveness of the above techniques,webuild a power/performance
estimating platform, named as GEAT, which consists of compiler, performance simu-
lator and power simulator. Systematic evaluation reveals that our proposed techniques
can effectively reduce the power consumption of the on-chip memory system with triv-
ial performance overhead. More parts of processors will be investigated for power effi-
ciency in our futurework.Meanwhile,more aggressive compiler optimizing is developed
undergoing.

Acknowledgments. This work is supported by the National Major Research and Development
Program of China No. 2017YFB0202003.

References

1. Hemsoth, N.: Future challenges of large-scale computing. http://www.hpcwire.com/2013/04/
15/future_challenges_of_large-scale_computing. Accessed 02 Mar 2020

2. The Green500 list – November 2019. http://www.green500.org/greenlists. Accessed 02 Mar
2020

3. Hasan, J., Jalote, A., Vijaykumar, T.N., Brodley, C.E.: Heat stroke: power-density-based
denial of service in SMT. In: 11th International Symposium on High-Performance Computer
Architecture, San Francisco, CA, USA, pp. 166–177. IEEE (2005)

http://www.hpcwire.com/2013/04/15/future_challenges_of_large-scale_computing
http://www.green500.org/greenlists

302 W. Wu et al.

4. de Lima, E.D., de Souza Xavier, T.C., da Silva, A.F., Ruiz, L.B.: Compiling for performance
and power efficiency. In: 2013 23rd International Workshop on Power and Timing Modeling,
Optimization and Simulation (PATMOS), Karlsruhe, Germany, pp. 142–149. IEEE (2013)

5. Hassan, H.H., Moussa, A.S., Farag, I.: Performance vs. power and energy consumption:
impact of coding style and compiler. Int. J. Adv. Comput. Sci. Appl. 8(12), 132–142 (2017)

6. You, Y.P., Huang, C.W., Lee, J.K.: Compilation for compact power-gating controls. ACM
Trans. Des. Autom. Electron. Syst. 12(4), 51 (2007)

7. Ayala, J.L., Veidenbaum, A., López-Vallejo, M.: Power-aware compilation for register file
energy reduction. Int. J. Parallel Prog. 31(6), 451–467 (2003)

8. Yelick, K.: Compiling to avoid communication. In: Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques, pp. 157–158. ACM, New
York (2012)

9. Shieh, W.Y., Wang, B.S.: Power-aware register assignment for large register file design. J.
Supercomput. 61(3), 719–742 (2012)

10. Yun, H.S., Kim, J.: Power-aware modulo scheduling for high-performance VLIW processors.
In: Proceedings of the 2001 International Symposium on Low Power Electronics and Design,
Boston, USA, pp. 40–45. IEEE (2011)

11. Huff, R.A.: Lifetime-sensitive modulo scheduling. ACM SIGPLAN Not. 28(6), 258–267
(1993)

12. Eichenberger, A.E., Davidson, E.S.: Stage scheduling: a technique to reduce the regis-
ter requirements of a module schedule. In: Proceedings of the 28th Annual International
Symposium on Microarchitecture, Ann Arbor, USA, pp. 338–349. IEEE (1995)

13. Park, S., Shrivastava, A., Dutt, N., Nicolau, A., Paek, Y., Earlie, E.: Bypass aware instruction
scheduling for register file power reduction. ACM Sigplan Not. 41(7), 173–181 (2006)

14. Dropsho, S., Kursun, V., Albonesi, D.H., Dwarkadas, S., Friedman, E.G.: Managing static
leakage energy in microprocessor functional units. In: 35th Annual IEEE/ACM International
Symposium on Microarchitecture, Istanbul, Turkey, pp. 321–332. IEEE (2002)

15. Yang, H., Govindarajan, R., Gao, G.R., Cai, G., Hu, Z.: Exploiting schedule slacks for
rate-optimal power-minimum software pipelining. In: Proceedings of the 3rd Workshop on
Compilers and Operating Systems for Low Power, Charlottesville, USA, pp. 1–10 (2002)

16. You, Y.-P., Lee, C., Lee, J.K.: Compilers for leakage power reduction. ACM Trans. Des.
Autom. Electron. Syst. 11(1), 147–164 (2006)

17. You, Y.-P., Lee, C., Lee, J.K.: Compiler analysis and supports for leakage power reduction on
microprocessors. In: Pugh, B., Tseng, C.-W. (eds.) LCPC 2002. LNCS, vol. 2481, pp. 45–60.
Springer, Heidelberg (2005). https://doi.org/10.1007/11596110_4

18. Rele, S., Pande, S., Onder, S., Gupta, R.: Optimizing static power dissipation by functional
units in superscalar processors. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 261–
275. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45937-5_19

19. Zhang,W., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., De, V.: Compiler support for reduc-
ing leakage energy consumption. In: 2003Design, Automation andTest in EuropeConference
and Exhibition, Munich, Germany, pp. 1146–1147. IEEE (2003)

20. Fang, Z., et al.: Reducing L1 caches power by exploiting software semantics. In: Proceedings
of the 2012 ACM/IEEE International Symposium on Low Power Electronics and Design,
Redondo Beach, USA, pp. 391–396. ACM (2012)

21. Jones, T.M., Bartolini, S., De Bus, B., Cavazos, J., O’Boyle, M.F.: Instruction cache energy
saving through compiler way-placement. In: Proceedings of the Conference on Design,
Automation and Test in Europe, Munich, Germany, pp. 1196–1201. ACM (2008)

22. Yu, C., Peter Petrov, P.: Aggressive snoop reduction for synchronized producer-consumer
communication in energy-efficient embedded multi-processors. In: Proceedings of the
5th IEEE/ACM International Conference on Hardware/Software Co-design and System
Synthesis, Salzburg, Austria, pp. 245–250. ACM (2007)

https://doi.org/10.1007/11596110_4
https://doi.org/10.1007/3-540-45937-5_19

Compiler Optimizing for Power Efficiency of On-Chip Memory 303

23. Kin, J., Gupta, M., Mangione-Smith, W.H.: The filter cache: an energy efficient memory
structure. In: Proceedings of 30th Annual International Symposium on Microarchitecture,
Research Triangle Park, USA, pp. 184–193. IEEE (1997)

24. Powell, M.D., Agarwal, A., Vijaykumar, T.N., Falsafi, B., Roy, K.: Reducing set-associative
cache energy via way-prediction and selective direct-mapping. In: Proceedings 34th
ACM/IEEE International Symposium on Microarchitecture, Austin, USA, pp. 54–65. IEEE
(2001)

25. Ghosh,M., Ozer, E., Ford, S., Biles, S., Lee, H.H.S.:Way guard: a segmented counting bloom
filter approach to reducing energy for set-associative caches. In: Proceedings of the 2009
ACM/IEEE International Symposium on Low Power Electronics and Design, San Fancisco,
USA, pp. 165–170. ACM (2009)

26. Memik, G., Reinman, G., Mangione-Smith, W.H.: Just say no: benefits of early cache
miss determination. In: The 9th International Symposium on High-Performance Computer
Architecture, Anaheim, USA, pp. 307–316. IEEE (2003)

27. Zhang, M., Chang, X., Zhang, G.: Reducing cache energy consumption by tag encoding in
embedded processors. In: Proceedings of the 2007 International Symposium on Low Power
Electronics and Design, Portland, USA, pp. 367–370. ACM (2007)

28. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area web cache
sharing protocol. IEEE/ACM Trans. Netw. 8(3), 281–293 (2000)

Structural Patch Decomposition Fusion
for Single Image Dehazing

Yin Gao1, Hongyun Li2, Yijing Su1, and Jun Li1(B)

1 Quanzhou Institute of Equipment Manufacturing, CAS, Quanzhou, China
yngaoyin@163.com, junli@fjirsm.ac.cn
2 Quanzhou Institute of Technology, Quanzhou, China

Abstract. In this paper, we present a new image dehazing method via structural
patch decomposition image fusion, which does not rely on the accuracies of global
atmospheric light and transmission. Instead of estimating the exact global atmo-
spheric and the transmission separately as most previous methods, our method
directly constructs initial dehazing images with different exposure through the his-
togram analysis and structural patch decomposition image fusion filter to improve
the visual dehazing effect. Experimental results show that this method outper-
forms state-of-the-art haze removal methods in terms of both efficiency and the
dehazing visual effect.

Keywords: Image dehazing · Structural patch decomposition fusion · Adaptive
boundary constraint · Multi-scale fusion

1 Introduction

In hazy weather, acquired images and videos suffer from loss of contrast and color cast
and limit the visibility of targets in the scene [1]. This lacks in visibility can hinder
the performance of computer vision-based systems such as outdoor surveillance, terrain
analysis, and autonomous driving. Hence, image dehazing is an important topic and is
being actively addressed to improve the safety of human and reduce traffic accidents by
the research community.

Due to limited input information, single image dehazing is an ill-posed problem and
more challenging [2]. Early single dehazingmethods have twomain types: enhancement-
based method [3–6] and prior-based method [7–10] to solve this hazy problem. The
former ones are mainly based on the human visual model [11, 12]. Due to the global con-
volution operation in this model, the dehazing image suffers from some color distortion.
The latter mainly rely on the atmospheric scattering model. Due to huge computational
complexity for the original model, He et al. [7] simplified it and firstly developed the
dark channel prior (DCP) model. A large amount of literature about the DCP model has
discussed image dehazing, which mainly focuses on solving the problems of color infor-
mation, image contrast, the visible and algorithm complexity. These previous methods
concentrated mainly on the use of various methods to optimize the transmission [13–16]
and correct the DCP model [17–19].

© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 304–314, 2020.
https://doi.org/10.1007/978-981-15-8135-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_22&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_22

Structural Patch Decomposition Fusion for Single Image Dehazing 305

Recently, learning-based methods are proposed to address the dehazing problem.
Most of these works use deep networks to optimize the transmission and the atmospheric
light directly [20–25] Zhang et al. [23] proposed a pyramid densely connected transmis-
sion estimation network and a global atmospheric light estimation network respectively
to dehaze. Engin et al. [24] presented a cycle-dehaze for image dehazing problem. More
recently, Wang et al. [25] proposed an atmospheric illumination priori network through
extensive statistical experiments for haze removal. Thesemethods rely on accurate global
atmospheric light and transmission. Moreover, big data sets are required to learn a large
amount of parameter in the model, and the performance of these systems rely heavily
on the quality of the dataset. However, lacking mated image pairs (haze image and the
corresponding haze-free image), most existing methods use synthetic hazy images as
training data which would result in undesired haze artifacts.

To solve these problems, image fusion is introduced to the field of image dehazing
recently, which can improve the visual effects of the dehazing image effectively. Ancuti
et al. [26] designed two input images by a white balance and a contrast-enhancing
procedure and fused these two corresponding maps in a multi-scale fashion for image
dehazing. This method is first introduced to the aspect of image dehazing but suffers
from an unsatisfactory visual sense because of the insufficient fusion objects and the
inaccurate global atmospheric light. Since then, many works have been published to
dehaze. Recently, Gao et al. [27] presented a new image dehazing method by self-
constructing image fusion, which avoids the interference of the global atmospheric light
but increases the time-consuming.

To address these problems,wepropose a structural patch decomposition image fusion
strategy to dehaze. This work mainly addresses the challenging problem of visual effects
in image dehazing. To obtain the effect range of the global atmospheric light, sky regions
of the hazy image are segmented via the histogram analysis of hazy images. To optimize
the transmission optimization, we propose a fast weighted least squares filter. Finally,
to improve the visual effects of the dehazing image, these constructing initial dehazing
images are blended via structural patch decomposition image fusion.

The main contributions of the proposed method can be summarized as follows.
Firstly,we solve the effect range of the global atmospheric light instead of the exact value.
Secondly, a fast weighted least squares filter with an adaptive boundary constraint is
proposed to optimize the transmission for reducing the halo artifacts. Finally, a structural
patch decomposition fusion method is proposed to improve the visual effects of the
dehazing image.

2 Proposed Method

In this section, there are three major components during the dehazing. First, according to
the histogram analysis of hazy images, we can obtain the effect range of the atmospheric
light to construct several different exposure images. Subsequently, to properly optimize
the transmission, the hazy image is processed by a fast weighted least squares filter
with adaptive boundary constraint. Finally, we present a fusion method with structural
patch decomposition to directly blend initial dehazing images with different exposure.
Figure 1 shows the schematic diagram of the proposed dehazing method.

306 Y. Gao et al.

Fig. 1. Schematic diagram of the proposed dehazing method

2.1 Dark Channel Prior

In the field of image dehazing, the dark channel prior usually can be described as
follows [7].

I(x) = J (x)t(x) + A(1 − t(x)), (1)

where I(x) is an observed or received image from a camera. J (x) is an imagewithout fog.
t(x) is the medium transmission describing the portion of the light that is not scattered
and reaches the camera. A represents the global atmospheric light.

In the DCP, the transmission in (1) can be refined with the Guided image filtering.

t(x) = Gf (1 − ω · Imin(x)), (2)

where Imin(x) = minc∈{r,g,b}(miny∈Ω(x) Ic(y)/A). t(x) is the optimization result. Ic(y) is
the intensity of a channel of the RGB image. Gf (·) denotes the Guided image filtering
method. ω is the constant parameter to keep a bit of haze for natural output appearance,
ω ∈ (0, 1]. The final scene radiance is represented by.

J (x) = (I(x) − A)/max(t(x), t0) + A, (3)

where t0 is the lower bound of the transmission t(x).

2.2 Estimation of the Range of Atmospheric Light

To construct several different exposure images, we propose a new atmospheric light
estimationmethod by performing histogram analysis on the observed fog image.We first
perform smoothing processing with Gauss filtering on the histogram of each channel
Ic(x), and then obtain a segmentation threshold by the local minimum method.

⎧
⎨

⎩

fc(x) = G(Ic(x))

ac = argmax
x∈[0,255]

(
x
∣
∣
∣f

′
c (x) = 0, f

′′
c

〉
0
)
, c ∈ {r, g, b} , (4)

Structural Patch Decomposition Fusion for Single Image Dehazing 307

where G(·) is a Gaussian filter. ac represents a threshold for segmenting sky regions in
each channel of a fog image. fc(x) is the filtered result by G(·).

To estimate the range of the global atmospheric light A more effectively, we
reformulated A by.

A = [
min

(
a′
c

)
,max

(
a′
c

)]
, (5)

where a′
c = [min(ac), at,max(ac)]. at is the range of the relatively high proportion

values in the sky regions, which can be obtained via the histogram method. Figure 2
gives an example of the natural scene to show the sky regions’ segmentation results. As
illustrated in Fig. 2(a), (d) and (g) show the input hazy images. Figure 2(b), (e) and (h)
show the segmentation results of these corresponding hazy images. Figure 2(c), (f) and
(i) show our dehazing results.

Fig. 2. The sky region segmentation results in different scenes. (a, d, g) The hazy image. (b, e, h)
the corresponding segmented results. (c, f, i) our dehazing results

2.3 The Transmission Optimization

To optimize the transmission optimization, we propose a fast weighted least squares
filter with an adaptive boundary constraint. According to the radiance cube definition,
we define an adaptive boundary constraint of an arbitrary haze image with underneath
translation.

ti(x) = mini∈[1,...,k]
{

maxc∈[r,g,b](
Ai − Ic(x)

Ai − Cc
0(x)

,
Ai − Ic(x)

Ai − Cc
1(x)

)

}

, (6)

where ti(x) is the initial transmission with the boundary constraint in each global atmo-
spheric light. Cc

0(x) represents the minimum value of color channel pixel, Cc
0(x) =

min
c∈[r,g,b]

(Ic(x)). Cc
1(x) represents the maximum value of color channel pixel, Cc

1(x) =
min

c∈[r,g,b]
(Ic(x)). Ai contains the range of the global atmospheric light by (5).

After the adaptive boundary constraint optimization, the transmission in (6) can be
refined by a fast weighted least squares filter.

t′i(x) = FW (ti(x)), i ∈ [1, . . . , k], (7)

where FW (·) denotes the function of the fast weighted least squares filter [28]. Figure 3
gives an example of transmission optimization. As illustrated in Fig. 3(a) shows the
input hazy image. Figure 3(b) shows the corresponding initial transmission. Figure 3(c)
shows corresponding optimized transmission. Figure 3(d) shows our dehazing results.

308 Y. Gao et al.

Fig. 3. The optimized results of the transmission. (a) The hazy image. (b) The initial transmission.
(c) The optimized transmission. (d) Our dehazing results

2.4 Structural Patch Decomposition Image Fusion

To improve the better visual effects, the new multi-exposure fusion method is employed
to improve the image quality. The fusionmethod typically follows aweighted summation
framework [29].

Jf (x) =
∑K

i=1
Ji(x)Wi(x), (8)

Ji(x) = (I(x) − Ai)/
(
max

(
t′i(x), t̃0

))dt + Ai, i ∈ {1, .., k}, (9)

where Jf (x) is a dehazing image by our method. Wi(x) represents a fusion weight map
by structural patch decomposition. Ji(x) is a dehazing result with different Ai and t′i(x).

For this fusion method, we will describe it in more detail in the following sections.
This new fusion method is constructed by three components: local contrast, structural
weight and color information.

Jf (x) = Ĉ · Ŝ + L̂, (10)

where Ĉ is the local contrast of all source image patches. Ŝ represents the structures of
all source image patches. L̂ is the color information of all source image patches.

Usually, the higher the contrast, the better the visibility. Considering that all input
source image patches as realistic capturing of the scene, the patch that has the highest
contrast among themwould correspond to the best visibility. Therefore, the local contrast
map can be calculated as follows.

Ĉ = max1≤i≤k Ci(x), (11)

Structural Patch Decomposition Fusion for Single Image Dehazing 309

where Ci(x) = ∥
∥Ji(x) − μJi(x)

∥
∥, μJi(x) is the mean value of the patch. ‖·‖ denotes the l2

norm of a vector.
The desired structure of the fused image patch is expected to best represent the

structures of all source image patches. A simple implementation of this relationship is
given by.

Ŝ = S̄
∥
∥S̄

∥
∥
, S̄ =

∑K
i=1 f (vi) · si
∑K

i=1 f (vi)
(12)

where f (vi) denotes a weighting function that determines the contribution of each source
image patch in the structure of the fused image patch, f (vi) = ∥

∥vpi
∥
∥, vi = Ji(x)−μJi(x),

p is an exponent parameter. si = vi
/
‖vi‖.

Concerning the color information of all source image patches, we take a similar
function.

L̂ =
∑K

i=1G
(
μi,li

) · li
∑K

i=1G
(
μi,li

) , (13)

where G
(
μi,li

)
denotes a weighting function, G(μi, li) = exp

(

− (μi−μc)
2

2σ 2
g

− (li−lc)2

2σ 2
l

)

,

li = μJi(x), μi is the global mean value of the input image Ji(x), σg and σl control the
spreads of the profile along μi and li dimensions, respectively. μc and lc are constants
for the mid-intensity values.

3 Experimental Results and Analysis

To evaluate the effectiveness of ourmethod,we compare our performance to state-of-the-
art methods, such as He et al. [7], Berman et al. [10], Galdran [1], Bui et al. [9], Hu et al.
[30], Shin et al. [31], respectively. All the methods are implemented on Windows PC
with a PentiumDual-core 2.4 GHZ CPU and 32.00 GB RAM usingMATLAB2016a. To
evaluate the dehazed performance quantitatively, we adopt the subjective and objective
evaluation methods.

3.1 Qualitative Comparison of Natural Environment Images

For subjective evaluation, we test on several hazy visible images on the natural image
dataset. Figure 4 shows the qualitative comparison with six state-of-the-art dehazing
methods on color casts. Figure 4(a) shows the hazy images. Figure 4(b–g) depicts the
results of six state-of-the-art dehazing methods, respectively. The results of the proposed
method are given in Fig. 4(h).

As shown in Fig. 3, the results of He et al. [7] and Bui et al. [9] have the worst visual
effect in the seven methods, The sky regions of these images significantly appear halo
artifacts and suffer from over-enhancement in Fig. 4(b) and (e). The results of Berman
et al. [10] have similar halo problemswith the results of He et al. in Fig. 4(c), for instance,
the sky regions of the dehazing images appear halo artifacts in fourth and sixth figures.

310 Y. Gao et al.

Fig. 4. Qualitative comparison of natural environment images. (a) The hazy images. (b) Ref. [7].
(c) Ref. [10]. (d) Ref. [1]. (e) Ref. [9]. (f) Ref. [30]. (g) Ref. [31]. (h) Our results.

The results of Galdran [1] have greatly improved the brightness of these images and
increased the recognition of the target in these images, but the color fidelity is lost in
Fig. 4(d). There is residual fog on the surface of these images in Fig. 4(d). The results of
Shin et al. [31] are close to those observed byGaldran as displayed in Fig. 4(g). The color
fidelity of those images has been greatly improved, but these results have remained a
little haze in the image surface. The results of Hu et al. [30] achieve a better color fidelity,
but still show slight over-enhancement in the target in these images. By the comparison
of Fig. 4, our results have the best balance in color fidelity and visual effects. After our
method processing, the objects of the six dehazed images can be recovered clearly, and
the sky regions of these dehazed images are more natural.

Structural Patch Decomposition Fusion for Single Image Dehazing 311

3.2 Qualitative Comparison of Synthetic Hazy Images

In Fig. 5, seven methods including the proposed one in this paper are tested on synthetic
images that are known for their rich colors and objects. Figure 5(a) shows the synthetic
hazy images. The results of the six methods are shown in Fig. 5(b–g) respectively. The
results of the proposed method are given in Fig. 5(h). Figure 5(i) is the ground truth
image.

Fig. 5. Qualitative comparison of synthetic images. (a) The hazy images. (b) Ref. [7]. (c) Ref.
[10]. (d) Ref. [1]. (e) Ref. [9]. (f) Ref. [30]. (g) Ref. [31]. (h) Our results. (i) Ground truth image

As shown in Fig. 5(b), the results of He et al. [7] remove most of the haze but signifi-
cantly suffer from over-enhancement. The results of Bui et al. [9] have a similar problem
as the results of He et al. [7] and Berman et al. [10] in Fig. 5(e) and Fig. 5(c), which tend
to over enhance the local contrast of the image (see the sky regions in these images). The
results of Shin et al. [31] improve the image brightness when dehazing, but it still appears
fog edge and local over-enhancement in Fig. 5(g). As for the results of Galdran [1] and
Hu et al. [30], they have a similar performance in the six images, which have been greatly
improved in the visibility but have appeared local over-enhancement in the brightness
regions. Compared with the ground truth image, the proposed method in this paper has
the best visual recovering performance without halo artifacts and oversaturation.

312 Y. Gao et al.

3.3 Quantitative Comparison

To make a quantitative evaluation for the restoration performance, we make an exper-
iment and evaluated these methods by two criteria: no-reference image quality assess-
ment (ENIQA) [32] and Structure Similarity (SSIM) [33] in Fig. 5. The results are list
in Table 1. Best and second-best results are marked in boldface.

Table 1. Quantitative results of the ENIQA and SSIM on real images.

First Second Third Fourth Fifth Sixth

N/S 0.107/– 0.005/– −0.023/– 0.028/– −0.066/– 0.030/–

Ref.
[7]

0.089/0.663 0.096/0.757 −0.037/0.781 0.081/0.780 0.033/0.814 0.133/0.882

Ref.
[10]

0.070/0.883 0.064/0.868 −0.084/0.851 0.061/0.895 0.036/0.905 0.097/0.815

Ref.
[1]

0.024/0.941 −0.031/0.915 −0.079/0.958 0.097/0.922 0.007/0.870 0.080/0.876

Ref.
[9]

0.120/0.632 0.097/0.694 0.008/0.701 0.118/0.697 0.073/0.705 0.079/0.751

Ref.
[30]

0.050/0.837 0.058/0.775 −0.002/0.778 0.071/0.758 0.142/0.746 0.124/0.899

Ref.
[31]

0.129/0.915 0.022/0.855 −0.100/0.837 0.069/0.906 0.203/0.964 0.111/0.874

Our 0.135/0.931 0.124/0.869 0.027/0.904 0.052/0.922 0.217/0.827 0.214/0.906

A higher ENIQA score indicates a more visual effect of the dehazed image. As can
be seen from these results in Table 1, our results produce five higher ENIQA scores in
the six images, followed by the results of Bui et al. which have three higher ENIQA
scores. As for the results of He et al. and Galdran, they have consistent performance in
the six images, which only produce one higher ENIQA scores. The results of Berman
et al. are similar to the results of Hu et al., which do not produce one higher ENIQA
score.

A higher SSIM score indicates that the dehazed image is closer to the ground truth
image. As can be seen in Table 1, the results of our method have five higher SSIM scores
in the six images, followed by Galdran which produces three higher scores. The results
of Berman et al. produce two higher scores. The results of Hu et al. are similar to Shin
et al., which produce one higher score. The results of He et al. are similar to Bui et al.
which have the worst scores and do not produce higher scores.

4 Conclusion

In this work, we proposed a single image dehazing method via structural patch decom-
position image fusion. The range of global atmospheric light can be estimated by the sky

Structural Patch Decomposition Fusion for Single Image Dehazing 313

region segmentation method with the histogram analysis of hazy images. Furthermore,
a fast weighted least squares filter with an adaptive boundary constraint is constructed to
optimize the transmission. Finally, a structural patch decomposition fusion method pro-
posed to blend several dehazing images with different exposures. Experimental results
show that ourmethod performs favorably against some state-of-the-artmethods on image
visibility and color cast.

Acknowledgment. This work was supported by the Scientific and Technological Project of
Quanzhou (No. 2019C009R, No. 2019C094R).

References

1. Galdran, A.: Image dehazing by artificial multiple-exposure image fusion. Sig. Process. 149,
135–147 (2018)

2. Zhang, H., Sindagi, V., Patel, V.M.: Multi-scale single image dehazing using perceptual
pyramid deep network. In: IEEE Computer Social Conference Computer Vision Pattern
Recognition Work, Salt Lake City, USA, pp. 1015–1024. IEEE (2018)

3. Xiao, C., Gan, J.: Fast image dehazing using guided joint bilateral filter. Vis. Comput. 28(6–8),
713–721 (2012)

4. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: Properties and performance of a center/surround
retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

5. Kapoor, R., Gupta, R., Son, L.H., Kumar, R., Jha, S.: Fog removal in images using improved
dark channel prior and contrast limited adaptive histogram equalization. Multi. Tools Appl.
78(16), 23281–23307 (2019). https://doi.org/10.1007/s11042-019-7574-8

6. Sun, Z., Han, B., Li, J., Zhang, J., Gao, X.: Weighted guided image filtering with steering
kernel. IEEE Trans. Image Process. 29, 500–508 (2020)

7. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans.
Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

8. Dai, C., Lin, M., Wu, X., Zhang, D.: Single hazy image restoration using robust atmospheric
scattering model. Sig. Process. 166, 107257 (2020)

9. Bui, T.M., Kim, W.: Single image dehazing using color ellipsoid prior. IEEE Trans. Image
Process. 27(2), 999–1009 (2018)

10. Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: 29th IEEE Conference
on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 1674–1682. IEEE (2016)

11. Rahman, Z., Jobson, D.J., Woodell, G.A.: Multi-scale retinex for color image enhancement.
In: 3rd IEEE InternationalConference ImageProcess, Lausanne, Switzerland, pp. 1003–1006.
IEEE (1996)

12. Jobson, D.J., Rahman, Z.U.,Woodell, G.A.: Amultiscale retinex for bridging the gap between
color images and the human observation of scenes. IEEETrans. Image Process. 6(7), 965–976
(1997)

13. Lu, H., Li, Y., Serikawa, S.: Underwater image enhancement using guided trigonometric
bilateral filter and fast automatic color correction. In: 2013 IEEE International Conference
Image Processing, Melbourne, Australia, pp. 3412–3416. IEEE (2013)

14. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell.
35(6), 1397–1409 (2013)

15. Kim, J.H., Jang, W.D., Sim, J.Y., Kim, C.S.: Optimized contrast enhancement for real-time
image and video dehazing. J. Vis. Commun. Image Represent. 24(3), 410–425 (2013)

https://doi.org/10.1007/s11042-019-7574-8

314 Y. Gao et al.

16. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary
constraint and contextual regularization. In: 2013 IEEE InternationalConference onComputer
Vision, Sydney, Australia, pp. 617–624. IEEE (2013)

17. Liao, Q., Yu, J.: Fast single image fog removal using edge-preserving smoothing. In: 2011
IEEE International Conference on Acoustics, Prague, Czech Republic, pp. 1245–1248. IEEE
(2011)

18. Nishino, K., Kratz, L., Lombardi, S.: Bayesian defogging. Int. J. Comput. Vis. 98(3), 263–278
(2012)

19. Chen, C., Do, M.,Wang, J.: Robust image and video dehazing with visual artifact suppression
via gradient residualminimization. In: Leibe, B.,Matas, J., Sebe, N.,Welling,M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 576–591. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-46475-6_36

20. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image
haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

21. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: all-in-one dehazing network. In: 2017
IEEE International Conference on Computer Vision, Venice, Italy, pp. 4770–4778. IEEE
(2017)

22. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.H.: Single image dehazing via multi-
scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.)
ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46475-6_10

23. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 3194–3203.
IEEE (2018)

24. Engin, D., Genc, A., Ekenel, H.K.: Cycle-dehaze: enhanced cycleGAN for single image
dehazing. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, Salt Lake City, USA, pp. 825–833. IEEE (2018)

25. Wang, A., Wang, W., Liu, J., Gu, N.: AIPNet: image-to-image single image dehazing with
atmospheric illumination prior. IEEE Trans. Image Process. 28(1), 381–393 (2018)

26. Ancuti, C.O., Ancuti, C., Bekaert, P.: Effective single image dehazing by fusion. In: 2010
IEEE International Conference on Image Processing, Hong Kong, China, pp. 3541–3544.
IEEE (2010)

27. Gao, Y., Su, Y., Li, Q., Li, H., Li, J.: Single image dehazing via self-constructing image fusion.
Sig. Process. 167, 107284 (2020)

28. Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M.N.: Fast global image smoothing based
on weighted least squares. IEEE Trans. Image Process. 23(12), 5638–5653 (2014)

29. Ma, K., Li, H., Yong, H.,Wang, Z.,Meng, D., Zhang, L.: Robustmulti-exposure image fusion:
a structural patch decomposition approach. IEEE Trans. Image Process. 26(5), 2519–2532
(2017)

30. Hu, H.M., Guo, Q., Zheng, J.,Wang, H., Li, B.: Single image defogging based on illumination
decomposition for visual maritime surveillance. IEEE Trans. Image Process. 28(6), 2882–
2897 (2019)

31. Shin, J., Kim, M., Paik, J., Member, S., Lee, S., Member, S.: Radiance-reflectance combined
optimization and structure-guidedL0-norm for single imagedehazing. IEEETrans.Multimed.
22(1), 30–44 (2020)

32. Chen, X., Zhang, Q., Lin,M., Yang, G.,. He, G.: No-reference color image quality assessment:
from entropy to perceptual quality. arXiv Preprint arXiv:1812.10695, pp. 1–12 (2018)

33. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error
visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

https://doi.org/10.1007/978-3-319-46475-6_36
https://doi.org/10.1007/978-3-319-46475-6_10
http://arxiv.org/abs/1812.10695

Historic and Clustering Based QoS Aggregation
for Composite Services

Zhang Lu and Ye Heng Zhou(B)

Guangxi Key Laboratory of Embedded Technology and Intelligent System,
Guilin University of Technology, Guilin, China

2103003882@qq.com

Abstract. Web services run in an open, heterogeneous and multi-tenant net-
work environment, which makes the QoS of services uncertain and difficult to be
described by a known probability distribution. Therefore, the calculation of QoS
aggregation for composite services is facing challenges. This paper presents a
newmethod for the aggregation calculation of composite services. In this method,
the QoS of Web services is characterized by the sample space formed by their
historical records, and a clustering method is adopted to control the number of
samples in the sample space, so as to avoid the problem of combinatorial explo-
sion during the process of aggregation calculation. This method does not need to
limit the distribution of QoS, and is suitable for the composite services described
by various common workflows and all kinds of QoS attributes. Experiments show
that our method has advantages in terms of time cost and computational accuracy
compared with the existing methods.

Keywords: Composite services · Uncertain QoS · Third keyword · Clustering

1 Introduction

Web services technology enables the formation of composite services by combining
existing basic or complex services, so that applications can be deployed in distributed
and heterogeneous environments. As there are more and more Web services on the
network, quality of service (QoS) is used to describe the non-functional attributes of
Web services, such as cost, response time, reliability or availability, which becomes an
important selling point of Web services. QoS aggregation for composite services plays
an important role in developing service-oriented applications.

Evaluation the QoS of a composite service accurately is of importance both to the
service provider and consumer. Because Web services are in an open, heterogeneous,
multi-tenant network environment, the QoS of Web services are probabilistic and not
suitable to be described by a known statistical distribution.How tomodel and estimate the
QoS of a composite service efficiently and accurately based on the QoS of its component
services is still a critical challenge. In the following, service is used to refer to composite
service. In this paper, the historical records of service QoS natures are used to describe

© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 315–324, 2020.
https://doi.org/10.1007/978-981-15-8135-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_23&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_23

316 Z. Lu and Y. H. Zhou

their QoS without limiting their distribution formation, and a clustering based QoS
aggregation calculation method for composite services is proposed.

The remainder of this article is organized as follows: In Sect. 2, we discuss the work
related to model and evaluation QoS of composite services. In Sect. 3, we provide the
combinedmodeQoS operation and related symbols. In Sect. 4, a sample space clustering
is designed. In Sect. 5, experiments are conducted and the correctness and performance
of the proposed method are evaluated. Section 6 summarizes this article.

2 Related Work

When considering QoS aware Web service composition, many studies [1–4] ignore
the uncertainty of QoS. However, the open, heterogeneous and multi-tenant net work
environment makes the QoS of Web services uncertain, which gently increase the time
complexity of QoS aggregation calculation. In literature [5], an example is given to
illustrate that the response time of Web services does not follow any familiar probability
distribution. Among them, PMF (Probability Mass Function) is used to describe the
uncertainty of QoS. By requiring the sampling interval to have the same starting point
and interval time, the impact of combinatorial explosion problem is reduced, and the time
cost and calculation accuracy are improved. Literature [6, 7] respectively introduces two
kinds of dynamic selection of Web services for QoS constraint decomposition. Skyline
strategy [8, 9] is also used to serve service selection or service combination. It elim-
inates some candidate services or candidate combination schemes through probability
analysis to narrow the exploration space faced by the later service combination algo-
rithm. Such policies can only be considered as a pre-processing mechanism for service
composition, and often need to limit workflow pattern (such as only supporting sequen-
tial pattern) [8] or limit distribution pattern [9]. Literature [10] proposes a global QoS
service combination method based on decomposition. Literature [11] proposes to select
the best available service by decomposing QoS constraints. Literature [6] regards QoS
as a discrete random variable and uses Probability Mass Function (PMF) to describe
it. Although PMF can describe any probability distribution, the author only uses a few
field values to describe it, and the accuracy is low. Literature [12] proposes a dynamic
selection of service composition based on time and QoS constraints. Literature [13, 14]
assumes that QoS of Web services obeys normal distribution to simplify QoS aggre-
gation calculation. Literature [15] proves that the use of specific statistical distribution
to describe the uncertainty of service QoS is not rigorous enough. In literature [9], a
few eigenvalues (expectation, entropy and hyperentropy) are adopted to represent the
uncertainty of QoS. In essence, some eigenvalues of probability distribution are used to
replace the probability distribution itself. Hwang [16] used the Probability Mass Func-
tion (PMF) to describe the QoS of atomic or composite services, and then calculated the
aggregateQoSof composite services. This approach supports arbitrarily distributedQoS.
In order to solve the combinatorial explosion problem in the calculation process, they
refined an Aggregate Random Variable Discovery (ARVD) problem, and used dynamic
programming and greedy algorithm to solve it. However, the accuracy of the scheme is
low and the time cost is large.

Historic and Clustering Based QoS Aggregation 317

3 Uncertain QoS Calculation for Composition Patterns

3.1 Underlying Assumptions

When calculating the QoS of composite services, the following assumptions are made:

(1) the aggregate QoS of composite services depends on the QoS, composite mode and
selection probability of the included services (for XOR mode).

(2) the QoS of the services involved in the composite service is independent from each
other.

(3) QoS of the service is described by weighted samples with historical records.

3.2 QoS Aggregation Operations

A composite service can be described by a workflow pattern and typically involves four
composite patterns: Sequential, Conditional, Parallel, Loop. QoS describing services can
be divided into three categories: Additive (e.g., price, reputation), Multiplicative (e.g.,
reliability, availability), Max-operator (e.g., response time, service execution time). The
three categories can convert most of the widely discussed QoS attributes. If q(s, k) is
used to represent the value of the k-th QoS attribute of service s, n represents the number
of service included in a combined mode, and pi represents the probability of choosing to
perform service si when selecting the mode. Table 1 can be used to summarize the above
four composite modes and QoS aggregation operations involved in three QoS types.

Table 1. QoS aggregation operation

QoS type Additive Multiplicative Max-operator

Sequential
∑n

i=1 q(si, k)
∏n

i=1 q(si, k)
∑n

i=1 q(si, k)

Conditional
∑n

i=1 pi · q(si, k)
∑n

i=1 pi · q(si, k)
∑n

i=1 pi · q(si, k)
Parallel

∑n
i=1 q(si, k)

∏n
i q(si,k) max{q(si, k)}

Loop n · q(s, k) q(s, k)n n · q(s, k)

The operations involved in Table 1 are summation, quadrature, weighted average,
n-th power, and maximum value, all of which are in accordance with the exchange law
and the combination law, so only need to consider the case when n = 2. Let q(s1, k)
be represented by the sample space X = {ui * xi}(i = 1, 2, …, r), where xi is the i-th
historical record and ui is the weight given to xi. q(s2, k) can be represented by the sample
Y ={vj * yj}(j = 1, 2, …, t), where yi is the jth historical record and vj is the weight
given to yj. If the sample space Z = {zl} is used to represent the aggregated QoS of the
attribute k of s1 and s2, according to Table 1, there are the following possibilities: Z = X
+ Y, Z = X * Y, Z = p1 * X + p2 * Y, Z = max{X, Y}.

318 Z. Lu and Y. H. Zhou

When Z = X + Y, zl can be determined by formula (1). Where i =1, 2, …, r, j = 1, 2,
…, t:

Zl=i·j = ui · vj ·
(
ui + vj

)
(1)

When Z = X * Y, zl can be determined by formula (2)

Zl=i·j = ui · vj · ui · vj (2)

When Z = p1 * X + p2 * Y, zl can be determined by formula (3)

Zl=i·j = ui · vj ·
(
p1 · ui + p2 · vj

)
(3)

When Z = max{X, Y}, zl can be determined by formula (4)

Zl=i·j = ui · vj · max
{
ui, vj

}
(4)

The aggregate QoS of the overall composite service can be obtained by gradually
aggregating the various combined modes from inside to outside.

4 Sample Space Clustering

As can be seen from Sect. 3.2, for a certain QoS, if the sample space describing QoS of a
service contains m samples, the sample of QoS after the aggregation of two services will
contain m2 samples. An aggregate QoS sample space of a combined service containing
n services will contain mn samples, and there is a combination explosion problem. For
this reason, when the number of samples contained in a sample space is too large, the
clustering method needs to be used to limit the number of samples to the agreed range,
so as to avoid the combination explosion problem in the aggregation calculation process.

Considering that the sample space for describing QoS is composed of unary data,
Algorithm 1 is designed to cluster the sample space according to the k-Means [17]
algorithm.

Historic and Clustering Based QoS Aggregation 319

Algorithm 1 Clustering sample space.

Input: sample X={ ui * xi}, i =1, 2, …, m，the number of cluster k<m;

Output: sample ={ vj * yj}, j=1,2, …, k;

S1 set the initial clustering center cs[j], j=1,2,…,k；

S2 calculate the clustering center p[j] to which xi belongs, i =1, 2, …, m；

S3 do{

S4 updates cs[j] according to p[j

S5 calculate the moving distance Dmax of the cluster center;

S6 update p[j] }

S7 while (Dmax > threshold);

S8 calculates vj and yj according to p[j], j=1,2,…,k;

S9 return Y={ vj * yj}, j=1,2,…,k;

In S1, the initial clustering center cs is determined by formula (5), where k is the
number of clustering centers, andmax andmin are themaximum andminimum values of
the data set, and ε is randomly selected on [−0.2, 0.2], so that cs has a certain randomness.

cs[i] = (i + 0.5 + e) ∗ max-min

k
, i ∈ [0, k) (5)

In S2, the clustering center towhich xi belongs can be calculated according to formula
(6), i = 1, 2, …, m

xi ∈

⎧
⎪⎪⎨

⎪⎪⎩

p[0], xi < ics[0]
p[k − 1], xi > ics[k − 1]
p[j], ics[j] ≤ xi ≤ ics[j + 1]&&2xi ≤ ics[j] + ics[j + 1]
p[j + 1], ics[j] ≤ xi ≤ ics[j + 1]&&2xi > ics[j] + ics[j + 1]

(6)

In S4, cs [j] is updated to the average of all elements in p [j]. In S5, Dmax is the
maximum moving distance of the new and old cluster centers, and the threshold is set
to (max – min) /(10 · k).

In S6, if xi originally belongs to p [j], after the update, ximay only belong to p[j−1],
p[j] or p[j + 1], and the specific update rule is determined by formula (7).

xi ∈
⎧
⎨

⎩

p[j − 1], xi < cs[j]&&2xi < cs[j − 1] + cs[j]
p[j + 1], xi > cs[j]&&2xi < cs[j] + cs[j + 1]
p[j], others

(7)

320 Z. Lu and Y. H. Zhou

In S8, yj is the weighted average of the elements in p[j], and vj is the average of the
weights of the elements in p[j].

5 Experimental Analysis

In two scenarios, by comparing the method of [5] (marked as PDF) and the method
of this article (marked as Cluster), analysis and verification of the effectiveness of the
method in this article. In the Cluster method, the number of cluster centers is 50.

5.1 Scenario 1

This scenario considers the aggregate value of the response time of a combined service
composed of n services combined in a sequential mode. Let the response time of each
service be normally distributed N(μ, σ2), μ takes random values in the interval [5, 10),
andσ takes randomvalues in [1, 2). Then the response timeof the combined service is also
normally distributed. Its exception is the sum of the expectations of each service, and its
variance is the sumof the variances of each service.Basedon the theoretical calculationof
the expected andmean squared deviation of the aggregated QoS of the combined service,
the relative difference between the expected and mean squared deviation obtained when
using PDF (the sampling starting point is 0 and the sampling interval is 2) and this
Cluster method can be calculated separately. Table 2 lists the relative difference between
the expected and mean squared deviation of the combined service obtained by the two
methods in 5 tests when n is equal to 100. It can be seen that the expected accuracy
obtained by the Cluster method is nearly 20 times higher than that of the PDF, and
the accuracy of the mean square error is about half of the PDF; the expected accuracy
obtained by the Cluster method fluctuates slightly, and the accuracy of the mean squared
error obtained by the Cluster method, and the expected and mean squared error obtained
by the PDF are relatively stable.

Table 2. The relative difference of expectations and mean square errors

Seq Expectation (%) Mean
variance (%)

Cluster PDF Cluster PDF

1 −0.635 −14.267 14.131 6.245

2 −0.078 −12.768 15.309 6.865

3 0.043 −13.213 13.515 6.281

4 −0.234 −12.865 14.256 5.489

5 −0.096 −12.908 18.127 5.526

Table 3 compares the relative difference between the expected and mean squared
deviations of the combined services obtained by the above twomethodswhen n increases

Historic and Clustering Based QoS Aggregation 321

from 50 to 350 in steps of 50 at a certain measurement. It can be seen from: the accuracy
of the expected and mean square deviation obtained by the PDF method is basically not
affected by the number of tasks; the expected accuracy obtained by the cluster method
decreases with the increase of the number of tasks, which is much better than the PDF
method; the accuracy of the mean square error obtained by the cluster method increases
with the number of services. When the number of services reaches more than 200, it is
close to the PDF method, and when the number of services reaches more than 300, it is
much better than the PDF method.

Table 3. The accuracy varies with the number of services

Num Expectation (%) Mean variance
(%)

Cluster PDF Cluster PDF

50 −0.135 −12.633 8.274 4.063

100 0.242 −13.069 9.868 5.780

150 −0.511 −13.744 9.495 6.405

200 −0.644 −13.094 5.117 5.995

250 −1.150 −13.342 5.141 6.510

300 −1.015 −13.635 0.723 6.294

350 −0.968 −13.465 −0.844 5.889

200 −0.644 −13.094 5.117 5.995

250 −1.150 −13.342 5.141 6.510

300 −1.015 −13.635 0.723 6.294

350 −0.968 −13.465 −0.844 5.889

5.2 Scenario 2

The service composition problem with response time constraints is considered. The
workflow is generated randomly according to the number of services it contains,
involving three modes of order, concurrency and selection, with a ratio of about 2:1:1.

Ws-dream dataset [15] was used as the data source. It involves 4500 Web services,
each of which involves two QoS attributes, response time and throughput, and each
QoS of each service involves 64 real measurements from 142 users, i.e., each service
contains about 9000 records. From this data set, 100 records were randomly selected for
the response time of each Web service as QoS samples describing the response time of
the service, and the sample weights were all equal. In the experiment, QoS samples of
the candidate services are selected from these 4500 services in a sequential loop.

When the number of samples is high (2000 times the number of services), the results
should be more reliable. With reference to the expectation and mean square error of

322 Z. Lu and Y. H. Zhou

aggregate QoS of composite services obtained by sampling method (marked as Sam-
ple), the relative difference between expectation and mean square error obtained by PDF
(sampling starting point is 0, sampling interval is 200) and Cluster method can be cal-
culated. Since the workflow and candidate services are random, the results of each test
will fluctuate, averaging the absolute value of the relative difference from 10 tests.

Figure 1 compares the expected relative difference between the two approaches with
the number of services. It can be observed from Fig. 1 that Cluster and PDF methods
are not significantly correlated with the number of services in accuracy. The relative
difference of the method is mostly between 1–2%, which is much better than the PDF
method (between 6–8%).

Fig. 1. The relative difference of expectations varies with the number of services

Figure 2 compares the variation of the mean square error relative difference obtained
by the two methods with the number of services. It can be seen from Fig. 2 that, for the
relative difference of mean square error, the Cluster method has little correlation with
the number of tasks in the precision, while the PDF method has a decreased precision
when the number of services is small and large. This is because the sampling interval
distance of PDF method is an important parameter, which needs to be dynamically
adjusted according to the number of tasks and other factors, while this experiment takes
a fixed value. Compared with PDF, the relative difference of mean variance obtained by
Cluster method also has certain advantages (the relative difference of Cluster method is
between 1–4%, while PDF is more than 4%).

Figure 3 shows how the time cost of the three methods varies with the number of
services. It can be seen that: the Sample method costs a lot of time; When the number of
services is small (less than 40), The time cost of Cluster is close to that of PDF, but when
the number of services is large, the time cost of Cluster is much lower than that of PDF.
This is because the time cost of Cluster method increases linearly with the increase of
the number of services, while the time complexity of PDF is roughly equal to the square
of the number of services.

Historic and Clustering Based QoS Aggregation 323

Fig. 2. The relative difference of mean square errors varies with the number of services

Fig. 3. Time cost varies with the number of services

Experimental analysis shows that compared with PDF method, Cluster method has
obvious advantages in time cost and computing accuracy.

6 Conclusion

QoS aggregation with uncertainty plays an important role in service composition opti-
mization. In this paper, by representing QoS uncertainty according to historical records
and adopting a clustering algorithm similar to k-means to avoid the combinatorial explo-
sion problem in the process of aggregation calculation, a newQoS aggregationmethod is
proposed. This method only involves a few parameters such as the number of historical
samples and the number of clustering, and can be used to anyQoS attributes and common
workflows. Simulation results show that our method is superior to existing methods.

324 Z. Lu and Y. H. Zhou

Acknowledgment. This research work was supported by Guangxi University key Laboratory
Director Fund of Embedded Technology and Intelligent Information Processing (Grand No.
2018A-05) and Foundation of Guilin University of Technology (Grand No. GUTQDJJ2002018).

References

1. Sellami,W., Hadj Kacem, H., Hadj Kacem, A.: Dynamic provisioning of service composition
in a multi-tenant SaaS environment. J. Netw. Syst. Manag. 28(2), 367–397 (2020). https://
doi.org/10.1007/s10922-019-09510-2

2. Ehsan,A.,Mahsa,M.,Omid, F.V.:Anovelmodel for optimisation of logistics andmanufactur-
ing operation service composition in Cloudmanufacturing system focusing on cloud-entropy.
Int. J. Prod. Res. 58(7), 1987–2015 (2020)

3. Yan, H., Fu, X.D., Yue, K., Liu, L., Liu, L.J.: Uncertain QoS aware web service selection
method using prospect theory. J. Chin. Mini-Micro Comput. Syst. 40(05), 953–958 (2019)

4. Shen, J.Q., Luo, C.W., Hou, Z.W., Liu, Z.Z.: QoS aware logistics web service composition
base on improved genetic algorithm. J. Chin.Mini-Micro Comput. Syst. 40(01), 36–39 (2019)

5. Zheng, H., Yang, J., Zhao, W.: Probabilistic QoS aggregations for service composition. ACM
Trans. Web 10(2), 1–36 (2016)

6. Hwang, S.Y., Hsu, C.C., Lee, C.H.: Service selection for web services with probabilistic QoS.
IEEE Trans. Serv. Comput. 8(3), 467–480 (2015)

7. Wang, S.G., Sun, Q.B., Yang, F.C.: Web service dynamic selection by the decomposition of
global constraints. J. Softw. 22(7), 1426–1439 (2011)

8. Wang, X.S., Fu, X.D., Liu, L., Yue, K., Liu, L.J.: Probabilistic analysis for stochastic QoS of
Web service composition. J. Softw. 53(14), 70–75 (2017)

9. Wang, S.G., Sun, Q.B., Zhang, G.W.: Uncertain QoS-aware skyline service selection based
on cloud model. J. Softw. 23(6), 1397–1412 (2012)

10. Sun, S.X., Zhao, J.: A decomposition-based approach for service composition with global
QoS guarantees. Inf. Sci. 199(15), 38–153 (2012)

11. Surianarayanan, C., Ganapathy,G., Ramasamy,M.S.: An approach for selecting best available
services through a new method of decomposing QoS constraints. Serv. Oriented Comput.
Appl. 9(2), 107–138 (2014). https://doi.org/10.1007/s11761-014-0154-x

12. Guidara, I., Jaouhari, I.A, Guermouche, N.: Dynamic selection for service composition based
on temporal and QoS constraints. In: IEEE International Conference on Services Computing,
pp. 267–274. IEEE (2016)

13. Ren, L.F., Wang, W.J., Xu, X.: Uncertainty-aware adaptive service composition in cloud
computing. Comput. Eng. Appl. 53(12), 2867–2881 (2016)

14. Ye, H.Z., Lu, X.P.: Robust web services composition based on discrete particle swarm
optimization. J. Univ. Electron. Sci. Technol. China 47(03), 443–448 (2018)

15. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services. IEEE Trans.
Serv. Comput. 7(1), 32–39 (2014)

16. Hwang, S.-Y., Wang, H., Tang, J.: A probabilistic approach to modeling and estimating the
QoS of web-services-based workflows. Inf. Sci. 177(23), 5484–5503 (2007)

17. Bai, L., Liang, J., Cao, F.: A multiple k-means clustering ensemble algorithm to find
nonlinearly separable clusters. Inf. Fusion 61, 36–47 (2020)

https://doi.org/10.1007/s10922-019-09510-2
https://doi.org/10.1007/s11761-014-0154-x

A High-Performance with Low-Resource Utility
FPGA Implementation of Variable Size HEVC

2D-DCT Transform

Ying Zhang1(B), Gen Li2(B), and Lei Wang1(B)

1 Lab 673-2, Institute of Computer, National University of Defense Technology,
Changsha 410073, China

{zhangying,wanglei}@nudt.edu.cn
2 Genetalks Biotech. Co., Ltd, Changsha 410073, China

gen.li@genetalks.com

Abstract. High Efficiency Video Coding (HEVC) is a new international video
compression standard offering much better compression efficiency than previ-
ous video compression standards at the expense of much higher computational
complexity. This paper presents a design of two-dimensional (2D) discrete cosine
transform (DCT) hardware architecture dedicated for High Efficiency Video Cod-
ing (HEVC) in field programmable gate array (FPGA) platforms. The proposed
methodology efficiently proceeds 2D-DCT computation to fit internal compo-
nents and characteristics of FPGA resources. This architecture supports variable
size of DCT computation, including 4 × 4, 8 × 8, 16 × 16, and 32 × 32, and
has been implemented in Verilog and synthesized in various FPGA platforms.
Compared with existing related works, our proposed architecture demonstrates
significant advantages in the performance improvement with low FPGA resource
utility, which are very important for the whole FPGA solution for whole HEVC
codec.

Keywords: H.265/HEVC · Two-dimensional discrete cosine transform
(2D-DCT) · FPGA · Hardware

1 Introduction

Rapid advances in consumer electronics have resulted in a variety of video coding appli-
cations, such as ultra-high definition (UHD) 4 K/8 K TV [1] or unmanned aerial vehicle
(UAV) reconnaissance and surveillance [2, 3], which demands aggressive video com-
pression requirement. ITU and ISO standardization organizations are jointly developing
a new international video compression standard H.265/HEVC, which has great potential
to improve video compression efficiency by around 50%, while retaining the same video
quality as H.264 [5, 6]. As a result, HEVC has been viewed as one of the most promising
standards to overcome these challenges [7, 8]. However, High Efficiency Video Coding
(HEVC) video compression standard at the expense of much more computational com-
plexity [4–9]. HEVC uses Discrete Cosine Transform (DCT)/Inverse Discrete Cosine

© Springer Nature Singapore Pte Ltd. 2020
D. Dong et al. (Eds.): ACA 2020, CCIS 1256, pp. 325–333, 2020.
https://doi.org/10.1007/978-981-15-8135-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8135-9_24&domain=pdf
https://doi.org/10.1007/978-981-15-8135-9_24

326 Y. Zhang et al.

Transform (IDCT). In addition, it uses Discrete Sine Transform (DST)/Inverse Discrete
Sine Transform (IDST) for 4 × 4 intra prediction in certain cases. Additionally, HEVC
supports more block sizes of DCT and IDCT, including 32 × 32, 16 × 16, 8 × 8, and
4 × 4 than H.264 which supports two smaller block sizes (i.e. 4 × 4 and 8 × 8). Lage
DCT and DST have high computational complexity, and they are heavily used in an
HEVC encoder [10]. DCT and DST operations account for 11% of the computational
complexity of an HEVC video encoder. They account for 25% of the computational
complexity of an all intra HEVC video encoder.

Nowadays, computational resources in FPGA makes the study of HEVC FPGA
implementation is gaining more and more attention. An efficient 2-D DCT FPGA archi-
tecture, used for the whole HEVC FPGA solution should have the following features:
supporting all possible sizes in HEVC transform; using as little as possible FPGA
implementation cost, i.e. the FPGA resources; gaining high-performance as possible.

In this paper, an FPGA implementation of HEVC 2-D DCT transform is proposed.
Our FPGA architecture focuses on the above features. Compared with existing 2D-DCT
FPGA architecture, our design can compute all block sizes in HEVC with the same
FPGA design, which means the FPGA resources for butterfly PEs can deal with the
block sizes of 32 × 32, 16 × 16, 8 × 8 and 4 × 4, thus greatly reducing the FPGA
implementation cost. Our butterfly PEs, which compute one element for the block size
of 32 × 32 per cycle, can compute 2 elements for the block size of 16 × 16 per cycle,
4 elements for the block size of 8 × 8 and 8 elements for the block size of 4 × 4 per
cycle, thus gaining high computation efficiency.

The rest of the paper is organized as follows. In Sect. 2, HEVC transform algorithms
and related FPGA solutions for 2-D DCT are explained. In Sect. 3, the proposed element
computation of HEVCDCT is explained. In Sect. 4, FPGA architecture for HEVCDCT
is described. The implementation results are given in Sect. 5. Finally, Sect. 6 presents
the conclusion.

2 Introduction

2.1 HEVC Transform Algorithms

Formula (1) shows the basic function for HEVC 1-D DCT transformation for an NxN
block, where i, j = 0, …, N−1. HEVC uses 4 × 4, 8 × 8, 16 × 16 and 32 × 32 TU sizes
for DCT [11].

Ti,j = ω0.

√
2

N
. cos

(
π.i.(2j + 1)

2N

)
, ω0 =

{√
2
N i = 0

1 i �= 0
(1)

HEVC performs 2D transform operation by applying 1D transforms in vertical and
horizontal directions. The coefficients in HEVC. 1D transformmatrices are derived from
DCT basis functions. However, integer coefficients are used for simplicity. HEVC 1D
DCT coefficients for 4 × 4 TU size are shown in Fig. 1. The coefficients in the same
even row are symmetrical, while those in the odd row are odd-symmetrical, i.e. with the
same values but different signals. Thus, the butterfly computation is used to compute
every element in the DCT transformation.

A High-Performance with Low-Resource Utility FPGA 327

Fig. 1. HEVC 1D DCT coefficients for 4 × 4 TU size

2.2 Related FPGA Architectures

In order to satisfy real-time and high-efficiency coding in these emerging video appli-
cations, a few design methodologies and circuit architectures have been developed [11,
18, 19, 20-24]. Usually, they can be partitioned 3 kinds. [12–15] can only compute one
or two TU sizes of DCT transformation. The other TU sizes cannot be processed in
these FPGA solutions. These architectures are meaningful for research but cannot be
used in the really whole HEVC FPGA system solutions. [16, 17] support all block sizes
of HEVC, but they build one different FPGA logics. Thus, while the FPGA logics for
one block size work, the other three parts of FPGA resources idle. In [18], the FPGA
architecture can support all HEVC block sizes, but all PEs computing one element per
cycle for 32 × 32 block size can only compute one element for the other smaller sizes.
There are also some other FPGA designs with their own features, such as comparing
the FPGA implementation of multiplications with LUT or DSP [19], using shift-adds
instead of multiplications [12], and so on.

3 Proposed FPGA Architecture for Element Computation
of HEVC DCT

3.1 FPGA Design for an Element in 32 × 32 Block Size

FPGA design for an element in 32 × 32 block size is explained first in this subsection.
Butterfly transform can be applied several times in DCT. Each time an even data

matrix splits into smaller even and odd parts, until down to 4 × 4 size. Even parts
may be reused for different DCT sizes, but odd parts are prohibited. Table 1 illustrates
how hardware resources for processing one pixel point varies with depth of butterfly
transform. It is apparent that more levels of butterfly transforms require less number of
multipliers.

We propose to apply butterfly transform only once, instead of three times as in [6].
With the resource overhead of six more multipliers, the benefit of our design is to reuse
these multipliers, which need a lot of FPGA resources, in smaller DCT sizes. Thus, the
multipliers in our design can compute the multiplication for 32 × 32, 16 × 16, 8 × 8
and 4 × 4 block sizes, hence greatly improving the efficiency of the FPGA resources,
which is greatly important for the whole system of HEVC FPGA solution.

Figure 2 shows the hardware design for an element computation by a row and an even
coefficient column, in a 32 × 32 block size. The result of residual data R0 plus R31 and
the first coefficient C0 are supplied to the multiplier MUTI0; the result of residual data
R1 plus R30 and the first coefficient C1 are supplied to the multiplier MUTI1, and so on.

328 Y. Zhang et al.

ADDER 0R0
R31

ADDER 1
R1
R30

ADDER 2R2
R29

ADDER 3R3
R28

C0

C1

C2

C3

MULTI 0

MULTI 1

MULTI 2

MULTI 3

ADDER 12R12
R19

ADDER 13
R13
R18

ADDER 14R14
R17

ADDER 15R15
R16

C12

C13

C14

C15

MULTI 12

MULTI 13

MULTI 14

MULTI 15

ADDER

ADDER

ADDER

ADDER

ADDER

ADDER

ADDER
R0

R1
R3

0
R3

1

C0
C1

Fig. 2. An element computation by a row and an even coefficient column in a 32 × 32 block size

Then the results ofMULTI0,MUTI1,…, andMULTI15 are accumulated together. Thus,
an element for 1D-DCT is generated.

With all adders for butterfly computation replaced with subtractors, the hardware
design above can generate an element for a row with an odd column coefficient data.

3.2 FPGA Architecture for an Element in Other Block Sizes

Then the computation of the element in 16 × 16 Block Size by the Multiplier and
Adder/subtractor in Fig. 1 is explained. While 16 multipliers and adders are used to
compute an element in 32 × 32 block size, only half of them are needed to compute an
element in 16× 16 block size. To gain high efficiency of the FPGA resources, especially
the multipliers which cost high FPGA resources, we compute 2 elements once using the
logic in Fig. 1. Thus, all 16 multipliers and adders work at the same time. Figure 3 gives
the computation of the elements in 16 × 16 Block Size.

Ro
w

0,
0.

.7
Ro

w
1,

0.
.7

Ro
w

1,
8.

.1
5

Ro
w

0,
8.

.1
5

ADDER 0R0,0
R0,15

ADDER 1R0,1
R0,14

ADDER 2R0,2
R0,13

ADDER 3R0,3
R0,12

C0

C1

C2

C3

MULTI 0

MULTI 1

MULTI 2

MULTI 3

ADDER 12R1,4
R1,11

ADDER 13R1,5
R1,10

ADDER 14R1,6
R1,9

ADDER 15R1,7
R1,8

C4

C5

C6

C7

MULTI 12

MULTI 13

MULTI 14

MULTI 15

ADDER

ADDER

ADDER

ADDER

ADDER

ADDER

C0
..7

C0
..7

Fig. 3. Two elements generated by two rows and an even coefficient column in a 16 × 16 block
size

As shown in Fig. 3, two rows, r0,0,…,r0,15 and r1,0,…,r1,15 are organized as one
32-length row, r0,0,…,r0,7, r1,0,…,r1,7, r1,8,…,r1,15, r0,8,…,r0,15. The 8-length coeffi-
cient column is organized as one 16-lengh coefficient column data, c0,…c7, c0,…c7,.

A High-Performance with Low-Resource Utility FPGA 329

Then the organized 32-length row and the 16-length coefficient column are inputted to
the multipliers and adders for element computation in 32× 32 block size. Two elements
are outputted by the adders before the last level.With all adders for butterfly computation
replaced with subtractors, the hardware design above can generate two elements for a
row with an odd column coefficient data.

As analyzed above, four elements of 8 × 8 block size can be generated once by the
same FPGA multipliers and adders with four rows and a coefficient column; 8 elements
of 4× 4 block size can be generated once by the same FPGAmultipliers and adders with
8 rows and a coefficient column. Figure 4 shows the date organization of the residual
rows and coefficient columns for 8 × 8 block size. For 4 × 4 block size, 8 elements, i.e.
two rows, are generated once, with similar data organization.

ADDER 0R0,0
R0,7

ADDER 1R0,1
R0,6

ADDER 2R0,2
R0,5

ADDER 3R0,3
R0,4

C0

C1

C2

C3

MULTI 0

MULTI 1

MULTI 2

MULTI 3

ADDER 12R3,0
R3,7

ADDER 13R3,1
R3,6

ADDER 14R3,2
R3,5

ADDER 15R3,3
R3,4

C0

C1

C2

C3

MULTI 12

MULTI 13

MULTI 14

MULTI 15

ADDER

ADDER

ADDER

ADDER

C0
..3

C0
..3

R0
,0

..3
R0

,4
..7

R1
,0

..3
R1

,4
..7

R2
,0

..3
R3

,0
..3

R2
,4

..7
R3

,4
..7

C0
..3

C0
..3

Element 0

Element 1

Element 2

Element 3

Fig. 4. Four elements generated by four rows and an even coefficient column in an 8× block size

As shown in Fig. 2 and Fig. 3, the same computation FPGA logic can compute one
32 × 32 block size element or two 16 × 16 block size elements once.

To increase hardware utilization efficiency, on-chip DSP blocks are preferred to
realize multiplication-addition. Here we propose to map butterfly transform into DSP48
blocks in Xilinx xc7vx690 FPGA.

4 FPGA Architecture for HEVC DCT

The proposed HEVC 2D-DCT transform hardware for all variable block sizes is shown
in Fig. 5. The proposed hardware performs 2D DCT by first performing 1D DCT on
the rows of a TU, then reordering the intermediate results to the transpose ram, and
performing 1D DCT on the columns of the TU. The resulting transformed coefficients,
generated by 1D rowDCT, are reordered from row-sequence to row-sequence and stored
in a transpose memory, and they are used as input for 1D column DCT. The FPGA
architecture for 1D row DCT and 1D column DCT is the same, so only 1D row DCT is
described below.

330 Y. Zhang et al.

1D ROW DCT

TU size

TRANSPOSE
RAM

32 input row data
16 coefficient data 1D COLUMN DCT

Fig. 5. Hardware design for HEVC 2D-DCT

Figure 6 shows our algorithm and the overall architecture. The 1D-DCT FPGA
design includes two even FPGA design shown in Figs. 2, 3, or 4, and two odd FPGA
design. Thus, our proposed HEVC design transforms 2 32-lengh rows and 2 16-length
coefficient columns at the same time. Either 2 × block for 32 × 32 block size, 4 × 2
block for 16 × 16 block size, 8 × 2 block for 8 × 8 block size, or two 4 × 4 blocks for
4 × 4 block size, is generated per cycle.

Bu
erfly ADD/SU

B

……

……

Input 32xX Residual Data

……

16x32 Data with Bu erfly Comp.

…
…

…
…

Input 32x16 Coefficient Data

M
U

LTIPLY and ACCU
M

U
LATE

4 Elements for 32x32

8 Elements for 16x16

16 Elements for 8x8

32 Elements for 4x4

1D-DCT

DATA M
U

X

Fig. 6. Proposed algorithm and the overall architecture

Figure 7 shows our proposed architecture for HEVC 1D-DCT. The residual data row
is organized as described above according to the TU size. The data mux/organization
unit processes the data organization. The organized data is input to 1-D DCT unit, which
generates the 1D-DCT coefficients. Finally, the 1D-DCT coefficients are reordered and
written to the transpose ram. There are 3 stages in our FPGA design, one for data mux
unit and two for 1D-DCT transformation.

TU size

Residual data Da
ta

 M
U

X/
O

RG
AN

IZ
AT

IO
N

Coefficient Matrix
ROM

1D-DCT TRANSPOSE
RAM

RESI. DATA

COEFF. DATA

Fig. 7. FPGA architecture for HEVC 1D-DCT

A High-Performance with Low-Resource Utility FPGA 331

5 Experiments

The proposed FPGA architecture for HEVC 2D-DCT transform is implemented using
VerilogHDL. TheVerilog RTL codes are verifiedwith RTL simulations. RTL simulation
results matched results of HEVC 2D-DCT transform implementation in Joint Explo-
ration Test Model (JEM) 4.0 reference software encoder [2]. The Verilog RTL codes are
synthesized and mapped to a Xilinx XC7VX690TFFG761-2 FPGA with speed grade 2
using Xilinx ISE. The FPGA implementation is verified to work at 250 MHz by post
place and route simulations. Table 1 shows the FPGA resources needed by our design.

Table 1. FPGA resources needed by our design

Resource Utilization Available Utilization %

LUT 2900 433200 0.67

FF 302 866400 0.03

BRAM 16 1470 1.09

DSP 64 3600 1.78

As shown in Table 1, our design has low cost of the FPGA resources.
Our design also has high computation efficiency. Table 2 compares the cycles needed

for each block size 1D-DCT transformation, with [18] which proposes a design aimed
both performance and the FPGA cost.

Table 2. Comparison of the cycles needed for each block size 1D-DCT transformation, with [18]

Our design Design in [18]

32 × 32 256 256

16 × 16 32 64

8 × 8 4 16

4 × 4 1/2 4

As shown in Table 2, compared with [18], our proposed FPGA design have much
higher performance for little block sizes.

As demonstrated in our experiments, our FPGA design can support all possible sizes
in HEVC transform, use as little as possible FPGA implementation cost, i.e. the FPGA
resources, and gain high-performance as possible. Therefore, our FPGA architecture can
be used for the whole HEVC FPGA solutions as the 2-D DCT hardware design.

332 Y. Zhang et al.

6 Conclusion

Nowadays, computational resources in FPGA makes the study of whole HEVC FPGA
implementation is gaining more and more attention. An efficient 2-D DCT FPGA archi-
tecture, used for the whole HEVC FPGA solution should have the following features:
supporting all possible sizes in HEVC transform; using as little as possible FPGA imple-
mentation cost, i.e. the FPGA resources; gaining high-performance as possible. Com-
pared with existing 2D-DCT FPGA architecture, our design can compute all block sizes
in HEVC with the same FPGA design, which means the FPGA resources for butterfly
PEs can deal with the block sizes of 32 × 32, 16 × 16, 8 × 8 and 4 × 4, thus greatly
reducing the FPGA implementation cost. Our butterfly PEs, which compute one element
for the block size of 32 × 32 per cycle, can compute 2 elements for the block size of 16
× 16 per cycle, 4 elements for the block size of 8 × 8 and 8 elements for the block size
of 4 × 4 per cycle, thus gaining high computation efficiency.

Acknowledgments. We acknowledge the reviewers for their insightful comments. This work is
supported by the HGJ2017 under Grant No.2017ZX01028103 and Grant 2018ZX01029103.

References

1. Meuel, H., Munderloh, M., Ostermann, J.: Stereo mosaicking and 3D video for single-
view HDTV aerial sequences using a low bit rate ROI coding framework. In: International
Conference on Advanced Video and Signal Based Surveillance, pp. 1–6 (2015)

2. Bhaskaranand, M., Gibson, J.: Low-complexity video encoding for UAV reconnaissance and
surveillance. In: Military Communications Conference, pp. 1633–1638 (2011)

3. Bhaskaranand, M., Gibson, J.: Low complexity video encoding and high complexity decod-
ing for UAV reconnaissance and surveillance. In: International Symposium on Multimedia,
pp. 163–170 (2013)

4. Zhang, Q., Chang, H., Huang, X., Huang, L., Su, R., Gan, Y.: Adaptive early terminationmode
decision for 3D-HEVC using inter-view and spatio-temporal correlations. Int. J. Electron.
Commun. 70(5), 727–737 (2016)

5. Bossen, F., Bross, B., Suhring, K., Flynn, D.: HEVC complexity and implementation analysis.
IEEE Trans. Circuits Syst. Video Technol. 22(12), 1685–1696 (2012)

6. Kalali, E., Ozcan, E., Yalcinkaya, O., Hamzaoglu, I.: A low energy HEVC inverse transform
hardware. IEEE Trans. Consum. Electron. 60(4), 754–761 (2014)

7. Kessentini, A., Samet, A., Ayed, M., Masmoudi, N.: Performance analysis of inter-layer
prediction module for H.264/SVC. Int. J. Electron. Commun. 69(1), 344–350 (2015)

8. Samcovic, A.: Mathematical modeling of coding gain and rate-distortion function in multi-
hypothesis motion compensation for video signals. Int. J. Electron. Commun. 69(2), 487–491
(2015)

9. Budagavi, M., Fuldseth, A., Bjontegaard, G., Sze, V., Sadafale, M.: Core transform design in
the high efficiency video coding (HEVC) standard. IEEE J. Selected Topics Signal Process.
7(6), 1029–1041 (2013)

10. Rao, K.R., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages, Applications.
Academic Press, Inc., Cambridge (1990)

11. Kalali, E., Mert, A.C., Hamzaoglu, I.: A computation and energy reduction technique for
HEVC discrete cosine transform. IEEE Trans. Consum. Electron. 62(2), 166–174 (2016)

A High-Performance with Low-Resource Utility FPGA 333

12. Conceicao, R., Souza, J., Jeske, R., Zatt, B., Porto, M., Agostini, L.: Low-cost and high
throughput hardware design for the HEVC 16 × 16 2-D DCT transform. J. Integr. Circ. Syst.
9, 25–35 (2014)

13. Mert, A.C., Kalali, E., Hamzaoglu, I.: An FPGA implementation of future video coding 2D
transform. In: IEEE International Conference on Consumer Electronics - Berlin. IEEE (2017)

14. Park, J.S., Nam, W.J., Han, S.M., et al.: 2-D large inverse transform (16 × 16, 32 × 32) for
HEVC (High Efficiency Video Coding). J. Semicond. Technol. Sci. 12(2), 203–211 (2012)

15. Chen, T.H.: A cost-effective 8 × 8 2-D IDCT core processor with folded architecture. IEEE
Trans. Consum. Electron. 45(2), 333–339 (1999)

16. Sjovall, P., Viitamaki, V., Vanne, J., et al.: High-level synthesis implementation of HEVC 2-D
DCT/DST on FPGA. In: IEEE International Conference on Acoustics. IEEE (2017)

17. Huang, J., Parris, M., Lee, J., et al.: Scalable FPGA architecture for DCT computation using
dynamic partial reconfiguration. ACMTrans. Embedded Comput. Syst. 9(1), 269–272 (2009)

18. Chen, M., Zhang, Y., Lu, C.: Efficient architecture of variable size HEVC 2D-DCT for FPGA
platforms. Aeu Int. J. Electron. Commun. 73, 1–8 (2017)

19. Mert, A.C., Kalali, E., Hamzaoglu, I.: An FPGA implementation of future video coding 2D
transform. In: IEEE International Conference on Consumer Electronics - Berlin. IEEE (2017)

Author Index

Cai, Jinyan 221
Cao, Jijun 16, 56
Cao, Qiang 163
Chang, Junsheng 56
Chen, Juan 135, 233
Chen, Qiurui 192

Dai, Yi 16, 56
Deng, Liang 260
Ding, Dong 117
Dong, Yong 135, 233

Fang, Jianbin 150
Feng, Quanyou 209
Fu, ZhiPeng 249

Gao, Wanrong 150
Gao, Wenqiang 178
Gao, Yin 304
Guan, Yijin 73
Guo, Kaile 31

Han, Yinhe 73
Huang, Chun 150

Ji, Weixing 192
Jin, Kang 43

Kang, Ziyang 87

Lai, Mingche 16, 31, 56
Li, Cunlu 43
Li, Gen 325
Li, Hongyun 304
Li, Jun 304
Li, Qiong 178
Li, Shiming 87, 277
Liang, Dongbao 101
Lin, Bai 3
Lin, Rong-Fen 290
Liu, Tao 31

Liu, Yongheng 249
Lou, Hui 43
Lu, Dechao 31
Lu, Pingjing 56
Lu, Zhang 315
Luo, Li 117, 209
Lv, Fangxu 31

Meng, Dehong 260

Niu, Dimin 73

Pan, Guoteng 209
Pang, Ling 3
Pang, Zhengbin 16, 31

Qi, Feng-Bin 290
Qi, Xingyun 16, 56
Qi, Xinxin 233
Qu, Lianhua 87

Su, Jinshu 87
Su, Tao 101
Su, Yijing 304
Sun, Guangyu 73
Sun, Xiaole 135
Sun, Yan 260

Tang, Weiping 31

Wang, Fei 290
Wang, Lei 87, 117, 277, 325
Wang, Shiying 87, 277
Wang, Shucheng 163
Wang, Yizhuo 192
Wang, Yuhao 73
Wang, Yuntao 260
Wang, Zhao 73
Wang, Zheng 135
Wei, Dengping 178
Wei, Shuangjian 192

Wu, Miaomiao 31
Wu, Wei 290
Wu, Yuxuan 31

Xiao, Canwen 43
Xiao, Jiale 101
Xie, Chuan 117
Xie, Xuchao 178
Xu, Chuanfu 150
Xu, Weixia 277

Yang, Shazhou 249
Yang, Zhijie 117
Ye, Zhixia 221
Yu, Yangbin 101

Yuan, Lingyun 221
Yuan, Yuan 233
Yue, Hao 260

Zeng, Rui 221
Zhang, Xiangyu 117
Zhang, Ying 325
Zhao, Jinjing 3
Zhao, Longfei 249
Zheng, Hongzhong 73
Zhou, Hailiang 209
Zhou, Li 209
Zhou, Ye Heng 315
Zhu, Qi 290
Zhu, Yue 249

336 Author Index

	Preface
	Organization
	Contents
	Interconnection Network, Router and Network Interface Architecture
	SDNVD-SCADA: A Formalized Vulnerability Detection Platform in SDN-Enabled SCADA System
	1 Introduction
	2 Related Works
	3 SDNVD-SCADA Architecture
	4 SDNVD-SCADA Implementation
	4.1 SCADA Security Mechanism Description Language
	4.2 SCADA Vulnerability Pattern Description
	4.3 SCADA Vulnerability Detector

	5 Example
	6 Conclusion
	References

	Optimal Implementation of In-Band Network Management for High-Radix Switches
	1 Introduction
	2 Related Works
	2.1 IB In-Band Management
	2.2 OPA In-Band Management
	2.3 TianHe In-Band Management

	3 Scalability Problem of In-Band Management Ring
	3.1 Ring Structure of In-Band Management
	3.2 Problem of Delay Performance Scalability

	4 The Proposed Structures for In-Band Management
	4.1 Double-Layer Ring Structure
	4.2 Star Ring Structure

	5 Resource Assessment
	6 Performance Evaluation
	6.1 Theoretical Analysis
	6.2 Simulation Analysis

	7 Conclusions
	References

	A 32 Gb/s Low Power Little Area Re-timer with PI Based CDR in 65 nm CMOS Technology
	1 Introduction
	2 Architecture and Circuit Design
	2.1 BBPD Based PI-CDR with 2-Order Digital Filter
	2.2 Phase Interpolator
	2.3 4:1 MUX Based 3-Tap FFE

	3 Experimental Results
	4 Conclusion
	References

	DBM: A Dimension-Bubble-Based Multicast Routing Algorithm for 2D Mesh Network-on-Chips
	1 Introduction
	2 Novel Multicast Routing Algorithm
	2.1 RPM and BAM Routing Algorithm
	2.2 Dimension-Bubble Multicast (DBM) Algorithm

	3 Proof of Deadlock Freedom of DBM
	4 Evaluation
	4.1 Experiment Setup
	4.2 Average Latency and Load Scalability
	4.3 Impact of Buffer Size
	4.4 Scalability of Network Size
	4.5 Discussion

	5 Conclusions and Future Work
	References

	MPLEG: A Multi-mode Physical Layer Error Generator for Link Layer Fault Tolerance Test
	1 Introduction
	2 Related Works
	3 Statistics of Real Bit Error in Physical Links
	4 Multi-mode Physical Layer Error Generator - MPLEG
	5 Evaluation
	5.1 Evaluation Criterion
	5.2 Evaluation of Generated Error Data
	5.3 Actual Link Layer Fault Tolerance Test

	6 Conclusion
	References

	Accelerator-Based, Application-Specific and Reconfigurable Architecture
	GNN-PIM: A Processing-in-Memory Architecture for Graph Neural Networks
	1 Introduction
	2 Background
	2.1 GNN Inference and SAGA
	2.2 PIM Basis

	3 GNN-PIM Architecture
	3.1 Node
	3.2 Node Cluster

	4 Execution Dataflow
	4.1 Mapping Strategy
	4.2 Setup and Terminology
	4.3 Dataflow Description

	5 Interconnection Hierarchy
	6 Evaluation
	6.1 Benchmark
	6.2 Methodology
	6.3 Performance Results

	7 Conclusions
	References

	A Software-Hardware Co-exploration Framework for Optimizing Communication in Neuromorphic Processor
	1 Introduction
	2 Background and Related Work
	2.1 RC Model
	2.2 Network-on-Chip

	3 The Software-Hardware Co-exploration Framework
	3.1 Real-Time Definition
	3.2 Framework
	3.3 Framework Workflow

	4 Experiment and Analysis
	4.1 Experiment Setup
	4.2 Result of MNIST Dataset
	4.3 Result of FSDD Dataset
	4.4 Analysis

	5 Conclusion
	References

	A CNN Hardware Accelerator in FPGA for Stacked Hourglass Network
	1 Introduction
	2 Background
	2.1 Stacked Hourglass Network
	2.2 Depthwise Separable Convolution

	3 Hardware Design
	3.1 Overall Architecture
	3.2 Processing Engine
	3.3 Memory Organization

	4 Network Mapper
	4.1 Overview of Network Mapper
	4.2 Residual Optimizing

	5 Experimental Result
	5.1 Implementation Result
	5.2 Application

	6 Conclusion
	References

	PRBN: A Pipelined Implementation of RBN for CNN Training
	1 Introduction
	2 Background
	2.1 CNN Training
	2.2 Range Batch Normalization

	3 Proposed Architecture
	3.1 Overview
	3.2 Systolic Array
	3.3 Implementation of Batch Normalization

	4 Evaluation
	4.1 Experiment Setup
	4.2 Experiment Results

	5 Related Works
	6 Discussion
	7 Conclusion
	References

	Processor, Memory, and Storage Systems Architecture
	Network-on-Chip Aware Task Mappings
	1 Introduction
	2 Background
	2.1 The Problem of Shared Routers
	2.2 Communication Latency Caused by Shared Routers
	2.3 Communication Energy Caused by Shared Routers

	3 Mapping Algorithm Based on Topology Partition
	3.1 Examples of Core Region Selection
	3.2 Single Job Mapping Algorithm Based on Topology Partition
	3.3 Computation Complex

	4 Experimental Results
	4.1 Experimental Platform
	4.2 Experimental Result
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

	Dissecting the Phytium 2000+ Memory Hierarchy via Microbenchmarking
	1 Introduction
	2 Phytium 2000+ and Its Memory Hierarchy
	3 Our Approach
	3.1 Benchmarks Design
	3.2 Benchmarks Implementation

	4 Bandwidth Results
	5 Latency Results
	5.1 Overview of the Latency Results
	5.2 Across-Panel Latency Results
	5.3 With Different Page Sizes

	6 Related Work
	7 Conclusion
	References

	TSU: A Two-Stage Update Approach for Persistent Skiplist
	1 Introduction
	2 Background and Challenge
	2.1 Skiplist
	2.2 NVRAM
	2.3 Challenge

	3 Two-Stage Update
	3.1 Design of TSU
	3.2 The Persistency Algorithm in TSU
	3.3 Concurrent Search

	4 Evaluation
	4.1 Performace
	4.2 NVRAM Latency Effect
	4.3 Concurrency
	4.4 YCSB

	5 Related Work
	6 Conclusion
	References

	NV-BSP: A Burst I/O Storage Pool Based on NVMe SSDs
	1 Introduction
	2 NV-BSP Overview
	2.1 System Architecture
	2.2 Resource Management
	2.3 Storage Disaggregation

	3 High Concurrent I/O Processing
	3.1 Task Grouping
	3.2 I/O Handler Allocation
	3.3 I/O Request Processing

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Experiment Results

	5 Related Work
	6 Conclusion
	References

	Pin-Tool Based Execution Backtracking
	1 Introduction
	2 Application Scenario
	3 Related Work
	3.1 Checkpointing
	3.2 Execution Backtracking

	4 Architecture Overview
	5 Implementation
	5.1 Data Structure
	5.2 Virtual File Layer

	6 Evaluation
	6.1 IOzone Test
	6.2 Pin-Tool Overhead
	6.3 Checkpointing Performance

	7 Conclusion
	References

	Model, Simulation and Evaluation of Architecture
	Directory Controller Verification Based on Genetic Algorithm
	1 Introduction
	2 Related Work
	3 Background
	4 Test Generation Based on Genetic Algorithm
	4.1 Question Encoding
	4.2 Fitness Function
	4.3 Mutation Operator and Crossover Operator
	4.4 Parameters of Genetic Algorithm

	5 Experimental Results
	6 Conclusions
	References

	Prediction and Analysis Model of Telecom Customer Churn Based on Missing Data
	1 Introduction
	2 Model Implementation
	2.1 Input Neuron Determination Module
	2.2 Hidden Layer Neuron Determination Module
	2.3 The Initial Weight and Threshold Determination Module
	2.4 Analysis and Prediction Module

	3 Experimental Verification
	4 Summary
	References

	How to Evaluate Various Commonly Used Program Classification Methods?
	1 Introduction
	2 Experiment Platform
	3 Solution to Issue 1: Discover the Occasional Inconsistency
	3.1 Overviews of Representative Program Classification Methods
	3.2 Difference of Various Classification Methods
	3.3 Exploration of Occasional Classification Inconsistency

	4 Solution to Issue 2: Explore the Threshold
	4.1 The Impact of Thresholds
	4.2 Discussions About In-between Programs

	5 Conclusions
	References

	A Performance Evaluation Method for Machine Learning Cloud
	1 Introduction
	2 Correlational Research
	3 Design of Cloud Platform Performance Evaluation Method
	3.1 Workload

	4 Cloud Platform Performance Evaluation Method Implementation
	5 Results and Discussion
	6 Conclusion
	References

	Parallelization and Optimization of Large-Scale CFD Simulations on Sunway TaihuLight System
	1 Introduction
	2 Background
	2.1 Sunway TaihuLight Architecture
	2.2 The Euler Equations
	2.3 Spatially Discretization
	2.4 Time Discretization
	2.5 The Workflow of TRIP

	3 Parallelization Strategies
	3.1 Parallelization of Kernel Functions with Data Independency
	3.2 Parallelization of Kernel Functions with Weak Data Dependency
	3.3 Parallelization of Kernel Functions with Strong Data Dependency

	4 Optimization Within a CG
	4.1 Refactoring the Loop Structure
	4.2 Data Transfer and BatchSize Determination
	4.3 Other Optimizations

	5 Load Balancing for Large-Scale Parallelization
	5.1 Load Balancing Analysis
	5.2 Improvement of Load Balancing

	6 Evaluation
	6.1 Evaluation Within a CG
	6.2 Evaluation of Large-Scale Parallelization

	7 Conclusion
	References

	New Trends of Technologies and Applications
	Liquid State Machine Applications Mapping for NoC-Based Neuromorphic Platforms
	1 Introduction
	2 Background and Related Works
	2.1 Liquid State Machine (LSM)
	2.2 SNN Mapping Methods

	3 LSM Mapping Method
	3.1 Overview
	3.2 Profiling
	3.3 Partitioning
	3.4 Mapping

	4 Experiment Setup
	4.1 Experiment Platform
	4.2 LSM Application

	5 Results and Discussion
	5.1 Scalability
	5.2 Performance

	6 Conclusion
	References

	Compiler Optimizing for Power Efficiency of On-Chip Memory
	1 Introduction
	2 Related Work
	3 Compiler Optimizing on Bypassing Registers
	3.1 Register Renaming Based on Bypassing
	3.2 Instruction Scheduling Based on Bypassing

	4 Compiler Optimizing on L0 Cache
	4.1 Performance-Power Tradeoff Factor
	4.2 Loop Evaluation Model
	4.3 Loop Transformations Based on L0 Cache

	5 GEAT—A Systematic Simulator
	6 Evaluation
	6.1 Evaluation on Bypassing Register Optimizing
	6.2 Evaluation on L0 Cache Optimizing

	7 Conclusion
	References

	Structural Patch Decomposition Fusion for Single Image Dehazing
	1 Introduction
	2 Proposed Method
	2.1 Dark Channel Prior
	2.2 Estimation of the Range of Atmospheric Light
	2.3 The Transmission Optimization
	2.4 Structural Patch Decomposition Image Fusion

	3 Experimental Results and Analysis
	3.1 Qualitative Comparison of Natural Environment Images
	3.2 Qualitative Comparison of Synthetic Hazy Images
	3.3 Quantitative Comparison

	4 Conclusion
	References

	Historic and Clustering Based QoS Aggregation for Composite Services
	1 Introduction
	2 Related Work
	3 Uncertain QoS Calculation for Composition Patterns
	3.1 Underlying Assumptions
	3.2 QoS Aggregation Operations

	4 Sample Space Clustering
	5 Experimental Analysis
	5.1 Scenario 1
	5.2 Scenario 2

	6 Conclusion
	References

	A High-Performance with Low-Resource Utility FPGA Implementation of Variable Size HEVC 2D-DCT Transform
	1 Introduction
	2 Introduction
	2.1 HEVC Transform Algorithms
	2.2 Related FPGA Architectures

	3 Proposed FPGA Architecture for Element Computation of HEVC DCT
	3.1 FPGA Design for an Element in 32 × 32 Block Size
	3.2 FPGA Architecture for an Element in Other Block Sizes

	4 FPGA Architecture for HEVC DCT
	5 Experiments
	6 Conclusion
	References

	Author Index

