
Research on Automated Vulnerability Mining
of Embedded System Firmware

Xiaoyi Li1, Lijun Qiao2, Yanbin Sun1(B), and Quanlong Guan3

1 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
sunyanbin@gzhu.edu.cn

2 The People’s Armed Police Sergeant School, Beijing, China
3 Jinan University, Guangzhou, China

Abstract. The development of the Internet of Things (IoT) makes people pay
more andmore attention to the security of embedded systems. The most important
of it is the security issues brought by firmware. The threat posed by firmware
vulnerabilities is fatal. Researching firmware vulnerability mining technology is
a way to effectively protect embedded systems. However, it’s not easy to move
the software’s vulnerability mining methods to firmware. The existing firmware
vulnerability mining work can effectively solve some problems, but it still has
some shortcomings. In this paper, we first summarize the main challenges of
firmware research. Then we analyze the work related to firmware vulnerability
mining. After that, we classify and analyze the existing firmware vulnerability
mining work from two aspects of method and technology. At the same time, we
have made some performance comparisons on the exiting work. Finally, we give
some suggestions on the future direction of the firmware vulnerability mining
work.

Keywords: Firmware · Embedded system · Vulnerability mining

1 Introduction

Nowadays,with the development of IoT,more andmore embedded devices are connected
to the Internet. In the trend of the IoT, embedded devices are almost everywhere. They
penetrate into every aspect of our lives and play a decisive role in the future of IoT
security. Today, the security of embedded systems is getting more and more attention,
and the core of embedded system security is firmware.

The term firmware is defined as a layer of bonded microcode between the CPU
instruction set and the actual hardware in a Datamation article written by Opler A [1] in
1967. However, this definition is gradually expanded to the level of computer data with
the development of computer hardware devices. The firmware is given a new meaning
in the IEEE Standard Glossary of Software Engineering Terminology, Std 610.12-1990
[2]: The combination of a hardware device and computer instructions and data that reside
as read-only software on that device.

© Springer Nature Singapore Pte Ltd. 2020
X. Sun et al. (Eds.): ICAIS 2020, CCIS 1254, pp. 105–117, 2020.
https://doi.org/10.1007/978-981-15-8101-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8101-4_11&domain=pdf
https://doi.org/10.1007/978-981-15-8101-4_11


106 X. Li et al.

After that, the rise of the IoT has allowed the definition of firmware to be developed
again. According to Zhang [3], firmware refers to a binary program stored in a non-
volatile memory (e.g., FLASH, ROM) of an embedded device, which is non-volatile
and solidified. Zaddach J et al. [4] generalize the firmware to all code sets (machine
code and virtual machine code) running on the hardware processor. These definitions
introduce the features of the firmware from different aspects, but their core content
is actually the same: firmware is the set of software that makes an embedded system
functional.

Embedded devices are mostly controlled by firmware, which is usually provided
by the device vendor and has strong specificity and privacy. Unfortunately, these device
vendors typically do not consider securitywhen designing firmware. Thismakesmillions
of homes and small businesses face known and unknown threats on the network at all
times. With these vulnerabilities, an attacker can easily control and destroy a device.
Tor hidden services is also a new security issue. Q. Tan et al. [5] present practical
Eclipse attacks on Tor HSs that allow an adversary with an extremely low cost to block
arbitrary Tor HSs. A firmware vulnerability is fatal for some equipment related to social
infrastructure, which seriously threatens people’s lives and property. Therefore, we must
accurately identify the vulnerability in the firmware. Although the existing firmware
vulnerability mining research has achieved results in some aspects, there are still some
limitations.

In summary this paper makes the following contributions:

• We point out the challenges brought by the firmware.
• We review and compare the work related to firmware vulnerability mining.
• We classify the related work from two aspects of method and technology.
• We analyze the technical route of the work including the simulator.
• We summarize the future work and development direction of firmware vulnerability
mining.

2 Challenges

The reason why firmware has many security issues and is difficult to detect is that
firmware is essentially different from traditional software. These differences hinder the
security of the firmware, so that the original mature software security policies and detec-
tion methods can not be applied to the firmware. At the same time, these differences are
also challenges that we must overcome in the security research process. We summarize
some important firmware challenges as follows.

2.1 Complex Format

The format of the firmware is a very complicated problem. Unlike traditional software,
the firmware does not have a standard file format. In today’s embedded device market,
the firmware formats used by different vendors are different. Although the exact format
of the firmware is difficult to determine, Zaddach J et al. classify the firmware into the
following three categories based on the components and functions of the firmware:



Research on Automated Vulnerability Mining 107

• Full-blown (full-OS/kernel + bootloader + libs + apps).
• Integrated (apps + OS-as-a-lib).
• Partial updates (apps or libs or resources or support).

In addition, these objects can be arbitrarily grouped and packaged into various
archives or file system images. The combination of different firmware categories and
different packaging methods allows the firmware format to be changed at will, which
greatly increases the complexity of the firmware format.

2.2 Update Difficulty

For firmware vendors, it is important to consider how to obtain more profit, and the
security of firmware is something that will be considered after that. On the other hand,
the diversity of platforms and applications increases the difficulty of compiling and
maintaining. In addition, since some firmware involves important infrastructure, special
inspection standards are required for supervision.

For users, the process of updating the firmware is not as easy as the software update.
Updating the firmware sometimes requires the user to have some knowledge of the
hardware device, and even need to learn the knowledge of the specific update software.
To make matters worse, if the update process fails, it may cause device crash. And
updating the firmware does not bring new features.

2.3 Diverse Architecture

Different from the hardware architecture of traditional computers, embedded devices
have many choice. These architectures have their own unique features in various fields,
which are difficult to replace for each vendor. And it is difficult to achieve uniformity in
one aspect.

In terms of processor architecture, embedded devices are more diverse than tra-
ditional computers. ARM and MIPS processors are the most widely distributed. The
choice of architecture for simple devices is diverse, such as PowerPC,ARCandMotorola
6800/68000 with smaller memory.

The use of the operating system is equally diverse. Complex devices usually use a
mature operating system (e.g., Linux, Windows NT), and Linux is currently the most
popular operating system. And simple devices use a proprietary real-time operating
system (e.g., VxWorks). It even includes some questions about Internet of Vehicles. Z.
Tian et al. [6] propose to consider dynamical and diversity attacking strategies in the
simulation of reputation management scheme evaluation.

3 Review of Firmware Vulnerability Mining

In recent years, people gradually realize the significance and value of firmware vulner-
ability research, and urgently want to apply software vulnerability mining methods to
the firmware. However, research on firmware vulnerability mining is not as smooth as
imagined. We study the existing firmware vulnerability mining methods. Hou et al. [7]



108 X. Li et al.

and Xie et al. [8] have some good classification of existing methods. Based on these
efforts, we reclassify existing research into the following categories from the method
level. And we compare them in Table 1.

3.1 Static Analysis

Static analysis is away to directly analyze firmware content to discover bugs in a program
without having to execute the program on the actual device or simulator.

Costin et al. [9] propose a static analysis framework for the process of firmware
collection, filtering, unpacking, and large-scale analysis. The framework determines
whether it contains a private encryption key or a string of known errors by studying
the firmware information extracted from each firmware sample. This work is tested in
approximately 32,356 firmware images collected. It proves that 693 firmware images are
affected by at least one vulnerability. Of these, 38 are newly discovered vulnerabilities.
However, this approach faces the classic trade-off of static analysis. That is, the analysis
of the firmware is too broad or too specific.

3.2 Symbolic Execution

Instead of specific variables, symbolic values are used to simulate each path to produce
the possibility of each execution. Solving the mathematical expression of a result gives
the path to the result.

FIE [10] is a major concern for memory security issues and is used to automatically
analyze firmware vulnerability detection systems that are widely used inMSP430micro-
controllers. It compiles the source code of the analysis firmware into LLVM bytecode
for analysis as input to the symbol execution. It is based on the KLEE [11] symbolic exe-
cution engine. FIE significantly improves code coverage with state pruning and memory
blur. It can be used to discover two types of vulnerabilities. However, FIE is limited to
analyzing small firmware written in C and must obtain firmware source code. And for
the vulnerability reported by the system, the user must manually verify.

Firmalice [12] is a symbolic analysis system for analyzing binary code in complex
firmware on different hardware platforms. It is based on the angr [13] symbol execution
engine. Firmalice generates a program dependency graph for the firmware from the static
analysis module and uses this graph to create an authentication slice from the entry point
to the privileged program point. It attempts to find the path to the privileged program
point and performs a certificate bypass check on the successfully arrived symbol state.
After testing, Firmalice can effectively detect a large number of complex backdoors
without relying on the implementation details of the firmware itself. However, Firmalice
requires manual operation when providing security policies for devices, so it cannot be
used for large-scale analysis.

Avatar [14] is a dynamic analysis framework based on embedded device firmware.
It acts as a software agent between the embedded device and the simulator based on the
S2E [15]. The firmware instructions are executed in the simulator, and I/O operations
are introduced into the embedded device. The state is passed between the simulator
and the device while the firmware is running. And the state remains the same when it
is passed. The experimental results show that Avatar can play a good supporting role



Research on Automated Vulnerability Mining 109

for reverse engineering of firmware, vulnerability detection and hardcoded backdoor
discovery. However, Avatar is much slower on the emulator than on the actual device.
And Avatar relies on hardware devices.

3.3 Fuzzing

Fuzzing is to construct random and unintended malformed data as the input of the
program, and monitor the abnormalities that may occur during the execution of the
program.

Firmadyne [16] is a framework for dynamically analyzing vulnerabilities in Linux-
based embedded firmware. It is an automated, scalable dynamic analysis technology. It
collects firmware on the vendor’s website. A binwalk script effectively implements the
extraction of file systems and optional kernels. During the simulation phase, Firmadyne
performed an initial simulation on the QEMU [17] simulator. This learning process, it
will continually modify the network configuration for QEMU. Fimadyne provides three
analysis channels to analyze firmware. Firmadyne can accurately simulate the firmware
of network devices and has good versatility. However, Firmadyne uses a general-purpose
kernel in the simulation process. This approach prevents it from analyzing vulnerabilities
in kernel or kernel modules.

Dai et al. [18] propose a method based on using dynamic fuzzing and static taint
tracing on the simulator to locate and exploit firmware vulnerabilities. This method
uses risk weights to design a set of fuzzing cases, which improves code coverage and
dynamic analysis capabilities. It constructs a taint propagation path graph by identifying
and tracing tainted data sources for binary data. The taint path graph is then dynamically
executed on the simulator and fuzzed to detect vulnerabilities in the firmware. However,
this method also has certain limitations. The simulator cannot accurately simulate some
firmware images that require hardware support.

3.4 Comprehensive Analysis

Comprehensive analysis refers to the use of several different methods for firmware
vulnerability mining. And some tools are effectively integrated to provide more accurate
analysis results.

Avatar2 [19] is a dynamic multi-target orchestration framework designed to support
interoperability between any number of different dynamic binary analysis frameworks,
debuggers, simulators, and physical devices. Avatar2 is a completely redesigned system
compared to Avatar. It includes the Avatar2 kernel, targets, protocols, and endpoints.
In the end, Avatar2 integrated five targets: GDB, OpenOCD [20], QEMU, PANDA
[21], angr. These targets provide a large number of analytical combinations. However,
the GDB stubs are highly dependent on the architecture of the analysis target and are
difficult to abstract in a generic way.

3.5 Others

In addition to the above literature, the following literature also contributes to the firmware
vulnerability mining and can be classified by the above methods, which is not described
in detail here.



110 X. Li et al.

Bojinov et al. [22] propose a vulnerability scanning work for the embedded web
interface of IoT devices. They scan a total of 21 devices.More than 40 newvulnerabilities
are discovered and a new type of web vulnerability called XCS is discovered.

FEMU [23] proposes a simulation framework that mixes firmware and hardware. It
implements consistent SoC verification by using the ported QEMU at the BIOS level.
But this method requires the support of hardware devices.

Hu et al. [24] study embedded firmware without file system. They discuss the prob-
lems of library function identification and backdoor detection. This method successfully
identify the main contents of a real firmware and detect multiple backdoors.

Shang et al. [25] design a vulnerability analysis system for industrial embedded
devices, including multiple analysis modules. It provides a theoretical approach to the
development of vulnerability analysis systems for industrial control systems.

Li et al. [26] aim at the recurrence of the same vulnerability in the development
process of embedded device firmware. Finally, they perform vulnerability detection on
similar firmware based on the analysis result.

Genius [27] is a vulnerability search system based on digital feature search technol-
ogy. It learns advanced features from control flow graphs. Genius tests in 8126 firmware
and averages the search in less than a second.

Table 1. Performance comparison of firmware vulnerability mining

Tool/method Architecture Vulnerability
type

Support Large-scale
analysis

Simulator Vulnerability
mining

Costin et al. – Backdoor Homology
√ × ×

FIE MSP430 Memory
security

Source
code

√ × √

Firmalice – Backdoor – × × √

Avatar – – Device × √ √

Firmadyne Linux
(ARM,
MIPS)

– –
√ √ ×

Dai et al. ARM,
MIPS

– – × √ √

Avatar2 – – – × √ √

4 Technical Route

The above firmware vulnerability mining methods can be divided into two categories
from the technical level: No-simulator and Simulator.

No-simulator usually rely onfirmware source code (e.g., FIE).However, thefirmware
source code is usually not provided by the vendor. And it becomes the biggest bottleneck



Research on Automated Vulnerability Mining 111

of this type of method. Methods that do not use firmware source code are also present
(e.g., Firmalice), but such methods have poor analytical capabilities.

Simulator pays more attention to the execution of the firmware in the embedded
device. It has no excessive restrictions on the input, and has relatively better analysis
and expansion capabilities. It is suitable for firmware analysis without actual device or
device without a debug interface. The technical route is clear. We design a framework
for vulnerability mining with a simulator (see Fig. 1).

Download 
firmware from 

the website

Capture 
firmware during 

device update

Extract firmware 
from the device

Tools for 
identifying 

complex file 
systems

Binwalk API QEMU
Firmware 

image

Kernel 
(optional)

and
File system

Vulnerability 
scanning

Symbolic 
execution Fuzzing

Firmware 
acquisition

Firmware 
extraction

Simulator 
simulation

Automated analysis

Peripheral 
simulation and 
configuration 

parameters, etc.

Fig. 1. The framework for vulnerability mining with a simulator

4.1 Firmware Acquisition

In the firmware acquisition phase, our main task is to accurately obtain the firmware to
be analyzed and provide sufficient firmware information resources for the analysis. The
technology of this process is relatively fixed.

The first method is the most ideal and the most common method. For some larger
vendors, the firmware is usually posted on the official website. At the same time, the
firmware released on the official website usually has a lot of firmware information. These
firmware information plays a role in the later analysis. Some vendors’ official websites
do not provide firmware, but there are dedicated FTP download sites.

The second method is complicated. It requires us to find the firmware from the
official website update package when the firmware is updated. We can capture it during
the firmware transfer. This requires us to have some understanding of the firmware and
the corresponding firmware update process.

The worst case is that we have to extract the firmware from the embedded device. At
this time we have to understand part of the structure of the device, find the interface to



112 X. Li et al.

extract the firmware, and use the professional tools and methods to extract the firmware.
Among them edge computing is a new security issue. Z. Tian et al. [28] propose amethod
named CloudSEC meaning real time lateral movement detection for the edge-cloud
environment.

4.2 Firmware Extraction

In the firmware extraction phase, we need to extract the parts we need from the complete,
and identify the hardware architecture information that thefirmwaredepends on.Binwalk
[29] is the most common tool in the process. We only need to use the API of the binwalk
to write analysis scripts according to the content we need. Besides binwalk, firmware-
mod-kit [30], FRAK [31], and Binary Analysis Toolkit (BAT) [32] are also optional
firmware extraction tools.

The content we want to extract is mainly the file system in the firmware. Normal
compressed files and file systems can be recognized and extracted by binwalk, but some
complex or packaged files modified by the vendor require special unpacking tools. They
may need some digital technology. Z. Tian et al. [33] propose a secure digital evidence
framework using blockchain (Block-DEF).

Another part worthy of our attention is the kernel in the firmware, which is the part
that must be used during the simulation. However, it is optional during the firmware
extraction process. This is because the kernel in the firmware usually only performs
some of the device-related functions. So we can use a pre-prepared kernel.

4.3 Simulator Simulation

The main work of the simulator simulation phase is to apply the extracted parts from
the firmware to the simulator and finally run the firmware. Traditional device emu-
lation is roughly divided into three levels: complete hardware emulation, hardware
over-approximate, and firmware adaptation.

We can see that the performance of the simulator is the key to the simulator simulation
phase. What needs to be considered is how to simulate more accurately. Using the
improved QEMU is a broad idea. QEMU is a machine simulator and virtualization
platform. It has the ability to simulate a complete system and user-mode.

Although the performance of QEMU is good enough, its shortcomings are obvious.
First of all, the architecture it supports is not enough, which makes it difficult to imitate
dedicated complex devices. Secondly, in addition to the kernel and file system, QEMU
needs to input the most basic parameters for system configuration. These parameters are
not recognized by QEMU. In addition, QEMU is also helpless with the simulation of
peripheral devices and memory mapping.

4.4 Automated Analysis

After the firmware has been run on the simulated device, our task is to analyze the virtual
device using dynamic analysis. This process is usually targeted at a specific category or
categories of vulnerabilities. It is limited by the analytical capabilities of the analysis
tool. Here are some common firmware vulnerability mining methods.



Research on Automated Vulnerability Mining 113

At its simplest, you can scan the device for vulnerabilities. This method is based on
a vulnerability database. Nmap [34] is an analysis tool that provides information about
exploits that may exist on a device. However, this type of method cannot discover new
vulnerabilities.

Symbolic execution (as described in Sect. 3.2) is a very efficient method of analysis
that can reduce the difficulty of analysis and theoretically reveal all vulnerabilities. The
commonly used symbolic execution engines are angr and KLEE, both of which are
very powerful enough to enable in-depth vulnerability mining. An analytical framework
based on the symbolic execution engine is also a good choice.

Fuzzing (as described in Sect. 3.3) is considered to be the most effective method of
vulnerability analysis. However, in the current firmware vulnerability detection tools,
there are few tools that use fuzzing. This is mainly limited by the difficulty of fuzzing
and device interaction. AFL [35], LibFuzzer [36], Honggfuzz [37], etc. are simple and
powerful fuzzing tools. These tools also provide more options for exploiting embedded
devices.

In addition, analytical methods combining symbolic execution with fuzzing are also
evolving, and Driller [38] is a typical example of this approach. It adds the dynamic sym-
bolic execution engine angr to the AFL. Simulation of network devices may involve net-
work routing decisions. Z. Tian et al. [39] present a prefix level route decision prediction
model.

5 Future Work

The existing firmware vulnerability mining methods have formed a complete technical
route. However, there are still many shortcomings in these methods. We can continue
to find more versatile methods for the key issues in each step along this technical route.
Andwe can even extend the new technology route.We believe that the future direction of
firmware vulnerability mining should aim to achieve a large-scale automated firmware
vulnerability mining tool with in-depth analysis capabilities. This paper proposes the
following new ideas and suggestions.

5.1 Introducing Machine Learning Module

Since the firmware does not have a standard format (as described in Sect. 2.1), the
firmware extraction phase relies too heavily on unpacking tools like binwalk. Existing
methods are discussed in a single form in addition to binwalk, while binwalk often has
false positives when dealing with complex formats, and scripts written using the API
of the binwalk are less versatile. If there are multiple file systems in the firmware, then
binwalk alone can’t complete our needs. Some firmware may require trusted commu-
nication services. Vcash [40] is a reputation framework for identifying denial of traffic
service.

We can consider adding a separate machine learning module. The module first needs
to acquire a large number of different categories of firmware. After that, it is the work
that machine learning needs to accomplish. We formatted a large number of different



114 X. Li et al.

categories of firmware to select the main features of each part of the firmware, and vec-
torized these features to finally train the optimal firmware model. With this firmware
model, we can identify the firmware and split the firmware more accurately and con-
veniently during the firmware extraction phase. It is no longer limited by the type and
packaging of firmware.

5.2 Improve In-depth Analysis

Existing methods can take many approaches during the automated analysis phase (as
described in Sect. 4.4). However, they generally have problems with insufficient analyti-
cal capabilities. Vulnerability scanning can only verify existing vulnerabilities; symbolic
execution is generally detected for certain types of vulnerabilities; the use of fuzzing is
almost always on the surface. This limits the ability of large-scale vulnerability mining
to a certain extent.

We consider improving the software’s fuzzing tools to adapt it to the firmware.
The focus is on the interaction of the fuzzing process with the emulation device and
how to run the scripts we need on the firmware of the different architectures. At the
same time, symbolic execution needs to overcome the limitations of single vulnerability
detection, which requires further study of the symbolic execution engine. This will
greatly improve the analysis capabilities of firmware vulnerability mining and achieve
large-scale in-depth analysis.

5.3 Integrate Existing Tools

A number of tools have been developed for different phases of analysis of different
architectures that overlap in functionality but have their own analytical capabilities. We
consider ways to integrate multiple tools. The work of Avatar2 is similar to ours, but the
shortcomings of Avatar2 are obvious (as described in Sect. 3.4).

Our idea is not limited to the integration of tools at a certain stage, but the integration
of stage tools with the overall tools. For example, by integrating Firmayne and Angr,
firmware vulnerability exploitation of general network devices with good performance
can be achieved; Costin’s system can greatly improve the analysis capabilities of Firmal-
ice as input from Firmalice. It should be noted that in the process of integrating tools,
the synchronization of the running state of the devices and the memory data between
different frameworks is crucial. Integrating existing frameworks is designed to enable
large-scale, general-purpose analysis.

6 Conclusion

In this paper, we summarize the important firmware challenges. We divide the existing
firmware vulnerability mining work into four categories: static analysis, symbolic exe-
cution, fuzzing, and comprehensive analysis. The contributions and deficiencies of the
typical work in these four categories are analyzed in detail and compared. Thenwe divide
them into No-simulator and Simulator technically. We notice the lack of No-simulator
and detail analysis of the technical route of the Simulator. We divide this technical route



Research on Automated Vulnerability Mining 115

into four stages: firmware acquisition, firmware extraction, simulator simulation, and
automated analysis. At the same time, the techniques commonly used and the problems
that should be paid attention to in each stage are summarized. Finally, we propose the
future direction of the firmware vulnerability mining work for the above analysis. This
includes three suggestions: introducing machine learning modules, improving in-depth
analysis capabilities, and integrating existing tools. Our work is aimed at implement-
ing a large-scale automated firmware vulnerability mining tool with in-depth analysis
capabilities.

Acknowledgments. This work is funded by the National Key Research and Development Plan
(Grant No. 2018YFB0803504), theNational Natural Science Foundation of China (No. 61702223,
61702220, 61871140, 61602210, 61877029, U1636215), the Science and Technology Plan-
ning Project of Guangdong (2017A040405029), the Science and Technology Planning Project
of Guangzhou (201902010041), the Fundamental Research Funds for the Central Universities
(21617408, 21619404).

References

1. Opler, A.: Fourth generation software. Datamation 13(1), 22–24 (1967)
2. IEEE Standards Coordinating Committee.: IEEE standard glossary of software engineering

terminology (IEEEStd 610.12–1990). LosAlamitos.CA: IEEEComputer Society, 169 (1990)
3. Zhang, P.: Research on embedded operating system recognition technology for firmware.

Inform. Eng. Univ (2012)
4. Zaddach, J., Costin, A.: Embedded devices security and firmware reverse engineering. Black-

Hat USA (2013)
5. Tan, Q., Gao, Y., Shi, J., Wang, X., Fang, B., Tian, Z.: Toward a comprehensive insight to the

eclipse attacks of tor hidden services. IEEE Internet Things J. 6(2), 1584–1593 (2019)
6. Tian, Z., Gao, X., Su, S., Qiu, J., Du, X., Guizani, M.: Evaluating reputation management

schemes of internet of vehicles based on evolutionary game theory. IEEETrans. Veh. Technol.
IEEE (2019)

7. Hou, J., Li, T., Chang, C.: Research for vulnerability detection of embedded system firmware.
Procedia Comput. Sci. 107, 814–818 (2017)

8. Xie, W., Jiang, Y., Tang, Y., et al.: Vulnerability detection in IoT firmware: a survey. In:
2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS),
pp. 769–772. IEEE (2017)

9. Costin,A., Zaddach, J., Francillon,A., et al.:A large-scale analysis of the security of embedded
firmwares. In: 23rd {USENIX} Security Symposium ({USENIX} Security 14), pp. 95–110
(2014)

10. Davidson, D., Moench, B., Ristenpart, T., et al.: {FIE} on firmware: finding vulnerabilities
in embedded systems using symbolic execution. In: 22nd {USENIX} Security Symposium
({USENIX} Security 13), pp. 463–478 (2013)

11. Michel, S., Triantafillou, P., Weikum, G.: Klee: a framework for distributed top-k query
algorithms. In: Proceedings of 31st International Conference on Very Large Data Bases,
pp. 637–648. VLDB Endowment (2005)

12. Shoshitaishvili, Y., Wang, R., Hauser, C., et al.: Firmalice-automatic detection of authentica-
tion bypass vulnerabilities in binary firmware. In: NDSS (2015)



116 X. Li et al.

13. Shoshitaishvili, Y.,Wang,R., Salls, C., et al.: Sok: (state of) the art ofwar: offensive techniques
in binary analysis. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 138–157.
IEEE (2016)

14. Zaddach, J., Bruno, L., Francillon, A., et al.: Avatar: a framework to support dynamic security
analysis of embedded systems’ firmwares. In: NDSS, pp. 1–16 (2014)

15. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: a platform for in-vivo multi-path analysis of
software systems. In: ACM SIGARCH Computer Architecture News, vol. 39, no. 1, pp. 265–
278. ACM (2011)

16. Chen, D.D., Woo, M., Brumley, D., et al.: Towards automated dynamic analysis for Linux-
based embedded firmware. In: NDSS, pp. 1–16 (2016)

17. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual Technical
Conference, FREENIX Track, vol. 41, p. 46 (2005)

18. Dai, Z.: Research on the localization of firmware vulnerability based on stain tracking. J.
Shandong Univ. (Nat. Sci.) 51, 41–46 (2016)

19. Muench, M., Nisi, D., Francillon, A., et al.: Avatar 2: a multi-target orchestration platform.
In: Workshop on Binary Analysis Research (colocated with NDSS Symposium) (February
2018), BAR vol. 18 (2018)

20. Högl,H.,Rath,D.:Openon-chip debugger–openocd. Fakultat fur Informatik, Technical report
(2006)

21. Dolan-Gavitt, B., Hodosh, J., Hulin, P., et al.: Repeatable reverse engineering with PANDA.
In: Proceedings of the 5th Program Protection and Reverse EngineeringWorkshop, p. 4. ACM
(2015)

22. Bojinov, H., Bursztein, E., Lovett, E., et al.: Embedded management interfaces: emerging
massive insecurity. BlackHat USA 1(8), 14 (2009)

23. Li, H., Tong, D., Huang, K., et al.: FEMU: a firmware-based emulation framework for
SoC verification. In: Proceedings of the Eighth IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, pp. 257–266. ACM (2010)

24. Hu, C., Xue, Y., Zhao, L., et al.: Backdoor detection in embedded system firmware without
file system. J. Commun. 34(8), 140–145 (2013)

25. Wenli, S.: Study on the vulnerability analysismethod for industrial embedded devices.Autom.
Instrum. 36(10), 63–67 (2015)

26. Lee, D.: Firmware vulnerability detection in embedded device based on homology analysis.
Comput. Eng. (2016)

27. Feng, Q., Zhou, R., Xu, C., et al.: Scalable graph-based bug search for firmware images.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 480–491. ACM (2016)

28. Tian, Z., et al.: Real time lateral movement detection based on evidence reasoning network
for edge computing environment. IEEE Trans. Industr. Inform. 15(7), 4285–4294 (2019)

29. Heffner, C.: Binwalk: firmware analysis tool (2010). https://code.google.com/p/binwalk/.
Accessed 03 Mar 2013

30. Heffner, C., Collake, J.: Firmware mod kit-modify firmware images without recompiling
(2015)

31. Cui, A.: FRAK: firmware reverse analysis konsole. In: Proceedings of Black Hat USA, pp. 1–
33 (2012)

32. Hemel, A., Coughlan, S.: BAT–Binary Analysis Toolkit. Accessed Jan 2017
33. Tian, Z., Li, M., Qiu, M., Sun, Y., Su, S.: Block-DEF: a secure digital evidence system using

blockchain. Inform. Sci. 491, 151–165 (2019)
34. Lyon, G.: Nmap–free security scanner for network exploration & security audits (2009)
35. Zalewski, M.: American fuzzy lop (2017). http://lcamtuf.coredump.cx/afl
36. Serebryany, K.: LibFuzzer a library for coverage-guided fuzz testing. LLVM project (2015)

https://code.google.com/p/binwalk/
http://lcamtuf.coredump.cx/afl


Research on Automated Vulnerability Mining 117

37. Swiecki, R.: Honggfuzz: a general-purpose, easy-to-use fuzzer with interesting analysis
options. https://github.com/google/honggfuzz. Accessed 21 June 2017

38. Stephens, N., Grosen, J., Salls, C., et al.: Driller: augmenting fuzzing through selective
symbolic execution. NDSS 16(2016), 1–16 (2016)

39. Tian, Z., Su, S., Shi, W., Du, X., Guizani, M., Yu, X.: A data-driven model for future internet
route decision modeling. Future Gener. Comput. Syst. 95, 212–220 (2019)

40. Tian, Z., Su, S., Yu, X., et al.: Vcash: a novel reputation framework for identifying denial
of traffic service in internet of connected vehicles. IEEE Internet Things J. 7(5), 3901–3909
(2019)

https://github.com/google/honggfuzz

	Research on Automated Vulnerability Mining of Embedded System Firmware
	1 Introduction
	2 Challenges
	2.1 Complex Format
	2.2 Update Difficulty
	2.3 Diverse Architecture

	3 Review of Firmware Vulnerability Mining
	3.1 Static Analysis
	3.2 Symbolic Execution
	3.3 Fuzzing
	3.4 Comprehensive Analysis
	3.5 Others

	4 Technical Route
	4.1 Firmware Acquisition
	4.2 Firmware Extraction
	4.3 Simulator Simulation
	4.4 Automated Analysis

	5 Future Work
	5.1 Introducing Machine Learning Module
	5.2 Improve In-depth Analysis
	5.3 Integrate Existing Tools

	6 Conclusion
	References




