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Abstract Dynamical system is themathematical model for computing changes over
time of any physical, biological, economic or social phenomena. Usually discrete
dynamical system is described mathematically by difference equations and the solu-
tion of such difference equation gives the exact value of the changing variable over
time. Another widely used computation model that predicts the trend of the dynam-
ical system is Cellular Automata. Crisp Cellular Automata model which makes use
of exactly measurable variables and parameters have been studied widely. However,
our practical experience tells us that getting exact measurement of any physical,
biological, economic or social phenomena is difficult, if not impossible. The inex-
actness arising due to imprecision or vagueness is called fuzzy uncertainty and was
introduced by Zadeh [22]. The discrete dynamical system where the measurements
of variables and/or parameters are imprecisely defined are modelled by Fuzzy Differ-
ence Equations or Fuzzy Cellular Automata. We have found fuzzy triangular number
solutions of fuzzy one dimensional first order finite difference equation and corre-
sponding fuzzy cellular automata model. This technique have been used to find a
fuzzy cellular automata model for the dynamical system representing MERS and
COVID-19 virus spread. The model so obtained reveals the trend of growth and
gradation of the infection.
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1 Introduction

Spread of any virus, results in the change of the number of persons infected by the
corresponding virus. The total population being large it becomes almost impossible
to distinguish the critically infected and mildly infected persons precisely. Hence
fuzzy numbers are used to quantify the critical/mildly infected population. We know
a dynamical system representing growth may be modelled by a first order linear
difference equation when the variables are crisp. We have formulated fuzzy first
order difference equation and found the solutions to include fuzzy variables.

Cellular Automata (CA) model of a dynamical system reveals the trend of change
of the variable studied in the corresponding dynamical system. So we have designed
the fuzzy CA model for growth of infected population. Application of fuzzy CA
modelling to MERS and COVID-19 virus spread which is an imprecise dynamical
system is also included in this chapter.

Cellular Automata model was introduced by von Neumann and Ulam [16, 18] for
designing self replicating systems which later saw applications in Physics, Biology
and Computer Science.

Neumann conceived a CA as a two-dimensional mesh of finite state machines
called cells which are locally interconnectedwith each other. Each of the cells change
their states synchronously depending on the states of some neighbouring cells (for
details see [17, 18] and references therein). The local changes of each of the cells
together induce a change of the entire mesh. Later one dimensional CA, i.e a CA
where the elementary cells are distributed on a straight line was studied. Stephen
Wolfram’s work in the 1980s contributed to a systematic study of one-dimensional
CA, providing the first qualitative classification of their behaviour [19, 20].

The applications of discrete fuzzy dynamical systems have been studied by many
authors, including Barros et al. in the setting of theoretical aspects and ecological
applications [1], in asymptotic stability of attractors [2]. Fuzzy Cellular Automata
(FCA) models have been studied by Cattaneo et al. [10], Basu et al. [3], Betel et al.
[5].

Buckley et al. (see [6–9]) solved second order linear constant coefficient difference
equation of the form

y(k + 2) + ay(k + 1) + by(k) = g(k) (1)

for k = 0, 1, 2, . . . where a, b are constants with b > 0 and g(k) continuous for
k ≥ 0 having initial conditions y(0) = γ̃0 and y(1) = γ̃1 where γ̃0 and γ̃1 are trian-
gular fuzzy numbers. The chapter reports existence of three different types of solution
namely classical solution (ỹCt ), extension principle solution (ỹ Et ) and intervel arith-
metic solution (ỹ It ).

Section 2 is devoted to fundamental results used in this chapter. In Sect. 3 we
report our work on solutions of one-dimensional fuzzy first order finite difference
equation (FFDE). Crisp CA model and Fuzzy CA (FCA) model for FDE and FFDE
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were studied by us and are included in Sect. 4. We have designed FCAmodels which
are temporally hybrid representing the spread of MERS and COVID-19 virus in
Sect. 5.

2 Basic Concepts

2.1 Cellular Automaton

Cellular Automaton(CA) is a computation model of a dynamical system where the
smallest computation unit is a finite state semi automaton. Thus a CA is a finite
dimensional network of finite state semi automaton known as ‘cells’.

The mathematical definition of a finite state semi automaton is given as:

Definition 2.1 A Finite State Semi Automaton (abbrev. FSSA) is a three tuple
A = {Q, X, μ}, where,
• Q is a finite set of memory elements sometimes referred as internal states
• X is the input alphabet
• μ : Q × X → Q, is the rule by which an internal state on encountering an input
alphabet changes to another internal state. μ is also called transition function.

Thus a CA is a computation model where finite/countably infinite number of cells
are arranged in an ordered n-dimensional grid. Each cell receives input from the
neighbouring cells and changes according to the transition function. The transitions
at each of the cells together induce a change of the grid pattern [15].

Here we have considered only synchronous homogeneous one-dimensional CA.
A typical one-dimensional CA is given below.

… … Ai−1 Ai Ai+1 … …

Fig. A
A typical grid of a one-dimensional CA

A CA does not have any external input and hence is self-evolving. However the
different possible combinations of the state of a cell at any i th grid point along with
the states of its adjacent cells can be considered as inputs for the cell at the i th grid
point.

Each cell works synchronously leading to evolution of the entire grid through a
number of discrete time steps. If the set of memory elements of each FSSA is {0, 1}
then a typical pattern evolved over time t (represented along horizontal axis) may be
as shown in Table 1.

A formal definition of a CA [14] is given below:

Definition 2.2 Let Q be a finite set of memory elements also called the state set.
The memory elements of the cells belonging to the set Q are placed on an ordered
line.
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Table 1 Ct is the configuration of the CA(represented along vertical axis) at time t

Grid Position (i) Time

t = 0 t = 1 t = 2 …
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Ai+2 0 0 1 …

Ai+1 0 1 0 …

Ai 1 0 1 …

Ai−1 0 1 0 …
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Configuration → C0 C1 C2 …

A global configuration is a mapping from the group of integers Z to the set Q
given by C : Z → Q.

The set QZ is the set of all global configurations where QZ = {C |C : Z → Q}.
A mapping τ : QZ → QZ is called a global transition function.

A CA (denoted by CQ
τ ) is a triplet (Q, QZ, τ ) where Q is the finite state set, QZ

is the set of all configurations, τ is the global transition function.

Remark 1 For a particular state set Q and a particular global transition function τ a
triple (Q, QZ, τ ) denoted by CQ

τ defines the set of all possible cellular automata on
(Q, τ ). However, the evolution of a CA at times is dependent on the initial config-
uration (starting configuration) of the CA. A particular CA CQ

τ (C0) ∈ CQ
τ is defined

as the quadruple (Q, QZ, τ,C0) such that C0 ∈ QZ is the initial configuration of the
particular CA CQ

τ (C0).

At any time t , configuration Ct ∈ QZ and τ(Ct ) = Ct+1.
With reference to Table 1, C0 = . . . 001000 . . .; τ(C0) = τ(. . . 0100 . . .) = . . .

1010 . . . = C1; τ(C1) = . . . 0101 . . . = C2 etc.
CA defined above have the same global transition function τ : QZ → QZ for all

time t . However there are a special class of CA called temporally hybrid CA where
the global transition function varies over time. The formal definition is given with
reference to Definition 2.2.

Definition 2.3 ATemporally HybridCA (denoted by CQ
τt
) is a triplet (Q, QZ, {τt })

whereQ is thefinite state set,QZ is the set of all configurations, τt is a global transition
function.

Evolution of a CA is mathematically expressed by the global transition function.
However, this global transition is induced by transitions of the cells at each grid
point of the CA. The transition of the state of the cell at the i th grid point of a CA
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at a particular time, depends on the state of the i th cell and its adjacent cells. These
adjacent cells constitute the neighbourhood of the i th cell. The transition of the cell
at each grid point is called local transition.

Definition 2.4 For i ∈ Z, r ∈ N, let Si = {i − r, . . . , i − 1, i, i + 1, . . . , i + r} ⊆
Z. Si is the neighbourhood of the i th cell. r is the radius of the neighbourhood of a
cell.

It follows that Z = ⋃
i Si

A restriction from Z to Si induces the following:

1. Restriction of C to ci is given by ci : Si → Q; and ci may be called local con-
figuration of the i th cell.

2. Restriction of QZ to QSi is given by QSi = {ci |ci : Si → Q}; and QSi may be
called the set of all local configurations of the i th cell.

The mapping μi : QSi → Q is known as a local transition function for the i th
automaton having radius r . Thus, ∀i ∈ Z, μi (ci ) ∈ Q. So, if the local configuration
of the i th cell at time t is denoted by cti , then μi (cti ) = ct+1

i (i).

Remark 2 If τ(C) = C∗ then C∗(i) = τ(C)(i) = μi (ci ). So we have,

1. Ct+1(i) = τ(Ct )(i) = μi (cti ) = ct+1
i (i)

2. τ(C) = . . . μi−1(ci−1).μi (ci ).μi+1(ci+1) . . .

3. If all μ′
i s are identical then the CA is homogeneous.

4. For a temporally hybrid CA the μ′
i s are time dependent.

Definition 2.5 If for a particular CA, |Q| = 2 so that we can write Q = {0, 1}, then
the CA is said to be a binary CA or a Boolean CA.

2.2 Fuzzy Set, Fuzzy Number, α-cut

Definition 2.6 A universal set S is defined as a collection of elements or objects in
the universe of discourse. The universal set may be finite, countable or uncountable.

A fuzzy set is a subset of the universal set whose boundary cannot be precisely
defined.

Definition 2.7 If S is the universal set then a fuzzy set Ã in S is a set of ordered
pairs: Ã = {(x, μ Ã(x))|x ∈ Ã ⊆ S}.μ Ã(x) is called the membership function or
grade of membership of x in Ã and is given by μ Ã : Ã → [0, 1], x ∈ Ã.

Definition 2.8 A fuzzy number is a convex and normalized fuzzy subset of set of
real numbers R.
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Definition 2.9 Triangular fuzzy number is a fuzzy number represented with three
points as follows

Ã = (a1/a2/a3)

μ Ã(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x < a1,
x−a1
a2−a1

if a1 ≤ x ≤ a2
a3−x
a3−a2

if a2 ≤ x ≤ a3
0 x > a3

(2)

Definition 2.10 Given a fuzzy set Ã in S and any real number α ∈ [0, 1], then the
α-cut, denoted by Ã [α] is the crisp set Ã [α] = {

x ∈ Ã | μ Ã(x) > α
}
.

Thus on setting the left and right reference functions of Ã as α = x−a1
a2−a1

and
α = a3−x

a3−a2
, it follows that

Ã [α] = [a1 + (a2 − a1)α, a3 − (a3 − a2)α]

Multiplication of two fuzzy numbers is defined as follows:

Definition 2.11 For two fuzzy numbers Ã and B̃, if for some α ∈ (0, 1], we have,
Ã[α] = [a1(α), a2(α)] and B̃[α] = [b1(α), b2(α)] then their product is (see [9]),

Ã[α].B̃[α] = [c1(α), c2(α)]

where, c1(α) = min{a1(α)b1(α), a1(α)b2(α), a2(α)b1(α), a2(α)b2(α)} and
c2(α) = max{a1(α)b1(α), a1(α)b2(α), a2(α)b1(α), a2(α)b2(α)}.

2.3 Fuzzy Cellular Automaton

A fuzzy CA is a generalization of Boolean CA defined as follows:

Definition 2.12 A one-dimensional fuzzy CA (FCA) is a one-dimensional CA
where the local transition function is a fuzzy transition function. So the formal defi-
nition is as follows:

An FCA (denoted by CF ) is a four-tuple (Q̃, Q̃Z, f̃ , C̃0), where,

• Q̃ ⊂ [0, 1] is the state set
• Q̃Z is the set of all configurations
• f̃ is the local transition function which is fuzzy in nature such that if r be the

radius of the neighbourhood then f̃ : Q̃2r+1 → Q̃
• C̃0 is the initial configuration which is a fuzzy number.
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Table 2 Fuzzy transition rule for Wolfram code 200

ci−1ci ci+1 μ f̃

000 0 1 − min(¬ci−1,¬ci ,¬ci+1)

001 0 1 − min(¬ci−1,¬ci , ci+1)

010 0 1 − min(¬ci−1, ci ,¬ci+1)

011 1 min(¬ci−1, ci , ci+1)

100 0 1 − min(ci−1,¬ci ,¬ci+1)

101 0 1 − min(ci−1,¬ci , ci+1)

110 1 min(ci−1, ci ,¬ci+1)

111 1 min(ci−1, ci , ci+1)

The local transition function f̃ is a fuzzification of Boolean function.
Disjunctive Normal Form-fuzzification of the transition fuction of a classical

Boolean CA gives a Fuzzy transition function. The Boolean operators AND, OR,
NOT in the DNF expression of the Boolean rule can be fuzzified using different
fuzzy operators. Here we have replaced (a ∧ b) by min(a, b), (a ∨ b) by max(a, b)
and ¬a by (1 − a) (see [11]).

For Example: Let us consider the Boolean local transition function for some i th
cell to be Rule 200 of Wolfram (see [21]) as shown in (Table 2).

The DNF for RULE 200 is

(ci−1 ∧ ci ∧ ci+1)(111) ∨ (ci−1 ∧ ci ∧ ¬ci+1)(110) ∨ (¬ci−1 ∧ ci ∧ ci+1)(011)

Thus fuzzifucation of the DNF gives the fuzzy transition rule f̃ for Wolfram code
200 as

max{min(ci−1, ci , ci+1)(111),min(ci−1, ci , 1 − ci+1)(110),min(1 − ci−1, ci , ci+1)(011)}

3 Fuzzy First-Order Difference Equation & Its Solution

Buckley found solutions of fuzzy second order difference equation. In this section
we restrict our discussion to fuzzy first order linear difference equation and could
give fuzzy triangular number solution using extension principle method, interval
arithmetic method and classical solution as introduced by Buckley.

Let us consider a first order linear difference equation for t = 0, 1, 2, . . . of the
form

yt+1 = λyt (3)
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where λ is a constant.
If we fuzzify the crisp equation (3) and solve, we are attempting to get the classical

solution ỹCt . When we first solve Eq. (3) and then fuzzify the crisp solution we
obtain ỹ Et (solution using extension principle) and ỹ It (α cuts and interval arithmetic).
Buckley established the fact that ỹCt , ỹ

E
t ỹ It and may differ if more than one fuzzy

numbers are used. However, they produce same result if a fuzzy number appears
only once in the fuzzy expression. For a difference equation, too often the classical
solution fails to exist.

3.1 Solution of FFDE When λ Is Constant and ỹ0 Is a
Triangular Fuzzy Number

Fuzzification of FDE (3) gives the following FFDE

ỹt+1 = λỹt (4)

The solution of FFDE (4) will be as follows:

ỹt = λt ỹ0 (5)

A triangular fuzzy solution of the FDE (3) at time t is a classical solution denoted
by ỹCt if it satisfies FFDE (4) and is a triangular fuzzy number. For some α ∈ (0, 1],
α-cut operation on ỹCt gives

ỹCt [α] = [yt1(α), yt2(α)] (6)

where, yt1(α) = λt y01(α) and yt2(α) = λt y02(α).
Now, ỹCt is a triangular fuzzy number if,

∂yt1(α)

∂α
> 0,

∂yt2(α)

∂α
< 0, and yt1(1) = yt2(1) ∀t ≥ 1

Theorem 3.1 An FFDE given by ỹt+1 = λỹt will have a classical solution ỹCt pro-
vided λ > 0.

Proof Let ỹ0 = (a1/a2/a3). Then a1 ≤ a2 ≤ a3.
If ỹCt is a classical solution of the given FFDE, then we get

ỹCt = λt ỹ0. (7)

Therefore, for some α ∈ (0, 1], α-cut on the classical solution will be

ỹCt [α] = λt ỹ0[α], for t = 0, 1, 2, . . . , (8)
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So, yt1(α) = {a1 + (a2 − a1)α}λt ; yt2(α) = {a3 − (a3 − a2)α}λt

i.e.,
∂yt1(α)

∂α
= (a2 − a1)λ

t > 0 ; ∂yt2(α)

∂α
= −(a3 − a2)λ

t < 0

and, yt1(1) = {a1 + (a2 − a1).1}λt = a2λ
t = {a3 − (a3 − a2).1}λt = yt2(1)

Hence all the conditions for the existence of a classical solution is satisfied provided
λ > 0. �

A solution to FDE (3) is

yt = λt y0 (9)

Fuzzification of (9) is

ỹt = λt ỹ0 (10)

Solution (10) is an extension principle solution denoted by ỹ Et if it is a triangular
number which is possible provided,

∂ ỹt
∂ ỹ0

> 0 ∀t ≥ 1 or
∂ ỹt
∂ ỹ0

< 0 ∀t ≥ 1

Let ỹ0 = (a1/a2/a3). Then for some α ∈ (0, 1], α-cut operation gives a crisp closed
bounded interval such that ỹ0[α] = [y01(α), y02(α)] where,
• y01(α) = a1 + (a2 − a1)α is a monotonic increasing function of α

• y02(α) = a3 − (a3 − a2)α is a monotonic decreasing function of α

• y01(1) = y02(1).

Further, for some α ∈ (0, 1], α-cut operation on ỹt gives

ỹt [α] = λt ỹ0[α] (11)

So, α-cut operation on ỹ Et gives

ỹ Et [α] = [yEt1(α), yEt2(α)]

where,

• yEt1(α) = min{λt y0 | y0 ∈ ỹ0[α]} = λt (a1 + (a2 − a1)α)

• yEt2(α) = max{λt y0 | y0 ∈ ỹ0[α]} = λt (a3 − (a3 − a2)α).

Remark 3 For an FFDE given by ỹt = λt ỹ0 we get ỹCt [α] = ỹ Et [α]
Theorem 3.2 AnFFDEgiven by ỹt = λt ỹ0 will have an extension principle solution
ỹEt provided λ > 0.
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Proof If ỹ Et is an extension principle solution of the given FFDE, then it holds that
either

∂ ỹt
∂ ỹ0

= λt > 0 ∀t ≥ 1 or,
∂ ỹt
∂ ỹ0

= λt < 0 ∀t ≥ 1

Hence the condition for the existence of an extension principle solution is satisfied
provided λ > 0. �

A solution to an FFDE at time t is an interval arithmetic solution denoted by
ỹ It [α] = [yIt1(α), yIt2(α)] if for some α ∈ (0, 1), ỹ It [α] is an interval which is possible
provided

∀t ≥ 0, yIt1(α) = yIt2(α)

where,

• yIt1(α) = λt y01(α) = λt (a1 + (a2 − a1)α)

• yIt2(α) = λt y02(α) = λt (a3 − (a3 − a2)α)

For α = 1, ỹ It reduces to the point solution yt .

Theorem 3.3 An FFDE given by ỹt = λt ỹ0 will have an interval arithmetic solution
ỹ It provided λ = 0 and for α ∈ (0, 1), y01(α) < y02(α).

Proof If ỹ It is an interval arithmetic solution of the given FFDE, if

λt y01(α) = λt y02(α)

⇔ λ = 0 and y01(α) = y02(α)

Since α ∈ (0, 1) and a1 < a2 < a3, from the definition of ỹ0[α] it follows that

y01(α) < y02(α)

Hence the theorem. �

Remark 4 Since the solution of FFDE ỹt = λt ỹ0 has only one fuzzy number ỹ0, an
interval arithmetic solution of this FFDE at any time t denoted by ỹ It will produce
the same result as that of ỹ Et (see [8, 9]).

Remark 5 Clearly, if ỹt be a solution of FFDE ỹt = λt ỹ0 at time t , then for some
α ∈ (0, 1],

ỹt [α] = ỹct [α] = ỹ Et ([α] = ỹ It [α]



Fuzzy Cellular Automata Model for Discrete Dynamical … 277

3.2 Solution of FFDE When y0 Is Constant and the
Parameter λ Is a Fuzzy Triangular Number

In this section we will fuzzify the FDE yt+1 = λyt , t = 0, 1, 2 . . . by considering the
parameter λ to be fuzzy, and denote it by λ̃ where λ̃ is a triangular fuzzy number.
If y0 be the crisp initial value then we obtain FFDE which maybe written as

ỹ1 = λ̃y0 (12)

ỹt+1 = λ̃ỹt f or t = 1, 2 . . . (13)

Thus recursively we get,

ỹt = λ̃t y0 (14)

where λ̃t is a triangular shaped fuzzy number since product of two triangular fuzzy
numbers is a triangular shaped fuzzy number (see [9]).

Let λ̃ = (b1/b2/b3) such that b1 < b2 < b3. Then for someα ∈ (0, 1],α-cut oper-
ation gives a crisp closed bounded interval such that λ̃[α] = [λ1(α), λ2(α)] where,
• λ1(α) = b1 + (b2 − b1)α is a monotonic increasing function of α

• λ2(α) = b3 − (b3 − b2)α is a monotonic decreasing function of α

• λ1(1) = λ2(1).

Clearly, if α = 1, λ1(α) < λ2(α).
Now, λ1(α) ≥ 0 ⇔ either b1 ≥ 0 or |b1| < (b2 − b1)α.
Again, λ2(α) ≤ 0 ⇔ either b3 ≤ 0 or |b3| < (b3 − b2)α.

We have found three types of solutions, namely, (i) the classical solution (ii) the
extension principle solution and (iii) the interval arithmetic solution.

A solution to an FFDE at time t is a classical solution denoted by ỹct if it is a
triangular shaped fuzzy number. Further, for some α ∈ (0, 1], α-cut operation on ỹct
gives

ỹct [α] = [yt1(α), yt2(α)] (15)

where, yt1(α) = (λ1(α))t y0 and yt2(α) = (λ2(α))t y0.

Theorem 3.4 AnFFDEgivenby ỹt = λ̃t y0 will have a classical solution ỹct provided
either y0 > 0 and λ1(α) > 0 or y0 < 0 and λ2(α) < 0where λ̃[α] = [λ1(α), λ2(α)].
Proof Let λ̃ = (b1/b2/b3). Then b1 < b2 < b3.

If ỹct is a classical solution of the given FFDE, then we get

ỹct = λ̃t y0. (16)

Therefore, for some α ∈ (0, 1], α-cut on the classical solution will be
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ỹct [α] = (λ̃[α])t y0, f or t = 1, 2, . . . , (17)

So, yt1(α) = {b1 + (b2 − b1)α}t y0 ; yt2(α) = {b3 − (b3 − b2)α}t y0

Thus,
∂yt1(α)

∂α
= t{b1 + (b2 − b1)α}t−1(b2 − b1)y0 ,

∂yt2(α)

∂α
= −t{b3 − (b3 − b2)α}t−1(b3 − b2)y0

and, yt1(1) = {b1 + (b2 − b1).1}t y0 = bt2y0 = {b3 − (b3 − b2).1}t y0 = yt2(1)

Now, ∂yt1(α)

∂α
> 0 and ∂yt2(α)

∂α
< 0 if

• Case I : y0 > 0 and {b1 + (b2 − b1)α} > 0
Moreover, {b1 + (b2 − b1)α} > 0 ⇒ {b3 − (b3 − b2)α} > 0 since b3 > b2 > b1.

• Case II : y0 < 0 and {b3 − (b3 − b2)α} < 0
Moreover, {b3 − (b3 − b2)α} < 0 ⇒ {b1 + (b2 − b1)α} < 0 since b1 < b2 < b3.

Hence all the conditions for existence of a classical solution are satisfied provided
either y0 > 0 and λ1(α) > 0 or y0 < 0 and λ2(α) < 0. �

A solution to an FFDE at time t is an extension principle solution denoted by
ỹ Et provided

ỹt
E = λ̃t y0 (18)

∂ ỹt
E

∂λ̃
> 0, ∀t ≥ 1 or

∂ ỹt
E

∂λ̃
< 0, ∀t ≥ 1

Further, for some α ∈ (0, 1], α-cut operation on ỹ Et gives

ỹ Et [α] = [yEt1(α), yEt2(α)]

where,

• yEt1(α) = min{λt y0 | λ ∈ λ̃[α]} = (b1 + (b2 − b1)α)t y0
• yEt2(α) = max{λt y0 | λ ∈ λ̃[α]} = (b3 − (b3 − b2)α)t y0.

Theorem 3.5 AnFFDEgiven by ỹt = λ̃t y0 will have an extension principle solution
ỹEt provided λ1(α) > 0 and y0 = 0 where λ̃[α] = [λ1(α), λ2(α)].
Proof If ỹ Et is an extension principle solution of the given FFDE, then it holds that
either

∂ ỹt
E

∂λ̃
> 0, ∀t ≥ 1 Or,

∂ ỹt
E

∂λ̃
< 0, ∀t ≥ 1
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Now, ∂ ỹt
E

∂λ̃
= t λ̃t−1y0. Thus, ∀t ≥ 1,

∂ ỹt
E

∂λ̃
> 0 i f λ̃ > 0, y0 > 0, Or,

∂ ỹt
E

∂λ̃
< 0 i f λ̃ > 0, y0 < 0.

Consequently, λ̃ > 0 ⇒ λ1(α) > 0.
Hence the condition for the existence of an extension principle solution is satisfied

provided λ1(α) > 0 and y0 = 0. �

An interval arithmetic solution of an FFDE at any time t is denoted by ỹ It .
Further, for some α ∈ (0, 1], α-cut operation on ỹ It gives

ỹ It [α] = [λ1(α), λ2(α)]t y0 = [yIt1(α), yIt2(α)] (19)

Theorem 3.6 An FFDE given by ỹt = λ̃t y0 will have an interval arithmetic solution
ỹ It for t ≥ 1 provided y0 = 0 and λ1(α) < λ2(α) where λ̃[α] = [λ1(α), λ2(α)].
Proof If y0 = 0 or λ1(α) = λ2(α) then the solution of the given FFDE will reduce
to crisp constant and ỹ It will not exist.

However, if y0 = 0 and λ1(α) < λ2(α) then ỹ I1 = [λ1(α)y0, λ2(α)y0] and ∀t ≥
2, ỹ It = [yIt1(α), yIt2(α)] obtained will be as follows:
Case I: y0 > 0

• λ1(α) ≥ 0
ỹ I2 = [λ1(α), λ2(α)][λ1(α)y0, λ2(α)y0] = [λ2

1(α)y0, λ2
2(α)y0]

ỹ I3 = [λ1(α), λ2(α)][λ2
1(α)y0, λ2

2(α)y0] = [λ3
1(α)y0, λ3

2(α)y0]
Therefore by induction we get,
ỹ It = [λ1(α), λ2(α)]ỹ It−1 = [λt

1(α)y0, λt
2(α)y0]

• λ2(α) ≤ 0
ỹ I2 = [λ1(α), λ2(α)][λ1(α)y0, λ2(α)y0] = [λ2

2(α)y0, λ2
1(α)y0]

ỹ I3 = [λ1(α), λ2(α)][λ2
2(α)y0, λ2

1(α)y0] = [λ3
1(α)y0, λ3

2(α)y0]
ỹ I4 = [λ1(α), λ2(α)][λ3

1(α)y0, λ3
2(α)y0] = [λ4

2(α)y0, λ4
1(α)y0]

Therefore by induction we get,
ỹ It = [λ1(α), λ2(α)]ỹ It−1 = [λt

2(α)y0, λt
1(α)y0] or [λt

1(α)y0, λt
2(α)y0] according

as t is even or t is odd.
• λ1(α) < 0, λ2(α) > 0 and λ2

1(α) < λ2
2(α)

ỹ I2 = [λ1(α), λ2(α)][λ1(α)y0, λ2(α)y0] = [λ1(α)λ2(α)y0, λ2
2(α)y0]

ỹ I3 = [λ1(α), λ2(α)][λ1(α)λ2(α)y0, λ2
2(α)y0] = [λ1(α)λ2

2(α)y0, λ3
2(α)y0]

ỹ I4 = [λ1(α), λ2(α)][λ1(α)λ2
2(α)y0, λ3

2(α)y0] = [λ1(α)λ3
2(α)y0, λ4

2(α)y0]
Therefore by induction we get,
ỹ It = [λ1(α), λ2(α)]ỹ It−1 = [λ1(α)λt−1

2 (α)y0, λt
2(α)y0]

• λ1(α) < 0, λ2(α) > 0 and λ2
1(α) > λ2

2(α)

ỹ I2 = [λ1(α), λ2(α)][λ1(α)y0, λ2(α)y0] = [λ1(α)λ2(α)y0, λ2
1(α)y0]

ỹ I3 = [λ1(α), λ2(α)][λ1(α)λ2(α)y0, λ2
1(α)y0] = [λ3

1(α)y0, λ2
1(α)λ2(α)y0]
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ỹ I4 = [λ1(α), λ2(α)][λ3
1(α)y0, λ2

1(α)λ2(α)y0] = [λ3
1(α)λ2(α)y0, λ4

1(α)y0]
Therefore by induction we get,
ỹ It = [λ1(α), λ2(α)]ỹ It−1 = [λt−1

1 (α)λ2(α)y0, λt
1(α)y0] or [λt

1(α)y0, λ
t−1
1 (α)

λt
2(α)y0] according as t is even or t is odd.

Case II: y0 < 0

• λ1(α) ≥ 0
ỹ I2 = [λ1(α), λ2(α)][λ1(α)y0, λ2(α)y0] = [λ2

2(α)y0, λ2
1(α)y0]

ỹ I3 = [λ1(α), λ2(α)][λ2
2(α)y0, λ2

1(α)y0] = [λ3
2(α)y0, λ3

1(α)y0]
Therefore by induction we get,
ỹ It = [λ1(α), λ2(α)]ỹ It−1 = [λt

2(α)y0, λt
1(α)y0]

• λ2(α) ≤ 0
ỹ I2 = [λ1(α), λ2(α)][λ1(α)y0, λ2(α)y0] = [λ2

1(α)y0, λ2
2(α)y0]

ỹ I3 = [λ1(α), λ2(α)][λ2
1(α)y0, λ2

2(α)y0] = [λ3
2(α)y0, λ3

1(α)y0]
ỹ I4 = [λ1(α), λ2(α)][λ3

2(α)y0, λ3
1(α)y0] = [λ4

1(α)y0, λ4
2(α)y0]

Therefore by induction we get,
ỹ It = [λ1(α), λ2(α)]ỹ It−1 = [λt

1(α)y0, λt
2(α)y0] or [λt

2(α)y0, λt
1(α)y0] according

as t is even or t is odd.
• λ1(α) < 0, λ2(α) > 0 and λ2

1(α) < λ2
2(α)

ỹ I2 = [λ1(α), λ2(α)][λ1(α)y0, λ2(α)y0] = [λ2
2(α)y0, λ1(α)λ2(α)y0]

ỹ I3 = [λ1(α), λ2(α)][λ2
2(α)y0, λ1(α)λ2(α)y0] = [λ3

2(α)y0, λ1(α)λ2
2(α)y0]

ỹ I4 = [λ1(α), λ2(α)][λ3
2(α)y0, λ1(α)λ2

2(α)y0] = [λ4
2(α)y0, λ1(α)λ3

2(α)y0]
Therefore by induction we get,
ỹ It = [λ1(α), λ2(α)]ỹ It−1 = [λt

2(α)y0, λ1(α)λt−1
2 (α)y0]

• λ1(α) < 0, λ2(α) > 0 and λ2
1(α) > λ2

2(α)

ỹ I2 = [λ1(α), λ2(α)][λ1(α)y0, λ2(α)y0] = [λ2
1(α)y0, λ1(α)λ2(α)y0]

ỹ I3 = [λ1(α), λ2(α)][λ2
1(α)y0, λ1(α)λ2(α)y0] = [λ2

1(α)λ2(α)y0, λ3
1(α)y0]

ỹ I4 = [λ1(α), λ2(α)][λ2
1(α)λ2(α)y0, λ3

1(α)y0] = [λ4
1(α)y0, λ3

1(α)λ2(α)y0]
Therefore by induction we get,
ỹ It = [λ1(α), λ2(α)]ỹ It−1 = [λt

1(α)y0, λ
t−1
1 (α)λt

2(α)y0] or [λt−1
1 (α)λ2(α)y0,

λt
1(α)y0] according as t is even or t is odd.

Hence the theorem. �

3.3 Solution of an FFDE When λ Is Time Dependent and ỹ0
Is a Triangular Fuzzy Number

In this section we restrict our discussion to fuzzy first order nonlinear difference
equation and its fuzzy solution.

Let us consider a first order nonlinear difference equation for t = 0, 1, 2, . . . of
the form

yt+1 = λ(t)yt (20)
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A solution of (20) is calculated by mathematical induction and is as follows:

ỹn =
t=n−1∏

t=0

λ(t)ỹ0 (21)

3.4 Solution of an FFDE When λ Is Time Dependent and Is
a Triangular Fuzzy Number Whereas y0 Is Crisp

Let ˜λ(t) = (b1(t)/b2(t)/b3(t)), where b1(t) < b2(t) < b3(t).
From (20) yt will be fuzzy for t ≥ 1 and will be denoted by ỹt . It is observed

that ỹ1 = (b1(0)y0/b2(0)y0/b3(0)y0) is a fuzzy triangular number. So,

ỹ1[α] = [b1(0)y0 + (b2(0) − b1(0))y0α, b3(0)y0(b3(0) − b2(0))y0α] (22)

For t ≥ 2 we can get an interval estimation solution (represented by α-cut) step by
step as follows:

ỹ It+1[α] = [yI(t+1)1(α), yI(t+1)2(α)] = [λt
1(α), λt

2(α)]ỹ It [α] (23)

So by using product of intervals [9] we get, ỹ I2 [α] = [b1(1) + (b2(1) − b1(1))α,

b3(1)(b3(1) − b2(1))α][b1(0)y0 + (b2(0) − b1(0))y0α, b3(0)y0(b3(0) − b2(0))y0α].

4 CA Models for First Order FDE and FFDE

Here CAmodelling have been formulated for dynamical systems represented by one-
dimensional first order linear difference equations having time independent coeffi-
cients. We will use interval arithmetic solution of the FFDE to design the respective
FCA.

4.1 First Order FDE and CA Models

Let a one dimensional linear discrete dynamical system be represented by the FDE
(3). Here yt is the state of the system at time t, and λ is the rate of evolution of the
system from one time step to another .
If initially y(t = 0) = y0, then we get

yt = λt y0, f or t = 1, 2, . . . (24)
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If the initial phase point is real then all possible phase points are real.
Let the phase points be arranged in the increasing order of their values and be

denoted in terms of variable ‘x’ as follows: For any real valued yt , ∃i ∈ Z, such that
yt = xi ,

yt+1 =
{
xi+1 i f yt < yt+1

xi−1 i f yt+1 < yt
Let the phase space of the system be given by

X = {xi | i ∈ Z}. The values of the phase points are such that for i ∈ Z

. . . < xi−2 < xi−1 < xi < xi+1 < xi+2 < . . .

Crisp CA models for FDE (3) have been designed (see [12, 13]) as follows: The i th
cell of the CA representing the phase point xi , is denoted by Ai and the state of the
cell Ai at a particular time t is denoted by Ai (t).

Ai (t) is said to be in the ON stage or ‘1’ state represented by a ‘black’ cell
provided at time t the system is at xi , otherwise it is in the OFF stage or ‘0’ state
represented by a ‘white’ cell in the following figures.

Here y0 > 0 has been considered.
For different values of λ in the given FDE, different homogeneous CA models

can be constructed as follows:

• Case 1: λ = 1
The dynamical system becomes yt+1 = yt . Here, yt = y0,∀t = 1, 2, . . ..
The only phase point corresponding to y0 is x0 and it is represented by cell A0.
Hence we get a null boundaried (denoted by B), 1-celled CA following
RULE 4((1 − (ci+1 ∨ ci+1)) ∧ ci ) of Wolfram code (Fig. 1a).

• Case 2: λ > 1
Here we get a monotonically divergent system as

y0 < y1 < y2 < · · · < +∞

Thus the phase points are x0, x1, x2, . . . and correspondingly we get a countably
infinite celled homogeneous CA following
RULE 16(ci−1 ∧ (1 − ci ) ∧ (1 − ci+1)) of Wolfram code (Fig. 1b).

• Case 3: 0 < λ < 1
Here we get a monotonically convergent system as

y0 > y1 > y2 > · · · > 0

Thus the phase points are x0, x−1, x−2 . . . and correspondingly we get a countably
infinite celled homogeneous CA following
RULE 2((1 − ci−1) ∧ (1 − ci ) ∧ ci+1) of Wolfram code (Fig. 1c).
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Fig. 1 Crisp CA models For
λ > 0, y0 > 0

4.2 First Order FFDE and FCA Models

On fuzzifying the FDE (3) given by, two cases arise.

• Case-I: ỹ0 is a fuzzy triangular number and λ > 0 is a crisp constant.
Here, the solution of FFDE (4) will be (5). And, for α ∈ (0, 1] we get the α-cut
solutions of the form (11).

• Case-II: λ̃ is fuzzy triangular number and y0 > 0 is a crisp initial value.
Here, the solution of FFDE (13) will be (14). And, for α ∈ (0, 1] we get the α-cut
solutions similar to the form (19).

If ỹ0 is real then all possible fuzzy phase points ỹt are real.
Let the fuzzy phase points be arranged in the increasing order of their values

and be denoted in terms of variable x̃ as follows: For any fuzzy triangular number
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ỹt , ∃i ∈ Z, such that
ỹt = x̃i ,

ỹt+1 =
{
x̃i+1 i f ỹt < ỹt+1

x̃i−1 i f ỹt+1 < ỹt
where each x̃i is a fuzzy triangular number.

The values of the fuzzy phase points are such that

. . . < x̃i−1 < x̃i < x̃i+1 < . . .

Let x̃i = (ci1/ci2/ci3) where ci1 < ci2 < ci3.
For some α ∈ (0, 1], α-cut operation on x̃i gives

x̃i [α] = [ci1 + (ci2 − ci1)α, ci3 − (ci3 − ci2)α]

Fuzzy CA (FCA) model for an FFDE are as follows: The i th cell of the FCA
representing the α-cut x̃i [α], is denoted by Ãi and the state of the cell Ãi at a
particular time t is denoted by Ãi (t).

Ãi (t) is said to be in the ON stage provided at time t the system is within x̃i [α]
for α ≥ 0.25, otherwise it is in the OFF stage.

• Case 1: λ = 1
The only fuzzy phase point is x̃0 corresponding to ỹ0 and it is represented by Ã0.
If λ̃ ≈ 1 then also the variations in the values of the fuzzy phase points are negli-
gible.
Hence for both cases the FCA has transition function min(1 − ci−1, ci , 1 −
ci+1)(010) from DNF-fuzzification of Wolfram’s RULE 4 (Fig. 2b).

• Case 2: λ > 1, ỹ0 > 0 or λ̃ > 1, y0 > 0
Here for λ > 1, ỹ0 > 0 we get,

ỹ0 < ỹ1 < ỹ2 < · · · < +∞

The corresponding fuzzy phase points are considered to be x̃0, x̃1, x̃2, . . . and the
FCA will have cells Ã0, Ã1, Ã2, . . ..
Hence this FCA has transition function min(ci−1, 1 − ci , 1 − ci+1)(100) from
DNF-fuzzification of Wolfram’s RULE 16(Fig. 3b).
For λ̃ > 1, y0 > 0, we get a fuzzy system from ỹ1 onwards such that,

ỹ1 < ỹ2 < · · · < +∞

The corresponding fuzzy phase points are considered to be x̃1, x̃2, . . . and the FCA
will be similar to (Fig. 3b).

• Case 3: 0 < λ < 1, ỹ0 > 0 or 0 < λ̃ < 1, y0 > 0
Here for 0 < λ < 1, ỹ0 > 0 we get,

ỹ0 > ỹ1 > ỹ2 > · · · > 0
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Fig. 2 a FFDE, b FCA For (λ = 1, ỹ0 > 0)

The corresponding fuzzy phase points are considered to be x̃0, x̃−1, x̃−2, . . . and
the FCA will have cells Ã0, Ã−1, Ã−2, . . ..
Hence this FCAhas transition functionmin(1 − ci−1, 1 − ci , ci+1)(001) fromDNF-
fuzzification of Wolfram’s RULE 2(Fig. 4b).
For 0 < λ̃ < 1, y0 > 0, we get a fuzzy system from ỹ1 onwards such that,

ỹ1 > ỹ2 > · · · > 0

The corresponding fuzzy phase points are considered to be x̃−1, x̃−2, x̃−3, . . . and
the FCA will be similar to (Fig. 4b).

5 Output and Results

Wehavemade an estimation of the suspected number of virus-infected people having
different infection levels, on the basis of the calculated infection rate of the virus.

It is known that the spread of any virus depends on the basic reproduction number
(R0) of the virus which indicates how contagious the virus is. In general, the health
condition of a virus-infected person is categorized as critical or mild. For COVID-19
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Fig. 3 a FFDE, b FCA For (λ > 1, ỹ0 > 0) Or (λ̃ > 1, y0 > 0)

virus, usually around 2% of the active cases have critical conditions while the rest
98% are mild [24]. Among the cases having mild conditions, there can be different
levels of infection manifested by different grades of symptoms.

FCA model (which are temporally hybrid) representing the spread of MERS and
COVID-19 virus, indicating a gradation of infection, have been designed here.

5.1 Fuzzy Model Representing Growth-Trend of the Number
of Virus-Infected People Within a Short Span of Time

The R0 value of any virus, can vary between different intervals of time which con-
stitute a considerably larger period of time (reported in Sect. 5.2). However, within
any short time interval the rise or fall in the number of the virus-infected individuals
may apparently seem to occur at a constant rate, say ρ. The virus-infected population
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Fig. 4 a FFDE, b FCA For (0 < λ < 1, ỹ0 > 0) Or (0 < λ̃ < 1, y0 > 0)

grows or decays according as ρ > 1 or ρ < 1, and it almost remains at the same level
if ρ is nearly 1.

An FFDE for the growth-trend of number of infected people within a short time,
has been obtained by fuzzifying an FDE (of the form 3), given as:

yt+1 = ρyt , ρ > 0, t = 0, 1, 2, . . . (25)

where, ‘yt ’ is the reported number of people being actively infected by the virus at
time t. If the initial number of people reported to be actively infected be y0 > 0, then
the solution of (25) at time t , will be

yt = ρ t y0 (26)

• Case-I: ỹ0 > 0 is fuzzy and ρ is crisp.
The solution of the corresponding FFDE ∀t ≥ 0 will be ỹt = ρ t ỹ0. For some
α ∈ (0, 1],
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ỹt [α] = ρ t ỹ0[α] (27)

• Case-II: y0 > 0 is crisp and ρ̃ is fuzzy.
Then ỹ1 = ρ̃y0 and the solution of the corresponding FFDE ∀t ≥ 1 will be ỹt =
ρ̃ t y0. For some α ∈ (0, 1],

ỹt [α] = (ρ̃[α])t .y0 (28)

Let us suppose ỹt [α] represents the suspected number of actively infected people
provided α ≥ 0.25. We further assume that ỹt [α] represents
• highly infected population if α ≥ 0.75
• moderately infected population if 0.50 ≤ α < 0.75
• slightly infected population if 0.25 ≤ α < 0.50.

Among the highly infected people, the cases which become critical can be indicated
by α ≥ 0.98 (in case of COVID-19).

And at α = 1.0, the α-cut operation on ỹt , denoted by ỹt [1] coincides with the
crisp value yt (which indicates the reported active cases).

Let R0 be the basic reproduction rate of a virus from any time interval (T ) to the
next time interval (T + 1)where each interval has an n-day span. If ρ be the constant
growth rate of the number of infected individuals (Y ) at time T , for a period of n
days, then

R0Y ≈ (ρ)nY ⇔ R(1/n)

0 ≈ ρ (29)

5.1.1 FCA Model Representing COVID-19 Spread for a Short Period

The 2019 Novel Coronavirus (2019-nCoV or COVID-19) also known as Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first reported
towards the end of 2019 Wuhan city in the Hubei province of China. Around March
2020, COVID-19 emerged to be a world-wide pandemic. Then by the second week
of April 2020, the curve for the number active cases in China almost flattened. At
that time, in some countries like Germany, the number of active COVID-19 cases
started falling since the growth-rate fell below 1. However in countries like India,
USA, Singapore, the growth-rate being above 1, the number of active cases was still
on the rise.

Here the trend of growth of number of COVID-19 patients for a short period from
11/04/2020 to 15/04/2020 for India, Germany and China has been depicted. The
number of active cases yt , at time t , has been recorded from [24]. The value of ρ has
been calculated from (26) for t = 4.

(1) India having ρ > 1 from 11/04/20–15/04/20

The number of active cases on 11/04/2020 was 7189 and on 15/04/2010 was
10,440. Considering the scale of 1000:1, y0 = 7.189 and y4 = 10.440 gives ρ =
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Table 3 ỹ0 = (6.789/7.189/7.589); ρ = 1.098

Time t ỹt [0.25] ỹt [0.50] ỹt [0.75]
0(11/4) [6.889,7.489] [6.989,7.389] [7.089,7.289]

1(12/4) [7.564,8.223] [7.674,8.113] [7.784,8.003]

2(13/4) [8.305,9.029] [8.426,8.908] [8.547,8.788]

3(14/4) [9.119,9.914] [9.252,9.781] [9.384,9.649]

4(15/4) [10.013,10.885] [10.158,10.740] [10.304,10.594]

1.098. Let ỹ0 = (y0 − 0.4/y0/y0 + 0.4) and ρ̃ = (ρ − 0.02/ρ/ρ + 0.02) be trian-
gular fuzzy numbers.

Case-I: Let ỹ0 = (6.789/7.189/7.589) be fuzzy and ρ = 1.098 be a crisp con-
stant. Thus ỹ0[α] = [6.789 + 0.4α, 7.589 − 0.4α] and ∀t ≥ 1, ỹt [α] has been cal-
culated from (27). The pattern of values of slightly, moderately and highly infected
active cases during the stipulated time period has been given in Table 3. Here,
ỹ0 < ỹ1 < ỹ2 < ỹ3 < ỹ4.

Thus the fuzzy phase points are x̃0, x̃1,…, x̃4. The corresponding FCA will have
cells Ã0,…, Ã4 and the ON states of these cells will be Ã0(0), Ã1(1), Ã2(2), Ã3(3),
Ã4(4). This FCA will be as shown in (Fig. 5a).

Case-II: Let y0 = 7.189 be crisp and ρ̃ = (1.078/1.098/1.118) be fuzzy. Thus
ρ̃[α] = [1.078 + 0.02α, 1.118 − 0.02α] and ∀t ≥ 1, ỹt [α] has been calculated from
(28). The pattern of values of slightly, moderately and highly infected active cases
during the stipulated time period has been given in Table 4. Here ỹ1 < ỹ2 < ỹ3 < ỹ4.

The corresponding FCA will be similar to as shown in (Fig. 5a).

(2) Germany having ρ < 1 from 11/04/20–15/04/20

The number of active cases on 11/04/2020 was 65181 and on 15/04/2020 was 58349.
Considering the scale of 1000:1, y0 = 65.181 and y4 = 58.349 gives ρ = 0.973. Let
ỹ0 = (y0 − 0.4/y0/y0 + 0.4) and ρ̃ = (ρ − 0.01/ρ/ρ + 0.01) be triangular fuzzy
numbers.
Case-I: Let ỹ0 = (64.781/65.181/65.581) and ρ = 0.973 be a crisp constant. Thus
ỹ0[α] = [64.781 + 0.4α, 65.581 − 0.4α] and∀t ≥ 1, ỹt [α] has been calculated from
(27). The pattern of values of slightly, moderately and highly infected active cases
during the stipulated time period has been given in Table 5. Here, ỹ0 > ỹ1 > ỹ2 >

ỹ3 > ỹ4
Thus the fuzzy phase points are x̃0, x̃−1,…, x̃−4. The corresponding FCA will have
cells Ã0,…, Ã−4 and the ON states of these cells will be Ã0(0), Ã−1(1), Ã−2(2),
Ã−3(3), Ã−4(4). This FCA will be as shown in (Fig. 5b).
Case-II: Let y0 = 65.181 be crisp and ρ̃ = (0.963/0.973/0.983) be fuzzy.

Thus ρ̃[α] = [0.963 + 0.01α, 0.983 − 0.01α] and ∀t ≥ 1, ỹt [α] has been calcu-
lated from (28). The pattern of values of slightly, moderately and highly infected
active cases during the stipulated time period has been given in Table 6. Here,
ỹ1 > ỹ2 > ỹ3 > ỹ4.
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Fig. 5 FCA for short period COVID-19 growth-trend from 11/04/2020 To 15/04/2020 in a India
With ρ > 1, b Germany With ρ < 1, c China With ρ ≈ 1

The corresponding FCA will be similar to as shown in (Fig. 5b).

(3) China having ρ ≈ 1 from 11/04/20–15/04/20

The number of active cases on 11/04/2020 was 1138 and on 15/04/2020 was 1107.
Considering the scale of 1000:1, y0 = 1.138 and y4 = 1.107 gives ρ ≈ 1. Let ỹ0 and
ρ̃ = (ρ − 0.03/ρ/ρ + 0.03) be triangular fuzzy numbers.

Case-I: If ỹ0 be fuzzy and ρ = 1.0 be a crisp constant, then ∀t, ỹt = ỹ0.
The only fuzzy point corresponding to ỹ0 is x̃0.
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Table 4 y0 = 7.189; ρ̃ = (1.078/1.098/1.118)

ρ̃[0.25]=
[1.083,1.113]

ρ̃[0.50]=
[1.088,1.108]

ρ̃[0.75]=
[1.093,1.103]

Time t ỹt [0.25] ỹt [0.50] ỹt [0.75]
1(12/4) [7.786,8.001] [7.822,7.965] [7.858,7.929]

2(13/4) [8.432,8.906] [8.510,8.826] [8.588,8.746]

3(14/4) [9.132,9.912] [9.259,9.779] [9.387,9.647]

4(15/4) [9.890,11.032] [10.074,10.835] [10.260,10.641]

Table 5 ỹ0 = (64.781/65.181/65.581) ; ρ = 0.973

Time t ỹt [0.25] ỹt [0.50] ỹt [0.75]
0(11/4) [64.881,65.481] [64.981,65.381] [65.081,65.281]

1(12/4) [63.129,63.713] [63.227,63.616] [63.324,63.518]

2(13/4) [61.425,61.993] [61.519,61.898] [61.614,61.803]

3(14/4) [59.766,60.319] [59.858,41.657] [59.950,60.135]

4(15/4) [58.153,58.690] [58.242,40.533] [58.332,58.511]

Table 6 y0 = 65.181 ; ρ̃ = (0.963/0.973/0.983)

ρ̃[0.25] =
[0.965,0.980]

ρ̃[0.50] =
[0.968,0.978]

ρ̃[0.75] =
[0.970,0.975]

Time t ỹt [0.25] ỹt [0.50] ỹt [0.75]
1(12/4) [62.90,63.877] [63.095,63.747] [63.226,63.551]

2(13/4) [60.698,62.60] [61.076,62.345] [61.329,61.963]

3(14/4) [58.574,61.348] [59.122,60.973] [59.489,60.414]

4(15/4) [56.524,60.121] [57.230,59.632] [57.704,58.903]

Case-II: Let y0 = 1.138 be crisp and ρ̃ = (0.97/1.0/1.03) be fuzzy. Thus ρ̃[α] =
[0.97 + 0.03α, 1.03 − 0.03α] and ∀t ≥ 1, ỹt [α] has been calculated from (28). The
pattern of values of slightly, moderately and highly infected active cases during the
stipulated time period has been given in Table 7. Here the variations in the values of
ỹt in the stipulated period are negligible. The corresponding FCA for both cases will
have only one cell Ã0 as shown in (Fig. 5c).

5.2 Fuzzy Model Representing Spread of Virus over a
Considerably Large Period of Time

It is known that the number of people infected by the virus grows or falls according
as R0 > 1 or R0 < 1.
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Table 7 y0 = 1.138 ; ρ̃ = (0.97/1.0/1.03)

ρ̃[0.25] =
[0.977,1.022]

ρ̃[0.50] =
[0.985,1.015]

ρ̃[0.75] =
[0.992,1.007]

Time t ỹt [0.25] ỹt [0.50] ỹt [0.75]
1(12/4) [1.112,1.163] [1.121,1.155] [1.129,1.146]

2(13/4) [1.086,1.187] [1.104,1.172] [1.120,1.154]

3(14/4) [1.061,1.215] [1.088,1.190] [1.111,1.162]

4(15/4) [1.037,1.241] [1.071,1.208] [1.102,1.170]

An FFDE representing spread of virus population over a period of time, has been
obtained by fuzzifying the FDE (of the form 20) given as:

yt+1 = R0(t)yt , R0(t) > 0, t = 0, 1, 2, . . . (30)

where, ‘yt ’ is the reported number of people being actively infected by the virus at
time t, and ‘R0(t)’ is the basic reproduction number of the virus at time t. If the initial
number of people tested to be actively infected be y0 > 0, the following two cases
are considered:

• Case-I: ỹ0 > 0 is fuzzy and ∀t ≥ 0, R0(t) is crisp.
The FFDE ∀t ≥ 0 will be ỹt+1 = R0(t) ỹt and for some α ∈ (0, 1],

ỹt+1[α] = R0(t) ỹt [α] (31)

• Case-II: y0 > 0 is crisp and ∀t ≥ 0, R̃0(t) is fuzzy.
Then ỹ1 = R̃0(0)y0 and the FFDE ∀t ≥ 1 will be ỹt+1 = R̃0(t) ỹt .
For some α ∈ (0, 1],

ỹ1[α] = (R̃0(t)[α])y0 ; ∀t ≥ 1, ỹt+1[α] = R̃0(t)[α].ỹt [α] (32)

R̃0(t)[α].ỹt [α] has been computed using Definition (2.11).

Here ỹt [α] represents the suspected number of actively infected people provided
α ≥ 0.25 such that they are assumed to be as given in Sect. (5.1).

Through these FFDE we depict the spread of MERS virus and COVID-19 virus
and hence design their corresponding FCA which are temporally hybrid.

5.2.1 FCA Model Representing Spread of MERS Virus

Middle East Respiratory Syndrome Coronavirus(MERS-CoV or MERS) was first
reported in 2012 inSaudiArabia.A significant outbreakofMERShavebeenobserved
in Saudi Arabia and South Korea in and around 2015. Though, at the onset of these
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Table 8 ỹ0 = (0.3/1/1.7) ; R0(t) = yt+1
yt

be crisp with R0(0) = 5.7

Time t yt R0(t) ỹt [0.25] ỹt [0.50] ỹt [0.75]
0 1 5.7 [0.47, 1.52] [0.65, 1.35] [0.82, 1.17]

1 5.7 3.5 [2.71, 8.69] [3.70, 7.69] [4.70, 6.70]

2 20 1.5 [9.47, 30.42] [12.97, 26.93] [16.46, 23.44]

3 30 2.5 [14.21, 45.63] [19.45, 40.40] [24.68, 35.16]

4 75 0.5 [35.53,
114.08]

[48.64,
100.99]

[61.71, 87.89]

5 37 0.3 [17.76, 57.04] [24.32, 50.50] [30.86, 43.95]

6 11 0.55 [5.33, 17.11] [7.29, 15.15] [9.26, 13.18]

Day 50 6 – [2.93, 9.41] [4.01, 8.33] [5.09, 7.25]

outbreaks, the reproduction number ranged from 1.0 to 5.7, it dropped below 1within
2–6weeks [4, 23]. Out of 2449 total reported cases of MERS there has been 845
deaths [23] which is around 34% of the total cases.

Here the dynamics of the MERS virus for South Korea and Riyadh (Saudi Ara-
bia) for a period of 50days in 2015 have been analysed where a 1-week period is
considered as a unit time step [4].

The number of cases yt at time t , has been recorded from [4]. If the initial cases
be y0, then let the fuzzy initial value be ỹ0 = (0.3y0/y0/1.7y0).

Initially, R0(0) has been used as given in (see [4]) and its given value range
corresponds to the limits of the considered fuzzy R̃0(0). For any t ≥ 1, the crisp R0(t)

values have been calculated from (30).

(1) South Korea from May 11, 2015–July 22, 2015

Let the initial number of cases be y0 = 1. Also, R̃0(0) = (3.0/5.7/9.0) and ∀t ≥
1, R̃0(t) = (0.52R0(t)/R0(t)/1.6R0(t)) has been considered.
Case-I: Let ỹ0 = (0.3/1/1.7) and R0(t) be crisp with R0(0) = 5.7
Thus ỹ0[α] = [0.3 + 0.7α, 1.7 − 0.7α] and ∀t ≥ 1, ỹt [α] has been calculated from
(31). The pattern of values of slightly, moderately and highly infected active cases
during the stipulated time period has been given in Table 8.

Here,
ỹ0 < ỹ1 < ỹ7 < ỹ6 < ỹ2 < ỹ3 < ỹ5 < ỹ4.

Thus the fuzzy phase points are x̃0, x̃1, …, x̃7. The corresponding FCA will have
cells Ã0, Ã1,…, Ã7 and the ON states of these cells will be Ã0(0), Ã1(1), Ã2(7),
Ã3(6), Ã4(2), Ã5(3), Ã6(5), Ã7(4) as shown in (Fig. 6a).

Case-II: Let y0 = 1 be crisp and R̃0(t) = (0.52R(t)/R0(t)/1.6R0(t)) be triangular
fuzzy numbers with R̃0(0) = (3.0/5.7/9.0). Thus ∀t ≥ 1, ỹt [α] has been calculated
from (32). The pattern of values of slightly, moderately and highly infected active
cases during the stipulated time period has been given in Table 9. Since the pattern
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Table 9 y0 = 1 ; R̃0(t) = (0.52R0(t)/R0(t)/1.6R0(t))

Time t R̃0(t) R̃0(t)[0.25].ỹt [0.25] R̃0(t)[0.50].ỹt [0.50] R̃0(t)[0.75].ỹt [0.75]
0 (3.0/5.7/9.0) [3.675, 8.175] × 1 [4.35, 7.35]× 1 [5.025, 6.525]× 1

1 (1.8/3.5/5.6) [2.225, 5.075] [2.65, 4.55] [3.075, 4.025]

[3.7, 8.2] [4.3, 7.3] [5.0, 6.5]

2 (0.8/1.5/2.4) [0.975, 2.175] [1.15, 1.95] [1.325, 1.725]

[8.2, 41.6] [11.4, 33.2] [15.4, 26.2]

3 (1.3/2.5/4.0) [1.6,3.625] [1.9, 3.25] [2.2, 2.875]

[8.0, 90.5] [13.1, 64.7] [20.4, 45.2]

4 (0.3/0.5/0.8) [0.35, 0.725] [0.4, 0.65] [0.45, 0.575]

[12.8, 328.1] [24.9, 210.3] [44.9, 130.0]

5 (0.2/0.3/0.5) [0.225, 0.45] [0.25, 0.4] [0.275, 0.35]

[4.5, 237.8] [10.0, 136.7] [20.2, 74.7]

6 (0.3/0.55/0.9) [0.362, 0.812] [0.425, 0.725] [0.487, 0.637]

[1.0, 107.0] [2.5, 54.7] [5.6, 26.1]

Day 50 – ỹ7[0.25] = ỹ7[0.50] = ỹ7[0.75] =
[0.4, 86.9] [1.1, 39.7] [2.7, 16.6]

of the α-cut values of the fuzzy phase points from Tables 8 and 9 are similar, the
corresponding FCA will be similar to as shown in (Fig. 6a).

(2) Riyadh from July 13, 2015–August 31, 2015

Let the initial number of cases be y0 = 2. Also, R̃0(0) = (2.0/2.9/5.0) and ∀t ≥
1, R̃0(t) = (0.7R0(t)/R0(t)/1.7R0(t)) has been considered.
Case-I: Let ỹ0 = (0.6/2/3.4) and R0(t) be crisp with R0(0) = 2.9
Thus ỹ0[α] = [0.6 + 1.4α, 3.4 − 1.4α] and ∀t ≥ 1, ỹt [α] has been calculated from
(31). The pattern of values of slightly, moderately and highly infected active cases
during the stipulated time period has been given in Table 10.

Here,
ỹ0 < ỹ7 < ỹ1 < ỹ2 < ỹ6 < ỹ3 < ỹ4 ≈ ỹ5

Thus the fuzzy phase points are x̃0, x̃1 ,…, x̃6. The corresponding FCA will have
cells Ã0, Ã1, …, Ã6 and the ON states of these cells will be Ã0(0), Ã1(7), Ã2(1),
Ã3(2), Ã4(6), Ã5(3), Ã6(4), Ã6(5) as shown in (Fig. 6b).
Case-II: Let y0 = 2 be crisp and R̃0(t) = (0.7R0(t)/R0(t)/1.7R0(t)) be triangular
fuzzy numbers with R̃0(0) = (2.0/2.9/5.0). Thus ∀t ≥ 1, ỹt [α] has been calculated
from (32). The pattern of values of asymslightly, moderately and highly infected
active cases during the stipulated time period has been given in Table 11. Since the
pattern of the α-cut values of the fuzzy phase points from Tables 10 and 11 are
similar, the corresponding FCA will be similar to as shown in (Fig. 6b).
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Fig. 6 FCA for spread of MERS during 2015 in a South Korea, b Riyadh (Saudi Arabia)

Table 10 ỹ0 = (0.6/2/3.4); R0(t) = yt+1
yt

be crisp with R0(0) = 2.9

Time t yt R0(t) ỹt [0.25] ỹt [0.50] ỹt [0.75]
0 2 2.9 [0.95, 3.05] [1.3, 2.7] [1.65, 2.35]

1 5.8 1.4 [2.78, 8.84] [3.77, 7.83] [4.78, 6.81]

2 8 2.5 [3.89, 12.38] [5.29, 10.96] [6.69, 9.53]

3 20 1.4 [9.72, 30.95] [13.22, 27.4] [16.72, 23.82]

4 28 1.0 [13.61, 43.33] [18.51, 38.36] [23.41, 33.35]

5 28 0.54 [13.61, 43.33] [18.51, 38.36] [23.41, 33.35]

6 15 0.2 [7.35, 23.40] [10.0, 20.71] [12.64, 18.01]

Day 50 3 – [1.47, 4.68] [2.0, 4.14] [2.53, 3.6]
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Table 11 y0 = 2 ; R̃0(t) = (0.7R0(t)/R0(t)/1.7R0(t))

Time t R̃0(t) R̃0(t)[0.25].ỹt [0.25] R̃0(t)[0.50].ỹt [0.50] R̃0(t)[0.75].ỹt [0.75]
0 (2.0/2.9/5.0) [2.225, 4.475] × 2 [2.43, 3.95]× 2 [2.675, 3.425]× 2

1 (1.0/1.4/2.4) [1.1, 2.15] [1.2, 1.9] [1.3, 1.65]

[4.4, 8.9] [4.9, 7.9] [5.3, 6.8]

2 (1.8/2.5/4.3) [1.975, 3.85] [2.15, 3.4] [2.325, 2.95]

[4.8, 19.1] [5.9, 15.0] [6.9, 11.2]

3 (1.0/1.4/2.4) [1.1, 2.15] [1.2, 1.9] [1.3, 1.65]

[9.4, 73.5] [12.7, 51.0] [16.0, 33.0]

4 (0.7/1.0/1.7) [0.775, 1.525] [0.85, 1.35] [0.925, 1.175]

[10.3, 158.0] [15.2, 96.9] [20.8, 54.4]

5 (0.4/0.54/0.9) [0.435, 0.81] [0.47, 0.72] [0.505, 0.63]

[8.0, 241.0] [12.9, 130.8] [19.2, 63.9]

6 (0.1/0.2/0.3) [0.125, 0.275] [0.15, 0.25] [0.175, 0.225]

[3.4, 195.2] [6.1, 94.2] [9.7, 40.3]

Day 50 – ỹ7[0.25] = ỹ7[0.50] = ỹ7[0.75] =
[0.4, 53.7] [0.9, 23.5] [1.7, 9.1]

5.2.2 FCA Model Representing Spread of COVID-19 Virus

COVID-19 which emerged at China’s Wuhan towards the end of 2019, became
a pandemic around March 2020. Though more that 5.6 million people have been
affected till recently, the global reproduction number which was around 1.66 in
March has dropped below 1.1 by the beginning of May.

Here the dynamics (according to [24]) of the active cases of COVID-19 virus for
India, USA and Germany for an entire period of 49days(referred to as large period)
fromMarch 22, 2020 toMay 09, 2020, has been analysed where a 4-day gap(referred
to as short period) is considered as a unit time step. The number of active cases yt at
time t has been recorded from [24] and the R0(t) value at each time step t has been
calculated from (30).

Again, from (29), we get, R0(t) ≈ ρ4.

(1) India on 22/03/2020, had 365 active cases and 31 closed cases out of total reported
396 cases. On 09/05/2020 there were 41,406 active and 21,402 closed out of 62,808
cases[24]. The average percentage of closed cases during this period is found to
be nearly 20%. Considering the scale of 1000:1, the initial cases are y0 ≈ 0.36.
Here, ỹ0 = (0.2y0/y0/1.8y0) and R̃0(t) = (R0(t) − 0.02/R0(t)/R0(t) + 0.02) have
been considered.

Case-I: Let ỹ0 = (0.07/0.36/0.65) be fuzzy and R0(t) be crisp with R0(0) = 1.83.
Thus ỹ0[α] = [0.07 + 0.29α, 0.65 − 0.29α] and ∀t ≥ 1, ỹt [α] has been calculated
from (31). The pattern of values of slightly, moderately and highly infected active
cases during the stipulated time period has been given in Table 12. Here,
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Table 12 ỹ0 = (0.07/0.36/0.65) ; R0(t)
yt+1
yt

is crisp with R0(0) = 1.83

Time t yt R0(t) ỹt [0.25] ỹt [0.50] ỹt [0.75]
0(22/03) 0.36 1.83 [0.142, 0.577] [0.215, 0.505] [0.287, 0.432]

1(26/03) 0.66 1.69 [0.260, 1.056] [0.393, 0.924] [0.525, 0.791]

2(30/03) 1.12 2.48 [0.439, 1.785] [0.664, 1.562] [0.887, 1.337]

3(03/04) 2.78 1.70 [1.089, 4.427] [1.647, 3.874] [2.20, 3.316]

4(07/04) 4.72 1.52 [1.851, 7.526] [2.80, 6.586] [3.74, 5.637]

5(11/04) 7.19 1.45 [2.814, 11.44] [4.256,
10.011]

[5.685, 8.568]

6(15/04) 10.44 1.36 [4.08, 16.588] [6.171,
14.516]

[8.243,
12.424]

7(19/04) 14.20 1.22 [5.549, 22.56] [8.393,
19.742]

[11.210,
16.897]

8(23/04) 17.31 1.23 [6.77, 27.523] [10.239,
24.085]

[13.676,
20.614]

9(27/04) 21.37 1.22 [8.327,
33.853]

[12.594,
29.625]

[16.821,
25.355]

10(01/05) 26.03 1.29 [10.159,
41.301]

[15.365,
36.142]

[20.522,
30.933]

11(05/05) 33.57 1.23 [13.105,
53.278]

[19.821,
46.623]

[26.473,
39.904]

12(09/05) 41.41 – [16.120,
65.532]

[24.38,
57.346]

[32.562,
49.082]

ỹ0 < ỹ1 < · · · < ỹ12

Thus the fuzzy phase points are x̃0, x̃1, …, x̃12. The corresponding FCA will have
cells Ã0, Ã1,…, Ã12 and the ON states of these cells will be Ã0(0), Ã1(1),…, Ã12(12)
as shown in (Fig. 7a).

Case-II: Let y0 = 0.36 be crisp and R̃0(t) = (R0(t) − 0.02/R0(t)/R0(t) + 0.02) be
fuzzy triangular numbers with R̃0(0) = (1.81/1.83/1.85). Thus ∀t ≥ 1, ỹt [α] has
been calculated from (32). The pattern of values of slightly, moderately and highly
infected active cases during the stipulated time period has been given in Table 13.
Since the pattern of the α-cut values of the fuzzy phase points from Tables 12 and
13 are similar, the corresponding FCA will be similar to as shown in (Fig. 7a).

(2) USA on 22/03/2020, had 33,150 active cases and 690 closed cases out of total
reported 33,840 cases. On 09/05/2020 there were 1,015,164 active and 332,145
closed out of 1,347,309 cases [24]. The average percentage of closed cases dur-
ing this period is found to be nearly 13%. Considering the scale of 1000:1, the
initial cases are y0 ≈ 33.15. Here, ỹ0 = (0.13y0/y0/0.87y0) and R̃0(t) = (R0(t) −
0.04/R0(t)/R0(t) + 0.04) have been considered.
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Table 13 y0 = 0.36 ; R̃0(t) = (R0(t) − 0.02/R0(t)/R0(t) + 0.02)

Time t R̃0(t) R̃0(t)[0.25].ỹt [0.25] R̃0(t)[0.50].ỹt [0.50] R̃0(t)[0.75].ỹt [0.75]
0(22/03) (1.81/1.83/1.85) [1.815, 1.845]× 0.36 [1.82, 1.84]× 0.36 [1.825, 1.835]×0.36

1(26/03) (1.67/1.69/1.71) [1.675, 1.705] [1.68, 1.70] [1.685, 1.695]

[0.653, 0.664] [0.655, 0.662] [0.657, 0.661]

2(30/03) (2.46/2.48/2.50) [2.465, 2.495] [2.47, 2.49] [2.475, 2.485]

[1.094, 1.132] [1.10, 1.125] [1.107, 1.120]

3(03/04) (1.68/1.70/1.72) [1.685, 1.715] [1.690, 1.710] [1.695, 1.705]

[2.698, 2.826] [2.717, 2.801] [2.740, 2.783]

4(07/04) (1.50/1.52/1.54) [1.505, 1.535] [1.510, 1.530] [1.515, 1.525]

[4.546, 4.846] [4.592, 4.79] [4.644, 4.745]

5(11/04) (1.43/1.45/1.47) [1.435, 1.465] [1.44, 1.460] [1.445, 1.455]

[6.841, 7.438] [6.934, 7.329] [7.036, 7.236]

6(15/04) (1.34/1.36/1.38) [1.345, 1.375] [1.350, 1.37] [1.355, 1.365]

[9.817, 10.897] [9.985, 10.70] [10.167, 10.528]

7(19/04) (1.20/1.22/1.24) [1.205, 1.235] [1.210, 1.230] [1.215, 1.225]

[13.204, 14.984] [13.480, 14.659] [13.776, 14.371]

8(23/04) (1.21/1.23/1.25) [1.215, 1.245] [1.22, 1.24] [1.225, 1 .235]

[15.911, 18.505] [16.311, 18.031] [16.738, 17.604]

9(27/04) (1.20/1.22/1.24) [1.205, 1.235] [1.210, 1.23] [1.215, 1.225]

[19.332, 23.039] [19.899, 22.358] [20.504, 21.741]

10(01/05) (1.27/1.29/1.31) [1.275, 1.305] [1.28, 1.30] [1.285, 1.295]

[23.295, 28.453] [24.078, 27.50] [24.912, 26.633]

11(05/05) (1.21/1.23/1.25) [1.215, 1.245] [1.22, 1.24] [1.225, 1.235]

[29.701, 37.131] [30.820, 35.750] [32.012, 34.490]

12(09/05) – ỹ12[0.25] = ỹ12[0.50] = ỹ12[0.75] =
[36.087,46.228] [37.60,44.33] [39.215,42.595]

Case-I: Let ỹ0 = (4.3/33.15/62.0) be fuzzy and R0(t) be crisp with R0(0) = 2.5.
Thus ỹ0[α] = [4.3 + 28.85α, 62.0 − 28.85α] and ∀t ≥ 1, ỹt [α] has been calculated
from (31). The pattern of values of slightly, moderately and highly infected active
cases during the stipulated time period has been given in Table 14. Here,

ỹ0 < ỹ1 < · · · < ỹ12

Thus the fuzzy phase points are x̃0, x̃1, …, x̃12. The corresponding FCA will have
cells Ã0, Ã1,…, Ã12 and the ON states of these cells will be Ã0(0), Ã1(1),…, Ã12(12)
as shown in (Fig. 7a).

Case-II: Let y0 = 33.15 be crisp and R̃0(t) = (R0(t) − 0.04/R0(t)/R0(t) + 0.04) be
triangular fuzzy numbers with R̃0(0) = (2.46/2.5/2.54). Thus ∀t ≥ 1, ỹt [α] has been
calculated from (32). The pattern of values of slightly,moderately and highly infected
active cases during the stipulated time period has been given in Table 15. Since the
pattern of the α-cut values of the fuzzy phase points of Tables 14 and 15 are similar,
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Table 14 ỹ0 = (4.3/33.15/62.0); R0(t) = yt+1
yt

is crisp with R0(0) = 2.5

Time t yt R0(t) ỹt [0.25] ỹt [0.50] ỹt [0.75]
0(22/03) 33.15 2.5 [11.512, 54.787] [18.725,

47.575]
[25.937,
40.362]

1(26/03) 82.87 1.91 [28.78,136.967] [46.812,
118.937]

[64.842,
100.905]

2(30/03) 158.56 1.65 [54.97, 261.607] [89.411,
227.170]

[123.848,
192.729]

3(03/04) 262.26 1.42 [90.7, 431.652] [147.528,
374.830]

[204.349,
318.003]

4(07/04) 371.82 1.31 [128.794, 612.946] [209.49,
532.259]

[290.176,
451.564]

5(11/04) 485.43 1.18 [168.720, 802.959] [274.432,
697.259]

[380.131,
591.549]

6(15/04) 571.06 1.15 [199.09, 947.492] [323.83,
822.766]

[448.555,
698.028]

7(19/04) 656.75 1.13 [228.953,
1089.616]

[372.404,
946.181]

[515.838,
802.732]

8(23/04) 745.15 1.09 [258.717,
1231.266]

[420.817,
1069.185]

[582.897,
907.087]

9(27/04) 808.52 1.11 [282.0, 1342.08] [458.691,
1165.412]

[635.358,
988.725]

10(01/05) 895.11 1.07 [313.02, 1489.709] [509.147,
1293.607]

[705.247,
1097.485]

11(05/05) 953.56 1.06 [334.931,
1593.989]

[544.787,
1384.159]

[754.614,
1174.309]

12(09/05) 1015.16 – [355.027,
1689.628]

[577.474,
1467.209]

[799.891,
1244.768]

the corresponding FCA will be similar to as shown in (Fig. 7a).

(3)Germany on22/03/2020, had 24,513 active cases and 360 closed cases out of total
reported 24,873 cases. On 09/05/2020 there were 20,475 active and 150,849 closed
out of 171,324 cases [24]. The average percentage of closed cases during this period is
found to be nearly 44%. Considering the scale of 1000:1, the initial cases y0 ≈ 24.51.
Here, ỹ0 = (0.44y0/y0/1.56y0) and R̃0(t) = (R0(t) − 0.02/R0(t)/R0(t) + 0.02) have
been considered.
Case-I: Let ỹ0 = (10.8/24.51/38.2) be fuzzy and R0(t) be crisp with R0(0) = 1.55.
Thus ỹ0[α] = [10.8 + 13.71α, 38.2 − 13.69α] and∀t ≥ 1, ỹt [α] has been calculated
from (31). The pattern of values of slightly, moderately and highly infected active
cases during the stipulated time period has been given in Table 16. Here, ỹ0 < · · · <

ỹ4 and ỹ5 > · · · > ỹ12 giving

ỹ12 < ỹ0 ≈ ỹ11 < ỹ10 < ỹ1 ≈ ỹ9 < ỹ8 < ỹ2 ≈ ỹ7 < ỹ6 < ỹ3 ≈ ỹ5 < ỹ4
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Table 15 y0 = 33.15 ; R̃0(t) = (R0(t) − 0.04/R0(t)/R0(t) + 0.04)

Time t R̃0(t) R̃0(t)[0.25].ỹt [0.25] R̃0(t)[0.50].ỹt [0.50] R̃0(t)[0.75].ỹt [0.75]
0(22/03) (2.46/2.5/2.54) [2.47, 2.53] × 33.15 [2.48, 2.52] × 33.15 [2.49, 2.51]× 33.15

1(26/03) (1.87/1.91/1.95) [1.88, 1.94] [1.89, 1.93] [1.90, 1.92]

[81.880, 83.869] [82.212, 83.538] [82.543, 83.206]

2(30/03) (1.61/1.65/1.69) [1.62, 1.68] [1.63, 1.67] [1.64, 1.66]

[153.934, 162.706] [155.381, 161.228] [156.832, 159.756]

3(03/04) (1.38/1.42/1.46) [1.39, 1.45] [1.40, 1.44] [1.41, 1.43]

[249.373, 273.346] [253.271, 269.251] [257.204, 265.195]

4(07/04) (1.27/1.31/1.35) [1.28, 1.34] [1.29, 1.33] [1.30, 1.32]

[346.628, 396.352] [354.579, 387.721] [362.658, 379.229]

5(11/04) (1.14/1.18/1.22) [1.15, 1.21] [1.16, 1.2] [1.17, 1.19]

[443.684, 531.112] [457.407, 515.669] [471.455, 500.582]

6(15/04) (1.11/1.15/1.19) [1.12, 1.18] [1.13, 1.17] [1.14, 1.16]

[510.237, 642.646] [530.592, 618.803] [551.602, 595.693]

7(19/04) (1.09/1.13/1.17) [1.10, 1.16] [1.11, 1.15] [1.12, 1.14]

[571.465, 758.322] [599.569, 724.0] [628.826, 691.004]

8(23/04) (1.05/1.09/1.13) [1.06, 1.12] [1.07, 1.11] [1.08, 1.10]

[628.612, 879.654] [666.522, 832.6] [704.285, 787.745]

9(27/04) (1.07/1.11/1.15) [1.08, 1.14] [1.09, 1.13] [1.10, 1.12]

[666.329, 985.212] [712.109, 924.186] [760.628, 866.52]

10(01/05) (1.03/1.07/1.11) [1.04, 1.10] [1.05, 1.09] [1.06, 1.08]

[719.635, 1123.142] [776.199, 1044.33] [836.691, 970.502]

11(05/05) (1.02/1.06/1.10) [1.03, 1.09] [1.04, 1.08] [1.05, 1.07]

[748.420, 1235.456] [815.009, 1138.320] [886.892, 1048.142]

12(09/05) – ỹ12[0.25] = ỹ12[0.50] = ỹ12[0.75] =
[770.823, 1346.647] [847.609, 1229.386] [931.237, 1121.512]

Thus the different fuzzy phase points are x̃−1, x̃0, x̃1, …,x̃7. The corresponding FCA
will have cells Ã−1, Ã0, Ã1, …, Ã7 and the ON states of these cells will be Ã−1(12),
Ã0(0), Ã0(11), Ã1(10), Ã2(1), Ã2(9), Ã3(8), Ã4(2), Ã4(7), Ã5(6), Ã6(3), Ã6(5),
Ã7(4) as shown in (Fig. 7b).

Case-II: Let y0 = 24.51 be crisp and R̃0(t) = (R0(t) − 0.02/R0(t)/R0(t) + 0.02) be
triangular fuzzy numbers with R̃0(0) = (1.53/1.55/1.57). Thus ∀t ≥ 1, ỹt [α] has
been calculated from (32). The pattern of values of slightly, moderately and highly
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Table 16 ỹ0 = (10.8/24.51/38.2) ; R0(t) = yt+1
yt

be crisp with R0(0) = 1.55

Time t yt R0(t) ỹt [0.25] ỹt [0.50] ỹt [0.75]
0(22/03) 24.51 1.55 [14.227,

34.777]
[17.655,
31.355]

[21.082,
27.932]

1(26/03) 38.0 1.39 [22.052,
53.904]

[27.365,
48.60]

[32.677,
43.295]

2(30/03) 52.74 1.24 [30.652,
74.927]

[38.037,
67.554]

[45.421,
60.180]

3(03/04) 65.31 1.06 [38.008,
92.909]

[47.166,
83.767]

[56.322,
74.623]

4(07/04) 69.57 0.94 [40.288,
98.484]

[49.996,
88.793]

[59.701,
79.100]

5(11/04) 65.18 0.90 [37.871,
92.575]

[46.996,
83.465]

[56.119,
74.354]

6(15/04) 58.35 0.91 [34.084,
83.317]

[42.296,
75.118]

[50.507,
66.919]

7(19/04) 53.10 0.83 [31.016,
75.818]

[38.489,
68.357]

[45.961,
60.896]

8(23/04) 44.25 0.86 [25.743,
62.929]

[31.946,
56.736]

[38.148,
50.544]

9(27/04) 38.13 0.80 [22.139,
54.119]

[27.474,
48.793]

[32.807,
43.468]

10(01/05) 30.44 0.82 [17.711,
43.295]

[21.979,
39.034]

[26.246,
34.774]

11(05/05) 24.91 0.82 [14.523,
35.502]

[18.023,
32.008]

[21.522,
28.515]

12(09/05) 20.47 – [11.901,
29.112]

[14.779,
26.246]

[17.648,
23.382]

infected active cases during the stipulated time period has been given in Table 17.
Since the pattern of the α-cut values of the fuzzy phase points of Tables 16 and 17
are similar, hence the corresponding FCA will be similar to as shown in (Fig. 7b).

6 Conclusion

The basic reproduction number associated with any virus outbreak changes after a
short period of time. We have designed an FCA which turned out to be temporally
hybrid, representing the growth of the number of infected population from MERS
virus outbreak in 2015, and for Covid-19 virus. However, a moderately large time
period may be divided into short equal time intervals. In each of these equal time
intervals there will be growth of the number of infected population which may be
designed by an FCA. So alternate use of FCA and temporally hybrid FCA will
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Table 17 y0 = 24.51 ; R̃0(t) = (R0(t) − 0.02/R0(t)/R0(t) + 0.02)

Time t R̃0(t) R̃0(t)[0.25].ỹt [0.25] R̃0(t)[0.50].ỹt [0.50] R̃0(t)[0.75].ỹt [0.75]
0(22/03) (1.53/1.55/1.57) [1.535, 1.565] ×

24.51
[1.54, 1.56] × 24.51 [1.545, 1.555] ×

24.51

1(26/03) (1.37/1.39/1.41) [1.375, 1.405] [1.38, 1.40] [1.385, 1.395]

[37.623, 38.358] [37.745, 38.236] [37.868, 38.113]

2(30/03) (1.22/1.24/1.26) [1.225, 1.255] [1.23, 1.25] [1.235, 1.245]

[51.732, 53.893] [52.088, 53.530] [52.447, 53.168]

3(03/04) (1.04/1.06/1.08) [1.045, 1.075] [1.05, 1.07] [1.055, 1.065]

[63.372, 67.636] [64.068, 66.912] [64.772, 66.194]

4(07/04) (0.92/0.94/0.96) [0.925, 0.955] [0.93, 0.95] [0.935, 0.945]

[66.224, 72.709] [67.271, 71.596] [68.334, 70.497]

5(11/04) (0.88/0.90/0.92) [0.885, 0.915] [0.89, 0.91] [0.895, 0.905]

[61.257, 69.437] [62.562, 68.016] [63.892, 66.620]

6(15/04) (0.89/0.91/0.93) [0.895, 0.925] [0.90, 0.92] [0.905, 0.915]

[54.212, 63.535] [55.680, 61.895] [57.183, 60.291]

7(19/04) (0.81/0.83/0.85) [0.815, 0.845] [0.82, 0.84] [0.825, 0.835]

[48.520, 58.77] [50.112, 56.943] [51.751, 55.166]

8(23/04) (0.84/0.86/0.88) [0.845, 0.875] [0.85, 0.87] [0.855, 0.865]

[39.544, 49.661] [41.092, 47.832] [42.695, 46.064]

9(27/04) (0.78/0.80/0.82) [0.785, 0.815] [0.79, 0.81] [0.795, 0.805]

[33.415, 43.453] [34.928, 41.614] [36.504, 39.845]

10(01/05) (0.80/0.82/0.84) [0.805, 0.835] [0.81, 0.83] [0.815, 0.825]

[26.231, 35.414] [27.593, 33.707] [29.021, 32.075]

11(05/05) (0.80/0.82/0.84) [0.805, 0.835] [0.81, 0.83] [0.815, 0.825]

[21.116, 29.571] [22.350, 27.977] [23.652, 26.462]

12(09/05) – ỹ12[0.25] = ỹ12[0.50] = ỹ12[0.75] =
[16.998, 24.692] [18.104, 23.221] [19.276, 21.831]

completely explain the model. Use of the concept of α-cut enabled us to introduce
a gradation of the number of infected people. Changing the values of α will give a
different gradation.

Study of the models obtained by replacing basic reproduction number with effec-
tive reproduction number may be an interesting exercise.
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Fuzzy Cellular Automata Model for Discrete Dynamical … 303

Fig. 7 FCA for spread Of COVID-19 from 22/03/2020 to 09/05/2020 in a India/USA, b Germany
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