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Abstract. In order to solve the problem that most non-negative matrix decom-
position methods are sensitive to noise and outliers, resulting in poor sparsity and
robustness, a multiple graph regularized non-negative matrix factorization based
on L2,1 norm is proposed in this paper, and its performance is verified by face
recognition. Firstly, the texture rich area is selected in the preprocessing stage.
Secondly, L2,1 norm is used to improve the sparsity and robustness of decompo-
sition results. Then, in order to better maintain the manifold structure of the data,
the multi-graph constraint model is constructed. Furthermore, the corresponding
multiplicative updating solution of the optimization framework is given, and the
convergence proof is given. Finally, a large number of experimental results show
that the superiority and effectiveness of the proposed approach.
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1 Introduction

As one of the most challenging classification tasks in computer vision and pattern recog-
nition, face recognition have attracted much researchers’ attentions [1–4]. Many face
recognition techniques have been proposed in the past few decades. A face image of size
pixels is usually represented by a dimensional vector. However, excessive high dimen-
sionality has an impact on the efficiency and accuracy of face recognition. In the face of
this situation, the method of feature extraction or data dimensionality reduction is gener-
ally adopted. The classic dimensionality reduction methods mainly include PCA, LDA,
etc. Although these methods can reduce the dimension of the original data well, there is
no non-negative requirement for the decomposition factor, so there are negative values
in the decomposed components. These negative values have no physical significance in
practical problems. Therefore, NMF is generated by operation.

In 1999, Non-negative matrix decomposition (NMF) algorithm was first proposed
by Lee in Nature [5]. Its purpose is to approximate decompose the original nonnegative
data matrix into the product of two matrices with nonnegative elements, namely basis
matrix and coefficient feature matrix. This part-based, purely additive nature of the
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NMF method can enhance the partial to overall interpretation of the data. Because of its
non-negative constraints, sparse local expression and good interpretability, the NMF has
been widely used in many real world problems such as face recognition, text clustering,
feature recognition and information retrieval [6–8].

Many scholars have improved NMF and applied it in the field of face feature extrac-
tion and classification recognition. In 2002, Hoyer [9] integrated the idea of sparse
coding into NMF, using L1 norm as sparse penalty term, and using Euclidean distance
to calculate the error between the original data and the reconstructed data. To use the
data geometric structure, Cai et al. [10] proposed a graph regularization non-negative
matrix factorization (GNMF). In the GNMF algorithm, the geometrical structure of data
is encoded by a k-nearest neighbor graph. In order to maintain the internal structure
of the original data, Qing et al. proposed another variant of NMF, which is called a
graph regularization non-negative matrix factorization (GNMF) method to describe the
internal manifold structure of data points in the data matrix by constructing the neigh-
borhood graph [11]. In order to improve the sparsity of the decomposition results and
transmit the effective information, Jiang Wei et al. Proposed the sparse constraint graph
NMF method (SGNMF) [12]. Zhou et al. Proposed the NMF algorithm based on Gabor
wavelet by combining wavelet change and manifold [13].

With single figure to constraints of the internal structure of the original data, although
to a certain extent to meet the demand of feature vector, but the results were not intellec-
tual and meet the requirements of the single, while there are double or more constraints
of the NMF algorithm, but while in measuring loss function based on L2 norm, existing
algorithms are sensitive to noise and outliers caused by sparse decomposition results,
and poor robustness problems. Therefore, this paper proposes a multi-graph regular-
ized non-negative matrix factorization method based on L2,1 norm (L2,1-MGNMF).
The method uses the line sparse property of L2,1 norm as the loss function. On the
basis of the single graph regularization structure, the manifold structure of the original
data is represented by fusing multiple graphs, and the constraints and decomposition
results of the original structure of the original data are considered. Increased sparsity
and robustness. The proposed L2,1-MGNMFmethod is finally tested on ORL and other
face databases. A lot of experimental results show that our L2,1-MGNMF approach is
effective and feasible, which surpasses some existing methods.

The remainder of the paper is organized as follows: Sect. 2 introduces the basic
ideas of the existing NMF and GDNMFmethods. Section 3 proposes our L2,1-MGNMF
and gives theoretic analysis. Experimental comparisons are reported in Sect. 4. Finally,
conclusions are given in Sect. 5.

2 A Brief Review of NMF

This section describes NMF and GNMF algorithms briefly. Let X be a training data
matrix of m × n-dimensional samples x1, x2, · · · , xn, i.e., x ∈ Rm×n with nonnegative
entries. Each column of X represents a face image with m dimensions.
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2.1 Non-negative Matrix Factorization(NMF)

NMF aims to approximately decomposes the training sample matrix X into a product
of two non-negative matrices A ∈ Rm×r and S ∈ Rr×n (r � min (m, n)), i.e., X ≈
AS. Matrices A and S are called basis matrix and coefficient matrix, respectively. In
general, NMF is based on minimizing the Euclidean distance between X and AS. The
corresponding optimization problem is as follows:

min
A,S

‖X − AS‖2F , s.t.A ≥ 0, S ≥ 0 (1)

where ‖•‖F is the matrix Frobenius norm of a matrix. The optimization problem can be
solved using gradient descent method. The well-known multiplicative update rules are
as follows:

S(t+1) ← S(t)

(
A(t)T X

)
(
A(t)T A(t)S(t)

) A(t+1) ← A(t)

(
XS(t)T

)
(
AS(t)S(t)T

) (2)

The convergence of these multiplicative update rules have been proved in [14].

2.2 Graph Regularized Non-negative Matrix Factorization (GNMF)

To find a compact representation which uncovers the hidden semantics and simulta-
neously respects the intrinsic geometric structure, the graph regularized non-negative
matrix factorization (GNMF) was proposed in [10]. GNMF solved the following
optimization problem:

min
A,S

‖X − AS‖2F + λTr
(
SLST

)
, s.t.A ≥ 0, S ≥ 0 (3)

where Tr(•) is the trace of a matrix and L = D−W is called the graph Laplacian matrix,
regularization parameterλ ≥ 0 controls the smoothness of the new representation. TheW
denotes the weight matrix, and D is a diagonal matrix. The corresponding multiplicative
update rules for solving Eq. (3) are as follows:

S(t+1) ← S(t)

(
X (t)T A + λWS

)
(
A(t)T A(t)S(t)

) A(t+1) ← A(t)

(
XS(t)T

)
(
AS(t)S(t)T

) (4)

3 Multiple Graph Regularized Non-negative Matrix Factorization
Based on L2,1 Norm (L2,1-MGNMF)

Although the existing NMF-based improved methods have achieved good results, they
still have some limitations. In this section, we will describe our Multiple Graph Regular-
ized Non-negative Matrix Factorization based on L2,1 Norm (L2,1-MGNMF). Further
we formulate our optimization problem by adding supervised label information to the
objective function of L2,1-MGNMF. The definition and update rules of L2,1-MGNMF
are given below.
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3.1 L2,1-MGNMF Model

In order to maintain the original structure of the data as much as possible, this paper
uses the neighborhood weighting, weight weighting, and sparse weighting to constrain
the structure of the original data. The three weight matrices are defined as follows:

1. Neighborhood weighting.WN
ij = 1 if and only if sample j is the nearest neighbor of

sample i. This is the simplest weighting method and is very easy to compute.
2. Weight weighting. If sample j is the neighbor of sample i, then

WW
ji = exp(

−∥∥xi − xj
∥∥2

2σ 2 ) (5)

3. Sparse weighting. Sparse weight graphs can represent the sparse structure of the
original data, and the sparse constraint is added to make the base image obtained by
the decomposition represent the original image with as few features as possible, the
weight matrix defined by:

WS = s.t. ‖x − Dϕ‖p ≤ ε, (6)

where ϕ is the sparse coefficient.

The L2,1-MGNMF solves the following optimization problem:

min
A,S

‖X − AS‖2,1 + α

X∑
x=1

μx

⎛
⎝

m∑
i,j=1

∥∥si − sj
∥∥2
2w

x
ij

⎞
⎠ + β‖μ‖22,

s.t.A ≥ 0, S ≥ 0,
X∑
x=1

μx = 1, μ ≥ 0 (7)

where, WX represents the x-th weight graph, and α and β are balance parameters. The
discrimination ability of different graphs is very different. The weight μ should be set
according to the graph, and the balance parameter α determines the influence of the
integrated manifold structure on the objective function.

3.2 The Update Rules of L2,1-MGNMF

Though the objective function in Eq. (7) is not jointly convex in the pair (A, S, μ), it is
convex with respect to one variable in the (A, S, μ) while fixing the others. Therefore it
is unrealistic to expect an algorithm to find the global minima. In the following, we can
use the iterative solution of fixing two variables to update another variable which can
achieve local minima. The solution process is as follows:

1. Fix μ and S, update A. To remove the irrelevant items, the optimization problem of
A can be transformed into the following:

min‖X − AS‖2,1 = tr((X − AS)D(X − AS)T )
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= tr
(
XDXT − 2ASDX T + ASDSTAT

)

s.t.A ≥ 0 (8)

where D is a diagonal matrix dii = 1/‖xi − Asi‖.
2. Let � be the Lagrange multiplier, the Lagrange 	 is:

ℓ (9)

3. The partial derivatives of 	 with Eq. (9) is:

∂	(A,�)

∂A
= −2XDST + 2ASDST + λ� = 0 (10)

4. Using the KKT conditions �ijAij = 0, we get the following equations:
(
−2XDST + 2ASDST

)
Aij = 0 (11)

5. Fix μ and A, update S. To remove the irrelevant items, the optimization problem of
S can be transformed into the following:

min‖X − AS‖2,1 + α
∑X

x=1
μx

(∑m

i,j=1

∥∥si − sj
∥∥2
2w

x
ij

)
. s.t. S ≥ 0 (12)

6. Similarly, we get the following equations:
(
−2ATXD + 2ATASD + αSL

)
Sij = 0 (13)

Where L = ∑X
x=1 μxLx.

7. Therefore, according to Eq. (11) and Eq. (13), we have the following updating rules:

A(t+1) ← A(t) (XDST )(t)

(ASDST )(t)
(14)

S(t+1) ← S(t) (ATXD)(t)

(ATASDS + αSL)(t)
(15)

Theorem 1: The objective function O1 in Eq. (7) is non-increasing under the updating
rules in Eq. (14), and (15).

We can iteratively update A and S until the objective value of O1 does not change or
the number of iteration exceed the maximum value. Theorem 1 also guarantees that the
multiplicative updating rules in Eq. (14) and (15) converge to a local optimum.

We summarize our Multiple Graph Regularized Non-negative Matrix Factorization
based on L2,1 Norm (L2,1-MGNMF) algorithm in Table 1.

4 Experimental Results

In this section, we compare the proposed L2,1-MGNMF with four representative algo-
rithms, which are NMF, SGNMF, LGNMF [15], and SPGNMF [16], on three face
datasets, i.e., ORL [17], Yale [18], and PIE [19].
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Table 1. The algorithm of L2,1-MGNMF

Input: Data matrix , balance parameters α and weight μ ,convergence 
condition

Initialization: Randomly initialize two non-negative matrices and

Repeat:  1. Update A by rule(14)

2. Update S by rule(15)

Until Convergence

Output: Basis matrix A

4.1 Dataset

Three datasets are used in the experiment. The important statistics of these data sets are
summarized in Table 2. Figure 1 shows example images of ORL, Yale, and PIE datasets.
Before the experiment, face image should be preprocessed. We think that the texture
region contains more information, and the rest of the region is redundant. Therefore, the
texture rich region is reserved for future experiments (see Fig. 2). Then, each face image
is represented as a column vector and the features (pixel values) are then scaled to [0, 1]
(divided by 255).

For each sample, we randomly select half of the images as the training set and the
rest as the test set. Repeat random selection l times to ensure that 95% of the images have
participated in the training and testing. The performance of L2,1-MGNMF is measured
by Accuracy (ACC) and False Acceptance Rate (FAR).

Table 2. Statistics of the four datasets

Dataset Number of samples (P) Dimensionality (N) Number of classes (K)

ORL 400 112*92 40

Yale 165 64*64 15

PIE 1632 64*64 68

4.2 Parameter Selection

The main parameters in the algorithm model are the dimension rafter dimension reduc-
tion, the iteration number Lit which affects the convergence speed of the algorithm, and
balance parameters α which affects the decomposition error.
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Fig. 1. Face image examples of the (a) ORL, (b) Yale, and (c) PIE datasets

Fig. 2. Pre-processed image examples

Figure 3 shows the accuracy curve when Lit values 100, 300, 500, 800 and 1500
respectively. It can be seen from the figure that the performance of the algorithm
increases with the number of iterations. Considering the relationship between accuracy
and computational efficiency, Lit is set to 1500.
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Fig. 3. The ACC with different Lit

It can be seen from the figure that the performance of the algorithm increases with
the decrease of the balance factor α. when α < 0.01, the performance of the algorithm
fails to further improve, so the balance parameters in this paper is 0.01 (Fig. 4).

Fig. 4. The ACC with different α

4.3 Compared Algorithms

To demonstrate how our approach improves performance, we compared the following
four popular algorithms: NMF, SGNMF, LGNMF, and SPGNMF.

Figure 5 gives that the average accuracy versus the dimension of the subspace.
Figure 6 gives that the average FAR versus the dimension of the subspace. According to
Fig. 5 and 6, it can be seen that the performance of the proposed method on three face
databases is significantly higher than that of other methods.

Finally, we compared the sparsity of the matrix decomposition results of these five
algorithms, and selected the base image obtained by the decomposition of the original
data X. The feature dimension of the base image was set at 30, and the sparsity is defined
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(a) ORL

(b) Yale

(c) PIE

Fig. 5. Face predictive accuracy on the (a) ORL, (b) Yale, and (c) PIE datasets



Multiple Graph Regularized Non-negative Matrix Factorization 133

(a) ORL

(b) Yale

(c) PIE

Fig. 6. The FAR on the (a) ORL, (b) Yale, and (c) PIE datasets
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by:

SP(x) =
√
m − (∑|xi|

)
/

√∑
x2i√

n − 1
(16)

where m is the dimension of the vector. When there is only one non-zero element,
SP = 1, the smaller the value of SP, the denser the vector x, otherwise, the sparser. The
experimental results are as follows (Table 3):

Table 3. The SP of different algorithm

Algorithm ORL Yale PIE

NMF 0.3546 0.3789 0.3762

SGNMF 0.4632 0.4762 0.4785

LGNMF 0.4469 0.4618 0.4539

SPGNMF 0.4793 0.5149 0.5278

It can be seen from the table that compared with the sparsity results of these algo-
rithms, the NMF algorithm has the worst sparsity. In this paper, L2,1-mgnmf algorithm
has the highest result than other algorithms, and the decomposed base image is the most
sparse with better local expression ability.

5 Conclusions

We have presented an efficient method for matrix factorization, calledMulti-graph regu-
larizedNon-negativeMatrix Factorizationmethod based onL2,1 norm (L2,1-MGNMF).
As a result, L2,1-MGNMF can have more discriminative power than the conventional
NMF and its several variants. Further, we show the corresponding multiplicative update
rules and convergence studies. Evaluations on three face datasets have revealed both
higher recognition accuracy, sparsity and lower false acceptance rate of the proposed
algorithm in comparison to those of the state-of-the-art algorithms. But how to build a
multi-graph fusion model is still the focus of future research.
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