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Abstract The personal reflections of the author’s research in structural mechanics,
covering the development of shear deformation theories of laminated composite
plates and shells (past and present), and formulation of nonlocal theories (present),
and the modelling of web core sandwich and architected materials (present and future)
are presented. Various professional milestones are reviewed and the salient features
are highlighted. The milestones include: (1) Reddy’s third-order shear deformation
laminate plate theory for quadratic representation of the interlaminar shear stresses
without the use of shear correction factors, (2) Reddy’s layerwise theory for laminates
for accurate determination of interlaminar stresses, (3) algebraic relationships
between the bending solutions of shear deformation theories and classical theories of
beams and plates, (4) locking-free shell finite elements accounting for thickness
stretch, (5) strain gradient/modified couple stress theories for beams and plates, and
(6) nonlocal micropolar theory of plates to model web core structures. Due to the
space limitations, a discussion of only topics 5 and 6 are included here.

Keywords Shear deformation plate theory - Layerwise laminate theory - Bending
relationships - Locking-free shell finite elements - Nonlocal structural theories

1 Introduction

The author comes from a lower middle-income farming family in rural South India.
As the youngest of five children, he was the first in his family to go beyond high
school. During summer holidays, he used to help his father on the farm, which
prepared him to be a hard worker, diligent, and thorough. He went through a
five-year integrated Bachelor of Engineering degree in India that prepared him with
a broader engineering background and helped him in the later years to work not
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only in solid and structural mechanics but also in heat transfer, fluid mechanics, and
applied mathematics.

The author went to USA in the spring of 1969 to do a M.S. at Oklahoma State
University. The he joined Professor J.T. Oden’s research group at the University of
Alabama in Huntsville for Ph.D. in engineering mechanics. Professor Oden was one
of the top researchers in the world and the only engineer who was beginning to
work on mathematical foundations of the finite element method. The author’s
dissertation topic was on the existence and uniqueness of mixed finite element
approximations of boundary value problems as well as the unification of variational
principles of theoretical mechanics. Both of the topics led, in addition to several
journal papers, to two books with Dr. Oden.

Following his Ph.D. (1974), he worked for a brief period with Lockheed
Missiles and Space Company, where he worked on a NASA (Glenn) research
project to develop a 3D finite element code to study hypervelocity impact, he joined
the University of Oklahoma, Norman, in January 1975. It was there where he was
introduced to the subject of composite materials and structures by Professor Charles
Bert that would change the course of his professional career and follow the legacy
of Timoshenko and Mindlin and likes to develop shear deformation theories.
Knowing the limitations of classical thin plate and shell theories in capturing
inter-laminar stresses, he started working on shear deformation theories for com-
posite laminates. His background in mathematics, mechanics, and the finite element
method enabled him not only to conceive novel and improved mathematical models
of beam, plate, and shell theories, but also to develop locking-free and robust finite
element models — an activity that continues to the present day.

During the last four decades (he was at Virginia Tech for 12 years and 27 years
and going at Texas A&M University), the author has been working on two major
fronts as far as the structural mechanics is concerned (he also has also worked in
computational fluid dynamics) with two topics: (1) development of 7-, 8-, and
12-parameter shell theories and their finite elements and (2) nonlocal and
non-classical continuum mechanics. The first topic is a continuation of many years
of his work on shear deformation theories of plates and shells to develop
locking-free shell elements for large deformation analysis of laminated composite
and functionally graded structures. He has collaborated with Professor C.M. Wang
of the National University of Singapore (now at the University of Queensland,
Australia) to develop algebraic relations between the bending, frequency, and
buckling solutions of shear deformation theories in terms of the corresponding
solutions of the classical theories. The second topic is a rejuvenation of ideas
originated and advanced by Cosserat bothers, Green, Naghdi, Mindlin, Eringen,
Hutchinson, and likes, and their implementation into structural theories. These
include: couple stress theories, strain and stress gradient theories, and micromorphic
theories. The nonlocal and non-classical continuum ideas can be used to study
architected materials and efficient modelling of large or mega structures, by
bringing material as well as structural length scales into structural theories.

In this written paper, (1) the robust shell finite elements and (2) nonlocal (mi-
cropolar) plate models are discussed. However, the oral presentation will briefly
discuss all 6 milestones.
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2 Robust Shell Element with Thickness Stretch

2.1 Introduction

Shear deformation theories based on the assumption of inextensibility of lines
normal to the shell surface and subsequent neglect of transverse normal stress are
not accurate, when a considerable thickness deformation occurs (e.g., shells made
of soft materials like rubber or biological materials, where large deformations can
be found), even in the linear material regime (see [1]). A simple theory that allows
for thickness stretch is the seven-parameter formulation presented by Biichter et al.
[5], Sansour [15], and Bischoff and Ramm [4], where the transverse displacement is
expanded up to quadratic terms, and the Poisson locking is mitigated when
three-dimensional constitutive equations are used. Later, Arciniega and Reddy [2]
developed a tensor-based finite element shell with first-order shear deformation
kinematics and seven parameters. A similar theory was presented by Payette and
Reddy [14], where continuous shell elements in conjunction with high-order
spectral/hp functions were used. In recent works, Gutierrez Rivera and Reddy [8]
extended the formulation to transient analysis. A linear shell theory which takes
thickness stretch into account has been developed by Carrera et al. [6]. In recent
works, Amabili [1] introduced a geometrically nonlinear shell theory allowing
third-order thickness stretch, higher-order shear deformation, and rotary inertia by
using eight independent parameters. Based on the formulation presented in Amabili
[1], Gutierrez Rivera et al. [9] presented a 12-parameter shell element for large
deformation analysis of shell structures.

2.2 Displacement Field of the 8-Parameter Theory

Here we present few results using a third-order thickness stretching theory with
eight independent parameters as an alternative to the twelve-parameter formulation.
The displacement vector is assumed to be of the form

u(E) = u(E) + £ 00+ @R+ B En (1)
Here u denotes the mid-plane displacement vector @ is the difference vector and it
gives the change in the mid-surface director, and ¥ and y are components that are
used to circumvent the spurious stresses that occur in the thickness direction of a six
parameter formulation. The remaining theoretical development (e.g., derivation of
the Green-Lagrange strain tensor, use of the principle of virtual displacement, and
finite element model development) are not included here and the user is referred to
Gutierrez Rivera et al. [10] for additional information.
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2.3 A Numerical Example

As a numerical example, we consider a simply supported isotropic cylindrical shell
subjected to a non-displacement dependent internal pressure p (see Fig. 1). The
results are compared with those presented by Amabili [1], where full non-linear terms
associated with Green—Lagrange strain-displacement relations, third-order thickness
stretch, and third-order shear deformation were used to describe the shell kinematics.
The geometric parameters are L = 0.52 m, R = 0.15 m, and 2 = 0.03 m, and the load
used is ¢ = 12 GPa. Itis assumed that the shell is made of stainless steel with material
properties E = 198 GPa and v = 0.3. Symmetry is exploited and one octant of the
shell is used as a computational domain. A uniform mesh of 4 x 4 with polynomial
degree of 8 is used. The boundary conditions for the presented formulation are

x=0,L: w=u=¢,=¢,=¥Y=y=0 (2)

Figures 2 and 3 show, respectively, the normalized transverse displacement and
thickness stretch versus the axial coordinate of the shell at point A. A very good
agreement between the results obtained using the present formulation and the ones
reported by Amabili [1] is observed. Figure 4 shows the deformed configuration for
this isotropic shell at the maximum load q. As can be seen from Fig. 3, the
thickness stretch is significant and it is the most near the constrained ends and
uniform in the interior of the cylindrical shell.
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Fig. 1 Simply supported isotropic cylindrical shell with internal pressure
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Fig. 2 Normalized
transverse displacement
versus normalized axial
coordinate

Fig. 3 Normalized thickness
stretch versus normalized
axial coordinate

Fig. 4 Deformed
configuration of the internally
pressurized cylindrical shell
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3 Micropolar Plate Model for the Analysis of Web-Core
Sandwich Plates

3.1 Background

Advances in manufacturing technologies have enabled the design and development
of materials whose microstructure can be architected to achieve desired function-
alities (see [7]). The scale of the architected microstructure can range from a few
nanometers to several meters (see [3, 16]). Lattice materials used in sandwich
panels are a class of architected materials whose microstructure is typically in the
order of centimeters. Modelling of such plates accounting for the architectural
details is computationally intensive. On the other hand, homogenization to reduce
the sandwich plate to an equivalent single-layer plate will result in an inaccurate
representation of the response. Therefore, model that is computationally inexpen-
sive while accounting for the material behavior to the extent that the sandwich plate
response is nearly the same as that would be obtained by 3D analysis. One such
approach based on micropolar theory is presented here.

3.2 Formulation

The micropolar theory allows us to pass information on both displacements and
rotations from the 3D unit cell into an equivalent single-layer plate model. The
conventional shell finite elements used to model the 3D unit cell have both trans-
lational and rotational degrees of freedom that are related to the generalized dis-
placement degrees of freedom of the micropolar FSDT plate theory. This way we
are able to account, in addition to the antisymmetric shear deformations, for the
local twisting and bending of the sandwich face sheets and webs with respect to
their own mid-surfaces through couple-stress moments, which is not possible in a
conventional FSDT sandwich plate theory. The two-scale approach based on
energy equivalence between the 3D unit cell and the 2D micropolar plate provides
the plate constitutive relations (see [11-13] for details).
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3.2.1 Displacement Field of the Micropolar Plate Theory

The displacements and microrotations of a 2D shear deformable micropolar plate
are

Ux(x,9,2) = ux(x,y) +2¢,(x,y)

Uv(x ¥z ) = u\(x Vs )+Z¢)7(X7Y>

U(x,y,2) = u(x,y)

P(3,2) = (1) ©
lP)’(x7y7 ) }( )

lpz(x,y’ )

where (uy,uy,u;) denote the displacements of a point on the plane z =0, and
(s d)y) are the rotations of a transverse normal about the y- and x-axes, respec-
tively, whereas (y,, lpy) are microrotations about the x- and y-axes, respectively.
Note that ¥,(x,y,z) =0 means that the micropolar plate theory for web-core
sandwich panels will not have a drilling degree of freedom.

Following the theory of micropolar elasticity, the nonzero strains of the
micropolar plate are obtained as follows:

Exx = Uxx T2, 5 = €uy + Zinx

Eyy = Uyy -|—Z¢)y’y = efv)y + iy

€xy = Uyx + zqﬁyﬂx = er + Zicxy

€ = Uxy + 2Py y = egx + Zkyy 4)
€x; = Uzx + Py, €x = O — Yy

€yz = Uzy — va €zy = ¢y + lpx

Tx = Vo Lyy = Wyys Ay = Vyxo Xyx = ¥y

3.2.2 Equations of the 2D Micropolar Plate Theory

Use of the principle of virtual displacements with appropriate expressions for the
virtual strain energy potential associated with the micropolar plate theory and
introduction of suitable stress resultants, we can derive the Euler equations asso-
ciated with micropolar first-order shear deformation plate theory. For details, see
Karttunen et al. [12]. The equations of motion of the 2D micropolar plate are:
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Nxx,x +ny,y =0, Nyy,y +Nyx,x =0
Myx+Myy = Q1+ 07 =0
Myyy+ My — Q; + Q; =0 (5)
fc,x + Q)Lz,x + Q;,y + Qg,y =-q
Pyy,y‘l'ny,x - ZQ)L; = 07 Pxx,x+Pyx,y +2Q; =0

where (Ny, Nyy, Ny, Nyy) are the in-plane membrane forces, (M, Myy, My, Myy)
are the bending and twisting moments, (Q¢, Q;l) are antisymmetric shear forces,
( j,Q;) symmetric shear forces, and (P, Pyy, Py,) are the local (couple-stress

related) bending and twisting resultants. The next step is to relate the plate degrees
of freedom to the 3D unit cell displacement degrees of freedom.

3.2.3 Transformation Relations Between 3D Unit Cell and 2D Plate
Theory

Figure 5 shows a web-core 3D unit cell attached to an arbitrary point of a
micropolar plate; see the dashed line along z-axis. The 2D micropolar continuum
plate as a whole is a macrostructure, and the 3D unit cell represents its periodic
microstructure. In order to obtain the constitutive equations for the plate, the strain
energy of the microscale FE unit cell is expressed in terms of the continuous
macroscale displacement degrees of freedom so as to bridge the two scales.

Static condensation is applied at all nodes of the FE unit cell in Fig. 5 to the
rotation with respect to the z-axis. Certain nodal DOFs in the 3D unit cell are
retained only at the highlighted face edge nodes of the unit cell. Ultimately, the
nodal displacement degrees of freedom of the 3D unit cell are related to the nodal
generalized displacement degrees of freedom of the plate theory, and the bridging of
the two scales (i.e., 3D unit cell and the 2D plate) is founded on an assumption of
strain energy equivalence between the macrostructure (plate) and the microstructure
(3D unit cell); see Karttunen et al. [12] for details.

Antisymn
‘i}'ll].llltll'l

Fig. 5 Web-core 3D unit cell modeled by shell finite elements in Abaqus. The mesh is coarse for
illustrative purposes. In generating a statically condensed FE model for the two-scale constitutive
modeling approach, certain DOFs are retained on face edges A and B while all interior DOFs are
condensed out. No boundary conditions are applied
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The explicit matrix form of the plate constitutive equations is given by

N A 0 0 O g0
M _ 0O D O O K 6)
Q 0 0 G O y
P 0 0 0 H 1

where N are the in-plane membrane forces, M are the bending and twisting
moments, Q contains symmetric and antisymmetric shear forces, and P is the local
(couple-stress related) bending and twisting resultants.

3.3 Numerical Example

A web-core unit cell made of steel with Young’s modulus E = 206 GPa, Poisson’s
ratio v = 0.3 and density p = 7850 kg/m’ is considered. The height of the unit cell
is taken to be 0.044 m. The length and width of the unit cell are both taken to be
[ =0.12 m so that the unit cell planform area is A = [* = 0.0144 m”. The Navier
solution for bending of the simply supported 2D micropolar plate under line load is
obtained (see Fig. 5 for the plate geometry). A conventional plate under line load
yields maximum displacement that is 34% for face sheet thicknesses of 2 mm
compared to a 3D FE solution, whereas the 2D micropolar plate model gives only
small error of 2.7% as it can emulate the 3D deformations better through
non-classical antisymmetric shear behavior and local bending and twisting (see
Fig. 6). The 3D FEM model consists of 60800 shell elements of S8R5 type from
Abaqus, whereas the micropolar plate solution is obtained with a small fraction of
the FEM solution.
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Fig. 6 a Transverse displacement of a 2-D micropolar web-core plate under a line load for #,
=4 mm. b Transverse displacement of the plate mid-section calculated by different models
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4 Conclusions

Beginning with a brief discussion of the author’s professional journey in
mechanics, two of his recent research topics, namely, the development of a robust
shell element and the modelling of web core sandwich plates are reviewed. The
lecture will highlight various milestones of the author’s professional life.
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