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Abstract Based on the excellent feature extraction and non-linear learning ability
of a convolutional neural network (CNN), a structural damage detection method is
proposed in this paper. When the structure is damaged, the changes of its modal
parameters reflect the damage information of the structure. A simply supported
beam was used and structural damage was introduced at different locations. The
finite element method was used to simulate the free vibration of the beam and
obtain the first-order modal strain energy for various damage scenarios. The
obtained modal parameters and the damage information were used as the training
samples of the neural network. A CNN was designed to detect damage (both
location and level), which detected damage location with 100% accuracy and
damage level with 5% relative error. Compared with a traditional Back Propagation
(BP) neural network, the CNN had more advantages than the BP neural network in
detecting damage location, and it was more economical in computational costs, the
uptime of the CNN was about 5%–40% that of the BP neural network. It is found
the CNN has excellent performance in detection of both damage locations and
levels, the detection effect exceeds BP neural network, and it is more economical in
computational cost than a BP neural network as it uses convolutional operation.
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1 Introduction

Structural damage detection is an essential approach to prevent sudden collapse of
structures and avoid casualties and heavy economic losses. A series of damage
detection methods have been proposed [1, 6, 11, 18, 25], the principle of
vibration-based methods is that the modal parameters (e.g., natural frequencies and
modal shapes) of a structure vary with the changes of the structural physical
parameters such as the stiffness and mass. By collecting the vibration excitation and
response data of a structure, the modal parameters are obtained, and then the
potential damage of the structure is detected by analyzing the change of its modal
parameters. Frequency-based structural damage detection method has been used in
damage detection of composite structures [2, 3]. Modal-based methods show that
local damage causes irregularity of mode shapes [21] which is evident for relatively
large damage [17]. Nevertheless, the changes of natural frequencies and mode
shapes are unable to detect small damage [30]. As the modal strain energy (MSE) is
related to the second-order derivatives of mode shapes for beam-like structures, it is
much more sensitive to the damage than natural frequencies and mode shapes.
The MSE has been used to successfully locate structural damage and quantify the
damage level [4, 10, 16, 20, 22] for simple structures. Structural damage can cause
changes in many mechanical parameters, normally, a single damage index is
generally impossible to reflect all types of damage of the real structures. Thus it is
essential to develop a comprehensive damage detection method, such as artificial
neural networks (ANNs) [8], which is able to integrate multiple damage features
into a detection method. An ANN is similar to a human brain and has excellent
non-linear learning ability. Combination of ANNs and traditional damage indicators
for obtaining structural damage information may advance the damage detection
technology.

It has been demonstrated that an ANN is able to locate and quantify structural
damage owing to its powerful data fitting as well as pattern recognition capability
[7, 9], It has achieved promising results [19, 24]. The traditional ANN (e.g., BP
neural network) has its inherent shortcomings, such as low convergence rate,
time-consuming, and over-fitting of data [27, 28], etc. When the traditional ANN is
used to detect damage location, its training time is very long for high-dimension
input data. To overcome the limitations of ANNs, the convolutional neural network
(CNN), with convolution layers and pooling layers, has been developed to extract
the features of the image [29] and been proved successful. It has more powerful
feature learning ability and feature expression ability [12] than traditional ANNs. At
present, the CNN has been widely used in license plate detection, face recognition
and other fields [13, 23, 26]. The CNN has also been applied to SHM, such as crack
detection [5, 14] and damage feature extraction from low-order vibration signals
[15]. The application of CNNs to SHM provides a new intelligent method for
structural damage detection. It is expected that CNNs can be applied to predict the
locations and levels of damage in a structure.
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In this paper, a CNN is proposed to detect damage of a simply supported beam;
the modal strain energy is used as the input data of the CNN as it can reflect the
damage information of structures, and comparisons are made between the perfor-
mance of the CNN and traditional BP neural networks.

2 Methods

The CNN was trained with the modal strain energy of various damage scenarios and
then used to predict new damage scenarios. In this paper, the collected data were
arranged into a two-dimensional matrix as the CNN input data. The abnormality of
the modal strain energy was extracted by the CNN to predict the damage location
and damage level.

2.1 Numerical Calculation and Sample

The beam model used in this paper had a length of 9 m and a rectangular cross
section of 0.3 m � 0.2 m. The structure was divided into 36 elements as numbered
in Fig. 1.

The Young’s modulus, Poisson’s ratio and density of the steel beam model were
211 GPa, 0.288, and 7800 kg/m3 respectively. Structural damage was simulated by
reducing the Young’s modulus of the concerned element. Totally 18 damage levels
for each element were simulated, which were from 5% to 90% with an increment of
5%. In-house python scripts were used to prepare the training samples for the CNN.

Firstly, the detection of damage location is studied. The validation set was based
on the cases with 45% damage in an element and the intact case (totally 37 sam-
ples), and the testing sets included the cases with either 10% or 60% damage in an
element (72 samples).The training set included the following five groups, each
group included 37 samples, i.e., 36 scenarios with damage in only one element plus
the intact case.

Dataset (A): only 15% damage in one element for each damage scenario plus the
intact case;

1  2  3  4  5  6  7 34 35 36
Element number:

Fig. 1 Simply supported beam model with 36 elements
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Dataset (B): only 30% damage in one element for each damage scenario plus the
intact case;
Dataset (C): only 75% damage in one element for each damage scenario plus the
intact case;
Dataset (D): only 90% damage in one element for each damage scenario plus the
intact case.

Then, the detection of damage level is studied. The validation set was based on
the data of 45% damage in an element and the intact case (37 samples), the samples
for 60% damage in an element (36 samples) were used to test the CNN fitting effect,
the training set included the following five groups.

Dataset (A): Every element was simulated with 15% damage levels, thus there were
36 damage scenarios, plus 1 intact case, and thus there were totally 37 samples.
Dataset (B): Every element was simulated with 75% damage levels, thus there were
36 damage scenarios, plus 1 intact case, and thus there were totally 37 samples.
Dataset (C): Every element was simulated with 15%, 30%, 75% and 90% damage
levels, thus there were 144 damage scenarios, plus 1 intact case, and thus there were
totally 145 samples.
Dataset (D): Every element was simulated with 16 damage levels from 5% to 90%
with an increment of 5%, thus there were 36 � 16 = 576 damage scenarios, plus 1
intact case, and thus there were totally 577 samples.

2.2 Convolutional Neural Network

The CNN was designed and trained using the Deep Learning Toolbox in MATLAB
(MathWorks Inc, Natick, MA, US). The network included an input layer, 2 con-
volution layers, 1 pooling layer, an activation layer, a fully connected layer and
output layer (classification layer or regression layer); for classification problems, a
softmax layer was added after the fully connected layer. The explanations for the
activation function and convolution and pooling processes were seen in the
appendix A. In this paper, a CNN was designed for damage detection. The network
architecture and structural parameters of the CNN were shown in Fig. 2 and
Table 1.

2.3 Input and Output of Network

The CNN input data, i.e., the modal strain energy of each element, was collected for
each damage scenario, and a matrix of 6 � 6 was constructed as the input. This
paper used a classification method to detect the damage location, which was set to
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different categories, i.e. the intact condition was set to 0, the damage on the element
1 set to 1, the damage on the element 2 set to 2, and so on.

For detection damage level, by replacing the softmax layer and classification
layer with a regression layer of the CNN, the classification problem was trans-
formed into a regression problem. The network output was set as a vector consisting
of 36 elements, i.e. the 15% damage in Element 1 was set as [0.15, 0, 0… 0, 0, 0],
30% damage of Element 1 was set to [0.3, 0, 0, 0… 0, 0, 0], and so on; the intact
case was defined to be a vector of 36 zeros.

3 Results

3.1 Detection of Single Damage Location

The CNN was trained with the 4 training sets described in Sect. 2.1 separately. The
detection results were shown in Table 2.
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Fig. 2 CNN framework. C1, C2: Convolution layers; P: Pooling layer; FC: Fully Connected layer

Table 1 Structural parameters of the CNN

Layer Type Kernel
num.

Kernel
size

Stride Pad Activation

1 Input None None None None None

2 Convolution (C1) 90 3 � 3 [1, 1] 0 Leaky
ReLU

3 Max pooling (P) None 2 � 2 [1, 1] 0 None

4 Convolution (C2) 200 2 � 2 [1, 1] 0 Leaky
ReLU

5 FC None None None None None

6 Classification or
regression

None None None None None
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According to the detection effect of the four different Datasets, no matter which
dataset was used for training, the prediction accuracy was 100% for the testing set
with the damage level of 60%. For the testing set with the damage level of 10%, the
prediction accuracy reached 100% only for the CNN trained by Dataset (A).

In order to compare the detection effect between the CNN and a traditional BP
neural network, Dataset (A) was inputted into BP neural networks, and the pre-
diction results were shown in Table 3.

Table 3 showed that the detection effect of the BP neural networks was worse
than that of the CNN, and the detection effect of BP neural networks did not change
significantly with the node number of the hidden layer. The best detection effect
was 77.8%.

Table 2 Prediction results
by CNN

Training sets Testing sets

Damage 10% Damage 60%

Dataset (A) 100% 100%

Dataset (B) 66.6% 100%

Dataset (C) 58.3% 100%

Dataset (D) 61.1% 100%

Table 3 Prediction results by BP neural networks

Network
type

Nodes of hidden
layer (n)

Iterations Termination
reason

Accuracy

Damage
10%

Damage
60%

BP 18 8 Validation
checks

72.2% 72.2%

BP 24 8 Validation
checks

77.8% 63.9%

BP 30 8 Validation
checks

80.6% 69.4%

BP 36 8 Validation
checks

77.8% 77.8%

BP 42 8 Validation
checks

77.8% 75.0%

BP 48 8 Validation
checks

75.0% 75.0%

BP 54 8 Validation
checks

77.8% 72.2%

Note: Validation checks: The error of continuous 6 iterations no longer changed
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3.2 Detection of Damage Level

The testing sets were inputted into the trained network as described in Sect. 2.1.
The detection results were shown in Table 4, the relative error decreases with the
increase of training samples, and the minimum relative error of the damage level
was about 5%.

The relative error was used to evaluate the detection effect of damage level, and
the formula was as follows:

RError ¼
yp � yt
�
�

�
�

yt
� 100% ð1Þ

where yp and yt were the predicted value and target value of a testing sample. The
relative error for n testing samples was:

R Error ¼ 1
n

Xn

1

yp � yt
�
�

�
�

yt

� �

� 100% ð2Þ

The Dataset (D) were inputted into the BP neural networks. After training, the
detection effect was obtained and shown in Table 5.

As shown in Table 5, with the increase of the nodes of the hidden layer, the
relative error of the BP neural networks decreased gradually, and the error was
lower than that of the CNN, but the training time increased significantly. The fitting
effect of the BP neural networks for damage level was better than that of the CNN.
Table 6 showed the uptimes of the CNN and the BP neural networks which had the
most comparative relative errors to that of the CNN.

When the relative errors were similar, the uptime of the CNN was about 5%–

40% that of the BP neural networks, the iteration time of the CNN was only about
1% that of the BP neural networks. For the smallest relative error (1%) of the BP
neural network in Table 5, the relative error of CNN was only 5%, but its uptime
was only 2% that of the BP neural network.

Table 4 Prediction result of different Datasets

Dataset Sample num. Damage location Damage level (relative error)

(A) 37 100% 75.69%

(B) 37 100% 24.50%

(C) 145 100% 23.30%

(D) 577 100% 4.77%
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4 Discussions

The comparisons of damage locations detected between the CNNs and BP neural
networks showed that the CNNs had better classification ability than BP neural
networks to extract damage location features. The CNNs used partially connected
network structure to extract the main damage features, ignoring trivial information.
While the BP neural networks adopted a fully connected network structure, each
element in the raw data had an impact on the results.

It can be seen from Sect. 3.2 that the detection effect (damage level) of the BP
neural networks was slightly better than that of the CNN. When the BP neural
network had 36 and 42 nodes in the hidden layer, the relative errors were 6% and
2%, respectively, and the CNN were 5%. The uptime was 10 min 24 s, 78 min
58 s, 4 min 21 s, respectively. Thus, when the relative error was similar, the uptime
of CNN was 5%–40% that of the BP neural networks.

Table 5 Detection effect of the BP neural networks

Network
type

Nodes of
hidden layers

Iterations Uptime Termination
reason

Relative error
(Damage level)

BP 18 15 44 s Validation
checks

46%

BP 24 19 1 min
39 s

Validation
checks

31%

BP 30 15 2 min
00 s

Validation
checks

17%

BP 36 54 10 min
24 s

Validation
checks

6%

BP 42 306 78 min
58 s

Validation
checks

2%

BP 48 361 122 min
32 s

Validation
checks

1%

BP 54 452 194 min
29 s

Validation
checks

1%

Table 6 Comparisons of uptime between CNN and BP neural networks

Network
type

Nodes of
hidden layers

Iterations Uptime Termination
reason

Relative error
(Damage level)

BP 36 54 10 min
24 s

Validation
checks

6%

BP 42 306 78 min
58 s

Validation
checks

2%

CNN 2000 4 min
21 s

Max epoch 5%

1296 G. Chen and S. Teng



In summary, the BP neural networks had excellent regression fitting effects but
consumed a lot of computing resources. Because of its partial connection, the CNN
lost some information and its fitting effect was sacrificed in the training process, but
the calculation speed was faster than that of the BP neural network.

5 Conclusion

Based on the above discussions, the following conclusions can be drawn:

1) The CNN achieved excellent detection results for structural damage location and
level.

2) The CNN had more advantages than the BP neural networks in detecting
damage location.

3) The CNN was more economical in computational costs than a BP neural
network.

According to the results of this paper, the combination of the CNN and the
modal strain energy as a new damage detection method has great potential in
structural damage detection.
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