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Abstract Motion in pre-stressed compressible elastic layers is considered, focusing
on anti-plane shear-type waves propagating in two-layered and three-layered lami-
nates. Guided by a numerical analysis of the dispersion relation asymptotic approxi-
mations are derived for the long-wave regime. Two types of boundary conditions are
considered and the framework is established to considermore complicated geometric
layered structures. In both cases, the values of the cut-off frequencies corresponding
to the harmonics mode are obtained. A comparison of numerical and asymptotic
approximations has been shown.
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1 Introduction

Theoretical study of wave propagation in layered media has been an area of sus-
tained research activity for many years. Elucidation of the mechanical and dynamic
properties of such structures has become increasingly necessary by their widespread
use in mechanical design. This has not only been in the aerospace industries and
military domain, but also numerous other applications, for example, bio-mechanics,
geo-mechanics and marine construction. Inhomogeneous layered structures are also
one element within the development of modern smart materials. In the context of
a single layer plates and plane strain, the effects of pre-stress have previously been
investigated for free faces, see, for example, Ogden and Roxburgh [1], Rogerson and
Fu [2]. We can also cite, Rogerson and Sandiford [3], who examined the effects of
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Fig. 1 2-layered structure

pre-stress on small amplitude waves in multi-layered media and obtained a general
asymptotic analysis for both the high and low wave number in plane strain.

Within this paper we will investigate the propagation of waves in 2- and 3-layered
structures, each layer is composed of compressible pre-stressed elastic material and
subject to either free or fixed faces. The pre-stress is envisaged to be either some
inherent material property or the result of external forces. Our aim is to investigate
small amplitude long motion in the form of anti-plane shear waves. The governing
equations , along with the dispersion relation, are presented in Sect. 2. A numerical
investigation is carried out in Sect. 3, with long-wave low-frequency approximations
carried out in Sect. 4. In the case of fixed faces it has previously been established that
no so-called low-frequency motion is possible. In Sect. 5, long-wave high-frequency
approximations are established and shown to provide excellent approximations to the
numerical solution. The work is carried out within the framework of the propagator
matrix and thus the basis is provided for future studies of associated multi-layered
media problems. The work also provides the basis for development of asymptotically
consistent lower dimensional models.
Our concern in this paper is 2-layered and 3-layered structures of thickness 2h and
3h, respectively. We begin with 2 layers of thickness h, composed of compressible
pre-stressed material. The structure is finite in x2 direction and of infinite in both the
x1 and x3 directions, see Fig. 1. We consider a state of anti-plane shear. Therefore,
the displacement is independent of Ox3 and of the form (u1, u2, u3) = (0, 0, u3) and
the equations of motion

C (n)
1313u3,11 + C (n)

2323u3,22 = ρü3, (1)

with n = 1, 2. The solution of (1) is sought in the form

u(n)
3 (x1, x2, t) = Uekqnx2eik(x1−υt), (2)

with k thewave number,U an arbitrary constant, t time,C (n)
2323, C (n)

1313 material param-
eters, ρ the density of layers, υ the phase wave speed, prescript (n) the layer number
and qn to be determined. After substituting the above solution into (1), we obtain a
linearised equation, with a non-trivial solution provided
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q2
n = C (n)

1313 − ῡ2

C (n)
2323

, ῡ2 = ρυ2. (3)

The displacement can be written after suppressing the eik(x1−υt) factor as linear com-
binations, associated with the two solutions indicated in (3), thus

u(n)
3 = Une

kqnx2 + Vne
−kqn x2 . (4)

The incremental traction may be defined in the component form

τ̂ (n) = τ (n)
3

k
= C (n)

2323

(
Unqne

kqnx2 − Vnqne
−kqn x2

)
. (5)

A matrix form of the solution (4) and (5) may be introduced as

(
u(n)
3

τ̂ (n)

)
=

(
ekqnh e−kqnh

qnC
(n)
2323e

kqnh −qnC
(n)
2323e

−kqnh

) (
Un

Vn

)
. (6)

The solution can be rewritten in the following form:

Y = Q(n) U, (7)

where U = (Un, Vn)
T , Y = (u(n)

3 , τ̂ (n))T and Q(n) is the 2 × 2 matrix

Q(n) =
(

ekqnh e−kqnh

qnC
(n)
2323e

kqnh −qnC
(n)
2323e

−kqnh

)
. (8)

The vector U may be eliminated from (7) to yield

Y(h) = P(1) Y(0). (9)

Similarly, relation (9) may be expressed as

Y(2h) = P(2) Y(h), (10)

where

P(n) =
⎛

⎝
cosh kqnh

1

C (n)
2323qn

sinh kqnh

C (n)
2323qn sinh kqnh cosh kqnh

⎞

⎠ , n = 1, 2. (11)

The solutions of x2 = 2h may be represented in the form

Yu = P Yl , (12)
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with a matrix form (
u(2h)
3

τ̂ (2h)

)
=

(
P11 P12
P21 P22

) (
u(0)
3

τ̂ (0)

)
, (13)

with

P11 = C (1)
2323q1C2C1 + C (2)

2323q2S1S2, P12 = C (1)
2323q1S2C1 + C (2)

2323q2C2S1, (14)

P21 = C (1)
2323q1C2S1 + C (2)

2323q2S2C1, P22 = C (2)
2323q2C1C2 + C (1)

2323q1S1S2, (15)

where Sn = sinh kqnh, Cn = cosh kqnh.Wecan also generate the propagatormatrix
for a 3-layered structure of 3h thickness. To begin we note that this structure has been
built by adding another layer of the same thickness h to the structure in Fig. 1, i.e.
the third layer occupying 2h ≤ x2 ≤ 3h, and thus

Y(3h) = P(3) Y(2h). (16)

P(3) can be obtained by substituting n = 3 in (11). Now, (12) for (3 layers) is of the
same form but the propagator P = P(1)P(2)P(3) and

(
u(3h)
3

τ̂ (3h)

)
=

(
P11 P12
P21 P22

) (
u(0)
3

τ̂ (0)

)
. (17)

The components of P for the (3 layers) laminate can be expressed as

P11 =
(
C (3)
2323q3C

(1)
2323q1C1C2 + C (2)

2323q2S1S2
)
C3 + C (1)

2323q1S3
(
C (1)
2323q1S1C2 + C (2)

2323q2S2C1

)
, (18)

P12 = C (3)
2323q3

(
C (2)
2323q2S1C2 + C (1)

2323q1C1S2
)
C3 + C (2)

2323q2
(
C (1)
2323q1C1C2 + C (2)

2323q2S1S2
)
S3, (19)

P21 = C (2)
2323q2

(
C (1)
2323q1S1C2 + C (2)

2323q2C1S2
)
C3 + C (3)

2323q3
(
C (1)
2323q1S1S2 + C (2)

2323q2C1C2

)
S3, (20)

P22 = C (3)
2323q3

(
C (2)
2323q2C1C2 + C (1)

2323q1S1S2
)
C3 + C (2)

2323q2
(
C (1)
2323q1S1C2 + C (2)

2323q2S2C1

)
S3. (21)

Applying the boundary conditions of zero traction and the condition of continuity
across the perfectly bonded interface within (7) to provide the dispersion relation for
the free-faces 2-layered structure as

C (1)
2323q1S1C2 + C (2)

2323q2S2C1 = 0, (22)
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with the associated dispersion relation for the 3-layer relation given by

C (2)
2323q2

(
C (1)
2323q1S1C2 + C (2)

2323q2C1S2
)
C3 + C (3)

2323q3
(
C (1)
2323q1S1S2 + C (2)

2323q2C1C2

)
S3 = 0. (23)

We now impose zero displacement on the faces of the 2-layered structure, resulting
in a dispersion relation given by

C (1)
2323q1S2C1 + C (2)

2323q2S1C2 = 0. (24)

The analogous dispersion 3-layer is given by

C (3)
2323q3

(
C (2)
2323q2S1C2 + C (1)

2323q1C1S2
)
C3 + C (2)

2323q2
(
C (1)
2323q1C1C2 + C (2)

2323q2S1S2
)
S3 = 0. (25)

2 Numerical Results

The material parameters have been chosen in this section to demonstrate the possible
range of material response and K = kh in all numerical results. The dispersion
curves computed from equation (22) are plotted in Fig. 2a for the material parameters
C (1)
1313 = 0.524,C (1)

2323 = 0.513, andC (2)
1313 = 1.55,C (2)

2323 = 1.53 and this shows a zero
frequency limit as K → 0.

Figure2b shows the dispersion relation form the equation (24)with the samemate-
rial parameters. We note that, no cut-off frequency observed in the low-frequency
range in the fixed-faces case, see Fig. 2b. Similar 3-layer results are presented in Fig. 3
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Fig. 2 Scaled frequency against scaled wave number for the free-faces dispersion relation (22) (a),
and for the fixed-faces dispersion relation (24) (b)
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Fig. 3 Scaled frequency against scaled wave number for the free-faces dispersion relation (23) (a),
and for the fixed-faces dispersion relation (25) (b)

with C (1)
1313 = 0.524,C (1)

2323 = 0.513, C (3)
1313 = 1.2 and C (2)

1313 = 1.55,C (2)
2323 = 1.53,

C (3)
1313 = 1.6.

3 Long-Wave Low-Frequency Approximation

In the long-wave low-frequency region K → 0 and ῡ is not large. Thus, by expanding
all trigonometric functions in (22) and (23) as Taylor series, we derive the approxi-
mation

Ω̄2 =
(
C (1)
1313 + C (2)

1313

2

)

K 2 + O(K 4). (26)

For 3-layer we have

Ω̄2 =
(
C (1)
1313 + C (2)

1313 + C (3)
1313

3

)

K 2 + O(K 4). (27)

Fig. (4) shows appropriate comparison of numerical solutions (22) and (23) with
asymptotic expansion (30) and (30) for the free-faces cases.

4 Long-Wave High-Frequency Approximation

In this section, we consider the long-wave high-frequency regime of the dispersion
curves. In this type of motion ῡ2 � 1. We remark that, q2

n are negative as K → 0,
i.e. qn = i q̂n , n = 1, 2, 3, thus
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Fig. 4 Fundamental mode branch corresponding to (22) (solid line) and (26) (dashed line) in 2a,
corresponding to (23) (solid line) and (27) (dashed line) in 4b. The same material parameters from
Fig. (3a) are used

q̂2
n = ῡ2 − C (n)

1313

C (n)
2323

. (28)

We assume Ω̄2 = ῡ2K 2 has the following expansion:

Ω̄2 = Ω0 + Ω2K
2 + O(K 4). (29)

The dispersion (22) may be expressed in the form

C (1)
2323q̂1 tan Kq̂1 + C (2)

2323q̂2 tan Kq̂2 = 0. (30)

By considering the following expansions:

Kq̂n = Ω̄
√
C (n)
2323

(

1 − C (n)
1313K

2

2Ω̄2
+ . . .

)

, (31)

together with the approximation (29), the dispersion relation (22) may be used to
show that frequency is a solution of

√
C (1)
2323 tan

√
Ω0

C (1)
2323

+
√
C (2)
2323 tan

√
Ω0

C (2)
2323

= 0, (32)

where Ω0 a solution of equation (32), defines the cut-off frequencies. The next order
term Ω2 in the following formula:

Ω2 = F̃2(Ω0)/F̃1(Ω0), (33)

where F̃1(Ω0) and F̃2(Ω0) are given by
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F̃1(Ω0) =
√
C (1)
2323F1(Ω0) +

√
C (2)
2323F2(Ω0) + √

Ω0
(
F2
1 (Ω0) + 1

)

+ √
Ω0

(
F2
2 (Ω0) + 1

)
,

F̃2(Ω0) = −1

2

(
C (1)
1313

(
1 + F2

1 (Ω0)
) √

Ω0+ C (2)
1313

(
1 + F2

2 (Ω0)
) √

Ω0

+
√
C (1)
2323F1(Ω0)C

(1)
1313 +

√
C (2)
2323F2(Ω0) C

(2)
1313

)
.

(34)

The scaled frequency (29) may therefore be written in the form

Ω̄2 = Ω0 + F̃2(Ω0)

F̃1(Ω0)
K 2 + O(K 4). (35)

Asymptotic approximation for long-wave high-frequency motion for (3 layers) will
now be considered. Accordingly the previous knowledge for high-frequency limits
may be used to establish that

√
C (1)
2323 C

(3)
2323F1(Ω0)F2(Ω0)F3(Ω0)

− C (2)
2323F2(Ω0) −

√
C (1)
2323C

(2)
2323F1(Ω0) −

√
C (2)
2323 C

(3)
2323F3(Ω0) = 0, (36)

where Ω0 may be shown to be a solution of (36). The next order frequency approxi-
mation Ω2 is given by

Ω2 = Λ2(Ω0)/Λ1(Ω0), (37)

where Λ1(Ω0) and Λ2(Ω0) are given by

Λ1(Ω0) = C (2)
1313 C

(2)
2323

√
Ω0

(
2F2(Ω0) + F2

2 (Ω0)
)
C (2)
1313 − C (2)

2323

√
Ω0

(
2F2(Ω0) + F2

2 (Ω0)
) √

C (1)
2323 C

(3)
2323F1(Ω0)F2(Ω0)F3(Ω0)

− C (2)
2323F2(Ω0) −

√
C (1)
2323 C (2)

2323F1(Ω0) −
√
C (2)
2323 C

(3)
2323F3(Ω0),

Λ2(Ω0) = C (2)
1313 C

(2)
2323

√
Ω0

(
2F2(Ω0) + F2

2 (Ω0)
)
C (2)
1313 − C (2)

2323

√
Ω0

(
2F2(Ω0) + F2

2 (Ω0)
) √

C (1)
2323C

(3)
2323F1(Ω0)F2(Ω0)F3(Ω0)

− C (2)
2323F2(Ω0) −

√
C (1)
2323 C (2)

2323F1(Ω0) −
√
C (2)
2323 C

(3)
2323F3(Ω0).

(38)

The scaled frequency (29) for (3 layers) may therefore be written in the form

Ω̄2 = Ω0 + Λ2(Ω0)

Λ1(Ω0)
K 2 + O(K 4). (39)
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Fig. 5 Long-wave high-frequency approximations corresponding to numerical solutions of the
dispersion relations for 2 layerswith free-faces (a) and for 3 layers (b). The samematerial parameters
from figures (2) and (3) are used

In Fig. (5) comparison of asymptotic solutions (35) and (39) with numerical
solutions (22) and (23) are made in (5a) and (5b), respectively, for the first three
harmonic within the vicinity of cut-off frequencies. These clearly reveal excellent
agreement over the long-wave regime.
The dispersion (24) can be expressed in the form

C (2)
2323q̂2 tan Kq̂1 + C (1)

2323q̂1 tan Kq̂2 = 0. (40)

A similar analysis to that just carried out in respect of the free-faces case can be
performed for the fixed faces, leading to the leading order termof (40) in the following
form:

√
C (2)
2323 tan

√
Ω0

C (1)
2323

+
√
C (1)
2323 tan

√
Ω0

C (2)
2323

= 0. (41)

The next order term of (40) provides

Ω2 = F̃4(Ω0)/F̃3(Ω0), (42)

where

F̃3(Ω0) = √
Ω0

[
C (2)
2323F

2
1 (Ω0)

√
C (1)
1313 + C (1)

2323F
2
2 (Ω0)

√
C (2)
1313

+ C (1)
2323

√
C (2)
1313 + C (2)

2323

√
C (1)
1313

]
−

√
C (2)
2323

√
C (1)
2323

(√
C (2)
1313F2(Ω0) +

√
C (1)
1313F1(Ω0)

)
,
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F̃4(Ω0) = √
Ω0

[
C (1)
2323C

(2)
2323F

2
2 (Ω0)F1(Ω0) + C (1)

2323C
(2)
2323

]

−
(
C (2)
2323

√
C (1)
2323 F1(Ω0) + C (1)

2323

√
C (2)
2323 F2(Ω0)

)
.

For 3-layer, (25) may be rewritten as

(
C (1)
2323q̂1 tan(Kq̂1) + C (2)

2323q̂2 tan(Kq̂2)
)
C (2)
2323q̂2

+ C (3)
2323q̂3 tan(Kq̂3)

(
C (1)
2323q̂1 tan(Kq̂1) tan(Kq̂2) − C (2)

2323q̂2
)

= 0. (43)

The scaled frequency is in the form

Ω̄2 = Ω0 + Λ̄1(Ω0)

Λ̄2(Ω0)
K 2 + O(K 4), (44)

with Ω0 is a solution of

√
C (1)
2323 C

(3)
2323F1(Ω0)F2(Ω0)F3(Ω0)

− C (2)
2323F2(Ω0) −

√
C (1)
2323 C (2)

2323F1(Ω0) −
√
C (2)
2323 C

(3)
2323F3(Ω0) = 0, (45)

and

Λ̄1(Ω0) = C (2)
1313 C

(2)
2323

√
Ω0

(
2F2(Ω0) + F2

2 (Ω0)
)
C (2)
1313 − C (2)

2323

√
Ω0

(
2F2(Ω0) + F2

2 (Ω0)
)√

C (1)
2323 C

(3)
2323F1(Ω0)F2(Ω0)F3(Ω0)

− C (2)
2323F2(Ω0) −

√
C (1)
2323 C

(2)
2323F1(Ω0) −

√
C (2)
2323 C

(3)
2323F3(Ω0),

Λ̄2(Ω0) = C (2)
1313C

(2)
2323

√
Ω0

(
2F2(Ω0) + F2

2 (Ω0)
)
C (2)
1313 − C (2)

2323

√
Ω0

(
2F2(Ω0) + F2

2 (Ω0)
) √

C (1)
2323 C

(3)
2323F1(Ω0)F2(Ω0)F3(Ω0)

− C (2)
2323F2(Ω0) −

√
C (1)
2323 C

(2)
2323F1(Ω0) −

√
C (2)
2323 C

(3)
2323F3(Ω0).

(46)

Fig. 6 displays dispersion curves obtained using the expansions (24) and (25) and
the dispersion relations (24) and (25). Again good agreement over long-wave region
is observed.
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Fig. 6 A comparison of numerical solutions (solid line) and asymptotic expansion (dashed line)
for scaled frequency against scaled wave number for the fixed-faces dispersion relation (24) in (a)
and for (3 layers) in (b). The same material parameters from figure (2) and (3) are used

5 Some Concluding Remarks

The dispersions of small amplitudewaves, in anti-plane shear formulti-layered struc-
tures have been derived. Those relations are algebraically complicated and solved
numerically and asymptotically. Asymptotic equations of motion are established for
two cases of boundaries of non-contrast parameters. The former is applicable over
the whole long-wave low- and high-frequency range. However, the second is only
valid over a narrow vicinity of the cut-off frequency.
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