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Abstract The paper applies the Hopf bifurcation theory to assess the stability of
turbine and generator rotor-bearing systems considering nonlinear bearing support
models. Rotor systems may develop stable or unstable motions even when running
at speeds lower than the threshold speed of instability. This case is examined in
this paper when excitations may perturb the rotating system outside its stability
envelope and when the potential for subcritical bifurcation exists. Two separate
M-DOF rotor-bearing-foundation systems are used to represent a turbine rotor-
bearing-foundation system and a generator rotor-bearing-foundation system. The
rotor modelling considers the Transient Transfer Matrix Method, and the nonlinear
lemon-bore bearings are modelled with direct solution of the Reynolds equation
at the discrete time domain. Bearing pedestals are considered as lumped masses
mounted in linear springs and dampers. The results highlight the need of considering
nonlinear bearing models in the stability analysis of large rotor systems so as to
avoid unstable operation at speeds lower than the threshold speed of instability, and
to retain operation under certain excitations, e.g., seismic excitations.

Keywords Rotor systems · Turbine rotors · Generator rotors · Nonlinear stability ·
Hopf bifurcation

1 Introduction

Turbine and generator rotors may suffer from instability while operating on site. This
is a fact due to insufficient models, methods, and tools for predicting instability of
such systems, and also due to unexpected extend of specific defects on the shaft train,
e.g.,misalignment. The stability assessment is a standard calculationon rotordynamic
design evaluation of power generation shaft trains and linear models are used bymost
designers.
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The prediction for stable operation in slender rotor systems (e.g., turbine-generator
shaft trains) is based on the calculated logarithmic decrement of shaft modes and is
still nowadays evaluated in standard design procedures with the computation of
complex eigenvalues. The reader may advise the monumental work of Lund on
the prediction of stability of rotor systems [1]. There are past and recent examples
where marginal (and still acceptable according to standards) stability designs have
rendered bearing oil-whirl instability on site operation of slender turbines. Marginal
design regarding stability cannot be always avoided as the stability characteristics
are strongly influenced by rotor slenderness which in some turbine modules (and
generators) is relatively high (long and thin rotor). The case where stability is lost
under subcritical Hopf bifurcation is the most dangerous. The shaft motion following
a subcritical Hopf bifurcation may be bounded only by physical constraints, e.g.,
stator. Furthermore, the unstable motions are initiated at rotating speeds less than
the linearly predicted threshold speed of instability. The special circumstances for
a potential of subcritical Hopf bifurcation of turbine-generator rotor systems are
discussed in this paper.

The Hopf bifurcation theory has been applied in the literature considering simple
rotor systems. The reader should consider older [2–4] and recent works [5–13] on
the relative objective, while a generic study of the theory and applications of Hopf
bifurcations in mechanical systems can be found in [14, 15]. The recent papers of
Wang and Khonsari [5–10] and of Miraskari et al. [12, 13] present a fundamental
study on the prediction of supercritical and subcritical Hopf bifurcations in rotor
systems with plain short bearings without foundation properties or bearing profile
to be considered. The analytical formulas for the short bearing performance are
proven very valuable for the application of Hopf theory in rotor-bearing systems
as they offer analytical expressions for the first three derivatives of the forces with
respect to displacement. However, in this paper the treatment of Hopf theory in rotor-
bearing-foundation systems is entirely numerical because the journal bearings are
considered of finite length and partial arc or lemon-bore profile. Furthermore, the
algorithm for the prediction of instability threshold and bifurcation type (supercritical
or subcritical) may considerM-DOF systems of complex rotors (e.g., turbine rotors).
However, the results in this paper consider only6DOFsas the simplemodel of Jeffcott
rotor is implemented and complex rotor systems ofM-DOF are considered for future
works.

The nonlinear bearing models consider partial arc or lemon-bore bearing profile
of finite length, and they are evaluated at discrete time domain during the transient
motion of the system. The lubrication performance considers laminar, isoviscous,
and isothermal lubricant flow and the solution of the Reynolds equation is evaluated
using the Finite Difference Method. The bearing models have been developed in
past works of the author and are implemented on this paper so as to study realistic
and widely applicable bearing profiles. The foundation properties are considered as
linear springs and dampers mounting the lumped mass of the bearing pedestal. The
results of the paper concern the prediction of stability threshold and the potential of
supercritical or subcritical bifurcation on six different rotor classes in total, three for
turbine configurations and three for generator rotors.



Nonlinear Stability of Turbine and Generator Rotors … 693

2 The Model of a Rotor-Bearing-Foundation System
for Turbines and Generators

2.1 Rotor and Foundation Model

Themodel of the rotor-bearing-foundation system implements the Transient Transfer
Matrix Method (TTMM) which enables the evaluation of nonlinear transient
response. The unique source of nonlinearity in the system is the nonlinear fluid
film forces in the bearings FB

X and FB
Y . The method is explained in this section and

in Appendix 1. The geometric and physical properties of the multiple rotor segments
N are discretized in N + 1 nodes carrying lumped masses, see Fig. 1a. The status
vectors on the sides of each nodeZL

i andZ
R
i , i = 1, 2, . . . , N+1, are time variant and

the status are defined in Eq. (1), see also Fig. 1b. The displacements and the slopes
on the sides of each lumped mass are equal, meaning that yLi (t) = yRi (t) = yi (t),
θ L
Y,i (t) = θ R

Y,i (t) = θY,i (t) and x L
i (t) = x R

i (t) = xi (t), θ L
X,i (t) = θ R

X,i (t) = θX,i (t).
The entire analysis considers the coordinate system defined in Fig. 1b.

ZL
i (t) = {

yi (t) θY,i (t) ML
Y,i (t) V

L
Y,i (t) xi (t) θX,i (t) ML

X,i (t) V
L
X,i (t) 1

}T

ZR
i (t) = {

yi (t) θY,i (t) MR
Y,i (t) V

R
Y,i (t) xi (t) θX,i (t) MR

X,i (t) V
R
X,i (t) 1

}T
(1)

The functions of the point matrix Pi , field matrix Fi , and transfer matrix Ti , in
Fig. 1b are described by the formulas ZL

i (t) = Fi × ZR
i−1(t), Z

R
i (t) = Pi × ZL

i (t)
and Ti = Pi+1 ×Fi . However, applying the Transient Transfer Matrix Method, there
is no need to define the point matrix Pi . The principle of the TTMM is based on that
each nodal mass MN ,i executes lateral and tilting transient motions (4 DoFs for each
mass) under the effect of shearing and bending moment applied from the relative
motions of the side nodal masses MN ,i−1 and MN ,i+1, see Fig. 2. Furthermore, the
external forces acting to the mass MN ,i , such as unbalance, gravitational forces, and
bearing impedance force, are incorporated. The 4-DoF equations of motion for the
mass MN ,i are given in Eq. (2).

Fig. 1 a Multi-segment rotor as a lumped mass system. b The description of the fields and points
that represent the segments and the nodes of the discretized system
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Fig. 2 Definition of displacement and tilting angle of the nodal masses in two main planes, here
a vertical, and b horizontal

MN ,i · ẍi = V R
X,i − V L

X,i + FB
X + FU

X JND,i · θ̈X,i = MR
X,i − ML

X,i − JN P,i · � · θ̇Y,i

MN ,i · ÿi = V R
Y,i − V L

Y,i + FB
Y + FU

Y − FG
i , JND,i · θ̈Y,i = MR

Y,i − ML
Y,i + JN P,i · � · θ̇X,i

(2)

To evaluate the transient response of the system, themotion equations inEq. (2) are
integrated with a numerical technique, e.g., Runge-Kutta with variable time step for
stiff systems if necessary, after the system is converted to an 8×8 systemcomposed by
8ODEs of first order. The correspondence of the state variables qi to the displacement
and tilting angle of each mass is given in Eq. (3). Then, the motion equations for the
lumped masses of the rotor are defined in Eq. (4).

{
xi ẋi yi ẏi ϕX,i ϕ̇X,i ϕY,i ϕ̇Y,i

}T =
= {

qi [1] qi [2] qi [3] qi [4] qi [5] qi [6] qi [7] qi [8]
}T
t

(3)

q̇i [1] = qi [2], q̇i [5] = qi [6]
q̇i [2] = 1

MN ,i

(
V R
X,i − V L

X,i + FB
X + FU

X

)
, q̇i [6] = 1

JND,i

(
MR

X,i − ML
X,i − JN P,i · � · qi [8]

)

q̇i [3] = qi [4], q̇i [7] = qi [8]
q̇i [4] = 1

MN ,i

(
V R
Y,i − V L

Y,i + FB
Y + FU

Y − FG
i

)
, q̇i [8] = 1

JND,i

(
MR
Y,i − ML

Y,i + JN P,i · � · qi [6]
)

(4)

The system in Eq. (4) should be defined for every nodal mass, meaning for
i = 1, 2, . . . , N + 1 for a rotor with N segments. Bearing forces FB

X and FB
Y , and

unbalance forces FU
X and FU

Y are introduced when in the respective node a bearing or
unbalance exists, see Appendix 1. In Fig. 3, the translational motion of the pedestal
mass may be described by a 2 × 2 system of 2 ODEs of second order in Eq. (5),
where xP and yP is the absolute horizontal and vertical displacement of the pedestal.
For a generic case that the foundation (ground) is exciated, e.g., by an earthquake,
then xS and yS is the horizontal and vertical displacement of the foundation (ground)
due to this excitation.

MP,Y · ÿP = −KP,Y (yP − yS) − CP,Y (ẏP − ẏS) − FB
Y − MP,Y · g

MP,X · ẍP = −KP,X (xP − xS) − CP,X (ẋP − ẋS) − FB
X (5)
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Fig. 3 Representation of the
nonlinear bearing and the
linear support structure
(pedestal) as considered in
the current model

In Eq. (5) the oil film forces FB
X and FB

Y , and the foundation displacement excite
the pedestal sub-system. However, in this paper there is no foundation excitation
considered. With the definition of state variables in Eq. (6), the pedestal motion
equations are converted to a 4× 4 system of 4 ODEs of first order in Eq. (7). The oil
film bearing forces couple the two systems of Eqs. (4) and (7) with the nonlinear oil
film force model to account for the motion of the pedestal (bearing shell), see Fig. 3,
and Sect. 2.2.

{
yP, j ẏP, j xP, j ẋP, j

}T =

=
{
q j [8(N + 1) + 1] q j [8(N + 1) + 2] q j [8(N + 1) + 3] q j [8(N + 1) + 4]

}T

t
(6)

q̇ j [8(N + 1) + 1] = wj [2]
q̇ j [8(N + 1) + 2] = − 1

MP,Y
KP,Y

(
q j [8(N + 1) + 1] − yP,0 − yS

)

− 1

MP,Y

(
CP,Y · (q j [8(N + 1) + 2] − ẏS

)+ FB
Y

)− g

q̇ j [8(N + 1) + 3] = wj [4]
q̇ j [8(N + 1) + 4] = − 1

MP,X
KP,Z · q j [8(N + 1) + 3]

− 1

MP,X

(
CP,X · (q j [8(N + 1) + 4] − ẋS

)+ FB
X

)
(7)
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Each pedestal adds the respective equations of motion, meaning the Eqs. (6)
and (7), j = 1, 2, . . . ,NOB, where NOB is the number of bearings. Therefore, a
rotor with N segments, and N + 1 nodal masses, mounted on NOB bearings will
render n = (N + 1) · 8 + (NOB) · 4 equations of motion and respective unknowns,
consisting a nonlinear autonomous system q̇ = f(q,�)when unbalance is absent, or
a nonlinear non-autonomous system q̇ = f(q,�, t) when unbalance is considered,
see Appendix 1. The stability of the autonomous system q̇ = f(q,�) is assessed in
Sect. 3 applying the Hopf bifurcation theory.

2.2 Model of Nonlinear Bearings

Most turbine and generator rotors of medium and high power (100–1000 MW)
are mounted on lemon bore, partial arc, or other lobe bearing configuration. Non-
synchronous turbine rotors of higher speeds (e.g., 4000 RPM, 5000 RPM, or higher)
can be mounted on tilting-pad bearings, but there are many designs with large non-
synchronous turbine rotors mounted on lobe bearings. These rotors can be coupled
to the generator rotor through a gearbox. This is the example used in this paper,
presented in Sect. 3.1.

A 2-lobe journal bearing (called also lemon-bore bearing, or elliptical bearing)
is represented in Fig. 4. The bearing consists of two circular sectors of radius RP ;
the upper sector is centred at (xP ,−yP − yL), and the lower sector is centred at
(xP , yP + yL). The bearing centre (xP , yP) is represented by the coordinates for the
bearing pedestal movement, xP , yP , as described in previous section, see Fig. 3.

The centre of each lobe does not coincide to the bearing centre, thus the bearing
is said to be geometrically preloaded. Such a geometric configuration increases the
journal bearing effective eccentricity and this is the principle behind the enhanced
bearing stability of preloaded bearings [16–20]. The radius of the preloaded sectors

Fig. 4 Representation of the
profile and of the key design
parameters of a 2-lobe
bearing (lemon-bore bearing)
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is shown in Fig. 4 as RP . The fluid film thickness h between the sliding surfaces of
the journal and the bearing is well approximated from the formulas in Eq. (8) for the
entire circumference 0 ≤ θ ≤ 2π , which can be expressed in dimensionless form as
H = h/cb. In Eq. (8), xL = 0 because each lobe is not located at an offset relative
to the bearing centre (xL �= 0 for offset lemon-bore bearings, known also as offset
halves bearings).

h = H · cb =
{
cp − (

x j − (xL + xP )
)
cos(θ) − (

y j − (yL + yP )
)
sin(θ), lower pad

cp − (
x j − (xL + xP )

)
cos(θ) − (

y j − (−yL − yP )
)
sin(θ), upper pad

(8)

The key design parameters in a lemon-bore bearing are the starting angle θS and
the ending angle θE of the effective lubricating surface (bearing shell), the radial
clearance (assembly clearance) defined as cb = Rb − R, clearance cp (machined
pad clearance) defined from the curvature Rp = R + cp at any of the two lobes,
and the preload m = 1 − cb/cp which influences intensively the threshold speed of
instability and the respective bifurcation type. As a generic approach, the higher the
preload is, the more stable the bearing is. Preload m usually receives values at the
range of 0.3 ≤ m ≤ 0.7 in common applications. The bearing has a width Lb, and the
lubricant is characterized by a dynamic viscosity μ which for simplicity is assumed
constant in this paper (isoviscous flow of the lubricant). The journal rotates around
its centre with a rotating speed � (spinning speed). Under dynamic conditions, the
journal will perform whirling motion inside the bearing clearance, with velocities
ẋ j and ẏ j . The influence of the bearing profile in the stability of limit cycle motions
of a rotor-bearing-foundation system has been widely studied in the literature. The
lemon-bore bearing profile has been selected in this paper as it is widely applied in
industrial turbomachinery of medium speed where slender rotors are included in the
design (steam/gas turbines and generators).

The lubrication problem in this paper (evaluation of lubricant pressure distribu-
tion p inside the bearing clearance for laminar isothermal flow) is defined by the
Reynolds equation which includes all the previously defined geometric and physical
parameters, see Eq. (9) [16]. Using Eq. (8), the right-hand side (RHS) of Eq. (9) is
written after some math in Eq. (10) for the lower and upper pad, respectively. Setting
dimensionless variables in Eq. (11), Eq. (9) is written in Eq. (12).

1

μR2

∂

∂θ

(
h3

∂p

∂θ

)
+ h3

μ

∂2 p

∂x2
= 6�

∂h

∂θ
+ 12

dh

dt
(9)

RHS =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
6�

(
x j − xP

)− 12
(
ẏ j − ẏP

))
sin(θ)

− (
6�

(
y j − yP − yL

)+ 12
(
ẋ j − ẋP

))
cos(θ), lower pad

(
6�

(
x j − xP

)− 12
(
ẏ j − ẏP

))
sin(θ)

− (
6�

(
y j − yP + yL

)+ 12
(
ẋ j − ẋP

))
cos(θ), upper pad

(10)

p̄ = c2b p

μ �R2 , εx = x j − xP
cb

, εy = y j − yP
cb

, ε =
√

ε2x + ε2y
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ε̇x = ẋ j − ẋP
cb

, ε̇y = ẏ j − ẏP
cb

, ˙̄εx = ε̇x

�
, ˙̄εy = ε̇y

�
, k = 2R

Lb
, x̄ = 2x

Lb
, ϕ̇ = εx ε̇y − εy ε̇x

ε2x + ε2y
(11)

∂

∂θ

(
H 3 ∂ p̄

∂θ

)
+ k2H 3 ∂2 p̄

∂ x̄2
= (

6εx − 12 ˙̄εy
)
sin(θ) − (

6εy + 12 ˙̄εx
)
cos(θ) (12)

Reynolds equation (12) can be solved with the four variables εx , εy , ˙̄εx , and˙̄εy to receive specific values. The solution can be a numerical solution scheme,
e.g., Finite Difference Method. Supposing that the FDM is implemented, with a
definition of finite difference grid as Nx × Nθ , the respective intervals are defined
as �x = Lb/Nx and �θ = (θE − θS)/Nθ . The angles θS and θE can be any angles
on the circumference if the corresponding fluid film functions have been defined,
see Eq. (8). When pressure is evaluated, the resulting fluid film forces are given in
dimensional form in Eq. (13).

{
FB
x

F B
y

}
= μ�R3

c2b

{
F̄ B
x

F̄ B
x

}
= μ�R3

c2b

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
Nx∑

i=1

Nθ∑

j=1

(
�x · �θ · p̄i, j · cos(θ j

))

−
Nx∑

i=1

Nθ∑

j=1

(
�x · �θ · p̄i, j · sin(θ j

))

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(13)

For Gümbel boundary conditions, only p̄i, j > 0 values are implemented in the
double sum in Eq. (13). Bearing forces FB

x and FB
x are requested at every discrete

time interval during the numerical integration of the system q̇ = f(q,�).

3 Application of Hopf Bifurcation Theory in the Stability
Assessment of Simple and Complex Rotor Systems

3.1 Supercritical and Subcritical Hopf Bifurcations
in Simple Rotor-Bearing-Foundation Systems

A Jeffcott rotor mounted on nonlinear sliding bearings on resilient foundation is
represented in Fig. 5 and is used in this section to depict the two different types
of motion bifurcation that occurs when the rotating speed � is in the region of the
threshold speed of instability �th .

Fig. 5 Representative layout
of a Jeffcott rotor mounted
on sliding bearings with
resilient foundation
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Assuming perfectly balanced rotors, the rotor-bearing-foundation system will
develop stable or unstable oscillations depending on its design, the value of the
rotating speed �, and the initial conditions (or perturbations from equilibrium, e.g.,
seismic excitation). The nonlinear feature of the bearing forces introduces to the
system the possibility to experience different types of instability. Unstable motions
will definitely appear when � > �th , but they can also appear when � < �th

if certain conditions of the geometrical and physical properties of the system are
satisfied; the study of these conditions is actually of major interest in this paper.

In Fig. 6 the threshold speed of instability of the Jeffcott rotor system is plotted
as a function of bearing parameter Γ and Sommerfeld number SO , for various cases
of rotor stiffness. In all cases presented there are two domains of subcritical bifurca-
tion, and one domain of supercritical bifurcation. In Fig. 6a there are four operational
points indicated in the chart by two squares and two rhombuses. The squares corre-
spond to operating speeds lower than the threshold speed of instability, while the
rhombuses correspond to speeds higher than the threshold speed. These four cases of
operation are selected to indicate how the system motion progresses. The respective
transient motions are evaluated and plotted in Figs. 7 and 8.

In Fig. 7, transient motions of the rotor system are depicted during a supercrit-
ical Hopf bifurcation. In Fig. 7a it is shown that a perfectly balanced rotor will be
asymptotically stable when the operating speed is lower than the threshold speed of
instability. This occurs for any initial condition if the operating parameter Γ corre-
sponds to supercritical bifurcation (black square in Fig. 6a). Increasing the operating
speed higher than the threshold speed of instability (black rhombus in Fig. 6a), the
system motion is orbitally asymptotically stable. This means that when the initial
condition is outside the limit cycle (stability envelope), see Fig. 7b, the rotor transient

Fig. 6 Instability threshold speed �̄th and type of bifurcation as function of a parameter Γ and
b Sommerfeld number SO , for various cases of dimensionless rotor stiffness K̄ and rigid foundation
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Fig. 7 Journal orbits in supercritical bifurcation; no unbalance is considered. a Asymptotically
stable motion when �̄ < �̄th , not depended on the initial conditions; b orbital asymptotically
stable motion when �̄ > �̄th , and initial conditions out of the stability envelope (limit cycle);
c orbital asymptotically stable motion when �̄ > �̄th , and initial conditions inside the stability
envelope (limit cycle)

Fig. 8 Journal orbits in subcritical bifurcation; no unbalance is considered. aAsymptotically stable
motion when �̄ < �̄th , and initial conditions within the stability envelope (limit cycle), b unstable
motion when �̄ < �̄th , and initial conditions out of the stability envelope (limit cycle), c unstable
motion when �̄ > �̄th , not depended on the initial conditions
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motion is asymptotical to the limit cycle, approaching from the outer side. When the
initial condition is inside the limit cycle (stability envelope), then the rotor transient
motion is asymptotical to the limit cycle from the inner side.

At the case that the parameter Γ corresponds to subcritical bifurcation (white
square in Fig. 6a), stable motion occurs at operating speeds lower than threshold
speed of instability (white square in Fig. 6a), if the initial condition is inside the
limit cycle (stability envelope). The motion is said to be asymptotically stable, see
Fig. 8a. If the initial condition is outside the limit cycle (stability envelope), then the
motion is unstable and with the progress of time it will be bounded only by physical
constraints. At this case the journal motion approaches the bearing clearance, see
Fig. 8b. Unstable motions will be occurring regardless the initial condition, when
operating speed is higher than threshold speed, and parameter Γ corresponds to
subcritical bifurcation (white rhombus in Fig. 6a). This case is depicted in Fig. 8c.

Similar motions to those evaluated for the simple rotor system in this section are
evaluated in the next section for full rotor-bearing-foundation systems of realistic
applications.

It has to be clarified that in this paper only Hopf bifurcations are supposed to occur
in the slender rotor-bearing-foundation systems studied. The systems studied in this
paper will present at most cases a complex conjugate pair of eigenvalues crossing the
imaginary axis as the rotor speed increases as they represent slender medium speed
systems (1000–10,000 RPM) in terms of rotor flexibility, bearing properties, and
foundation properties (steam/gas turbine rotors and generator rotors). Such systems
will hardly demonstrate overdamped modes which would render real eigenvalues.
The damping factor (ζ ) inmost applications of such systems does not exceed ζ = 0.8
corresponding to a logarithmic decrement lower than δ = 5. However, in a generic
theoretical basis other more complex motions are possible in other rotor systems,
e.g., quasi-periodic or chaotic motions are possible especially in high speed systems.
Such motions cannot be captured with the methodology employed in this paper. For
the qualitative analysis of nonlinear systems able to produce any kind of motion,
the reader may consider [21, 22] among others, where eigenvalues are not always
considered complex quantities. More specifically, for the study of complex motions
in nonlinear rotor-bearing systems, the reader may consider [23–25] where geared
systems in nonlinear oil film bearings are investigated, together with [26, 27].

The stability assessment presented in this section considers the stability of one of
the solutions checked, and it is assumed that a stable solution renders a stable system.
Therefore, the statement that the system is stable implies that one of the solutions
checked is stable. This solution is the one corresponding to the equilibrium of the
perfectly balanced rotor inside the bearing clearance. However, more solutions may
exist, like the limit cycle when supercritical bifurcation occurs, whose stability is
assessed in this paper so as to identify whether the system is orbitally asymptotically
stable; again, it is matter of whether the solution is stable or not.
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3.2 Supercritical and Subcritical Hopf Bifurcations
in Turbine and Generator Rotor Systems

This stability threshold and the respective type of Hopf bifurcation is evaluated in
this section for indicative designs of turbine and generator rotors which cover the
some applications of turbine-generator shaft trains for power generation, in regard to
key design parameters like rotor slenderness ratio λ, bearing length to diameter ratio
Lb/Db, and foundation (pedestal) properties. In order to assess the stability of real
rotors, a representative shaft train depicted in Fig. 9a is used. The Generator rotor is
coupled to the Turbine rotor through a Gearbox and flexible couplings.

The flexural vibrations of the turbine and generator rotor do not influence each
other as the couplings bending stiffness is low enough compared the rotor stiffness.
This is not the case for torsional vibrations though. Three Generator rotors and three
turbine rotors are assessed in this section regarding their stability characteristics. The
six different rotor classes are defined through the slenderness ratio λ, here defined
as λ = L2/AS both for Generator rotors, see Fig. 9b, and Turbine Rotors, see

Fig. 9 a Representative configuration of a Turbine Rotor coupled through flexible coupling to
Gearbox and Generator; 4 bearings are considered. Representative outline of b a generator shaft
and c a turbine shaft. In (b) and (c), hatched area AS indicates stiffness diameters considered in the
definition of slenderness ratio λ = L/Deq = L2/As
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Fig. 9c. Figure 9b and c represent indicative designs of generator and Turbine rotors,
respectively; the hatched area AS depicts the diameter of each rotor cross section in
which bending stresses are supposed to be developed; this is simply called “stiffness
diameter”. The bearing span is defined by L . An equivalent diameter Deq is also
depicted in both rotors, representing the diameter of a uniform rotor of length L
and slenderness ratio λ. The higher the slenderness ratio is, the lower the effective
bending stiffness KS of the rotor is.

The values of λ checked in this section are shown in Table 1 together with the
respective dimensionless stiffness K̄ of the rotor and the dimensionless bearing
parameter Γ , with both bearings of each rotor to be included. Driven end bearing
“DE” is the bearing located in the coupled side of the rotor. Non-driven end bearing
“NDE” is the bearing at the free (uncoupled) side of the rotor. In real applications, it
is not uncommon that the slenderness ratio of turbine rotors may exceed the values
included in Table 1, e.g., receiving values of 10 or 11, or higher, depending on how
they are coupled to other rotors. This section considers Turbine rotors which are not
part of turbine shaft trains. There are many configurations and layouts of turbine
rotors in shaft trains and the nonlinear stability assessment can be cumbersome as
the degrees of freedom increase.

The bearing length to diameter ratio is presented in Table 2 for the respective rotor
classes. Each bearing pedestal is simulated as a rigid body of lumped mass MP,Y and
MP,X in vertical and horizontal direction which is connected to the ground through
springs of stiffness KP,Y and KP,X , and dampersCP,Y andCP,X as in Fig. 3. Stiffness
and damping for the pedestal structure do not depend on frequency of excitation
(rotating speed) in the applications of this paper. However, the oil film impedance

Table 1 Properties of the turbine and generator rotors. DE: Driven End bearing, NDE: Non-Driven
End bearing

Rotor class Description Slenderness ratio
λ = L2/As

Dim/less stiffness
K̄ = cb ·KS

M ·g
Bearing parameter

Γ = μ·RbLb

M ·c2.5b g0.5

DE NDE DE NDE

1 Turbine rotor 7.0 1.08 1.16 0.52 0.87

2 Turbine rotor 8.0 1.16 1.32 0.88 1.07

3 Turbine rotor 9.0 0.98 1.12 0.86 1.04

4 Generator rotor 11.0 0.24 0.21 1.06 0.72

5 Generator rotor 12.0 0.20 0.15 1.00 0.65

6 Generator rotor 13.0 0.14 0.10 0.92 0.60

Table 2 Bearing geometric properties. DE: Driven End bearing, NDE: Non-Driven End bearing

Rotor class 1 2 3 4 5 6

Lb/Db DE 0.77 0.70 0.70 0.88 0.88 0.88

NDE 0.88 0.70 0.70 0.89 0.89 0.89
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Table 3 Bearing pedestal physical properties. DE: Driven End bearing, NDE: Non-Driven End
bearing

Rotor class Position 1 2 3 4 5 6

MP,X/M DE 4.07 0.33 1.26 0.12 0.17 0.15

NDE 4.07 0.46 0.22 0.12 0.10 0.10

MP,Y /M DE 4.07 11.46 1.26 0.12 0.17 0.15

NDE 0.12 0.37 0.22 0.12 0.10 0.10

KP,X/KS DE 6.87 2.38 2.26 2.78 25.81 33.48

NDE 3.23 2.74 5.57 2.78 10.32 13.39

KP,Y /KS DE 9.20 15.43 156.05 10.39 34.42 44.66

NDE 4.88 3.27 5.57 10.39 25.81 33.48

CP,X/
√
KP,X MP,X DE 0.01 0.45 0.10 0.10 0.10 0.10

NDE 0.10 0.33 0.10 0.10 0.10 0.10

CP,Y /
√
KP,Y MP,Y DE 0.09 0.33 0.06 0.06 0.06 0.06

NDE 0.08 0.23 0.06 0.06 0.06 0.06

forces FB
X and FB

Y (see Fig. 3), applied from the oil film to the pedestal and the rotor,
are nonlinear functions of the displacement and velocity of the respective journal
and pedestal. The indicative values for the pedestal properties for the various rotors
tested in this paper are included in Table 3.

The dynamic response of each rotor is evaluated as presented in Sects. 2.1 and
2.2 using the Transient Transfer Matrix Method—TTMM, see also Appendix 1. The
Hopf bifurcation theory is applied in the system q̇ = f(q,�) composed in Sect. 2.1,
defined here for the six turbine/generator rotor-bearing-pedestal systems as described
above. The dynamic viscosity μ of the lubricant is equal at both bearings mounting
the rotor and is theoretically varying to change parameter Γ of the bearings; this is
how the charts of Figs. 10 and 11 are constructed.

There are two lines in each chart of Figs. 10 and 11, line “1”, and line “2”. These
correspond to the two different bearings. The geometrical properties of each bearing
are used to define the non-dimensional parameter Γ , therefore, the parameters Γ1

and Γ2 are defined. The same goes for Sommerfeld number So whose values are
calculated for each bearing as So,1 and So,2 in the charts of Fig. 11. The charts of
Fig. 10 are constructed for selected values of Γ1. The dynamic viscosity, which is
equal at both bearings, is calculated next. The values of Γ2, So,1, and So,2 are then
calculated. It is important to highlight that the bearing parameter Γ is not speed
depended.

In Fig. 10 the threshold speed of instability �̄th,1 = �th
√
cb,1/g is plotted as a

function of bearing parameter Γ1 = μ · Rb,1 · Lb,1 · M−1 · c−2.5
b,1 · g−0.5 in line “1”.

At the same charts, the threshold speed of instability �̄th,2 = �th
√
cb,2/g is plotted

as a function of bearing parameter Γ2 = μ · Rb,2 · Lb,2 · M−1 · c−2.5
b,2 · g−0.5 in line

“2”. The corresponding charts in Fig. 11 consider the Sommerfeld number at the first
bearing So,1 = μRb,1Lb,1�th · (2π)−1 · (Rb,1/cb,1

)2 · (Mg/2)−1 and at the second
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Fig. 10 Instability threshold speed �̄th and type of bifurcation as function of parameter Γ
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Fig. 11 Instability threshold speed �̄th and type of bifurcation as function of Sommerfeld
number So
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bearing So,2 = μRb,2Lb,2�th · (2π)−1 · (Rb,2/cb,2
)2 · (Mg/2)−1, see also Fig. 9b, c

for the definitions of first and second bearing.
Figure 10a, b, and c depict the bearing design parameterΓ which render subcritical

or supercritical bifurcation in the turbine rotor systems of Rotor Class 1, Rotor Class
2, and Rotor Class 3, respectively, see also Tables 1, 2, and 3 for the corresponding
geometric and physical properties of the systems. Supercritical and subcritical bifur-
cation is denoted for the bearing design parameter Γ of generator rotor systems in
Fig. 10d, e, and f, which correspond to Rotor Class 4, 5, and 6. İt is worth noting
that Rotor Class 5 generator, see Fig. 10e, has a very narrow range of Γ parameter
for which subcritical bifurcation can be developed.

As a generic comment, the subcritical bifurcation may occur in a wider range of
parameter Γ . However, for real systems, the parameter Γ would lie approximately in
the range from 0.1 to 1. Regarding Fig. 11, the Sommerfeld number in real systems
would lie approximately on the range from 0.2 to 0.7. According to Figs. 10 and 11,
it is very likely that turbine and generator rotors have the potential for subcritical
bifurcation, which as discussed in Sect. 3.1 may have catastrophic consequences.

The design engineermay predict the potential for supercritical or subcritical bifur-
cation of turbine-generator rotor systems with the calculation of the respective charts
in Figs. 10 and 11. A design of a slender rotor should avoid the subcritical bifurcation
as this may initiate instability at speeds lower than the threshold, see Sect. 3.1.

The frequency ω0 of the limit cycle motion when bifurcation occurs is predicted
from the Hopf bifurcation theory in Appendix 2, see definition ω0 = JY(0)[2, 1] in
Eq. (24).

This is calculated for the various cases of parameter Γ and for the six Rotor
Classes, and depicted in Fig. 12 divided by the rotor’s speed �th when bifurcation
occurs. Figure 12 depicts that there is a considerable change on the whirl frequency
of the rotor when bifurcation occurs, depending on the rotor and bearing design,

Fig. 12 Ratio of frequency of limit cyclemotion to rotor speedω0/�th , as a function of a parameter
Γ , and b Sommerfeld number So at one of the bearings
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and this frequency is not always close to 50% of the rotating speed, but it may
take values of 20% or even 15% of the rotating speed when the rotor is slender
and the bearings heavy loaded (low Sommerfeld number). As mentioned above the
Sommerfeld number in real applications of turbines and generators takes values at
the range of 0.2–0.7, therefore, limit cycle motions of frequency higher than 20% of
rotating speed should be expected in the case of supercritical bifurcation. Different
bearing profiles, e.g., partial arc bearings of lower arc length may render even lower
ω0/�th ratio. This is the reason that when long generators enter oilf whirl instability,
there are frequency components around 15–25% of synchronous frequency.

4 Conclusions

Realistic configurations of turbine and generator rotors were tested through full
models of rotor-bearing-foundation systems, on the potential to develop supercritical
and subcritical Hopf bifurcations. A short application of Hopf bifurcation theory
in a simple rotor system was also included, depicting the transient motions of the
rotor system when a Hopf bifurcation occurs. The following conclusions may be
considered from rotordynamic engineers on turbine-generator designs.

The bearing design parameters such as profile configuration, clearance, length,
diameter, dynamic viscosity, load, and speed have major influence on the potential of
the rotor system to generate subcritical or supercritical bifurcations. A design which
can render supercritical bifurcation is safer compared to the design that can render
subcritical bifurcation. At the first case the limit cycle motions may have certain
extend and the operation may be retained, while at the second case the rotor motions
are bounded only fromphysical constraints (e.g., rotor-stator contact). A rotor system
with the potential of subcritical bifurcationmay lose stability in rotating speeds lower
than the threshold speed of instability predicted by the linear stability assessment
when certain perturbations take place, e.g., seismic excitation, high unbalance, or
rub.

For the lemon-bore bearing profile tested, and for the rotor configuration tested,
it was found that subcritical bifurcations are very likely to occur in realistic rotor
systems of turbines and generators.

The frequency of limit cycle motion when supercritical bifurcation occurs varies
according to the rotor and bearing design parameters. Slender rotors mounted on
high loaded bearings tend to whirl with lower frequencies when bifurcation occurs.
At this case, the whirl speed ratio is expected at the range from 15 to 25%. However,
the whirl speed ratio of short rotors mounted on lightly loaded bearings should be
expected close to 50%.
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Appendix

Appendix 1. Modelling of the Rotor Using the Transient
Transfer Matrix Method

The status vectors ZL
i and ZR

i are split in two vectors each, corresponding to the
displacement/tilting and to the moments/forces as in Eq. (14).

ZD,i (t) = {
yi (t) θY,i (t) −xi (t) θX,i (t)

}T

ZR
F,i (t) = {

MR
Y,i (t) V

R
X,i (t) MR

X,i (t) −V R
Y,i (t)

}T

ZL
F,i (t) = {

ML
Y,i (t) V

L
X,i (t) ML

X,i (t) −V L
Y,i (t)

}T
(14)

The moments/forces acting at the left and right of the mass MN ,i are defined as
ZL

F,i (t) and ZR
F,i (t), respectively. In this way, the expression ZL

i (t) = Fi × ZR
i−1(t)

may be converted to the expression in Eq. (15) including the definitions of Eq. (14).
The submatrices FDD,i , FDF,i , FFD,i , and FFF,i are defined in Eq. (16).

{
ZD,i (t)
ZL

F,i (t)

}
=
[
FDD,i FDF,i

FFD,i FFF,i

]
×
{
ZD,i−1(t)
ZR

F,i−1(t)

}
(15)

FDD,i =

⎡

⎢⎢
⎣

1 LS,i 0 0
0 1 0 0
0 0 1 LS,i

0 0 0 1

⎤

⎥⎥
⎦,FFD,i = [0](4×4),FFF,i =

⎡

⎢⎢
⎣

1 −LS,i 0 0
0 1 0 0
0 0 1 −LS,i

0 0 0 1

⎤

⎥⎥
⎦

FDF,i =

⎡

⎢⎢⎢⎢⎢
⎣

L2
S,i

2Ei IS,i
− L3

S,i

6Ei IS,i
+ s fi LS,i

Gi AS,i
0 0

LS,i

Ei IS,i
− L2

S,i

2Ei IS,i
0 0

0 0
L2
S,i

2Ei IS,i
− L3

S,i

6Ei IS,i
+ s fi LS,i

Gi AS,i

0 0 LS,i

Ei IS,i
− L2

S,i

2Ei IS,i

⎤

⎥⎥⎥⎥⎥
⎦

(16)

Equation (15) is expressed as a system of two equations with unknowns the
force/moment vectors ZL

F,i (t) and ZR
F,i−1(t) and its solution is defined in Eqs. (17)

and (18).

ZR
F,i−1(t) = F−1

DF,i × (
ZD,i (t) − FDD,i × ZD,i−1(t)

)
(17)

ZL
F,i (t) = FFD,i × ZD,i−1(t) + FFF,i ×

(
F−1
DF,i × (

ZD,i (t) − FDD,i × ZD,i−1(t)
))

(18)

Equations (17) and (18) express that if the displacement vectors are known in
all nodes, then the force vectors can be evaluated in all nodes. The force vectors
will be the input for the definition of motion equations of each mass in Eq. (4).
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Note that Eqs. (17) and (18) can be written for i = 2, 3, . . . , N + 1. Then, for an
initial condition for every ZD,i , and for i = 1, 2, . . . , N + 1, the resulting bending
moment and shearing force on the left and on the right side of each node i will be
given from Eqs. (17) and (18), excluding the values for the left of the first node ZL

F,1

and for the right of the last node ZR
F,N+1. These should be set equal to zero since

they correspond to free-end boundary conditions, meaning that ZL
F,1 = ZR

F,N+1 =
{
0 0 0 0

}T
. Should a different boundary condition be applied, the corresponding

vectors are defined for ZL
F,1 and ZR

F,N+1.

ML
X,i (t) = ZL

F,i [3]
ML

Y,i (t) = ZL
F,i [1],

V L
X,i (t) = ZL

F,i [2]
V L
Y,i (t) = −ZL

F,i [4],
MR

X,i (t) = ZR
F,i [3]

MR
Y,i (t) = ZR

F,i [1],
V R
X,i (t) = ZR

F,i [2]
V R
Y,i (t) = −ZR

F,i [4]

(19)

When unbalance force acts at a node this is defined in vertical and horizontal
direction in Eq. (20) for constant rotating speed �, and in Eq. (21) for linearly
varying rotating speed (run-up/down) � = a · t (where a = �̇), where U is the
unbalance magnitude.

FU
Y = U · �2 · cos(� · t), FU

X = −U · �2 · sin(� · t) (20)

FU
Y = U · �2 · cos(0.5 a · t2), FU

X = −U · �2 · sin(0.5 a · t2) (21)

Motion equations should also consider the gravitational force acting at each mass
MN ,i of the rotor, given as FG

i = MN ,i · g.

Appendix 2. Formulas for the Application of Hopf Bifurcation
Theory

The evaluation of response at a limit cycle of a nonlinear autonomous system of the
form q̇ = f(q,�) is given in this section according to [15]. The size of the system
is n × n, and the bifurcation parameter is �.

At first, the equilibrium points of the system q∗(�) (critical points) have to be
evaluated for the different values of �, using a numerical method, e.g., Newton-
Raphson. For each critical point, the JacobianmatrixJ (seeEq. 22) and its eigenvalues
and eigenvectors have to be evaluated simultaneously; the eigenvalues should be
ordered as real

(
λ1,2

)
> real

(
λ3,4

)
>real

(
λ5,6

)
> . . .> real

(
λn−1,n

)
; the eigenvectors

ν j,(n×1) are placed correspondingly to this sequence of eigenvalues too. The interest
is to find the �th for which the eigenvalues of J(�th) contain a pair λ1,2 = a(�th) ±
i b(�th) where real

(
λ1,2

) = a(�th) = 0.
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J(�th) =

⎡

⎢⎢⎢⎢
⎣

∂ f1
∂x1

∂ f1
∂x2

. . .
∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . .
∂ f2
∂xn

...
... . . .

...
∂ fn
∂x1

∂ fn
∂x2

. . .
∂ fn
∂xn

⎤

⎥⎥⎥⎥
⎦

�=�th

(22)

The reader has to check whether real
(
λ′
1(�th)

) = real
(

∂λ1
∂�

∣∣
�=�th

)
= a′(�th) and

b(�th) are non-zero quantities, and real(λk) < 0 for k = 3, 4, . . . n. If the above are
satisfied, then the system undergoes a Hopf bifurcation as � crosses �th .

The matrix Pn×n is formed in Eq. (24) using the eigenvectors of J(�th). The
eigenvectors in Pn×n have to be normalized so that the first element of the first vector
to be 1. For MATLAB users, this can be achieved just by dividing all eigenvectors
yielded by the command “[V, D] = eig(J)” by the first element of ν1, ν1[1].

Pn×n = 1

v1[1]

[
real

(
ν1,(n×1)

) −imag
(
ν2,(n×1)

)
ν3,(n×1) · · · νn,(n×1)

]
(23)

The change of variables q = q∗ + P · y is then performed and a new system
ẏ = F(y) is composed, where F(n×1) = P−1 · f . A new Jacobian matrix JY is
composed in Eq. (24). Matrix JY(0) will have the so-called real canonical form, see
Eq. (24); set ω0 = JY(0)[2, 1] and D as shown in Eq. (24).

JY(0) =

⎡

⎢⎢⎢⎢
⎣

∂F1
∂y1

∂F1
∂y2

. . . ∂F1
∂yn

∂F2
∂y1

∂F2
∂y2

. . . ∂F2
∂yn

...
... . . .

...
∂Fn
∂y1

∂Fn
∂y2

. . . ∂Fn
∂yn

⎤

⎥⎥⎥⎥
⎦

y=0

=

⎡

⎢⎢⎢
⎣

0 −ω0
...

ω0 0
...

...
... D(n−2)×(n−2)

⎤

⎥⎥⎥
⎦

n×n

(24)

In continue, a sequence of partial derivatives has to be calculated, see Eqs. (25)–
(30). The reader should bear inmind that applying themethodology inM-DOF rotors
with numerical bearingmodels, the followingpartial derivatives canbe evaluatedonly
numerically (e.g., Finite Difference Methods) and if not a correct interval is selected
in the difference equations, the partial derivative formulas may render wrong values.
The reader is advised to proceed from a system of few DOFs in a M-DOF system
and keep an eye on the range of values for the following derivatives. In the current
work, an interval of 1e-6 was used in the finite difference formulas of the derivatives
following.

g11 = 1

4

[
∂2F1

∂y21
+ ∂2F1

∂y22
+ i

(
∂2F2

∂y21
+ ∂2F2

∂y22

)]
(25)

g02 = 1

4

[
∂2F1

∂y21
− ∂2F1

∂y22
− 2

∂2F2

∂y1∂y2
+ i

(
∂2F2

∂y21
− ∂2F2

∂y22
+ 2

∂2F1

∂y1∂y2

)]
(26)
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g20 = 1

4

[
∂2F1

∂y21
− ∂2F1

∂y22
+ 2

∂2F2

∂y1∂y2
+ i

(
∂2F2

∂y21
− ∂2F2

∂y22
− 2

∂2F1

∂y1∂y2

)]
(27)

G21 = 1

8

[
∂3F1
∂y31

+ ∂3F1
∂y1∂y

2
2

+ ∂3F2
∂y21∂y2

+ ∂3F2
∂y32

+ i

(
∂3F2
∂y31

+ ∂3F2
∂y1∂y

2
2

− ∂3F1
∂y21∂y2

− ∂3F1
∂y32

)]

(28)

At the case that the system is a 2-DOF system (this would be the case of simple
model of a journal in a bearing), let g21 = G21 and evaluate directly the value c1(0)
in Eq. (36). Rotor-bearing systems are M-DOF systems, therefore, the following
formulas have to be evaluated so as to render g21. After defining the elements of
vectors h11 and h20 in Eqs. (29) and (30), the vectors w11 and w20 are evaluated in
Eqs. (31) and (32). All four vectors mentioned here are of size n − 2.

k−2
h 11 = 1

4

(
∂2Fk

∂y21
+ ∂2Fk

∂y22

)
, k = 3, . . . , n (29)

k−2
h 20 = 1

4

(
∂2Fk

∂y21
− ∂2Fk

∂y22
− 2i

∂2Fk

∂y1∂y2

)
, k = 3, . . . , n (30)

w11 = −D−1 · h11 (31)

w20 = −(D − 2iω0I)−1 · h20 (32)

Then g21 is evaluated in Eq. (33), where
k−2
G 110 and

k−2
G 101 are defined in Eqs. (34)

and (35) which are written for k = 3, 4, . . . , n.

g21 = G21 +
n−2∑

k=1

(
2

k
G 110 · k

w 11 + k
G 101 · k

w 20

)
(33)

k−2
G 110 = 1

2

[
∂2F1

∂y1∂yk
+ ∂2F2

∂y2∂yk
+ i

(
∂2F2

∂y1∂yk
− ∂2F1

∂y2∂yk

)]
(34)

k−2
G 101 = 1

2

[
∂2F1

∂y1∂yk
− ∂2F2

∂y2∂yk
+ i

(
∂2F2

∂y1∂yk
+ ∂2F1

∂y2∂yk

)]
(35)

The quantities evaluated in Eqs. (36)–(39) are included in the period T and the
characteristic exponent β of the limit cycle motion is defined in Eq. (39).

The sign of the characteristic exponent T is the indicator for the stability of the
limit cycle (periodic motion) and consequently for the type of the bifurcation. When
β < 0 the limit cycle is stable and the bifurcation is supercritical, see Fig. 2a. When
β > 0 the limit cycle is unstable and the bifurcation is subcritical, see Fig. 2b.

The response of the system at a stable limit cycle is given from Eq. (40) for �

close to�th . The proximity of� to�th so as Eq. (B.19) to render confident results of
response is a matter beyond the scope of this paper. The reader may check the results
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of Eq. (B.19) comparing to numerical results. It is advised that � − �th should not
exceed few hundredths RPM (200–500 RPM) in a medium speed rotor system of,
e.g., �th = 3800RPM with its 1st critical speed at, e.g., 1200 RPM (e.g., a slender
generator rotor). The envelope ε of the limit cycles for the various � is given in
Eq. (38) and is included also in Eq. (40) through the vector y, see Eq. (41), which
contains parameter z, see Eq. (42).

c1 = i

2ω0

(
g20 · g11 − 2|g11|2 − 1

3
|g02|2

)
+ g21

2
(36)

a′ = real
(
λ′
1

)
, ω′ = imag

(
λ′
1

)
(37)

μ2 = − real(c1)

a′ , τ2 = − imag(c1) + μ2 · ω′

ω0
, β2 = 2 · real(c1), ε =

√
� − �th

μ2

(38)

T = 2π · real
(
1 + τ2ε

2

ω0

)
, β = β2ε

2 (39)

q(�, t) = q∗(�th) + P · y (40)

y1 = real(z), y2 = imag(z), yi = w11i−2|z|2 + real
(
w20i−2z

2
)
, i = 3, 4, . . . n (41)

z = ε · e 2π ·i·t
T + i · ε2

6ω0

(
g02 · e −4π ·i·t

T − 3g20 · e 4π ·i·t
T + 6g11

)
(42)

Perturbations at the outer of the unstable limit cycle will render a journal motion
continuously increasing in extent, and bounded only from physical constraints, e.g.,
rotor-stator contact. The system will preserve motion close to the bearing shell (high
eccentricity) for a while depending on the tolerance of the system in such a hazardous
operation.
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