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Abstract In the present work, the features of dynamics of a vibration machine with
two self-synchronizing vibration exciters of the asynchronous type under conditions
of a variable arrangement of technological load on the machine’s working body are
considered. A model of the vibration machine dynamics is presented, which takes
into account the interaction of the mechanical part of the oscillating system with
non-ideal vibration exciters and possible changes in the mass and position of the
technological load on its working body. Based on the numerical simulation, the
amplitude-frequency characteristics of the vibration machine model, as well as the
speed and mutual phases of rotation of the vibration exciters debalances depending
on the power supply frequency of the driving motors at different positions of techno-
logical load are investigated. It is shown that the shift of the technological load center
of mass from the structural axis of symmetry of the machine leads to a change in the
resonant frequencies, as well as to a change in the mutual phasing of the debalances
and the system’s oscillations modes near the resonant frequencies. The influence of
the direction of the weight’s center of mass displacement on the mutual phasing of
the debalances rotation is established. The results obtained can be used in devel-
oping resonant vibrating machine’s control systems to establish the corrective values
of the power supply frequency of vibration exciters in the event of an uncontrolled
displacement of the technological load.
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1 Introduction

One of the problems concerning creating resonant vibration machines with unbal-
ance vibration exciters is to ensure the specified modes of oscillations at fluctuating
process load. Here, the fluctuation of the technological load is understood as the
change in its mass and its location on the machine’s working body. These changes
significantly affect the dynamic characteristics of the machine and at a given exci-
tation frequency lead to undesirable changes in the amplitudes and modes of the
system, as well as change in the required type of the vibration exciters synchroniza-
tion (differences between the phases of unbalanced rotation) [1–3], which ultimately
leads to disruption of vibrational processing.

The solution to this problem can be found by using automated control systems
that monitor these changes and adjust the system parameters and excitation [4–11].
So in [9], a system for control resonant oscillations of one-dimensional single-mass
system excited by a single unbalance vibration exciter of a synchronous type, based
on the use of autoresonance excitation, was proposed. In [10, 11], a system for
controlling the resonant oscillations based on usage of combinational parametric
resonance was considered for a similar dynamic scheme of the machine. In the
previous works of the authors [12], a number of algorithms for the control system of
an asynchronous unbalance exciter based on the measurement of mutual phase shift
between the exciting force and system oscillations were proposed. The developed
control systems made it possible to efficiently track the change in the system’s mass
and quickly reconfigure it to the required near-resonant oscillations mode [13].

For planar oscillatory systems with two unbalance exciters, the effect of self-
synchronization of vibration exciters plays a significant role. Moreover, the type
of synchronization of the vibration exciters rotation and the form of the system’s
oscillations have a mutual influence on each other [2].

It is obvious that in cases of planar oscillations of the vibratorymachine’s working
body it is necessary to take into account not only the change in mass of the process
load, but also its location on the working body. In [14], the effect of the mass center’s
displacement of the technological load relative to the axis of system’s structural
symmetry on its frequency characteristics and the type of the debalances synchro-
nization depending on their rotational frequency is shown. In [4, 8], the possibilities
of separate control of the vibration exciters’ drivingmotors to create the required type
of their synchronous rotation were investigated. However, with independent control
of vibration exciters a forced synchronization mode is set, which leads to increased
loads on the electric motors, reducing their reliability, as well as increasing energy
consumption.

In this paper, the authors based on the results of a numerical dynamics analysis of
a vibration machine with two self-synchronizing vibration exciters of asynchronous
type, consider the possibility of creating rational algorithms for controlling its reso-
nant oscillations under conditions of the variable arrangement of the technological
load on the working body. Within the framework of the problem statement under
consideration, it is assumed that to ensure the required efficiency of the working
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process it is necessary to provide the excitation of unidirectional vertical oscillations
of the machine working body in near-resonant modes, regardless of the position of
the process load’s center of mass.

2 Mathematical Model of Vibrating Machine

The design scheme is a single-mass mechanical system, in which planar oscilla-
tions are excited by two self-synchronizing unbalance vibration exciters driven by
asynchronous motors (Fig. 1).

A platform imitating the machine’s working body is considered as a rigid body
supported in the directions of its plane motion (vertical, horizontal, and angular) by
elastic-viscous elements with linear characteristics. There are two almost identical
asynchronous type exciters installed on the platform symmetrically with respect to
the vertical axis passing through its center of mass. The rotors’ axes are parallel to
each other and perpendicular to the plane of the platform’s motion. Both motors are
connected to a three-phase AC power supply source using a single inverter so that
their rotors rotate in opposite directions.

The technological load (the weight) is modeled by a rigid body with massmw and
moment of inertia Jw about its center of mass at the point Ow, rigidly fixed on the
platform, which position is set by parameters ax, ay—distances from the central axis
of symmetry to its center of mass (see Fig. 1).

The principal feature of this design scheme is the possibility of taking into account
the interaction of the oscillating system with vibration exciters of limited power,
inertial parameters of the process load, and its location on the machine’s working
body.

Fig. 1 Design scheme
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Motion of the system is considered relative to the fixed coordinate system yOx,
whose origin coincides with the position of the platform’s center of mass in the
undeformed state, and is described by displacements of the platform’s center of
mass in the Oy and Ox directions, the angle ϕ of the platform rotation and the rotors
rotational angles ϕ1 and ϕ2. All angular coordinates are counted from the Ox axis
counterclockwise. Differential equations of motion of the system have the following
form:

M(X)Ẍ + BẊ + CX = F
(
Ẋ,X, t

)
(1)

where

M(X) =

⎡

⎢⎢⎢⎢
⎢
⎣

M 0 μ13 −mr1r1 sin ϕ1 −mr2r2 sin ϕ2

0 M μ23 mr1r1 cosϕ1 mr2r2 cosϕ2

μ31 μ32 J μ34 μ35

−mr1r1 sin ϕ1 mr1r1 cosϕ1 μ43 J1 0
−mr2r2 sin ϕ2 mr2r2 cosϕ2 μ53 0 J2

⎤

⎥⎥⎥⎥
⎥
⎦

μ13 = μ13 = −mw
(
ay cosϕ + ax sin ϕ

) −
2∑

j=1

mr jρ sin
(
δ j + ϕ

)
,

μ23 = μ32 = −mw
(
ay sin ϕ + ax cosϕ

) −
2∑

j=1

mr jρ cos
(
δ j + ϕ

)
,

μ34 = μ43 = mr1r1ρ cos(δ1 + ϕ − ϕ1),

μ35 = μ53 = mr2r2ρ cos(δ2 + ϕ − ϕ2),

B =

⎡

⎢
⎢⎢⎢⎢
⎣

bx 0 0 0 0
0 by 0 0 0
0 0 bϕ 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥⎥⎥⎥
⎦

,C =

⎡

⎢
⎢⎢⎢⎢
⎣

cx 0 0 0 0
0 cy 0 0 0
0 0 cϕ 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥⎥⎥⎥
⎦

,X =

⎡

⎢
⎢⎢⎢⎢
⎣

x
y
ϕ

ϕ1

ϕ2

⎤

⎥
⎥⎥⎥⎥
⎦

,F
(
Ẋ,X, t

) =

⎡

⎢
⎢⎢⎢⎢
⎣

F1

F2

F3

F4

F5

⎤

⎥
⎥⎥⎥⎥
⎦

F1 =
⎡

⎣mw
(
ax cosϕ − ay sin ϕ

) +
2∑

j=1

mr jρ cos
(
δ j + ϕ

)
⎤

⎦ϕ̇2 +
2∑

j=1

mr jr j cosϕ j ϕ̇
2
j ,

F2 =
⎡

⎣mw
(
ay cosϕ + ax sin ϕ

) +
2∑

j=1

mr jρ cos
(
δ j + ϕ

)
⎤

⎦ϕ̇2 +
2∑

j=1

mr jr j sin ϕ j ϕ̇
2
j − Mg,

F3 = −
2∑

j=1

mr jr jρ sin
(
δ j + ϕ − ϕ j

)
ϕ̇2
j − mwg

(
ax cosϕ − ay sin ϕ

) −
2∑

j=1

mr j gρ cos
(
δ j + ϕ

)
,

F4 = σ1L1 − 0.5mr1r1ϕ̇
2
1k f 1sign(ϕ̇1) + mr1r1ρ sin(δ1 + ϕ − ϕ1)ϕ̇

2 + mr1gr1 cosϕ1,

F5 = σ2L1 − 0.5mr2r2ϕ̇
2
2k f 2sign(ϕ̇2) + mr2r2ρ sin(δ2 + ϕ − ϕ2)ϕ̇

2 + mr2gr2 cosϕ2,
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where mrj (j = 1, 2)—imbalanced mass of jth debalance, rj—eccentricity of jth
debalance, Jj = Jr j + mr jr2j , Jrj—inertia moment of jth rotor; M = mpl + mw +
∑2

j=1 mr j—total mass of the system; mpl—mass of the platform with exciters; cx,
cy, cϕ, bx, by, bϕ—stiffness and damping coefficients of elastic-viscous elements
in horizontal, vertical and angular directions correspondingly; ρ—distance between
the platform’s center of mass and centers of debalances rotation; δj—angle between
axis Ox and the axis connecting the platform’s center of mass with the center of jth
debalance rotation, J = Jpl + Jw + mw

(
a2x + a2y

) + ∑2
j=1 mr jρ

2—reduced inertia
moment of the system relative to the platform’s center of mass; Jpl—moment of
inertia of the platform with exciters; g—gravity acceleration; σ 1 = +1, σ 1 = −
1—the constants determining direction of the debalances rotation; k f j—coefficient
of friction in the jth rotor supports.

The driving moments L1, L2 on the right side of Eq. (1) are described by the static
characteristic of the motors according to the Kloss formula:

L j = 2M∗
cr j/

(
s j/scr j + scr j/s j

)
, s j = 1 − P

∣∣ϕ̇ j

∣∣/ω0 j , (2)

M∗
cr j =

{
Mcr j for fe ≤ f nomej

f nomej

fe
Mcr j for fe > f nomej

, (3)

where Mcrj—critical (maximum) driving torque of jth electric motor, scr j—critical
slip corresponding to critical torque, s j—current slip, determined by the frequency
ω0 j = 2π fe and angular speeds of the rotors ϕ̇1 and ϕ̇2, fe—power supply frequency,
f nomej —nominal power supply frequency of jth motor, P = 2—number of pole
pairs. Formula (3) takes into account the change in critical moment when the power
frequency applied exceeds the nominal power frequency of the electric motor.

3 Simulation Results

Numerical simulation was carried out in the MATLAB software with a sequential
step change in frequency of the supply voltage f e in the frequency range from 30
to 90 Hz with a step of 0.5 Hz and an exposure for 5 s. Such a change ensured the
establishment of steady oscillations at each excitation frequency. The calculations
were carried out at the following values of the system parameters: mpl = 12.46 kg,
mw = 1 kg, mr1 = mr2 = 0.029 kg, Jpl = 0.11 kg m2, Jw = 0.01 kg m2, Jr1 = Jr2 =
0.8 · 10−3 kg m2, r1 = r2 = 0.09 m, ρ = 0.128 m, ay = 0.05 m, δ1 = 22.5°, δ2 =
157,5°, cx = 580 kN/m, cy = 470 kN/m, cϕ = 1.8 kN m/rad, bx = 300 N s/m, by =
200 N s/m, bϕ = 1.5 N s2/m, g = 9.81 m/s2,Mcr1 = Mcr2 = 1.19 N m, scr1 = scr2 =
0.6, P = 2, f nome1 = f nome2 = 50 Hz, kf 1 = kf 2 = 0.005.

Figures 2, 3, and 4 show the dependences of the amplitudes of horizontal (Fig. 2),
vertical (Fig. 3) and angular (Fig. 4) platform’s oscillations on the power supply
frequency for different displacements of the weight relative to the vertical axis of
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Fig. 2 Amplitudes of horizontal oscillations of the platform depending on power supply frequency
for different weight’s displacements ax : 1 − ax = 0; 2 − ax = 0.4ρ; 3 − ax = 0.8ρ

Fig. 3 Amplitudes of vertical oscillations of the platform depending on power supply frequency
for different weight’s displacements ax : 1 − ax = 0; 2 − ax = 0.4ρ; 3 − ax = 0.8ρ

symmetry (ax = 0, ax = 0.4ρ, ax = 0.8ρ). In the frequency range under consideration,
two characteristic frequencies are observed at which the maxima of the oscillation
amplitudes corresponding to the resonant oscillations of the system are reached. The
expected third resonance, corresponding to the mode of simultaneous angular and
horizontal oscillations, turned out to be beyond the investigated frequency range of
the supply voltage.

In case of the weight’s center of mass is located on the vertical axis of symmetry,
the mode of system’s oscillation near the first resonant frequency corresponds to
the excitation of simultaneous angular and horizontal oscillations, and near the
second resonant frequency, the mode of oscillations corresponds to the excitation
of strictly vertical oscillations. The displacement of the weight from the vertical
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Fig. 4 Amplitudes of angular oscillations of the platform depending on power supply frequency
for different weight’s displacements ax : 1 − ax = 0; 2 − ax = 0.4ρ; 3 − ax = 0.8ρ

axis of symmetry leads to a change in the oscillation’s shape—simultaneous oscil-
lations in all coordinates are excited near the second resonance. Moreover, the more
displacement, the higher amplitudes of the horizontal and angular oscillations. As
the supply frequency increases, the passage of the second resonances is accompa-
nied by a jump wise decrease in the amplitudes of the vertical oscillations and an
increase in the amplitudes of the horizontal and angular oscillations of the platform.
The displacement of the weight leads to a decrease in the frequency of the supply
voltage, at which the oscillations jump occurs; in the range of the second resonance,
at a displacement of ax = 0.8ρ, the frequency reduction reaches 8%.

Figures 5, 6 and 7 show the frequency responses of horizontal (Fig. 5), vertical
(Fig. 6), and angular (Fig. 7) platform oscillations depending on the debalances

Fig. 5 Amplitudes frequency response of horizontal oscillations of the platform depending on
excitation frequency for different weight’s displacements ax : 1 − ax = 0; 2 − ax = 0.4ρ; 3 − ax =
0.8ρ
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Fig. 6 Amplitudes frequency response of vertical oscillations of the platform depending on exci-
tation frequency for different weight’s displacements ax : 1 − ax = 0; 2 − ax = 0.4ρ; 3 − ax =
0.8ρ

Fig. 7 Amplitudes frequency response of angular oscillations of the platform depending on exci-
tation frequency for different weight’s displacements ax : 1 − ax = 0; 2 − ax = 0.4ρ; 3 − ax =
0.8ρ

rotational speed for the same values of weight displacement. In contrast to the graphs,
in Figs. 2, 3, and 4 curves contain discontinuities in excitation frequency during the
passage resonant frequencies, which is a demonstration of nonlinearity caused by the
interaction of the linear oscillatory system with vibration exciters of limited power.
The rest of the characteristic features of the curves are the same.

Figures 8 and 9 show the graphs of the debalances rotational speeds (frequencies)
averaged over a revolution, depending on the frequency of power supply voltage at
central (Fig. 8) and shifted (Fig. 9) weight’s arrangement (ax = 0.8ρ). Here one can
see that both debalances rotate with the same angular velocity in absolute value.
When approaching the resonant frequencies, a decrease in the rate of increase in
the motors rotational frequency is observed with increasing frequency of the supply
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Fig. 8 Frequencies of rotation of the right-hand-side (curve 1) and left-hand-side (curve 2)
debalances depending on power supply frequency at central weight’s arrangement (ax = 0)

Fig. 9 Frequencies of rotation of the right-hand-side (curve 1) and left-hand-side (curve 2)
debalances depending on power supply frequency at shifted weight’s arrangement (ax = 0.8ρ)

voltage. With the passage through the resonant frequencies of the system, there is
an abrupt change in the debalances rotational speeds associated with the jump of the
system’s oscillations into behind-resonance range. The weight displacement leads to
a decrease in power supply frequency at which system resonances occur.

Figures 10 and 11 show the graphs of the change in mutual phase of debalances
rotation of the right-hand-side exciter relative to the left-hand-side exciter depending
on the frequency of the supply voltage at the central position of the weight and at its
shifted positions (ax = ±0.8ρ) in positive (Fig. 10) and negative (Fig. 11) directions.
In case of the central position of theweight (curves 1), one of two possible types of the
debalances synchronization is realized in the system—with amutual phase shift of 0°
in the frequency range before the first resonance and after the second resonance, and
with a mutual phase shift of 180° in the frequency range between the first and second
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Fig. 10 Mutual phase of debalances at the central location of the weight (curve 1) and at shifted
to the right position of the weight by the value | ax | = 0.8ρ (curve 2) depending on power supply
frequency

Fig. 11 Mutual phase of debalances at the central location of the weight (curve 1) and at shifted
to the left position of the weight by the value | ax | = 0.8ρ (curve 2) depending on power supply
frequency

resonances. The phase shift sharply changes when passing through a resonance.
The displacement of the weight from the axis of symmetry leads to a change in
the indicated above phase relations. In this case, in the indicated frequency ranges,
the phase shift becomes dependent on the power supply frequency. An increase in
weight’s displacement leads to an increase in deviations of the phase shift from the
corresponding values for a system with the central position of the weight. Moreover,
the direction of the phase shift deviation depends on the direction of displacement
of the weight to the left or to the right.
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4 Conclusion

The features revealed here about the behavior of the mutual phase shift of the debal-
ances rotation depending on power supply frequency when the weight’s center of
mass is shifted relative to the machine’s structural axis of symmetry make it possible
to determine an initially unknown displacement of the oscillatory system’s center
of mass. Taking into account the changes in the motor’s characteristics when regu-
lating their rotational frequency did not allow to overcome the third resonance with
increasing power supply frequency due to their limited power. Thus,when developing
algorithms for controlling the resonant modes of vibration technological machines
operation, measuring the mutual phase shift between self-synchronizing rotating
debalances will make it possible to establish the correction value of the vibration
exciters’ power supply frequency when an uncontrolled shift of technological load
occurs.
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