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Abstract A layer of granularmaterial over an intensely vibrating plane in the field of
gravity is considered as “granular gas”. It simulates the vibrating fluidized bedwidely
used in various fields of technology. The processes of transport of kinetic energy and
momentum are described with considering a non-Maxwell particle velocity distri-
bution, which was discovered earlier in both numerical and full-scale experiments.
Equations for the spatial variation of the particle concentration and their kinetic
energy (granular temperature) are obtained and a general analytical solution of these
equations is found, as well as the solution of the boundary value problem for a layer
with a free surface from above and with a given motion of the plane from below.
The influence of the coefficient of restitution, particle size, and vibration parameters
on the spatial distributions of density and granular temperature as well as on the
consumed power is analyzed. On the basis of the obtained equations, an analytical
description of the effect of the instability of the symmetric state of a granular gas in
two identical chambers separated by a baffle with a window (“Maxwell’s demon”
experiment) is given. It is shown that the instability arises from a certain height
position of the window and has a maximum at a certain value of this position.

Keywords Granular material · Granular gas · Vibrating fluidized bed · “Maxwell’s
demon” · Granular temperature

1 Introduction

The dynamics of a granular medium under the influence of vibrations is not only
of great practical importance for many fields of technology but also of theoretical
interest as a source of various non-trivial and unexpected effects, such as instability
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of clusterization [1] and the “Maxwell’s demon” experiments (themigration of mate-
rial from a chamber with a smaller number of particles into a chamber with a larger
number of them) [2, 3], the unexpected asymmetry of the circulation flows [4], the
effect of the appearance of an air pressure drop across the vibrating layer [5, 6], the
“Brazil nut effect” (floating of the larger particles) [4, 7, 8], the granular Leidenfrost
effect [9], and others. Someof these effects are explained and described by reasonably
convincingmodels. Concerning others, there are various hypotheses, and discussions
continue. The complexity of the object and the variety of its behaviors under different
conditions have given rise to a justifiable variety of models, approaches, andmethods
of investigation [10, 11]. The entire spectrum of applied models extends from very
complex kinetic equations in which an attempt is made to take into account the
maximum possible number of factors and the particle velocity distribution is consid-
ered in detail to comparatively simple semi-phenomenological models describing
the average transfer of mass, energy, and momentum. There are specialized models
related to the “solid”, “liquid”, and “gaseous” states of the granular medium [12].
The latter has attracted considerable interest in recent years within the framework of
the concept of granular gas [1–3, 9–43]. Granular gas has a number of features that
distinguish it from ordinary molecular gas. These features are determined primarily
by the following circumstances.

Firstly, in collisions, energy dissipation takes place. In a minimal model, this can
be described by assuming that the particles have a spherical shape, and the change in
velocity during impacts is described by the coefficient of restitution RG = u+/u−.
Here, u+ and u− are the relative velocities of two bodies in the direction of the normal
at the point of their contact after and before the collision. There are known works
that take into account the presence of particle rotation and the dependence of the
coefficient on velocity [19], but for many practical applications, such complication
of the model is not required. In particular, the highly rough particles do not have
mutual penetration at the point of contact. The dissipation of energy as a result of
a single collision is caused only by normal velocities and its average value can be
calculated from the simple formula

�E = (
1 − R2

G

)
mv2 (1)

Here, m is the mass of the particles, and the bar denotes averaging over the
probability space (or in time). The average kinetic energy θ = mv2/2 is usually
called the granular temperature by analogy with ordinary gas.

Secondly, for a granular gas there is a deviation from the Maxwellian law of
particle velocity distribution. For the probability distribution density of velocities in
numerical and full-scale experiments, the following law is found [25, 30, 42, 43]:

f (v) = ηe
−

( |v|
vs

)κ

(2)

Here, v is the velocity,vs is some characteristic scale of velocity, κ is some constant,
and η is the factor determined from the normalization condition

∫ ∞
−∞ f (v)dv, which
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is equal to η = κ/(2�(1/κ)vs). The constant κ is in the interval from 1 to 2 and is
equal to 2 for the Maxwell distribution. According to [25, 30, 42, 43], on the basis
of numerical and full-scale experiments, the characteristic value of κ can be taken as
equal to 1.5 in many cases.

Third, for a granular gas, large gradients of both density and granular temperature
are typical, which is rare in the molecular gases. This requires some modification of
the transport equations in comparison with their usual approximate form, which is
used for ordinary gases with a slightly varying density.

In the present paper, it is supposed that the featuresmentioned above are taken into
account consistently when compiling transport equations and boundary conditions
for a granularmedium excited by a vibrating plane in a gravitational field. In this case,
the analysis is performed for an arbitrary parameter κ in the distribution f(v) [Formula
(2)] and for arbitrary (not necessarily close to unity) the coefficient of restitution for
particle–particle and particle–plane collisions. On the basis of these equations, we
will consider the simplest but practically important stationary problem of a layer
with a free surface from above and with a given motion of the plane from below. The
aim is to obtain an analytical solution to this problem and with its help to trace the
influence of the coefficient of restitution, particle size, and vibration parameters on
the spatial distribution of density and granular temperature in the layer of granular
material and also on the consumed power. As a verification of the model, we will
consider the “Maxwell’s demon” experiment [2, 3].

2 Formulation of the Problem

A layer of granular material located above the vibrating plane is considered. The
oscillations of the plane have a period τ and are performed with the velocity vp(t). It
is assumed that these oscillations are sufficiently intense for the state of the medium
to be characterized as a granular gas in at least some region adjacent to the plane.
This means that the medium particles are on average at a sufficiently large distance
from each other and experience chaotic motion with zero mean velocity. It is also
assumed that the velocity distribution follows the law (2) with a constant parameter
κ and with the parameter vs depending only on the coordinate x. Thus, we consider
an on average one-dimensional and stationary state of a granular gas.

The above requirement of a sufficiently large distance between particles can be
specified by considering the free path of particles in the medium ξ. This quantity is
random with the Poisson distribution, that is, with the probability density

fP(ξ) = e−ξ/λ

λ
(3)

where λ is the mean free path. The latter is calculated as known from the formula

λ = 1/
(
πd2n

√
2
)
[8], where d is the effective diameter of the particles and n is
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their average concentration. The condition of a sufficiently large distance between
the particles can be specified as the requirement λ � d. At the same time, we will
consider the change in the main characteristics of a granular gas—its concentration
n and the granular temperature θ—at scales of length larger than the mean free
path. The purpose of further consideration is to derive the averaged equations and
boundary conditions for these quantities and find the solutions of the corresponding
boundary-value problem.

3 Momentum Equation

Let us consider an element of a granular layer enclosed between planes with coordi-
nates x and x + dx and a vertical cylindrical surface of a unit cross section. The flux
of momentum entering this volume from below amounts to

p(x) = nm

∞∫

0

v2 f (v)dv = nmv2

2
= n(x)θ(x), (4)

where we use the above notation for the mean square of the velocity v2 and for the
granular temperature θ. Here, the concentration n is a function of the coordinate
x, and the dependence on x of the values f (v) and θ is due to the dependence of
the parameter vs on x. The relationship between the parameter vs and the granular
temperature θ can be found with allowance for (2):

θ = mv2s
2

�
(
3
κ

)

�
(
1
κ

) (5)

The balance of momentum in the element of the granular layer leads to the well-
known equation

dp

dx
= −mgn (6)

in which g is the free-fall acceleration and p can be interpreted as a granular pressure.
If the temperature were independent of the coordinate, the well-known Boltzmann
distribution would follow from Eq. (6). However, in most cases, the height depen-
dence of temperature should not be neglected. In order to take this dependence into
account, it is necessary to consider the transfer of kinetic energy.
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4 The Kinetic Energy Transport Equation

Let us consider the flow of kinetic energy QT through some control surface. Taking
into account the distribution along themean free paths, this quantity can be calculated
as

QT = m

∞∫

0

dv

∞∫

0

v3(− f (x + ξ, v)n(x + ξ) + f (x − ξ, v)n(x − ξ))
e−ξ/λ

λ
dξ (7)

Here, the total flux through the reference surface includes particles initially located
at a distance ξ from the reference surfacewith the coordinate x and having amean free
path equal to this distance. Indeed, only such particles should be considered: particles
with a shorter mean free path do not reach the reference surface, and particles with
a larger length do not participate in the balance, since they have the same kinetic
energy when approaching the control volume as when they leave it. Linearizing the
functions in (7) with respect to ξ under the assumption that the mean free path is
less than the characteristic scale of the change in the basic variables, we have, after
integration,

QT = −m

2

�
(
4
κ

)

�
(
1
κ

)λ
d

dx

(
nv3s

)
(8)

Taking into account the relation (5) and the formula for the mean free path [see
the explanations Formula (3)], this expression can be transformed into the form

QT = −σ

(
2

3n

dn

dx
θ3/2 + √

θ
dθ

dx

)
(9)

Here we have introduced the notation

σ = 3

2

�
(
4
κ

)√
�

(
1
κ

)

�
(
3
κ

)3/2
π

√
md2

(10)

The balance of kinetic energy per unit volume can be described by the equation

dQT

dx
= −q (11)

Here, the value of q on the right-hand side of the equation represents the total

energy dissipation in collisions. It is calculated as q = 1
2 zn�E, where z =

√
v2/λ is

the number of collisions experienced by one particle per unit time, and the dissipation
for a single collision �E is calculated by the formula (1). The factor 1/2 is included
in order to avoid double-counting of the number of collisions. Thus, Eq. (11) can be
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rewritten after some transformations in the form

σ
d

dx

(
2

3n

dn

dx
θ3/2 + √

θ
dθ

dx

)
= γ̃ n2θ3/2, (12)

with

γ̃ = πd2

√
m

(
1 − R2

G

)
(13)

5 General Analytical Solution of the Transport Equations

The stationary Eqs. (6) and (12) for the transfer of energy and momentum in a
granular medium can be solved analytically in a general form. To find this solution,
we take into account that these equations do not explicitly contain the coordinate x,
and therefore their order can be reduced from the third to the second. We introduce
the granular pressure p as a new independent variable and express the derivatives of
the granular temperature with respect to x through its derivatives with respect to p,
taking into account Eq. (6) and the equation of state (4):

dθ

dx
= −mg

p

θ

dθ

dp
(14)

Substituting n = p/θ and dθ
dx into (12), we obtain, after some transformations,

the following homogeneous linear differential equation for the variable W = √
θ :

p
d2W

dp2
+ dW

dp
− γ pW = 0, (15)

with

γ = 3γ̃

2σ(mg)2
=

(
1 − R2

G

)

(ρgd)2
Cγ (16)

Here ρ is the density of the particle material, andCγ = 36Γ ( 3
κ )

3/2

Γ ( 4
κ )

√
Γ ( 1

κ )
is the constant

depending only on the distribution parameter κ. The value of Cγ = 22.56 is valid
for the Msaxwell distribution (κ = 2), and for the distribution with κ = 1.5 we have
Cγ = 20.56. Equation (15) has the general solution

W = C1sinh
(√

γ p
)

p
+ C2cosh

(√
γ p

)

p
(17)
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whereC1 andC2 are some constants determined from the boundary conditions. Then
the granular temperature θ, particle concentration n, and the coordinate x corre-
sponding to them are determined as functions of the granular pressure p by the
formulas

θ = W 2, n = p

W 2
, x = 1

mg

p0∫

p

W 2dp

p
(18)

The first of these formulas follows directly from the definition of θ, the second
from the equation of state (4), and the latter from Eq. (6). The parameter p0 in the
last expression is the pressure at x = 0, that is, on the vibrating plane.

Let us turn now to the formulation of the boundary conditions.

6 Energy Boundary Conditions on a Vibrating
and on a Fixed Plane

Let us consider the flux of kinetic energy Q averaged over the period τ of oscillations
of the plane from the plane to the depth of the layer. This flux is formed by particles
striking the plane and changing their kinetic energy. It can be calculated with the
following formula:

Q = nG
1

τ

τ∫

0

dt

vp(t)∫

−∞

(
vp(t) − v

)
f (v)�Tdv (19)

In the expression (19), the quantity n
(
vp(t) − v

)
f (v)dv is the flux of the particles

having a velocity less than the velocity vp(t) of the plane, that is, of those particles
which are kinematically able to collide with the plane. The concentration in the
immediate vicinity of the plane is denoted by nG and the change in the kinetic
energy of a particle is denoted by ΔT.

The value�Tcan be obtained by taking into account that a particle having velocity
v acquires, after a collision, a velocity equal to v+ = vp(t)(1 + R)− Rv . Here, R is
the coefficient of restitution when the particle strikes a plane. This coefficient is not
necessarily equal to the coefficient of restitution for mutual collisions of the particles
RG . The change in the kinetic energy of the particle �T = m

(
v2+ − v2

)
/2 can thus

be calculated as

�T = (m/2)
(
vp(t)

2(1 + R)2 − 2R(1 + R)vvp(t) + (
R2 − 1

)
v2

)
(20)

Substituting�T from (20) and f (v) from (2) into the formula (19) and performing
the corresponding integration leads, after transformations, to the following expres-
sion for the energy flux Q:
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Q = nG(m/2)v3s

(
(1 + R)2H2

(
U

vs

)
− 2R(1 + R)H1

(
U

vs

)
+ (

R2 − 1
)
H0

(
U

vs

))
,

(21)

Here, the functions Hs of the ratioU/vs are introduced, where U is the amplitude
of the plane velocity. They are expressed in terms of their argument ζ as follows:

H0(ζ ) =
(
1

2
Γ

(
4

κ

)
+ Γ

(
3

κ

)
ς3Z1(ζ ) − Γ

(
4

κ

)
ς4Z0(ζ )

)
/Γ

(
1

κ

)

H1(ζ ) = ζ

(
−1

4
�

(
2

κ

)
+ �

(
2

κ

)
ς2Z2(ζ ) − �

(
3

κ

)
ς3Z1(ζ )

)
/�

(
1

κ

)

H2(ζ ) = ζ 2

(
1

4
�

(
2

κ

)
+ �

(
1

κ

)
ς Z3(ζ ) − �

(
2

κ

)
ς2Z2(ζ )

)
/�

(
1

κ

)
(22)

The auxiliary functions Zk entering these expressions are computed as a rapidly
convergent power series with an infinite radius of convergence:

Zk(ζ ) = 1

2
√

πΓ
(
4−k
κ

)
∞∑

j=0

(−1) jζ jκΓ
(
5+ jk
2

)

Γ ( j + 1)Γ
(
6+ jk
2

)(
4−k
κ

+ j
) (23)

If we introduce the granular temperature of the vibrating plane as

θp = mv2p
2

= mU 2

4
(24)

and use the relationship (5) between the parameter vs and the granular temperature
θG in the immediate vicinity of the plane, we can rewrite the expression for the flow
(21) in the following form:

Q = √
2nGθ

3
2
Gm

− 1
2

(
�

(
1
κ

)

�
(
3
κ

)

) 3
2

((1 + R)2H2

(√
2θp
θG

)

− 2R(1 + R)H1

(√
2θp
θG

)

+ (
R2 − 1

)
H0

(√
2θp
θG

)

) (25)

Note that the relation (25) for the kinetic energy flux from the plane is also valid
for a fixed plane (θp = 0). In this case, the relation (25) takes the form

Q = −nGθ
3
2
Gm

− 1
2

(
�

(
4
κ

)2
�

(
1
κ

)

2�
(
3
κ

)3

) 1
2 (
1 − R2) (26)
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The minus sign indicates the obvious fact that in this case the resultant flux of
kinetic energy is directed to the plane, not from the plane.

Taking into account (25), (26), and (9), we can formulate the boundary conditions
expressing the energy balance for the vibrating and fixed planes. These conditions
express the fact that in the stationary state the flux of the radiated energy Q must be
equal to the flux of energy QT transferred to the depth of the layer, calculated from
the formula (9)

QT = Q (27)

Before specifying the conditions (27) of the variables p and W, it is necessary to
understand which variable determines the concentration of nG near the plane that
enters the expression forQ and also to consider the problemof specifying the granular
pressure near the boundaries. To do this, consider the force acting on the vibrating
plane and on the fixed plane.

7 Power Boundary Conditions on a Vibrating
and on a Fixed Plane and the Granular Leidenfrost Effect

Let us consider the resulting flux of momentum to the plane averaged over the period
τ of oscillations of the plane. As in the case of the kinetic energy considered in the
previous section, the flow to be calculated is formed by particles striking the plane
and changing their momentum as a result of this impact. This flow is equal to the
averaged force of the granular gas acting on the plane, that is, the pressure pG , and
can be found by the following formula:

pG = m(1 + R)nG
1

τ

τ∫

0

dt

vp(t)∫

−∞

(
vp(t) − v

)2
f (v)dv (28)

The integration with allowance for (9) and the subsequent transformations anal-
ogous to those performed in the analysis of the formula (19) lead to the following
expression for the pressure pG :

pG = (1 + R)nG

(
mU 2

2
+ mv2s

2

�
(
3
κ

)

�
(
1
κ

)

)

(29)

Thus, taking into account the relations (5) and (24), we have

pG = nG(1 + R)

(
1 + θp

θG

)
θG (30)
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Consider the lower layer of the medium. It is in equilibrium under the action of
the pressure pG from below [calculated with (30)], and the pressure p0 at x= 0 from
above [calculated with formula (4)], that is,

p0 = n0θ0 (31)

Here, n0 and θ0 are the concentration and the granular temperature at some small
distance from the plane. Here, we take into account the possibility that the granular
temperature and the concentration of particles near the surface undergo a jump. The
appearance of such a jump is known as the granular Leidenfrost effect [9]. This effect
is especially pronounced for the “hot” plane, when θp/θ � 1. However, for θp = 0,
the jump also takes place if R �= 0.

At the same time, continuity of the granular pressure p near the vibrating surface
should be assumed. This requirement follows from the equilibrium condition of
the lower layer of the medium under consideration. Thus, pG = p0, and from the
relations (30) and (31) it follows that

n0θ0 = nG(1 + R)

(
1 + θp

θG

)
θG (32)

Another relation connecting the values of concentration and temperature before
and after the jump follows from the continuity of the material flux through the jump:

∞∫

0

(vnG fG(v) − vn0 f0(v))dv = 0 (33)

Here, as before, v, n, and f (v) denote the velocity, concentration, and distribution
of the particle flux through the jump, and the indexes G and 0 correspond to the states
before and after the jump. As a result of integration, we have

nG
√

θG = n0
√

θ0 (34)

Taking into account (32), we obtain the following relations connecting quantities
with the indices G and 0:

θ0 = (1 + R)2
(
1 + θp

θG

)2

θG, n0 = nG

(1 + R)
(
1 + θp

θG

) (35)

The expression for the kinetic energy flux from the vibrating plane (25) can be
rewritten in the form

Q = p0
√

θ0m
− 1

2 B

(
θp

θ0

)
(36)
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where the function B (z) can be calculated with sufficient accuracy for moderate
values of ζ (ζ ≤ O (1)) as a fourth-degree polynomial in ζ 1/2:

B(ζ ) = b0 + b1ζ
1/2 + b2ζ + b3ζ

3/2 + b4ζ
2 (37)

with the coefficients

b0 = − (1 − R)

(1 + R)

�
(
4
κ

)
�

(
1
κ

) 1
2

�
(
3
κ

) 3
2
√
2

, b1 = R
�

(
2
κ

)
�

(
1
κ

) 1
2

�
(
3
κ

) 3
2

,

b2 = √
2
Γ

(
1
κ

) 1
2

Γ
(
3
κ

) 3
2

(1 + R)

(
1

2
Γ

(
2

κ

)
(1 + R) + Γ

(
4

κ

)
(1 − R)

)
,

b3 = (R + 1)2
�

(
1
κ

) 1
2

�
(
3
κ

) 3
2

(
RΓ

(
2

κ

)
+ 1

4
κ(2 + R)

)
,

b4 = − (R + 1)2√
2

κ�
(
1
κ

) 1
2

�
(
3
κ

) 3
2

(
3
(
1 − R2)Γ

(
4

κ

)
+ 1

8
κ(3 + R)

)
(38)

depending on the coefficient of restitution R and on the distribution parameter κ.
Figure 1 shows the function B (ζ) for different coefficients of restitution (R = 0.6,

0.7, 0.8, and 0.9) and for the distribution parameter κ = 1.5.
Figure 2 shows the function B (ζ ) for various distribution parameters κ (κ = 1.5,

1.6, 1.8, and 2) and with the coefficient of restitution R = 0.8.

Fig. 1 Function B (ζ) for different coefficients of restitution (R = 0.6, 0.7, 0.8, and 0.9) for the
value of the distribution parameter κ = 1.5
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Fig. 2 The function B (ζ) for various distribution parameters κ (κ = 1.5, 1.6, 1.8, and 2) at the
value of the coefficient of restitution R = 0.8

The dependence B
(
θp/θ

)
, as might be expected, has points of intersection with

the abscissa axis. This point corresponds to the equilibrium between the energy that
the plane radiates (transmits to the layer) and absorbs due to the inelasticity of the
impacts. There are two such points: to the right and to the left of the maximum. Let
us consider the qualitative behavior of the system in the vicinity of the left point of
these intersections. For a sufficiently small amplitude of velocity oscillations (the
“temperature” of the plane) or for a sufficiently large granular temperature of the
medium near the plane, the energy absorption prevails and the granular gas “cools”
near the plane. Conversely, if the granular temperature is below a certain value,
the granular gas “heats up”. This circumstance indicates the possibility of a stable
stationary state. Oppositely, the right point of intersection corresponds to an unstable
equilibrium.

8 Statement of Boundary-Value Problems on a Stationary
Vibro-Excited Granular Layer

Let us return to the boundary condition on the vibrating plane (27) and concretize it
under the assumption that at this boundary the pressure pG is given and is equal to
some value p0. We rewrite condition (27) for the variables p and W.

The expression (36) for the flow Q leads, after the transition to the variable W =√
θ0, to the following representation for the kinetic energy flux from the plane:
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Q = p0m
−1/2WB

(
W 2

p/W
2
)

(39)

Here we denote Wp = √
θp and, for brevity, the index 0 for the quantity W =

W (p0) is omitted.
On the other hand, from (9) with (4) and (6), the following representation for QT

can be obtained:

QT = 2

3
σgm

(
W + p

dW

dp

)
(40)

Thus, we have a boundary condition on the vibrating plane:

p0m
−1/2WB(W 2

p/W
2) = 2

3
σgm

(
W + p0

dW

dp

)
, p = p0 (41)

The determination of the constants C1 and C2 in the general solution (17) of
the Eq. (15) for W (p) needs one more boundary condition: on the upper boundary
of the layer. Different boundary conditions are of interest for different technical
applications. So in the case of a fixed plane bounding a granular layer from above,
one should set a condition similar to (41) which has the form

pLm
−1/2WB(0) = 2

3
σgm

(
W + pL

dW

dp

)
, p = PL (42)

Here, pL is the pressure at the upper, fixed boundary, that is, for x = L, where
L is the height of the tank with the granular medium. Note that in this problem
formulation the values of p0 and pL are not known in advance and thus there are
four unknown parameters: p0, pL ,C1, and C2. To determine them, we can use the
conditions (36) and (37) and the following relations:

p0 − pL = mgN , (43)

L = 1

mg

p0∫

pL

W 2dp

p
(44)

Here, N is the total number of particles over the unit surface. The relation (43)
follows from (6) as a result of integration over the total height of the layer L. The
condition (44) corresponds to the last formula (18) for x = L.

We will not dwell on the solution of this problem in detail, but consider a simpler
problem concerning a layerwith a free surface, that is, a layer unbounded from above.
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9 A Granular Layer with a Free Surface

For a layer unbounded from above, the concentration and therefore the pressure pL
on its upper, free boundary are equal to 0. The pressure p0 on the lower, vibrating
surface is immediately determined from the formula (43)

p0 = mgN , (45)

Since the integral in the formula (44) is not convergent at p = 0, the height of the
layer is formally infinitely large, although a decrease in the concentration to practi-
cally insignificant values allows us to speak of a certain height of the layer. In any
case, we should take C2 = 0 in the general solution of (17) for W to exclude a phys-
ically meaningless infinite increase of W, and hence also of the granular temperature
θ = W 2, to infinity at p → 0. Thus, we have

W = C1sinh
(√

γ p
)

p
(46)

In particular, it follows that when the coordinate x is unbounded, the granular
temperature tends to the value θ∞ = C2

1γ .
The constant C1 is obtained from condition (25). It is easy to verify that, due

to (17), the complex W + p0
dW
dp entered in (36) is equal to Wp0

√
γ cth

(√
γ p0

)
.

Therefore, the quantitiesW and p0 in both parts of the condition (41) cancel out and
it takes the form

F = B(ζ ) (47)

with

F = 2

3
σgm3/2√γ cth

(√
γ p0

)
, (48)

The previously introduced value of ζ [see formula (37)] is related to the granular
temperature in accordance with the formula (49), and (48) can also be expressed in
terms of the formula

θ(p0)

θp
= 1

ζ
(49)

The dimensionless pressure on the vibrating plane can be expressed with the help
of (47) and (48) as follows:

√
γ p0 = �

(
3
κ

) 3
4

�
(
4
κ

) 1
2 �

(
1
κ

) 1
4

πd2N
√(

1 − R2
G

)
(50)
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or through the dimensionless parameters ζ and

ϕ = 2

3
σgm3/2√γ = 6�

(
3

κ

)√(
1 − R2

G

)
(51)

as follows:

√
γ p0 = 1

2
ln

(
ϕ + B(ζ )

ϕ − B(ζ )

)
(52)

Together, the formulas (49) and (50) form a parametric dependence of the dimen-
sionless granular temperature θ(p0)/θp on the dimensionless pressure

√
γ p0 through

the parameter ζ. Note that the parameter
√

γ p0 can also be presented as ϕ, where ν

is calculated by the formula

ν = πd2N

6�
(
3
κ

) 1
4 �

(
1
κ

) 1
4 �

(
4
κ

) 1
2

(53)

and characterizes the number of layers of particles. Using this parameter, formula
(52) can be rewritten in the form

ν = 1

2ϕ
ln

(
ϕ + B(ζ )

ϕ − B(ζ )

)
(54)

Together with (49), it gives the parametric dependence of θ(p0)
θp

on the parameter
v. Note that this dependence contains additionally only the distribution parameter
κ and the two coefficients of restitution: R (through the function B) and RG (via
the parameter ϕ). These parameters are specified for a given medium. The variable
parameters that can be easily changed in the technological processing conditions—
the particle size d, the particle number N, and the amplitude of the velocity U of
the plane—are involved in the dimensionless parameter v and in the scale factor
θp. Therefore, the transition to other technological process conditions (d, N, U) is
carried out by simple scaling of the obtained universal dependence. Figure 3 shows
this dependence for κ = 1.5 and R = 0.8.

The limit of the granular temperature at x → ∞ can be calculated as

θ∞ = C2
1γ = θ(p0)

p20γ

sinh2
(√

γ p0
) (55)

The corresponding dependence is shown in Fig. 4.
After θ(p0) is found, the granular temperature θ(p) at any pressure p < p0 is

calculated, taking into account (46) as
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Fig. 3 Dependence of the dimensionless temperature near the plane on the parameter v for κ =
1.5, R = 0.8, and different values of ϕ

Fig. 4 Connection between the temperature away from the plane and the parameter v

θ(p) = θ(p0)
p20sinh

2
(√

γ p
)

p2sinh2
(√

γ p0
) (56)

Now, using the formulas (18), the concentration n can be found as a function of
pressure and coordinate x, which corresponds to some pressure p < p0:
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n = p

θ(p)
, x = 1

mg

p0∫

p

θ(p)dp

p
(57)

It is also possible to find the Leidenfrost jumps in the concentration near the
vibrating plane in accordance with Eq. (35) and the consumed power per unit
transverse surface, which is equal to the kinetic energy flux from the plane

QT = 2

3
σgm

(
W + p

dW

dp

)
= 2

3
σgm

√
θ(p0)p0

√
γ cth

(√
γ p0

)
(58)

10 Examples of Calculations

Table 1 shows the parameters and calculated values for some basic variants to be
varied, giving an idea of the orders of magnitude under consideration.

Figure 5a, b shows the dependence of the granular temperature θ reduced to its
value near the vibrating plane θ0 on the dimensionless distance to the vibrating plane

In accordance with intuitive imagination, the temperature decreases rather rapidly
with x and reaches its limit value θ∞.

Figure 6a, b shows the corresponding dependence of the concentration n scaled
to its value near the vibrating plane θ0.

It can be seen from the figure that the concentration as a function of the vertical
coordinate has a pronouncedmaximum. This circumstance is determined by the rapid
decrease in the granular temperature with distance from the vibrating plane. In the
figure, a Leidenfrost jump in the concentration near the vibrating plane is also seen.

In the case of a constant temperature, a monotonic exponential decrease in the
concentration according to the Boltzmann law would be observed. A similar expo-
nential drop of the pressure with x in the case of a constant temperature would take
place. In fact, according to the calculation of the proposed model, the pressure as
a function of the coordinate has a characteristic inflection. These dependencies are
shown in Fig. 7a, b.

Formula (58) makes it possible, in particular, to calculate the power needed to
maintain a stationary state. Figure 8a, b shows the dependencies of the power on the
coefficient of restitution for mutual collisions of the particles RG at different values
of the coefficient of restitution for particle impacts on the plane R and the distribution
parameters κ.

Note that these dependencies decrease for each fixed value of R, as expected.
Only some examples of calculations are presented here. However, the method

underlying them can be used, with further development, for energy optimization of
a number of processes in the fields of chemical technology and the processing of
mineral and technogenic raw materials [44–48].
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Table 1 Parameters and calculated values for a basic variant

R Coefficient of restitution for particle–plane collision 0.8

RG Coefficient of restitution for particle–particle collision 0.9

D Diameter of the particles 0.005 M

δL Bulk density of the layer material 2500 kg/m2

� Density of particles 2700 kg/m3

G Acceleration of free fall 9.8 m/s2

l Height of the layer in bulk state 0.01 M

U Amplitude of the plane velocity 1 m/s

κ The parameter in the velocity distribution law 1.5

Calculated parameters

m Mass of the particle 1.77E−04 Kg

N Number of particles over the unit area 1.41E+05 1/m2

p0 Pressure of the granular medium in the lower section 2.45E+02 Pa

γ~ Dissipation parameter 1.12E−03 m2/kg1/2

σ Parameter σ 2.52E+06 1/m2/kg1/3

γ Modified dissipation parameter 2.23E−04 Pa−1/2

p0*γˆ0.5 Dimensionless pressure of the granular medium in the
lower section

3.66E+00 –

nmax Maximum possible concentration 1.41E+07 1/m3

f Parameter f 5.78E−01 –

b0 Coefficient in function B −1.38E−01

b1 Coefficient in function B 8.31E−01

b2 Coefficient in function B 3.27E+00

b3 Coefficient in function B 6.65E+00

b4 Coefficient in function B −9.35E+00

ζ Ratio of granular temperatures of the plane and particles in
the lower section

0.101

Pp Granular temperature of the plane 4.42E−05 J

P0 Granular temperature in the lower section 4.37E−04 J

P∞ Limit of temperature at x–>∞ 1.55E−05 J

n Concentration at some distance from the lower section 5.60E+05 Pa

nG Concentration near the plane 2.83E+05 Pa

QT Power 2.23E+02 Wt/m2

In the next section, the developed theory is applied to the description of a
phenomenon observed in experiments: competitive clustering. This serves primarily
to verify the proposed model. However, this consideration can also be of indepen-
dent interest, since it can give a new impulse to the practical application of this
phenomenon.
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Fig. 5 aTypical temperature dependence of the granular temperature on the distance to the vibrating
plane (basic variant with a variation of R). b Typical temperature dependence of the granular
temperature on the distance to the vibrating plane (basic variant with a variation of κ)

11 Application to the Experiment with “Maxwell’s Demon”
(Competitive Clustering)

In reference [2], one can find a demonstration of an enchanting experiment called
competitive clustering. In article [3], this experiment is discussed under the name
of the “Maxwell’s demon” experiment. In this experiment, the particles are placed
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Fig. 6 a Typical dependence of concentration on distance from the vibrating plane (basic variant
with a variation of R). b Typical dependence of concentration on distance from the vibrating plane
(basic variant with a variation of κ)

in two identical chambers, between which is a partition containing a window at a
certain height. It turns out that the chamber that initially contains fewer particles is
emptied fairly quickly—the particles pass from this chamber to the one that initially
contains more particles (Fig. 9).

This result is at first glance paradoxical. It seems intuitively that the resultant
particle flux is proportional to the mean concentration difference and is directed to
the side where the mean concentration is lower. However, this is not the case in this
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Fig. 7 a Typical dependence of the concentration on the distance from the vibrating plane (basic
variant with a variation of R). b Typical dependence of the concentration on the distance from the
vibrating plane (basic variant with a variation of κ)

experiment. A qualitative explanation of the effect is that the rate of the transitions is
determined not only by concentrations but by the particle velocities. An increase in
the number of particles in one of the chambers (in Fig. 9 on the left) leads to a decrease
in the granular temperature in it and hence in the speed at which the particles pass
from it to the neighboring chamber. This reduction in speed under certain conditions
is not compensated by the possible increase in concentration at the window level in
a chamber with a large number of particles.
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Fig. 8 a Power [Wt/m2] versus the coefficient of restitution for mutual collisions of RG at different
values of the coefficient of restitution for particle impacts on the planeR.bPower [Wt/m2] versus the
coefficient of restitution for mutual collisions of RG at different values of the distribution parameters
κ

Fig. 9 Scheme of the experiment
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Based on the results described in the previous sections, a quantitative analysis of
this experiment can be proposed.

We take into account that the resultant flux of particles through the window of
area S from chamber 1 to chamber 2 is

q12 = S

∞∫

0

(vn1 f1(v) − vn2 f2(v))dv (59)

Here, as before, v, n, and f (v) denote the velocity, concentration, and velocity
distribution according to (2) at the window level, and the indexes 1 and 2 correspond
to the camera numbers. Integration leads to the formula

q12 = χ
(
n1

√
θ1 − n2

√
θ2

)
(60)

or

q12 = χ

(
p1√
θ1

− p2√
θ2

)
(61)

Here, is denoted

χ = S�
(
2
κ

)

√
2m�

(
1
κ

)
�

(
3
κ

) (62)

Let the number of particles in chamber 1 decrease and accordingly let the number
in chamber 2 increase. If this leads to an increase in q12, then obviously there is
a further increase in the flow of particles from chamber 1 to chamber 2 and the
symmetric state is not stable. Otherwise, the concentration is levelled. Thus, the
instability of a symmetric state takes place under the condition

D = d

dN

(
p√
θ

)
< 0 (63)

The derivative is most easily determined directly by giving a small increment in
the total number of particles in the base case (Table 1) and computing the quantities
p√
θ
at the same values of the coordinate x interpreted as one of the possible positions

of the window.
Figure 10 shows the dependence of D on the dimensionless coordinate character-

izing the position of the window.
Figure 10 shows the following.

• The instability of the symmetric state, that is, the “Maxwell’s demon” effect, arises
only starting from a certain height of the window position (D < 0).
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Fig. 10 Dependence of the
D value characterizing the
stability of the symmetric
state on the dimensionless
coordinate characterizing the
position of the window (D >
0 means stability)

• There is a certain height of the location of the window for which the effect is
expressed most strongly (D < 0 and | D | is maximal).

12 Conclusion

The main results of this paper are as follows:

• Equations for the stationary state of a vibro-excited granular material (granular
gas) are obtained, taking into account the non-Maxwellian law of velocity distri-
bution and the presence of significant gradients of both the concentration and the
granular temperature.

• Nonlinear boundary conditions on the vibrating and fixed planes are formulated.
• The problem of a layer with a free surface is posed and analytically solved.
• Simple formulas for calculating the granular temperature, concentration, and pres-

sure near the vibrating plane and at any point along the height of the layer and
also for calculating the Leidenfrost jump in the concentration near the exciting
plane are obtained.

• A formula is derived for the power of the layer spent to maintain the steady state
of the layer.

• Aquantitative description of the phenomenonof “Maxwell’s demon” (competitive
clustering) is developed.

The developed theory can be used in further development and validation for energy
optimization of the processes of chemical technology and processing of mineral and
technogenic raw materials.

Acknowledgements The research was fulfilled thanks to a grant from the Russian Science Foun-
dation (No. 17-79-30056, a project of the Research and Engineering Corporation “Mekhanobr-
tekhnika”).



The Stationary State of the Granular Material … 511

The author is deeply grateful to Prof. Dr. I. I. Blekhman for his permanent interest in the work,
useful discussions, and information on a number of important literature sources, as well as to Prof.
Dr. L. A. Vaisberg, member of the Russian Academy of Sciences for discussing this research in
connectionwith the results of theoretical and applied research on the dynamics of granularmaterials,
fulfilled over a number of years in the laboratory that he directed.

References

1. Goldhirsch I, Zanetti G (1993) Clustering instability in dissipative gases. Phys Rev Lett
70:1619. https://doi.org/10.1103/PhysRevLett.70.1619

2. Versluis M (2012) Competitive clustering in a granular gas. https://www.youtube.com/watch?
v=lPStV2yoIq0

3. van der Weele Ko (2008) Granular gas dynamics: how Maxwell’s demon rules in a non-
equilibrium system. Contemp Phys 49:157–178

4. Blekhman II (2013) Teoriya vibratsionnykh protsessov i ustroystv [Theory of vibration
processes and devices]. Ore and Metals, St Petersburg

5. Chlenov VA, Mikhailov NV (1965) Some properties of a vibrating fluidized bed. J Eng Phys
9:137. https://doi.org/10.1007/BF00828686

6. Möbius ME, Cheng X, Eshuis P, Karczmar GS, Nagel SR, Jaeger HM (2005) The effect of air
on granular size separation in a vibrated granular bed. Phys Rev E 72:011304

7. ShinbrotT,MuzzioFJ (1998)Reverse buoyancy in shakengranular beds. PhysRevLett 81:4365
8. Chapman S, Cowling TG (1990) The mathematical theory of non-uniform gases. Cambridge

University Press, Cambridge
9. Eshuis P, van der Weele K, van der Meer D, Lohse D (2005) Granular Leidenfrost effect:

experiment and theory of floating particle clusters. Phys Rev Lett 95:258001
10. Vaisberg LA, Demidov IV, Ivanov KS (2015) Mechanika sypuchikh sred pri vibrationnych

vozdejstvijakh: metody opisaniya I mathematicheskogo modelirovanija [Mechanics of gran-
ular media under vibration action: the methods of description and mathematical modeling].
Obogashchenie Rud [Mineral Processing] 4:21–31. https://doi.org/10.17580/or.2015.04.05

11. Pöschel Th, Brilliantov NV (2003) Granular gas dynamics. Springer, Berlin, Heidelberg
12. Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. RevMod Phys

68(4):1259–1273
13. Kremer E, Fidlin A (1989) One-dimensional dynamic continuum model of a free-flowing

granular medium. Sov Phys Doklady 34(12):1063–1065
14. Jenkins JT, Richman MW (1985) Kinetic theory for plane flows of a dense gas of identical,

rough, inelastic, circular disks. Phys Fluids 28:3485. https://doi.org/PFLDAS, https://doi.org/
10.1063/1.865302

15. Sela N, Goldhirsch I (1998) Hydrodynamic equations for rapid flows of smooth inelastic
spheres, to Burnett order. J Fluid Mech 361:41. https://doi.org/JFLSA7, https://doi.org/10.
1017/S0022112098008660

16. Wassgren CR (1997) Vibration of granular materials. PhD dissertation, California Institute of
Technology

17. Lun CKK (1991) Kinetic theory for granular flow of dense, slightly inelastic, slightly rough
spheres. J Fluid Mech 233:539. https://doi.org/10.1017/S0022112091000599

18. Ben-Naim E, Machta J (2005) Stationary states and energy cascades in inelastic gases. Phys
Rev Lett 94:138001

19. Pöschel Th, Brilliantov NV (2010) Kinetic theory of granular gases. Oxford University Press,
Oxford

20. Javier Brey J, Ruiz-Montero MJ (2013) Uniform self-diffusion in a granular gas. Phys Fluids
25:113302. https://doi.org/10.1063/1.4831978

https://doi.org/10.1103/PhysRevLett.70.1619
https://www.youtube.com/watch?v=lPStV2yoIq0
https://doi.org/10.1007/BF00828686
https://doi.org/10.17580/or.2015.04.05
https://doi.org/10.1063/1.865302
https://doi.org/10.1017/S0022112098008660
https://doi.org/10.1017/S0022112091000599
https://doi.org/10.1063/1.4831978


512 E. Kremer

21. Goldhirsch I (2003) Rapid granular flows. Annu Rev Fluid Mech 35:267. https://doi.org/10.
1146/annurev.fluid.35.101101.161114

22. Brey JJ, Ruiz-Montero MJ, Cubero D, García-Rojo R (2000) Self-diffusion in freely evolving
granular gases. Phys Fluids 12:876. https://doi.org/10.1063/1.870342

23. Dufty JW, Brey JJ, Lutsko J (2002) Diffusion in a granular fluid. I. Theory Phys Rev E
65:051303. https://doi.org/10.1103/PhysRevE.65.051303

24. Goldshtein A, Shapiro M (1995) Mechanics of collisional motion of granular materials. 1.
General hydrodynamic equations. J Fluid Mech 282:75. https://doi.org/10.1017/S00221120
95000048

25. van Noije TPC, Ernst MH (1998) Velocity distributions in homogeneous granular fluids: the
free and the heated case. Granul Matter 1:57. https://doi.org/10.1007/s100350050009

26. Gianfranco C, Pasquale G, Paolo Maria M (2008) Mathematical models of granular matter.
Springer, Berlin Heidelberg

27. Bar-Lev O (2005) Kinetic and hydrodynamic theory of granular gases. A thesis towards the
degree of Doctor of Philosophy, Tel Aviv. http://www.math.tau.ac.il/services/phd/dissertations/
BarLev_Oded.pdf

28. Baxter GW, Olafsen JS (2007) The temperature of a vibrated granular gas. Granul Matter
9:135–139. https://doi.org/10.1007/s10035-006-0019-x

29. Hongqiang W (2011) Experiments and simulations on granular gases. Dissertation, University
of Massachusetts. http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1355&context=
open_access_dissertations

30. van Zon JS, MacKintosh FC (2005) Velocity distributions in dilute granular systems. Phys Rev
E 72:051301. http://www.few.vu.nl/~fcm/Papers/GranPRE.pdf

31. Gunkelmann N, Serero D, Poschel Th (2013) Temperature of a granular gas with regard to the
stochastic nature of particle interactions. New J Phys 15:093030

32. Raskin KhI (1975) Application of the physical kinetics methods to the problems of vibration
effects on granularmedia. DokladyAkademiiNauk SSSR [ProcUSSRAcad Sci] 220(1):54–57

33. Kremer GM, Santos A, Garzó V (2014) Transport coefficients of granular gas of inelastic rough
hard spheres. Phys Rev E 90:022205

34. Khalil N, Garzó V, Santos A (2014) Hydrodynamic Burnett equations for inelastic Maxwell
models of granular gases. Phys Rev E 89:052201

35. Rongali R, Alam M (2014) Higher-order effects on orientational correlation and relaxation
dynamics in homogeneous cooling of a rough granular gas. Phys Rev E 89:062201

36. Khalil N, Garzó V (2013) Transport coefficients for driven granular mixtures at low density.
Phys Rev E 88:052201

37. Warr S, Jacques GTH, Huntley JM (1995) Fluidization of a two-dimensional granular system:
experimental study and scaling behavior. Phys Rev E 52:5583–5595

38. Eshuis P (2008) Collective phenomena in vertically shaken granular matter. Universities’
Twente (2008)

39. Fouxon I (2014) Inhomogeneous quasistationary state of dense fluids of inelastic hard spheres.
Phys Rev E 89:052210

40. Pastenes JC, Geminard J-C, Melo F (2014) Interstitial gas effect on vibrated granular columns.
Phys Rev E 89:062205

41. Losert W, Cooper DGW, Delour J, Kudrolli A, Gollub JP (1999) Velocity statistics in vibrated
granular media. Chaos 9:682–690

42. Rouyer F, Menon N (2000) Velocity fluctuations in a homogeneous 2D granular gas in steady
state. Phys Rev Lett 85:3676

43. Scholz C, Pöschel T (2017) Velocity distribution of a homogeneously driven two-dimensional
granular gas. Phys Rev Lett 118:198003

44. Blekhman II, Khaynman VYa (1968) On the theory of granular mixtures separation under
vibration. Inzhenernyy Zhurnal. Mekhanika Tverdogo Tela [Mech Solids] 1:5–13

45. Arsentyev VA, Vaisberg LA, Ustinov ID (2014) Trends in development of low-water-
consumption technologies and machines for finely ground mineral materials processing.
Obogashchenie Rud 5:3–9

https://doi.org/10.1146/annurev.fluid.35.101101.161114
https://doi.org/10.1063/1.870342
https://doi.org/10.1103/PhysRevE.65.051303
https://doi.org/10.1017/S0022112095000048
https://doi.org/10.1007/s100350050009
http://www.math.tau.ac.il/services/phd/dissertations/BarLev_Oded.pdf
https://doi.org/10.1007/s10035-006-0019-x
http://scholarworks.umass.edu/cgi/viewcontent.cgi%3farticle%3d1355%26context%3dopen_access_dissertations
http://www.few.vu.nl/%7efcm/Papers/GranPRE.pdf


The Stationary State of the Granular Material … 513

46. Blekhman II (1988) Chto mozhet vibratija? O «vibratsionnoy mekhanike» i vibratsionnoy
tekhnike [What vibration can do: about “vibration mechanics” and vibration engineering].
Nauka, Moscow, p 208

47. Paolotti D, Cattuto C, Marini Bettolo Marconi U, Puglisi A (2003) Dynamical properties of
vibrofluidized granular mixtures. Granul Matter 5:75–83. https://doi.org/10.1007/s10035-003-
0133-y

48. Blekhman II, Blekhman LI, Vaisberg LA, Ivanov KS (2014) Revisiting the models of vibration
screening process. Vibroengineering Procedia. 3:169–174

https://doi.org/10.1007/s10035-003-0133-y

	 The Stationary State of the Granular Material Under the Action of Intense Vibration and Gravity
	1 Introduction
	2 Formulation of the Problem
	3 Momentum Equation
	4 The Kinetic Energy Transport Equation
	5 General Analytical Solution of the Transport Equations
	6 Energy Boundary Conditions on a Vibrating and on a Fixed Plane
	7 Power Boundary Conditions on a Vibrating and on a Fixed Plane and the Granular Leidenfrost Effect
	8 Statement of Boundary-Value Problems on a Stationary Vibro-Excited Granular Layer
	9 A Granular Layer with a Free Surface
	10 Examples of Calculations
	11 Application to the Experiment with “Maxwell’s Demon” (Competitive Clustering)
	12 Conclusion
	References




