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Abstract The paper discusses the dynamic properties of flat lattice structures
colliding with a fixed limiter. Lattice structures are actively used in many branches
of modern industrial production. A very noticeable subclass of these objects is 2D-
lattices. They can be the basis of the designs of a number of mining, sorting, and
also screening machines, with their help it is possible to carry out mathematical
modeling of common 2D objects—panels, plates, membranes, a number of building
structures. Corresponding models can provide analysis of nonlinear waves in various
composite materials with regular reinforcement, in flat acoustic metamaterials, crys-
tals, nanostructured surface and subsurface layers of structural materials, and many
other systems. The paper presents the results of studying vibration fields in string
lattices with square cells. Lattice nodes can collide with flat fixed stops. Analytical
frequency-timemethods of analysis of vibro-impact systems, as well as experimental
methods using modern vibration measuring equipment were used.

Keywords String · Lattice · Impact · Obstacle · Vibro-impact system ·
Amplitude · Impact impulse · In-phase mode

1 Introduction

Various of lattice structures and lattice-like systems is fairly widespread in the
ship and aircraft industry, as well as in other branches of modern engineering and
construction. Flat (2D) lattices constitute an important class of such objects. They
are included in the construction of many sorting, sifting, and mountain machines.
Also, these systems play a great role in modeling of numerous 2D-objects, such as
membranes, plates, panels, building structures. One should mention also the models
ofwaves inmetamaterials, crystals, compositematerialswith periodic reinforcement,
nanostructured surfaces, and near-surface layers of materials [1–8].
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At the same time, the dynamics of lattice structures has not beenmuch investigated
for a number of reasons and works related to the dynamics of lattice vibro-impact
systems are rare (see papers [9–13]).

Let us study the rectangular string lattices, which are understood as two systems
of mutually perpendicular inertialess elastic strings forming rectangular cells. In the
nodes of the lattices, absolutely solid point bodies are placed. String lattices with
massive nodes turn out to be a natural 2D-generalization of the well-known “string
with beads”model, which played a fundamental role in the theory of oscillations [14].

In this article, the results of the study of string lattices with rectangular cells are
given. Lattice nodes collide with a fixed limiter. Analytical methods of the theory of
vibro-impact systems are based on the time–frequency analysis of periodic vibro-
impact processes [15, 16]. And at the same time, experimental studies use modern
vibration measuring equipment.

2 Statement of the Problem

Let us consider a string lattice in a rectangular frame which is vibrating near a fixed
limiter [9]—Fig. 1.

The lattice is assembled of two families of mutually perpendicular identical linear
strings, which are pinched at the ends and have lengths l1 and l2 correspondingly
(Fig. 1). The strings are numbered by the indices k = 1, 2, …, N1 and q = 1, 2 …,
N2. The lattice nodes are point solids with the same mass m.

The rectangular lattice cells are the same, but the lengths and widths of their
sides may be unequal to each other. Generally speaking, the lattice is anisotropic.
We consider string elements as inertia-free. The fastening of the strings in the nodes
is assumed to be absolutely rigid, with the tension being large, so that its possible
changes during linear oscillations can be neglected.

Each “horizontal” side of the cells is of length �l1; “vertical” is of �l2. Let the
tension of the corresponding inertialess intervals be τ1 and τ2.

The dynamics of the lattice structure is described by means of the N functions of
the deflections ukq(t), where N = N1N2. All the functions ukq(t) vary along some
axes perpendicular to the plane of the static equilibrium of the lattice.

Suppose wall is installed that a flat parallel to the plane of the static equilibrium
of the lattice at a fixed distance � < 0. The wall is a limiter with which the nodes

Fig. 1 String lattice near the
wall
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can collide. Thus, the system may contain up to N impact pairs (Fig. 1). We assume
that all the impacts are momentary, direct, and central.

In this case, the impact conditions can be described using Newton’s hypothesis:
if an impact in a node (n, h) occurs at an arbitrary time t = tαnh , then

u̇(tαnh + 0) = −Ru̇(tαnh − 0), 0 <R ≤ 1 (1)

The equations of motion of the lattice nodes are

mükq + c1(2ukq−u(k−1,q)−u(k+1,q)) + c2(2ukq−u(k,q−1)−u(k,q+1))+Φkq(ukq , u̇kq)

= εgkq(p; t, ukq); (2)

Here ci = τ−1
i �li ; ε is small parameter, p ≡ d

/
dt; gkq(p; t, ukq) are oper-

ator functions describing non-conservative forces. ExpressionsΦkq(ukq , u̇kq) denote
impact forces defined by means of δ-functions. In accordance with (1), given that
the coordinate of the limiter � < 0 [15, 16]:

Φ0kq [ukq(tαkq), u̇kq(tαkq)] = Jkqδ(t − tαkq), (3)

Values Jkq are impulses of impacts. From formula (1), it follows: Jkq = −(1 +
R)m|u̇kq(tαkq − 0)|. The boundary conditions, in this case, have the form:

ukq = 0, k = 0; N1, q = 0; N2 (4)

If necessary, the initial conditions could also appear here.
System (2), (4) can be written in the operator form [13, 15]

ukq(t) =
N−1∑

n=1

N−1∑

j=1

Lkq,nj (p)[εgnj (p; t, unj ) − Φnj (unj , u̇n j )], (5)

where {Lkq,nj (p)}—a system of operators of dynamic compliance of the lattice, each
of which puts in correspondence the response (displacement) of the node (k, q) with
the action (force) applied at the node (n, j).

The types of motion of the lattice in question are obviously quite diverse. Our goal
is to study and describe in a certain sense some of the “most ordered” movements.

3 Equations of Free Oscillations with Impacts

Consider free oscillations with collisions. In this case, the impact is elastic and R =
1, and the impact impulse in formula (3) is Jkq = −2m|u̇kq(tαkq − 0)|.
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We use the operator Eq. (5) with ε = 0. Representations for operators {Lkq,nj (p)}
were found in [3, 10]:

Lkq,nj (p) = C0

N1−1∑

r=1

N2−1∑

h=1

(Ω2
rh + p2)−1 sin

krπ

N1
sin

qhπ

N 2
sin

nrπ

N1
sin

jhπ

N 2
. (6)

normalization coefficient C0 = 2[(N1 − 1)(N2 − 1)]−2. The natural frequencies of
the lattice {Ωrh} are determined by [3]:

Ω2
rh = 2τ1

�l1
(1 − cos

rπ

N1
) + 2τ2

�l2
(1 − cos

hπ

N2
). (7)

To describe free oscillations with impacts of a period T = 2πω−1, in accordance
with the time–frequency analysis methods, it is necessary to switch to a system of
nonlinear Hammerstein-type integral equations [15, 16]. From Eq. (5) for periodic
modes we find:

ukq(t) = −
N−1∑

n=1

N−1∑

j=1

T∫

0

χkq,nj (t − s)Φ0nj [unj (s), u̇n j (s)]ds, (8)

The kernels of Eq. (8) are the set of periodic Green functions (PFG) [15] of the
lattice considered. Its terms are defined by the set {Lkq,nj(p)} (6) by means of Fourier
series of the form:

χkq,nj (t) = C0

T−1

∞∑

ν=−∞

N1−1∑

r=1

N2−1∑

h=1

exp(iνωt)

Ω2
rh − ν2ω2

sin
krπ

N1
sin

qhπ

N 2
sin

nrπ

N1
sin

jhπ

N 2
,

(9)

which on the periodicity interval 0 ≤ t < T can be written as

χkq,nj (t) = C0

T−1

N1∑

r=1

N 2∑

h=1

χrh(t)sin
krπ

N1
sin

qhπ

N 2
sin

nrπ

N1
sin

jhπ

N 2
, (10)

where χrh(t)—PFG linear oscillators with frequencies {Ωrh}. It is known [13] that

χrh(t) = 1

2Ωrh

cos[Ωrh(t − 1
2T )]

sin 1
2ΩrhT

, t ∈ [0, T ].

For the modes of motion with one impact in for the period of motion from formula
(3), we find
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Φkq [ukq(tkq), u̇kq(tkq)] = Jkqδ
T (t − ϕkq); δT (t) =

∞∑

n=−∞
δ(t − kT ), (11)

The generalized T-periodic function δT (t) is also called the Dirac comb. Periodic
Green’s functions are reactions of linear systems to precisely such force impacts
[15]. Here ϕkq are the moments of impacts.

Using formulas (11) and (8), we find

ukq(t) =
N1−1∑

n=1

N2−1∑

j=1

Jnjχkq,nj (t − ϕnj ), k = 1, 2, . . . , N1, q = 1, 2, . . . , N2, (12)

Movement parameters, namely, impulses and phases should be determined from
the impact conditions:

� = ukq (ϕkq ) =
N1−1∑

n=1

N2−1∑

j=1

Jnjχkq,nj (t − ϕnj ) ;

Jkq = −2m
N1−1∑

n=1

N2−1∑

j=1

Jnj

∣∣
∣∣
d

dt
χkq,nj (ϕkq − ϕnj − 0 )|, k = 1, 2, . . . , N1 , q = 1, 2, . . . , N2.

(13)

Now we are ready to study any configuration of vibro-impact modes. By varying
the parameters of the system, we can investigate different types of lattices. Non-
conservative forces can be accounted for by using relations similar to (12), (13),
which, however, can be rather cumbersome.

4 In-Phase Modes in an Isotropic Square Lattice

We will carry out further simplifications. Let the lattice be isotropic and have square
cells (N1=N2) with the same sides (�l1 = �l2 ≡ �l), with the tensions of all the
strings, forming the lattice, being also the same (τ1 = τ2 ≡ τ). Then in Eq. (2), we
have c1 = c2 = τ−1�l. The structure of the set of natural frequencies of the lattice
is simplified:

Ω2
rh = 2τ

�l
(2 − cos

rπ

N
− cos

hπ

N
), (14)

Thus, the matrix ‖Ω 2
rh

∥
∥ is quadratic and symmetric. This entails significant

simplifications when making transformations with PFG χkq,nj (t).
Periodic-free oscillations with one impact over a period are described by the

solutions of system (13), which determines the 2 N2 motion parameters (Jkq;ϕkq ).
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Of special attention are the solutionswith the simplest structure,which correspond
to in-phase, anti-phase, or localized modes [13, 17, 18]. As a rule, such regimes, or
similar ones, were registered experimentally. They correspond to nonlinear resonant
modes. Sometimes with their help, one can “design” more complicated modes of
motion.

Consider the movements of in-phase claps type. At such movements, synchro-
nization of the impacts occurs in different impact pairs. Claps were deeply studied
in one-dimensional systems [17, 18]. In lattice structures, they were considered in
[9–11].

For in-phase oscillations: ϕkq = ϕ, k, q = 1, 2, . . . , N and the first group of
equations (7) gives for impulses a linear system of N2 algebraic equations, while the
second group of equations becomes an identity that can be derived from the PFG
properties [15]. As an example, we take a system with four degrees of freedom—
an isotropic square lattice 2 × 2. In this case, for all values of the indexes, the
displacements of the nodes are the same (ukq(t) ≡ u(t)) and can be given by the
expression

u(t) = −�
cosΩ11(t − T/

2)

cosΩ11
T/

2
, t ∈ [0, T ], (15)

where Ω11 = 2τ1(�l1)−1. Representation (15) coincides with the representation of
the law of motion of a vibro-impact system with one degree of freedom (impact
oscillator) [19].

The function graph u(t) is shown in Fig. 2. Figure 3 shows the dependence of the
amplitude of oscillations on the frequency in each of the four shock pairs.

A(ω) = 1

2
(maxu − �) = �

2
(sec

πΩ

ω
− 1), (16)

Fig. 2 The low motion of lattice nodes
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Fig. 3 Amplitude and
frequency characteristic

It is easily seen that this graph is similar to that obtained for an impact oscillator
[15, 19]. The figure marked frequencies Ω0 = Ω11; Ω0 = 2 Ω11. The polysemy of
the graph at the frequency is associated with the existence of linear oscillations with
arbitrary amplitudes before reaching the obstacle.

5 Experimental Stand

The study of in-phase resonant modes was carried out using a specially designed and
manufactured stand “Alligator Square” [12, 13] (Fig. 4). Following the traditions of
the nonlinear theory of oscillations, resonant oscillations are understood as no small
displacements of the systems caused by small excitatory factors with a small level
of energy dissipation.

The stand consists of a work installation and a system of control and registration.
The work installation includes a vibration exciter (V) and square replaceable lattices
(L) with dimensions (250 × 250 mm) that consist of aluminum profile frames and
mutually perpendicular stretched rubber strings with a diameter of 1 mm.

Cell sizes are controlled by precision rulers. The frame of the lattice (2 × 2, 3 ×
3, 4 × 4) is attached to the rod of the vibroexciter. The frame design allows for the
lattice parameters (number of strings, cell sizes, etc.) to be changed. The lattice nods
are formed by toroidal washers with diameters d = 9 mm and masses m0 = 1.1 g.
Washers made of hardened steel, placed at the intersections of the strings and are not
fixed rigidly.

The control and recording system consist of a control computer (CC) that solves
the tasks of controlling both the vibrator and time-frequency analysis of the recorded
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Fig. 4 Experimental stand

information. Also used a power amplifier (A), digital strobe (SL), meter to measure
the amplitude of vibration of the rod of the vibroexciter (MA), together with force
sensors (Fnj). Camera (C) registered the profiles of standing waves, in the regime of
photo-graphing or accelerated video.

The signals from the force sensors (φnj ) are conveyed to the control computer,
where they can be visualized and presented in both the frequency and time ranges.
The strobe lamp (SL) provides visualization of the standing wave profiles.

6 Impact-Free Movements

The stand, described in the previous paragraph, was used for a detailed description
of the behavior of string lattices if no impacts take place. The characteristic profiles
of standing waves in the case of motion according to the first formΘ11 [12] are given
in Fig. 5: Fig. 5a, b demonstrate 2× 2 lattice and 3× 3 lattice correspondingly. The
evolution of the standing wave profiles for 4×4 dimension lattice is shown in Fig. 6.

Consider the amplitude-frequency characteristics (AFC) of impact-freemotion on
the basic form Θ11. Figure 7 shows a family of amplitude-frequency characteristics
of 2 × 2 lattice. Furthermore, it is assumed that the amplitude appears to be a semi-
range of oscillations of the selected characteristic point of the lattice. For a given
lattice, the characteristic point was chosen somewhere in the middle of span between
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Fig. 5 Lattice profiles. The first form

Fig. 6 Standing wave evolution

Fig. 7 Amplitude-frequency characteristics in the absence of impacts

neighboring nodes, etc. Curves 1–3 correspond to the amplitudes of the vibrator rod,
which are respectively, a1= 0.3 mm; a2= 0.6 mm; a3= 1.4 mm.

It is seen that when the amplitude of excitation increases, the lattice loses linearity.
Its AFC is distorted as it happens in the case of systems with, for example, geometric
nonlinearity.

Nonlinear distortions manifest themselves, in particular, in the deviation of the
contours of the lattice cells from the square. Their shape becomes trapezoid-like (see
also [12]).



482 V. Krupenin and V. Astashev

7 In-Phase Vibro-Impact Modes of Motion (Claps)

Using the described stand, it was found that after the passage of the first natural
frequency of oscillations, one can observe stable periodic modes with simultaneous
collisions with the limiter of all nodes. At the same time, the vibro-impact mode at
the linear resonance frequency turns out to be complicated (see below).

The profiles of standing waves are shown in Fig. 8 (2× 2 lattice) and Fig. 9 (3× 3
lattice). Thesemodes and are the claps in the string lattice. The fact that the impacts are
in-phase was established both visually and by comparing the synchronizing signals
from the force sensors Fnj. For one-dimensional case (balls on a stretched string),
claps were experimentally described in [17, 18].

Figure 8 demonstrates the moment of the impact (a limiter with no sensors
was chosen). The overlay of several photographs demonstrates the evolution of the
standing wave profile (Fig. 9). Oscillations are limited to the surface of a truncated
octahedron.

Figure 10 shows three curves numbered in accordance with Fig. 7 numbering.
The curves correspond to the amplitudes of the claps (the half-range of oscillations
of characteristic points of the lattices, near the geometric center).

It can be seen that as the excitation frequency increases, the amplitude increases
until a sudden cessation of oscillations with collisions. This dynamic phenomenon is
called pulling by frequency. It is characteristic of the classical impact oscillator and
clap in one-dimensional chains and strings [15, 17–19].When striving for frequencies
of sudden disruption of intensive oscillations, the amplitudes forces of impact strive
for the maximum possible.

Fig. 8 Clap in a string lattice
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Fig. 9 Clap in a string lattice

Fig. 10 Amplitude-frequency characteristic of the standing waves at in-phase claps

With the passage of the frequency range after sudden disruption, claps can be
obtained only by giving the elements of the lattices some triggering impulse (hard
triggering phenomenon) or after a significant return of frequency closer to the linear
resonance value.

It should be noted that the nonlinearity of impact-free system, that is, the nonlin-
earity of the string lattice itself is practically notmanifestedwhen getting to a periodic



484 V. Krupenin and V. Astashev

vibro-impact mode. Thus, it is possible to say, in this case, that more “weak nonlin-
earity”, arising due to usually weak nonlinear geometrical or physical factors, is
suppressed by strong non-linearity, caused by the impacts.

Note that, perhaps, a noticeable discrepancy between the theoretical and experi-
mental curves (Figs. 3 and 10) is caused by the fact that themodel neglects a great deal
of factors connected with the obvious imperfections of the lattices. These factors, in
particular, lead to a deviation of the system from linear between the impacts.

At the same time, the main resonance properties of the claps (pulling, sudden
disruption of oscillation, hard start necessity) remain qualitatively the same and, as
indicated, are clearly distinct.

In a small neighborhood (about 0.3 Hz) of the linear resonance frequency, we
observed complicatedweakly orderedmotionswith impacts, accompanied by chatter
[15]. Further, periodic regimeswere observed up to emergence of steady claps. These
modes were accompanied by the impacts of only several nodes.

Modes of a complicated type were recorded in some frequency zones after the
frequency of the sudden disruption. The highest forms of claps were not recorded.

We note in conclusion that with a change in the parameters of the gratings, a qual-
itative change in the character of standing waves is possible. In article [20], standing
waves in gratings with wider cells than in the grids described above were investi-
gated. The phenomenon of the formation of periodic standing waves—claps with
synchronous collisions of all nodes was transformed into the effect of the emergence
of periodic regimes with more complicated profiles.

A 3 × 3 lattice was considered. Initially, eight peripheral nodes collided simulta-
neously, and then the central one. At the same time, a number of the above properties,
characteristic of nonlinear resonant modes, were preserved. The effect of synchro-
nization of all collisions manifested itself in the simultaneous achievement by all the
nodes of the lattice of some intermediate coordinate different from the value of the
gap.

These results require a detailed theoretical study, as well as a number of clarifica-
tions concerning the clarification of the role of the number of nodes, widths of spans,
and some other factors that can affect the dynamics of string lattices in vibro-impact
modes.
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