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Abstract Contemporary seismic isolation systems for bridge structures provide (A)
horizontal isolation from the effects of ground motion and (B) an energy dissipation
mechanism to reduce displacements. Throughout the years many kinds of seismic
isolation mechanisms have been developed, with the concept of introducing negative
stiffness being the most promising. In this context, a novel passive vibration isola-
tion and damping concept is introduced, the KDamper. The KDamper is based on
the optimal arrangement of stiffness elements, including a negative stiffness element.
The main advantage of the KDamper over other similar concepts including negative
stiffness elements is that no reduction in the overall stiffness of the system is required.
This paper considers the application of a KDamper system to a bridge structure. The
system is subjected to artificial accelerograms, designed to be compatible to a rather
conservative seismic case corresponding to EC8, ground type C. The mean power
spectral density of these accelerograms is used to calculate the effect of the variation
of the nominal KDamper frequency to the transfer functions, the response power
spectral densities, and the root mean square responses. The KDamper is designed
to higher frequencies compared to the isolated system with seismic isolation bear-
ings, exploiting the extraordinary damping properties it offers. A comparison with a
seismic isolated structure using Lead Rubber Bearings, designed to greatly increase
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the natural period of the system (2.0 s), confirms that KDamper base seismic absorp-
tion designs can provide great reduction to the absolute accelerations reducing at the
same time the deck’s displacement.

Keywords Seismic isolation · Negative stiffness · KDamper · Damping

1 Introduction

Seismic isolation is probably the only successfully applied alternative for earthquake-
resistant design [1], since it achieves the reduction of earthquake-induced lateral
loading in the structure, instead of increasing its resistance. Isolation systems separate
the heavier superstructure from its foundation, essentially decoupling their response
leading to lower seismic loads being imposed in the whole structure. In this context,
a variety of isolation devices including elastomeric bearings (with and without lead
core) [2], frictional/sliding bearings, roller bearings have been proposed and imple-
mented. The introduction of negative stiffness elements (Negative Stiffness Devices
and “Quazi Zero Stiffness” oscillators) has been proposed in the last years. Negative
stiffness can be described as a force assisting motion instead of opposing it, contrary
to positive stiffness spring. The introduction of negative stiffness elements (or “anti-
springs”) is not modern, it was initially introduced in the pioneering publication of
Molyneaux [3], as well as in the breakthrough developments of Platus [4]. The main
idea behind these approaches is the substantial reduction of the isolator stiffness even
at almost zero levels leading to the reduction of the natural frequency of the system,
as in Carella et al. [5], being thus called “Quazi Zero Stiffness” (QZS) oscillators. A
comprehensive review of such concepts can be found in Ibrahim [6]. The negative
stiffness response is primarily achieved by complex mechanical designs, combining
conventional positive stiffness pre-stressed elastic mechanical elements, such as pre-
compressed springs, plates, shells, and post-buckled beams, arranged in appropriate
geometrical configurations. Some interesting designs are described in [8, 9]. Among
others, QZS oscillators find numerous applications in seismic isolation [7, 10–16].

The increased flexibility of the coupling of the structure with the ground for
Base Isolated Structures (BIS) significantly reduces the earthquake-induced forces
in the superstructure, which practically behaves as a rigid body. However, because
the ground displacement is decoupled from the structure, this results to large relative
displacements being concentrated at the isolation level. This fact increases the tech-
nological requirements and design complexity of base isolators and has direct effect
on the overall performance of the system. Suitable joints for utilities (e.g., water-
works, gas fittings, and electrical conduits) at the isolation level should be provided.
An adequate separation distance between adjacent buildings is necessary to prevent
collisions or structural pounding [17]. The structure’s bearing capacity is reduced
for horizontal loads (e.g., winds) for which displacement is expected to be limited
during the serviceability ultimate limit state. One of the most important drawbacks
is that BIS is in constructability terms and economically prohibitive for retrofitting
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existing structures. Increasing the BIS damping ratio ζ B or, alternatively, introducing
supplementary dampers inside the structure to minimize the excessive displacements
[18] is not common practice due to its complexity. Besides to the excessive techno-
logical demands imposed on the relative devices due to their size and the capacity of
the structure to accommodate them, the direct increase of damping can lead to larger
interstorey drifts and floor accelerations [19].

Throughout the various active or passive control strategies, the introduction of an
additional mass (Tuned Mass Dampers) consists of a common and effective solution
for some type of structures. A Tuned Mass Damper (TMD) is a commonly used
device consisting of a mass, a spring, and a viscous damper at its most typical form.
It is usually attached to a vibrating primary system in order to suppress any unde-
sirable vibrations induced usually by wind and earthquake. The TMD concept was
first applied by Frahm [20]. Since Den Hartog [21] first introduced an optimal design
method for the TMD for a simple undamped SDoF structure, the TMD implemen-
tation in skyscrapers is among the most interesting ones [22–24]. A characteristic
example of its application on skyscrapers can be found in one of the tallest build-
ings in the world, Taipei 101 Tower (101 stories, 504 m) in Taiwan [25]. Recent
studies also include the application of TMDs for vibration mitigation in seismic or
other forms of excitation like wind induced vibrations of bridge structures [26]. The
natural frequency of the TMD is tuned in resonance with the fundamental mode
of the primary structure. Thus, a large amount of the structural vibrating energy is
transferred to the TMD and then dissipated by damping. Even though TMDs are
known for their effectiveness and their reliability, their usage encounters significant
disadvantages. Environmental conditions and other external parameters may alter
the TMD properties, disturbing its tuning. Consequently, the device’s performance
can be significantly reduced [27]. Another drawback of the TMD is that a substan-
tial oscillating mass is required in order to achieve effective vibration reduction
complicating its construction and installation procedure.

The novel KDamper concept introduced by Antoniadis et al. [28] integrates
the effective design aspects of both Negative Stiffness Elements and Tuned Mass
Dampers. The device under consideration makes use of a negative stiffness element,
which enhances the device’s damping properties, avoiding the deficiencies of TMDs
or QZS oscillators. The KDamper is designed to maintain the same overall (static)
stiffness as the original reference oscillator. However, it differs from both the orig-
inal SDoF oscillator and existing negative stiffness oscillators, due to the effective
combination of the individual stiffness elements and the reallocation of the damping.
Usually negative stiffness elements exhibit an unstable behavior, the device under
consideration is set up in a way to be statically and dynamically stable. The incor-
poration of an additional mass mitigates the oscillation effects, acting as an energy
dissipation mechanism similar to the mass of TMDs. In contrast with TMDs the
KDamper overcomes the sensitivity problemsof tuning since this ismainly controlled
by the negative stiffness element’s parameters. Optimization of the device’s control-
ling parameters leads the system to exhibit exceptional damping characteristics.
The optimal selection for the KDamper parameters can be based on the minmax
(H∞) approach, initially introduced by Den Hartog [21]. Relevant methods are
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described in Antoniadis et al. [28] for a Force Excitation/Displacement Response
Transfer Function and in [29–32] for a base acceleration excitation/relative structure
displacement response transfer function. A different design approach, implementing
an optimization algorithm, is presented in Syrimi et al. [33].

In this paper, the feasibility of the KDamper as an alternative or supplement to
conventional seismic isolation of bridge structures is examined. The aim is the opti-
mization of the KDamper parameters with respect to the provisions of the design
spectra of the various seismic codes and to evaluate the advantages of its use in the
response of the system. The concept of KDamper is presented in Sect. 2, along with a
preliminary conceptual presentation on its fundamental concept and an explanation
of how this device could potentially overcome the drawbacks of the typical vibra-
tion absorbers: the Quazi Zero Stiffness Oscillator and the Tuned Mass Damper.
The optimal selection approach of the KDamper parameters is also introduced in
Sect. 2, which follows the same steps of Den Hartog [21]. Finally, Sect. 2 provides
an overview of the basic KDamper properties. The KDamper always indicates better
isolation properties than a TMD damper with the same additional mass. Instead of
increasing the additional mass, the vibration isolation capability of the KDamper
can be increased by increasing the value of the negative stiffness element. Section 3
provides an overview of the so-called “Design Response Spectra”. A database of arti-
ficial accelerograms is produced, calibrated to be compatible with a rather conser-
vative seismic case corresponding to EC8, ground type C. The mean acceleration
response spectrum is calculated, matching accurately the EC8 response spectra. The
least square fitting of the mean power spectral densities, of the total number of
accelerograms in the database, is calculated and used as the ground motion excita-
tion acceleration PSD. The response power spectral densities are formed and the root
mean square responses are derived, as an indicator of the actual energy content of the
response. Section 4 presents a spectral driven optimization of the KDamper natural
frequency for seismic isolation of a typical bridge structure. The transfer functions,
response power spectral densities, and root mean square responses are formed and
confirmed in the time domain. Two alternative options for the implementation of the
KDamper are considered. Initially, the nominal KDamper frequency is selected equal
to the frequency of a typical base isolated structure (0.4 Hz), resulting in a substan-
tial reduction of the absolute structure acceleration. Alternatively, another promising
option is examined, which foresees the implementation of the KDamper, as a stiffer
base absorption system, with a nominal frequency much higher than that of the
initial isolation system. The selection of a higher value for the nominal frequency
dramatically reduces the relative deck displacement combined with an acceptable
dynamic response in terms of absolute acceleration. Therefore, the KDamper can be
implemented as a “stiff seismic absorption base”, resulting to relative deck displace-
ments in the order of few centimeters and consequently to overcome the drawbacks
of conventional base isolation systems and dictate alternative seismic protection
technologies.
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2 Overview of the KDamper Concept

Figure 1 shows three concepts of seismic isolation systems and their basic character-
istics. Each one is designed in a way to minimize the response x(t) of an undamped
SDoF system of mass m and static stiffness k of to a base excitation of xG(t). The
Negative Stiffness isolator, in Fig. 1a achieves the total stiffness of the system to be:
kQZS = k + kN≤ k this is done by adding a negative stiffness element kN parallel
to the element stiffness k of the original structure. Yet this results in the reduction
of the static bearing capacity of the system, limiting its application for horizontal
isolation due to wind or service loads inducing considerable deformations, the same
applies for vertical vibration isolation. Figure 1c introduces the basic concept of the
KDamper which also implements a negative stiffness element kN . However, contrary
to the QZS isolator, the fundamental design parameter of the KDamper is that the
overall static stiffness of the isolated system remains the same as the original one,
Eq. (1):

kR + kPkN
kP + kN

= k (1)

This is how the KDamper avoids the main drawback of the QZS isolator.
Compared to the TMD (Fig. 1b), the KDamper incorporates an additional negative
stiffness element kN , which connects the additional mass to the base. Consequently,
the equation of motion of the KDamper becomes

müS + kRuS + mDüD + kNuD = −(m + mD)aG (2a)

mDüD − cD(u̇S − u̇D) − kP(uS − uD) + kNuD = −mDaG (2b)

Assuming a harmonic excitation in the form of aG (t) = AGe jωt and a steady state
response of uS(t) = ŨS exp( jωt) and uD(t) = ŨD exp( jωt), where ŨS, ŨD denote

Fig. 1 Schematic presentation of the considered vibration absorption concepts a Quasi-Zero
Stiffness (QZS) oscillator, b Tuned Mass Damper (TMD), and c KDamper
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complex quantities, the equations of motion (2a, 2b) of the KDamper become

−ω2mŨS + kRŨS − ω2mŨD + kNŨD = −(m + mD)AG (3a)

−ω2mDŨD − jωcD(ŨS − ŨD) − kP(ŨS − ŨD) + kNŨD = −mDAG (3b)

Focusing on Eq. (3a, 3b) it can be understood that the amplitude FMD of the inertia
force of the additional mass and the amplitude FN of the negative stiffness force:

FMD = −ω2mD

∣
∣
∣ŨD

∣
∣
∣; FN = kN

∣
∣
∣ŨD

∣
∣
∣ ≤ 0 (4)

are exactly in phase, this is the result of the negative value of kN . Thus, the KDamper
canbe considered as an indirect approach to increase the inertia effect of the additional
mass mD without, however, increasing directly the mass mD itself. Additionally, it is
worthmentioning that the value ofFMD is frequency dependent, while the value ofFN

is constant in the entire frequency range, a crucial characteristic for low-frequency
vibration isolation.

2.1 Selection of the KDamper Parameters for Optimal
Acceleration Response Under Base Excitation

Based on Eqs. (3a, 3b) some important Transfer Functions of the KDamper can be
produced:

H̃US = ŨS

AG
= − ÑUS

D̃
; H̃UD = ŨD

AG
= ( jωcD + kP)HUS − mD

(−ω2mD + jωcD + kp + kN
) = ÑUD

D̃
;

H̃AS = ÃS

AG
= 1 − ω2 H̃US = ÑAS

D̃
, (5)

where

ÑUS = −ω2mmD + jωcD(m + mD) + m(kP + kN ) + mDkP (6a)

ÑUD = −ω2mmD + jωcD(m + mD) + mkP + mD(kR + kP) (6b)

ÑAS = −ω2mDkR + jωcD(kR + kN ) + k(kP + kN ) (6c)

D̃ =ω4mmD − jω3(m + mD)cD − ω2[m(kP + kR) + mD(kP + kR)]
+ jωcD(kR + kN ) + k(kP + kN ), (6d)



Frequency-Based Design of the KDamper … 175

where k is the total static stiffness of the system, as described in Eq. (1). Optimization
of the KDamper parameters can be based on the classical minmax (H∞) approach,
first introduced by Den Hartog [21]. This process is presented in Antoniadis et al.
[28] for a Force Excitation/Displacement Response Transfer Function and in [29–32]
for a base acceleration excitation/relative structure displacement response transfer
function. A different method for parameter definition, making use of an optimization
algorithm, is described in Syrimi et al. [33].

Nonetheless, the optimization results have significant discrepancies, which arise
due to the different transfer function to be selected for optimization. This is presented
in [28], where optimization of theHUS transfer function gives non-optimal designs of
HAS which presents large lobes in themain seismic excitation area. Suchbehavior is to
be expected, among others based on the analysis of Sect. 1 about the inherent conflict
between relative displacement and absolute acceleration simultaneousminimization.
Therefore, optimization of the absolute acceleration transfer functionHAS is selected
in this paper. Equation (5) are brought to a non-dimensional form with respect to the
natural frequency of the system ω0 (Eq. 7b), using the following parameters:

κ = −kN/(kP + kN ); μ = mD/m (7a)

ρ = ωD/ω0; q = ω/ω0; ω0 = √

k/m; ωD = √

kD/mD; ζ D = cD/2
√

kDmD.

(7b)

As a result, Eq. (2.5) can be written in the form:

H̃AS = − A + ( j2ζD)B

C + ( j2ζD)D
; HAS =

∣
∣
∣ ÃS

∣
∣
∣

AG
= AS

AG
=

√

A2 + (2ζD)2B2

C2 + (2ζD)2D2
, (8)

where A = −q2[1 + κ(1 + κ)μρ2] + ρ2, B = ρq(1 + κ2μρ2), C = q4 − q2[1 +
ρ2 + (1 + κ)2μρ2] + ρ2 and D = ρq[(1 + κ2μρ2) − q2(1 + μ)].

The transfer function for the TMD can be derived from Eq. (8) if κ = 0. The
Transfer Function in Eq. (2.8) has only four parameters: κ , μ, ρ, and ζD. Initially,
the parametersμ and κ are defined from the original system under consideration and
the structural capacity available for an additional mass. Next, the optimal value of
ρ is dependent from κ, μ (Eq. A.10), following the minmax approach described in
Appendix A. Finally, for the selection of ζD, numerous methods are possible, whose
presentation is beyond the scope of this paper. A direct approach is to calculate ζD

so that it minimizes the peak of the Transfer Function HAS(q,ζD). Figure 2 presents
the variation of HAS(q,ζD) for various values of ζD. As it can be observed, for the
optimum value of ζDopt= ζmin, both peaks of the Transfer Function HAS(q,ζD) are
equal and minimum. Once the values of the mass μ and the total stiffness κ are
known, the values of the elements of the KDamper thus finally result as
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Fig. 2 Dependence of transfer function HUAS on the damping ratio ζD a μ = 0.05, κ = 2.56 b μ

= 0.05, κ = 3.41

kN/k = κN = −κμρ2; kP/k = κP = (1 + κ)μρ2; kR/k = κS = 1 + κ(1 + κ)μρ2

(9a)

mD = μm; cD = 2ζD
√

(kP + kN )mD. (9b)

2.2 Basic Properties of the KDamper

Afirst fundamental property of KDAMPER is that the addition of a negative stiffness
spring reduces the magnitude of the transfer function, as compared to that of a TMD
with the same value of μ, as observed in Fig. 3. Moreover, increasing the value of
κ reduces the maximum part of the transfer function HAS , which becomes flatter.

Fig. 3 Effect of the stiffness ratio κ on the transfer function HAS of the KDamper for a μ = 0.01
and b μ = 0.05
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Fig. 4 Effect of the variation of the κ and μ KDamper parameters on a the value of ρ = ωD/ω0 ,
b the value HASI of the transfer function at the invariant points qL , qR, and c the static stability
margin ε

Following that, the KDamper is more resistant to detuning, than the TMD. The
increase in the value of κ is upper limited by a value of κmax. As observed in Fig. 4a,
when κ reaches κmax the frequency ratioρ tends to infinity. At the same time, (Fig. 4b)
transfer function HASI (Equation A2) of the KDamper at the points qL and qR tends
to zero.

However, increasing κ has a number of implications in the design of theKDamper.
From a dynamics point of view, the transfer function tends to present a more broad-
band behavior, as for example observed in Figs. 2 and 3. Moreover, the displacement
of the “internal” degree of freedom uD tends to increase. In view of Eq. (5):

H̃UD

H̃US

= −ω2mmD + jωcD(m + mD) + mkP + mD(kR + kP)

−ω2mmD + jωcD(m + mD) + m(kP + kN ) + mDkP
(10a)

or in a non-dimensional form:

H̃UD

H̃US

= −q2 + 2 jρqζD(1 + μ) + 1 + (1 + κ)(1 + (1 + μ + κμ)ρ2

−q2 + 2 jρqζD(1 + μ) + (1 + μ + κμ)ρ2
. (10b)

In the specific case of ω = 0, mD= 0 Eq. (10b) becomes

H̃UD

H̃US

= 1 + κ (11)

As a qualitative remark from Fig. 5, increasing κ tends to increase uD while
increasing μ tends to decrease uD.

From a technological point of view, increasing κ results in high stiffness values
of the internal KDamper elastic elements, as presented in Fig. 6. More importantly,
increasing the absolute value of the stiffness kN may put the static stability of the
structure at risk. Despite that theoretically the value of kN is selected based on Eq. (5)
to ensure the static stability of the system. The value of kN can have variations
in practice due to several reasons such as temperature variations, manufacturing
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Fig. 5 Effect of the stiffness ratio κ on the ratio of Transfer Functions HUD/HUS of the KDamper
for a μ = 0.01 and b μ = 0.05

Fig. 6 Effect of increasing κ on the values of stiffness elements of the KDamper. a κN , b κP, and
c κR

tolerances, or non-linear behavior, because almost all negative stiffness designs result
from unstable non-linear systems. Based on that, an increase of the absolute value
of kN by a factor ε may lead to a new value of kNL where the structure becomes
unstable:

kR + kPkNL

kP + kNL
= 0 ⇔ kNL = − kRkP

kR + kP
= (1 + ε)kN (12)

Substitution of Eqs. (9a) into (12) leads to the following estimate for the static
stability margin ε = 1/(κ[(1 + (1 + κ)2μρ2]). Figure 4c presents the variation of ε

over κ and μ. As it can be observed from the aforementioned expression of the static
stability margin ε and Fig. 4c, the increase of the negative stiffness of the system is
upper bounded by the static stability limit of the structure, where ε tends to zero.
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3 Design Response Spectrum, Compatible Ground Motion
Spectra, Response Power Spectral Densities, and Mean
Square Responses

Seismic design codes specify that the structure relative displacement or acceleration
is within specified limits for a specific fundamental structure period and damping
ratio. These limits strongly depend on the specific ground conditions and expected
seismic intensity as well as on the fundamental structural period, thus resulting in
the so-called “Design Response Spectra”. A typical form of these spectra is depicted
in Fig. 7.

However, the direct application of this approach to the selection of the KDamper
parameters is not possible, since the application of the KDamper as a base absorp-
tion layer leads to an MDoF system with multiple frequencies. For this reason, time
history analysis is required for the optimal design of theKDamper. Strong earthquake
time histories are generated from one of three fundamental types of accelerograms:
synthetic records obtained from seismological models, actual recordings of earth-
quakes (not all soil combinations are covered, not smoothed spectra) and artificial
records, fitted to match code design spectrums, which is the most proper method.

The creation of artificial accelerograms compatible with a selected design spec-
trum is a very complicated task and consists of a field of research on its own, it
is well presented in [34, 35]. The complexity is the result of the earthquakes tran-
sient nature, in addition to the fact that the design spectra represent values in the
time domain which is demanding to match with spectral values in the frequency
domain. As a result, the approach followed in this paper is based on first generating
a sample of artificial accelerograms whose response spectra is closely compatible
with the design response spectrum (EC8). Artificial spectrum-compatible accelero-
grams can be generated using SeismoArtif Software [36]. SeismoArtif computes a
power spectral density function from a specified smooth response spectrum, in this

Fig. 7 EC8 Design response spectra: a Spectral acceleration and b Spectral displacement
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Fig. 8 aArtificialAccelerogramandbmeanArtificialAcceleration response spectra of 30Artificial
Accelerograms compared to the EC8 acceleration design response spectra

case, EC8-Ground type C, and uses this function to derive the amplitudes of sinu-
soidal signals which have random phase angles. The sinusoidal motions are then
summed, and an iterative procedure can be invoked to improve the match with the
target response spectra. The power spectral density function is then adjusted by the
square of the ordinate ratio and a new motion is generated. In order to get other
characteristics of artificial spectrum-compatible record, such as duration, it is neces-
sary to obtain supplementary information about the expected earthquake motion,
apart from the response spectrum (envelope shapes). The Artificial Accelerograms
used in this paper are designed to match a rather conservative but realistic case:
the EC8 response spectrum for a certain ground type, in this case ground type C
was considered, for spectral acceleration 0.36 g, spectrum type I and importance
class II. In Fig. 8a, an Artificial Accelerogram is presented, applying the calculation
method Artificial Accelerogram Generation and Adjustment with an envelope shape
proposed by Saragoni and Hart [37].

Next, the mean acceleration response spectrum is calculated and compared to
the EC8 design response spectrum. As observed in Fig. 8b, the mean acceleration
response spectrum, for 30 Artificial Accelerograms, is matched very accurately with
the EC8 response spectrum, with characteristics: spectral acceleration 0.36 g, ground
type C, spectrum type I, and importance class II. More specifically, the percentage
deviation is under 10% in the range of periods from 0.2 to 2 s, which is of actual
concern.

Next, the mean power spectral density SAM of the accelerograms is calculated as
SAM = (

∑
Sai)/Na, where Sai is the PSD of each acceleration record and Na is the

number of accelerograms in the database. Themean power spectral density SAM of the
Na = 30 accelerations in the selected database is presented in Fig. 9, along with the
least square fitting which will be subsequently used as the ground motion excitation
acceleration PSD SA. Having defined the ground motion excitation acceleration PSD
SA, the response power spectral densities, SUS , SUD, and SAS of the system main
responses can be derived:
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Fig. 9 MeanPowerSpectralDensity of the 30ArtificialAccelerogramsSAM in the selected database
with the least square fitting SA

SUS(ω) = H 2
US(ω)SA(ω); SUD(ω) = H 2

UD(ω)SA(ω); SAS(ω) = H 2
AS(ω)SA(ω)

(13)

where HUS , HUB, HUD, and HAS are the transfer functions of the main system
responses. It should be emphasized that the design response spectra of the seismic
design codes (e.g., those in Fig. 7), are entirely different than the response power
spectral densities of Eq. (13). The root mean square value of the responses is defined
next as the root of the area under the power spectral density curve, as an indication
of the actual energy content of the response:

RUS =
⎡

⎣

+∞∫

−∞
SUS(ω)dω

⎤

⎦

0.5

; RUD =
⎡

⎣

+∞∫

−∞
SUD(ω)dω

⎤

⎦

0.5

;

RAS =
⎡

⎣

+∞∫

−∞
SAS(ω)dω

⎤

⎦

0.5

. (14)
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4 Spectral Driven Optimization of the KDamper Natural
Frequency

4.1 Test Case Considered

A typical single-pier concrete bridge of mass mS= 729.3tn with two spans of 25
m each is considered. The deck is 9.50 m wide. A schematic representation of the
bridge is given in Fig. 10. As an initial approach, the pier is considered stiff enough
to be neglected. A possible implementation of the KDamper is presented in Fig. 1c.
The equations of motion of the new system are Eqs. 2.2a and 2.2b. The new system’s
parameters μ, κ , and ρ are selected according to the procedure described previously.

In order to observe the effect of the natural frequency of the KDAB system to (1)
the transfer functions, (2) the response power spectral densities, (3) the root mean
square responses, and (4) the mean peak amplitude responses, of the main system
parameters, two characteristic cases are considered. The first case is to match the
natural frequency of the KDAB with the BIS system’s frequency (low frequency of
0.4 Hz). This case will be referred to hereafter as KDAB-L (KDamper Absorption
Base—Low frequency). In the second case, a stiffer base is considered, with a natural
frequency of 1 Hz, in order to examine if the large base’s displacements, that are

Fig. 10 Schematic representation of the bridge considered. a Longitudinal section, b Transverse
section
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Table 1 Parameters of the KDAB-L and KDAB-H systems (L–low frequency, H–high frequency)

System μ (%) κ ζD ε (%) f 0 (Hz)

KDAB-L 5 3.41 0.622 5 0.4

KDAB-H 5 3.41 0.622 5 1

required in the classical seismic isolation concept, can be avoided. This case will
be referred to hereafter as KDAB-H (KDamper Absorption Base—High frequency).
The parameters of the KDAB-L and KDAB-H are presented in Table 1.

4.2 Effect of the Isolation Frequency on the Displacement
and Acceleration Transfer Functions

Figure 11 presents the transfer functions of the main system responses. The Base
Isolated System (BIS) system has an f B= 0.4 Hz and a damping ratio of 20% and
the KDamper Absorption Base systems have a natural base frequency of 0.4 Hz
(KDAB-L) and 1.0 Hz (KDAB-H), respectively

The effect of the KDamper, implemented to the bridge structure, leads to a signif-
icant reduction to the BIS maximum value of the transfer function HAS (absolute
acceleration), which becomes now a low pass filter (Fig. 11a), while at the same time
retains a significant frequency content. The transfer function of the deck’s relative
displacement HUS is dramatically improved in all frequency range with the imple-
mentation of the KDAB system. Increasing the natural frequency of the KDAB from
0.4 Hz (KDAB-L) to 1.0 Hz (KDAB-H), the base’s relative displacement HUS, as
well as the KDamper’s relative displacement HUD, are dramatically improved.

Fig. 11 Transfer Functions of the main system responses a structure’s absolute acceleration HAS,
b structure’s relative displacement HUS, and c KDamper relative displacement HUD for all the
considered systems: BIS, KDAB-L, and KDAB-H
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Fig. 12 Response Spectrum Power Densities of the main system responses a structure’s absolute
acceleration SAS, b structure’s relative displacement SUS, and c KDamper relative displacement
SUD for all the considered systems: BIS, KDAB-L, and KDAB-H

4.3 Effect of the Isolation Frequency on the Response Power
Spectral Densities

Based on the design spectrum-compatible ground motion acceleration spectrum SA
of Fig. 8a, the response power spectral densities of all three alternative systems of
Fig. 11 are obtained and depicted in Fig. 12. Figure 12a presents the response power
spectra density SAS . It is observed that the considered control systems (KDAB-L, and
KDAB-H) manage to reduce the BIS’s maximum values of the SAS . The frequency
content of these response power spectral densities is increasing in the following
order: BIS, KDAB-L, and KDAB-H.

KDamper absorption base concepts present a dramatic improvement in the
response power spectral density SUS , compared with the BIS system. More specifi-
cally, although the KDAB-L system has the same base natural frequency (0.4 Hz), it
manages to reduce the maximum value of the SUB over one order of magnitude, and
KDAB-H which represents the same concept with the KDAB-L, but with a stiffer
base (higher nominal frequency), reduces the maximum value of SUB more than two
orders of magnitude (Fig. 12b). Finally, by making a stiffer base (KDAB-H), the
KDamper’s relative displacement power spectral density is reduced more than one
order of magnitude (Fig. 12c).

4.4 Effect of the Isolation Frequency on the Root Mean
Square Responses and Mean Peak Amplitude Responses

Figure 13 presents the structure’s absolute acceleration, the deck’s relative displace-
ment, and the KDamper’s relative displacement mean square responses ratio:

rUS = RUS

RUS(re f )
rAS = RAS

RAS(re f )
rUD = RUD

RUS(re f )
, (15)
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Fig. 13 Root mean square responses ratio (solid lines) and verification with mean of the maximum
dynamic responses ratio (dotted lines), of 30 Artificial Accelerograms, of the BIS system with
a damping ratio of 20% and the KDAB system with parameters: μ = 0.05, κ = 3.41 and ζD=
0.622 a BIS’s dynamic responses, bKDAB’s system dynamic responses, and c KDamper’s relative
displacement, over the base’s natural frequency f B, f 0

where RUS(ref) and RAS(ref) pertain to the initial BIS system with a natural
frequency of 0.4Hz and a damping ratio of 20%. The results concern the BIS system
with a damping ratio of ζ B= 20% and a continuous variation of the its natural
frequency in the range f B= [0, 4–2.0] Hz, and the KDAB system with parameters
μ = 5%, κ = 3.41, ζD= 0.622 and a continuous variation of the base’s natural
frequency in the range f 0= [0, 4–2.0] Hz. The inherent conflict between the require-
ment for the simultaneous minimization of the structure’s absolute acceleration and
relative displacement is observed. Figure 13 shows that the deck’s absolute acceler-
ation reduction of the BIS and KDAB systems, are at similar levels, while the base
becomes less stiff (decreasing the base’s natural frequency). The implementation of
a KDamper as an absorption base reduces the base’s relative displacement more than
50% in all the considered base’s frequency range (f B, f 0).

Next, the equations of motion of the BIS and KDAB, respectively, are solved for
all the 30 accelerograms of the database.in the time domain, using the Newmark-β
method with linear acceleration. The mean of the ratio of the maximum responses
of the dynamic response is defined as

vUS = VUS

VUS(re f )
vAS = VAS

VAS(re f )
vUD = VUD

VUS(re f )
, (16)

where VUS , VAS , VUD are the mean of the maximum systems dynamic responses
and VUS(ref), VAS(ref) pertain to the initial BIS system with a natural frequency of
0.4 Hz and a damping ratio of 20%. The results are also presented in Fig. 13 and
clearly confirm that a spectral driven design of a control system is accurate, and more
specifically a spectral driven optimization of the KDAB base’s natural frequency is
possible.



186 K. A. Kapasakalis et al.

Table 2 List of structure’s
absolute acceleration,
considering max values of the
dynamic responses, and the %
reduction compared with the
mean PGA of the 30 Artificial
Accelerograms

BIS KDAB-L KDAB-H

max(As) (m/secˆ2)
(%)

1.323 2,064 3,692

74,52 60,24 28,87

Table 3 List of structure’s
relative displacement,
considering max values of the
dynamic responses, and the %
reduction compared with the
base isolation concept, BIS

BIS KDAB-L KDAB-H

max(Us) (m)
(%)

0.183 0.090 0.038

– 50.81 79.23

4.5 Numerical Results—Time Histories

The dynamic responses, considering the max values of the dynamic responses of
all 30 Artificial Accelerograms in the database, of the initial BIS system and the
controlled system with the two considered cases (KDAB-L, and KDAB-H) are
presented in Tables 2 and 3. The presented results concern the maximum values
of the systems main dynamic responses.

Considering the BIS system, the deck’s relative displacement is observed to be
prohibitively high, as expected (mean uB = 18.3 cm), while at the same time presents
a great reduction to the deck’s absolute acceleration compared with the PGA. The
use an alternative flexible base with the KDAB-L system, also presents very high
reduction, more than 60%, of the deck’s absolute accelerations, and at the same time,
the base’s relative displacement is 50% lower compared with the BIS (mea nuB=
9.0 cm). The use of a stiffer base, with the KDAB-H system, manages to improve the
structures dynamic behavior by reducing the absolute accelerations more than 25%
and retain the base’s relative displacement to very low levels (mean uB= 3.8 cm).
This makes possible the implementation of such a device, for base isolation, without
conventional seismic isolation bearings.

5 Conclusions

In this paper, the KDamper is implemented for seismic protection of a bridge struc-
ture, as an alternative or supplement of conventional seismic isolation bearings.
A complete analytical approach for the selection of the KDamper parameters for
acceleration optimization, under base excitation, is considered. A compatible ground
motion spectrum is calculated from a database of artificial accelerograms and the
response power spectral densities andmean square responses are defined and verified
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in the time domain. Finally, a spectral driven optimization of the KDamper parame-
ters natural frequency is considered, and the following conclusive comments can be
made:

• The optimal design of theKDamper, for an optimization of the structure’s absolute
acceleration transfer function, achieves an improved dynamic structural response.

• A compatible ground motion spectrum, generated from a database of artificial
accelerograms, can be used to define the root mean square responses. The results
confirm the ability of the root mean square responses to represent accurately the
effect of the variation of the natural or base’s frequency to the system responses.

• The KDamper with a nominal frequency equal to the low frequency of a conven-
tional base isolation system (0.4Hz),mentioned in the paper asKDAB-L, presents
similar reduction to the deck’s absolute accelerations with the BIS system, more
than 60%, and at the same time the deck’s mean maximum relative displacement
is 50% than that of the BIS system (uB, BIS= 18.3 cm, uB, KDAB-L= 9.0 cm).

• The KDamper as a stiffer base absorption system, with a nominal frequency
much higher (1Hz) than that of the BIS system, leads to a substantial reduction of
the base’s relative displacement (uB, KDAB-H= 3.8 cm) combined with an accept-
able structure performance with respect to the deck’s absolute acceleration, with
reductions more than 25%.
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Appendix

In the limit cases of ζD= 0 orζD → ∞, HAS of Eq. (8) becomes

HAS(0) =
∣
∣
∣
∣

A

C

∣
∣
∣
∣
; HAS(∞) =

∣
∣
∣
∣

B

D

∣
∣
∣
∣

(A.1)

The transfer function HAS(q,ζD) of Eq. (8) has two poles for two different values
of q and therefore, it presents two different maximal values (peaks) at these points.
The optimal selection of the parameters of the KDamper requires that both these
peaks are minimized and become equal to each other. This is ensured by the optimal
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design approach followed in Den Hartog [21], which will be also used in the current
paper. The approach is based on the identification of a pair of frequencies qL< 1 and
qR> 1, where the values HAS(qL) and HAS(qR) become independent of ζD. The first
step for the optimization procedure is the requirement that the values of the transfer
functions at these points are equal:

HAS(qL) = HAS(qR) = HASI = HAS(∞) (A.2)

In order that a solution for such a pair of frequencies exists, two alternative
conditions must be fulfilled as in Den Hartog [21]:

Case I:

AD = BC (A.3a)

Case II:

AD = −BC (A.3b)

As it can be verified, no solution of Equation (A.3a) exists for a positive q2, when
the values κ ,μ, and ρ are positive. Elaboration of Equation (A3.b) results to:

(A2D2 + B0)q
4 + (A0D2 + A2D0 + B0C2)q

2 + (A0D0 + B0C0) = 0, (A.4)

where

A = A2q
2 + A0; B = B0ρq; C = q4 + C2q

2 + C0; D = (D2q
2 + D0)ρq

(A.5)

A2 = A2ρρ
2 + A20; A0 = A0ρρ

2 + A00; B0 = B0ρρ
2 + B00; C2 = C2ρρ

2 + C20.

(A.6a)

C0 = C0ρρ
2 + C00; D2 = D2ρρ

2 + D20; D0 = D0ρρ
2 + D00. (A.6b)

Aρ = (A0ρD2ρ + A2ρD0ρ + B0ρC2ρ)D20 − 2(A2ρD20 + A20D2ρ + B0ρ)D0ρ.

(A.7a)

BρA = [(A0ρD20 + D2ρ A00) + (A2ρD00 + D0ρ A20) + (B0ρC20 + C2ρB00)]D20.

(A.7b)

BρB = −2(A2ρD20 + A20D2ρ + B0ρ)D00 − 2(A20D20 + B00)D0ρ (A.7c)

Bρ = BρA + BρB . (A.7d)
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Table A1 Coefficients in Eqs. A.6a, A.6b

A2i A0i B0i C2i C0i D2i D0i

i = ρ −κ(1 + κ)μ 1 κ2μ −[1 + (1 + κ)2μ] 1 0 κ2μ

i = 0 −1 0 1 −1 0 −(1 + μ) 1

Cρ = (A00D20 + A20D00 + B00C20)D20 − 2(A20D20 + B00)D00 (A.7c)

and the coefficients in the Eqs. (A.6a, A.6b) are defined in Table A1.
As a result of Eq. (A.4), the pair of roots of Eq. (A.4) must satisfy

q2
L + q2

R = − (A0D2 + A2D0 + B0C2)

(A2D2 + B0)
. (A.8)

Additionally, both roots qL and qRmust fulfill Eq. (A.1.b), which results in:

B0

D0 + D2q2
L

= − B0

D0 + D2q2
R

⇒ q2
L + q2

R = −2D0

D2
. (A.9)

The combination of Eqs. (A.8) and (A.9) leads to an equation for the optimal
value of the parameter ρ:

Aρρ
4 + Bρρ

2 + Cρ = 0. (A.10)

The optimal value of ρ is selected as the minimum positive value of the two roots
of (A.10).
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