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1 Introduction

Shortest path problem (SPP) is a well known problem where path with least cost is
found in a given graph (network) from one vertex to another where cost of the path is
equal to the sumof theweights of all edges (arcs) consisting in the path. Theseweights
may be travelling time, travelling cost, capacity, demand etc. This is a fundamental
problem in graph theory which have been drawn attention of many scientists from
beginning as transportation problem, routing problem, communication, supply chain
management, wire length minimization problems etc. can be converted into this
problem.

Although, in traditional shortest path problem, the arc weights are crisp values
but in real life situations arc weights may represent time, cost, capacity, demand etc.
Due to variations in different variables, the arc weights cannot be represented as a
single value. In this condition, fuzzy numbers may better represent the arc weights
and the shortest path problem where the arc weights are fuzzy numbers is generally
known as fuzzy shortest path problem (FSPP). But the concept of fuzzy numbers
is very much different from crisp numbers as one cannot simply add and compare
two fuzzy numbers. To deal with fuzzy numbers the concept of fuzzy set theory has
been introduced by Zadeh [21]. Dubois and Prade [4] were first who analyzed fuzzy
shortest path problem.

Later Atanassov in 1983 [1] extended fuzzy sets to intuitionistic fuzzy sets to solve
fuzzy shortest path problem more precisely with the help of degree of membership,
degree of non-membership and degree of hesitation. Since last twodecades it has been
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become topic of great interest for many scientists. Intuitionistic fuzzy set theory has
successfully used to solve problems inmany areas like logical programming,medical
diagnosis, artificial intelligence, decision making problems etc. Since comparison of
intuitionistic fuzzy numbers (IFNs) is a difficult task, a lot of attention has been paid to
develop ranking methods for comparison of IFNs. Although ranking of intuitionistic
fuzzy numbers has been started since late seventies of last century but complete
ranking method is developed in 2014 by Wang and Westmant [19]. Since then few
other ranking methods have appeared in the literature [2, 11, 15–18]. In this paper,
we have used ranking methods given in [15] to compare the costs of paths in a given
network with trapezoidal intuitionistic fuzzy arc weights.

Yu and Wei [20] proposed a fuzzy linear programming approach to find fuzzy
shortest path in a graph. Liu and Kao [10] calculated Yager ranking indices for fuzzy
arcs to change fuzzy formulation in crisp formulation. A fuzzy algorithm based on
multiple labeling methods was proposed by Okada and Soper [14] to extract shortest
paths in a given graph. Nayeem and Pal [13] also proposed an algorithm to deal with
fuzzy shortest path problem with two different types of intuitionistic numbers. A
dynamic programing algorithm for solving FSPP has been proposed in [17]. Later
they proposed a genetic algorithm [7] to solve FSPP with mixed fuzzy arc weights in
2013. A particle swarm optimization algorithm to solve FSPP is proposed in [5]. For
other papers on fuzzy shortest path problems, see [6, 8, 9]. It is worth to note that
no metaheuristic has been proposed for SPP with intuitionistic fuzzy arc weights.

In this paper, we proposed two metaheuristic approaches: a genetic algorithm
(GAIFSP) and a tabu search based algorithm (TSIFSP) to solve intuitionistic fuzzy
shortest path problem. As there is no benchmark graph available for this problem,
we performed experiments for both the proposed algorithms on randomly gener-
ated graphs. Furthermore, there is no previously proposed metaheuristic approach
available for FSPP to compare the results with our proposed algorithms so we have
compared the performance of our proposed GAIFSP with that of TSIFSP.

Organization of the paper is as follows: Some useful basic definitions are given
in Sect. 2 to understand the problem and proposed algorithms. A genetic algorithm
is described briefly in Sect. 3 followed by explanation of its application on shortest
path problem step by step. Basic structure of tabu search algorithm is explained in
Sect. 4 followed by explanation of proposed TSIFSP step by step. Experimentation
and results are discussed in Sect. 5. The work is concluded in Sect. 6.

2 Some Basic Definitions

In this section some basic definitions regarding graph theory and fuzzy theory are
presented as follows:

Graph: A graph G(V,E) is a combination of a set of n vertices V = {v1, v2, . . . , vn}
together with a set of m edges E = {e1, e2, . . . , em}, such that each edge ek is repre-
sented as a pair of vertices (vi, vj) and is denoted by vivj for convenience. Cardinality
of the graph is denoted as |V | = n.
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Directed Graph: A simple graph where each edge has a direction i.e. each edge is
represented by an ordered pair of vertex is called directed graph. In other words if
an edge (vi, vj) connects vertex vi to vj then it is not necessary that it also connects
vertex vj to vertex vi. In this paper, we have considered only directed networks and
call them simply a network.

Path: A u − v path is defined as a sequence of vertices starting at u and ending at v,
where consecutive vertices in the sequence are adjacent vertices in the graph and no
vertex is repeated.

Intuitionistic Fuzzy Sets: An intuitionistic fuzzy set X in universal set Y is defined as
X = {y, μ′

X (y), ν ′
X (y) ∈ Y }, where μ′

X (y) : Y → [0, 1] and ν ′
X (y) : Y → [0, 1] are

called the membership and non-membership grades respectively and ∀y ∈ Y , 0 ≤
μ′
X (y) + ν ′

X (y) ≤ 1. Pair (μ′
X (y), ν ′

X (y)) is called an intuitionistic fuzzy number. For
any intuitionistic fuzzy number B let eight numbers a′
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Graphical representation of the intuitionistic fuzzy number is shown in Fig. 1.

2.1 Trapezoidal Intuitionistic Fuzzy Number

A trapezoidal intuitionistic fuzzy number with parameters b′
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′
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′
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4 >)where,

membership function is defined as
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Fig. 1 Graphical
representation of the
intuitionistic fuzzy number
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Figure 2 shows the graphical representation of trapezoidal intuitionistic fuzzy num-
ber.

Fig. 2 Graphical
representation of the
trapezoidal intuitionistic
fuzzy number
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2.2 Addition of Two Trapezoidal Intuitionistic Fuzzy
Numbers
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2.3 Centroid Ranking Technique
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The ranking function of the trapezoidal intuitionistic fuzzy number A is defined by

R(X ) =
√
1

2
([pμ′(X ) − qμ′(X )]2 + [pν ′(X ) − qν ′(X )]2)

3 Genetic Algorithm

Genetic algorithm (GA) is a heuristic search procedure and an optimization tech-
nique which is inspired from the process of natural evolution and generally used to
generate high quality solution to a problem. It is a type of evolutionary algorithm
based on the principle of evolution via natural selection. This process begins with ini-
tialization of a population of randomly generated solutions. It is an iterative process
where each iteration generates a population of new generation. A fitness function is
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Fig. 3 A flow chart of genetic algorithm

concerned with the problem is defined to evaluate each solution in each generation
and a comparison takes place between each two solutions of the current population
which selects the solution with better fitness value and rejects the other one keeping
the population size constant. Population obtained after this process is modified by
reproduction (crossover) and mutation operators to generate the population of next
generation. The new generated population is then used in the next iteration of the
algorithm. In general, the procedure continued until there is no change in the best
observed fitness value or number of iterations are less than the pre-defined fixed
value. The flow chart of genetic algorithm is shown in Fig. 3. To know more about
genetic algorithm see [3].

3.1 Genetic Algorithm for Solving Intuitionistic Fuzzy
Shortest Path Problem

In this section, the proposed genetic algorithm for shortest path problem with intu-
itionistic fuzzy arc weights, is explained with description of genetic operators such
as initialization of the parent population, selection, crossover, and mutation operator
etc.
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3.1.1 Initial Population

In general, a solution in the population of genetic algorithm is represented as a
chromosome of binary numbers. But in case of FSPP, solution is a path in a given
network. So it is not convenient to generate the solution randomly as the random
sequence of vertices may not correspond to a path in a given network. Also the
length of the path is not a fixed number as it may vary from two to n − 1 in a given
network with n vertices. So, there is a necessity to use some strategy to generate a
solution. Here, an approach given in [7] is used to obtain various paths in a given
network. The algorithm starts with first vertex of the network and ends with the last
vertex or terminating vertex by applying specific steps in between. This algorithm
is called repeatedly to generate desired population of paths. The framework of the
algorithm is given below [7]:

Algorithm 1 Algorithm to generate an initial population
1. Find adjacency matrix A of a directed graph G = (V,E) and initialize population matrix
par−pop.
2. Set pop−size (population size) and k = 1.
3. Set i = l = p(l) = 1.
4. Define a1(i) = {j|(i, j) ∈ A,A(i, j) = 1} and select a member of it, say j. Let l = l + 1 and
p(l) = j.
5. If j 	= n then i = j and go to 4.
6. Save the produced path in par−pop[k]. let k = k + 1.
7. If k < pop−size then go to 3 else stop.

At the end of execution of this algorithm the population of paths is stored in a
matrix namely par−pop. The algorithm is explained belowwith the help of a network
shown in Fig. 4 where A is the adjacency matrix of this network.

Fig. 4 An example of a
network
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 0 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here n = 8. Initially set l = i = p(l) = 1. Then a1(1) = {2, 3, 5}. Select an element
of this set randomly say j = 5. Set l = l+1 i.e. l =2 and p(2) = 5. Since 5	=8, set
i = 5 and a1(5) = {6, 7}. Now let j = 6. Set l =3 and p(3) =6. Since 6 	=8, set i =
6 and a1(6) = {8}. Now j = 8, l = 4 and p(4) = 8. Since p(4) = 8, procedure stops.
The generated path is 1-5-6-8. In this paper, we call it as a solution.

3.1.2 Fitness of a Solution

For selection of good solutions, it is necessary to define their fitness which we call as
the cost in this paper. To find the fitness (cost) of each solution in par−pop, a centroid
ranking technique defined in Sect. 2 is used. To understand it, let us consider one of
the solution 1-5-6-8 of network shown in Fig. 4. The trapezoidal intuitionistic fuzzy
weights of all the arcs of this network are generated randomly and shown in Table 1.
Using this table, fitness of the solution 1-5-6-8 is calculated as follows:

First add all the arcweights corresponding to each edgeof the solution, by applying
addition procedure defined in Sect. 2. So total arc weight of the solution 1-5-6-8 is
(〈72, 87, 107, 120〉, 〈55, 87, 107, 133〉). Fitness of the solution 1-5-6-8 calculated

Table 1 Edges of a network (Fig. 4) and their corresponding weights

Edge Intuitionistic trapezoidal weight

1–2 (〈24, 35, 43, 52〉, 〈16, 35, 43, 58〉)
1–3 (〈24, 28, 29, 37〉, 〈18, 28, 29, 48〉)
1–5 (〈27, 31, 39, 43〉, 〈19, 31, 39, 48〉)
2–4 (〈23, 32, 36, 40〉, 〈19, 32, 36, 43〉)
2–5 (〈19, 22, 25, 33〉, 〈12, 22, 25, 41〉)
3–7 (〈18, 28, 37, 39〉, 〈11, 28, 37, 45〉)
4–5 (〈20, 31, 35, 43〉, 〈11, 31, 35, 48〉)
4–6 (〈16, 26, 29, 31〉, 〈12, 26, 29, 32〉)
5–6 (〈19, 26, 33, 36〉, 〈17, 26, 33, 39〉)
5–7 (〈18, 21, 30, 35〉, 〈11, 21, 30, 37〉)
6–8 (〈26, 30, 35, 41〉, 〈19, 30, 35, 46〉)
7–8 (〈20, 31, 32, 39〉, 〈15, 31, 32, 44〉)
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by centroid ranking technique mentioned in Sect. 2 is 154.579. So the cost of the
solution 1-5-6-8 is 154.579. In context of the problem presented here, the solution
with lower cost is more fit than the solution with greater cost. Note that the minimum
cost is maintained at each iteration of the algorithm which is treated as the Best−cost
and the corresponding path is treated as the Best−solution at the end of the algorithm.
Note that the Best−cost obtained at the end of the execution of the algorithm is treated
as final−cost.

3.1.3 Selection

This process aims to keep good solutions in the population by omitting the poor
ones without reducing the population size. In this work, tournament operator is used
for selection procedure wherein a comparison has been made between each two
consecutive solutions of par−pop and the best one (with lower cost) is placed in a
dummy matrix namely new−pop with same size as that of par−pop. It is worthy to
note that each solution in par−pop participates two times in a tournament and the
best solution is placed in new−pop. In this way new−pop may have one, two or zero
copy of a solution in par−pop.

3.1.4 Crossover

Crossover combines properties of two parent solutions and generate two child solu-
tions having some common properties with parent solutions. In this step two new
solutions are produced by using any two randomly selected solutions from new−pop.
Crossover rate (pc) is used to determine the frequency of this job. In our proposed
GAIFSP, one point crossover is used. This is a very common crossover technique
used in genetic algorithms where two random paths (parent solutions) are selected
from the population obtained after selection and if any vertex is common between
them except from the first and the last vertex, left or right parts of the common vertex
of both parent solutions are exchanged.

Example: Consider two solutions 1-5-7-8 and 1-2-4-5-6-8 of network shown in
Fig. 4. Here vertex 5 is common in both solutions. Then exchanging right part of
vertex 5 of both the solutions two new solutions are 1-5-6-8 and 1-2-4-5-7-8.

Note that in this process two new child solutions are generated and replaced their
parent solutions in a dummy matrix of new−pop if child solutions are more fit than
parent solutions. This crossover procedure is repeatedpc × pop−size number of times
on new−pop and at the end dummy new−pop is copied back to original new−pop.

3.1.5 Mutation

This function systematically changes the vertices of a solution which results either a
positive direction towards the optimal solution or resulted in the deviation from the
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optimal solution i.e. the mutated solution can be better than the previous one or not.
In proposed heuristic, mutation is addressed effectively. In this process, a mutation
rate or mutation probability (pm) is fixed initially so that the frequency of application
of this operator is q = pop−size × pm. Mutation is applied on new−pop obtained
after crossover for q number of times. Firstly q number of solutions are selected
from new−pop by producing q different random integers between 1 and pop−size.
To apply the mutation on a solution, a random number, say k, is generated between 1
and length of the path of the current solution. After that, a new path is searched using
Algorithm 1 from kth vertex to the last vertex of the solution keeping vertices prior
to kth vertex remain same. Now so obtained mutated solution replaced the original
one if it is more fit in concerned to FSPP.

For an example, consider a randomly selected solution 1-2-4-6-8 of network
shown in Fig. 4. This is called as current solution with cost = 201.67. Here path
length is 5, therefore a random number (say 4) is generated between 1 and 5. Then,
the first three vertices 1, 2 and 4 are remain at their places and random path is evolved
starting with vertex 6 at position 4 using Algorithm 1. So the new obtained mutated
solution is 1-2-4-5-7-8. The cost of this solution is 242.35. Since cost of mutated
solution is more than the original one, it wouldn’t be replace the parent solution
(original one).

4 Tabu Search

Tabu search (TS) is a single solution based metaheuristic that guides a local search
heuristic procedure to escape from local optima and to explore the solution space.
This method was proposed by Grover in 1986 [12]. Tabu search is an extension of
previously existing local search approaches. In fact it can be seen that basic tabu
search is a combination of local search with short term memories. The process starts
with initializing a random solution. A candidate list of moves is created by applying
some specific steps. In each iteration, each move from candidate list generates a new
solution from current solution. This set of solutions is regarded as tabu list and a
solution from it is recorded as best solution if it improves the previous best and tabu
list is updated. The process stops if solution remains unchanged for some specific
number of iterations or the optimal solution is found.

4.1 Tabu Search for Solving Intuitionistic Fuzzy Shortest
Path Problem (TSIFSP)

In this section the proposed tabu search algorithm to solve intuitionistic fuzzy shortest
path problem is explained. The TSIFSP algorithm starts with generating an initial
solution using Algorithm 1. Initially, this solution is called current−solution and
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cost of this solution is considered as current−cost and this solution is saved in a
tabu list for some time period or for few number of iterations which is called tabu
tenure (t) so that this solution is not selected for t number of iterations and new
area of search space can be explored. The tabu list is used to prevent looping of
solutions and to guide the algorithm to explore the global solution space. To improve
the current−solution, N number of neighbouring solutions of current−solution are
generated and best solution (solution with lowest cost) among these neighbouring
solutions is determined which is referred to as best−solution and cost associated
with it is called best−cost. Now this best−solution replaces the current−solution
and best−cost replaces the current−cost if best−cost is less than current−cost. Once
a best−solution becomes current−solution, it is inserted into the tabu list for tabu
tenure t to escape from getting stuck in local optima. This process is repeated until
current−solution remains unchanged forKmax number of iterations. After stoping the
process current−solution obtained in last iteration is desired final solution and cost
associated is final−cost of the problem. Some components of TSIFSP are explained
below:

4.1.1 Initial Solution

Here, Algorithm 1 is used to generate an initial solution.

4.1.2 Neighbouring Solution

To generate neighboring solution of current−solution, two vertices of the current
solution are selected randomly and path between these two vertices is regenerated
using Algorithm 1, where these randomly selected vertices are taken as initial vertex
and final vertex.

As an example, consider a path 1-2-4-5-7-8 of network shown in Fig. 4 and let two
randomly selected vertices are 2 and 7. Algorithm 1 generates a new path between
vertex 2 and vertex 7. Suppose this path is 2-5-7. So a neighbourhood solution of
current solution 1-2-4-5-7-8 will be 1-2-5-7-8.

4.1.3 Tabu List

Once a solution is considered as current−solution, it is sent to tabu list for tabu tenure
t so that the algorithm do not select same solution repeatedly as searching around
some fixed solutions can prevent to explore new search space that may contain the
optimal solution. Apart from this current−solution, the randomly selected vertices in
an iteration which are used to find neighbouring solution, are also inserted in the tabu
list for short period of time tv = n/10 to escape from generating similar neighboring
solution repeatedly.
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4.1.4 Termination Criteria

The TSIFSP algorithm stops when current−solution remains unchanged for Kmax

number of iterations i.e. current−solution is not improved for Kmax number of itera-
tions.

5 Experimentations and Results

All computational experiments have been carried out on an Intel i3, 2.40GHz quad-
core processor with 2 GB RAM. All algorithms in this paper are coded in C++ and
compiled with Dev C++. Tuning of parameters for better performance of GAIFSP
and TSIFSP is discussed as follows.

5.1 Parameter Setting

For parameter setting we have used randomly generated networks with vertices 20,
40, 60, 80, 100 and edges equal to 40, 78, 185, 210 and 329 respectively. Weights
on each edge of graphs as trapezoidal inuitionistic fuzzy numbers are also generated
randomly. For tuning the parameters used in GAIFSP, experiments have been done
for setting crossover rate pc and mutation rate pm. Number of generation is set to 100
for all the experiments of GAIFSP. In Fig. 5a, results of tuning crossover rate pc are
shown where pc is set to 0.2, 0.5 and 1 by fixing pm as 0.2. From the figure it can
be seen that GAIFSP performed well for pc = 0.5, so this value of pc is fixed for
further experiments. Fig. 5b shows the results of tuning mutation rate pm which is
set to 0.1, 0.2 and 0.3 and it is observed that best results are obtained when pm is 0.2
so it is fixed for further experiments. For tuning the parameters used in TSIFSP, first
experiment is carried out for setting number of neighboring solutions N by fixing N
equal to n/10, n/5 and n/2 with Kmax = 100. Results of this experiment shown in

Fig. 5 Experimental results of GAIFSP with different values of a pc and b pm
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Fig. 6 Experimental results of TSIFSP with different values of a N and b Kmax

Table 2 Parameter setting

Symbols Parameters Value

t Tabu tenure n/4

tv Tabu tenure for vertex n/10

N Number of neighborhoods n/5

Kmax Number of iterations 100

pc Crossover rate 0.5

pm Mutation rate 0.2

pop−size Population size n

Fig. 7 Elapsed time
comparison of GAIFSP and
TSIFSP

Fig. 6a clearly depict that least final−cost is obtained when number of neighboring
solutions is n/5 or n/2. So N has been fixed as n/5. After fixing N , experiments
are carried out for tuning Kmax. For this TSIFSP is executed with Kmax=25, 50, 100
and 200. From Fig. 6b it can be observed that final−cost of an instance is least for
Kmax = 100. After that performance of TSIFSP is stable. So Kmax = 100 is fixed for
TSIFSP. Summary of the parameters, for both the algorithms, with their fine tuned
values is given in Table 2.
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5.2 Comparison of GAIFSP and TSIFSP

As there is no benchmark graph available for FSPP with intuitionistic fuzzy arc
weights, performance of both GAIFSP and TSIFSP is tested on same network
instances as used to fine tune the parameters in the previous section. Since per-
formance of both the algorithms is comparable in obtaining final−cost for all the
instances, elapsed time has been noted for both GAIFSP and TSIFSP. Value of
elapsed time for both the algorithms shown in Fig. 7 concluded that GAIFSP is
faster than TSIFSP in terms of finding shortest path having intuitionistic arc weights
in a given network.

6 Conclusion

We have considered a new shortest path problemwith intuitionistic fuzzy arc weights
in this paper and proposed two heuristics for solving it. One is population based and
the other one is single solution based heuristic. Experiments on randomly generated
graphs show that both algorithms are equally capable of finding shortest path in a
given network but computation time of GAIFSP is less than that of TSIFSP. For
future work, some more effective heuristics can be designed and compared for this
problem.
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