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1 Introduction

Crane systems are commonly used at civil construction sites, warehouses, manu-
facturing plants, and port facilities to handle various types of payloads. The crane
system helps the industry for transporting various payloads from one place to another.
Industry uses various popular cranes such as truck-mounted crane, tower crane,
gantry crane, rough-terrain crane, and port crane. These cranes may be classified
as per their dynamic properties according to various coordinate systems. At high-
rise construction sites, generally, a tower crane is used, and a cylindrical coordinate
system is used to describe the mathematical modelling for movement of the payload
during the crane operation. The payload is supported by wire hoist, and the trolley
moves along the boom arm in case of a gantry crane. The gantry crane uses a Carte-
sian space to describe the position and movement of the system. The port/boom
crane is used as a spherical coordinate to describe the movement of the system. The
payload is backed by the wire rope suspension. A port crane is normally placed on
a base to facilitate the change of the workspace. All types of crane systems must
work very quickly, safely, and precisely, because efficiency is directly related to the
productivity of material handling in industries. Industry uses double-pendulum [1–
11] suspension-type cranes where both the hook and the payload are subjected to
dynamic excitation.

A double-pendulum crane system represents the motion of both the hook and
payload. The operation of the crane system becomes extremely difficult due to the
nonlinear dynamic behaviour of the double pendulum [11–15] particularly when the
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crane base or rail and trolley of the crane is movable. The overhead crane system
based on the assumption of a unique pendulum model is not always true. In some
cases, the mass of the hook cannot be ignored, which has led to a double pendulum-
type system [8, 9]. Unlike a simple pendulum that only balances the payload, a double
pendulum must take into account the balancing of the payload and the balancing of
the hook. It has been reported that a double-pendulum crane underwent oscillations
of the payload [1–4, 10–15] and its effective control strategies [1, 2, 5–9, 12, 13, 16,
17]. Therefore, designing a precise, safe, and fast-operated double-pendulum crane
system to position the load with minimum payload swing is more challenging due
to the complexity and chaotic dynamic behaviour of the double pendulum.

This study presents the mathematical modelling of a three-dimensional (3-D)
gantry crane with a double-pendulum dynamics. The dynamic equations are derived
using the Lagrangian approach. Subsequently, the output payload response is deter-
mined in time and frequency domain by developing algorithms in MATLAB for
better crane payload swing control. This paper is divided into four sections. The first
section gives a brief overview of the problem. The second section deals with the
physical model and parameters of the gantry crane. The 3-D gantry crane mathemat-
ical modelling is described in the third section. The fourth section presents results
and discussion of the key findings. Conclusions are drawn in the final section.

2 Physical Model Representation of the Gantry Crane
System

The physical model of the overhead gantry system shown in Fig. 1 incorporates its
motion in 3-D space including double-pendulum motion, where an external driving
force (F ∈ R2) moves the trolley and rail simultaneously. The gantry crane system
comprises four subsystems. i.e., rail for X-axis movement, trolley for Y-axis move-
ment, a combination of hook and payload where θ1 and ϕ1 are the hook rope swing
angles; θ2 and ϕ2 is the payload rope swing angles; L1 and L2 are the wire rope
length of hook and payload, respectively.

The hook ball mass moment of inertia ( jh) is assumed constant [14]; however,
the payload ball mass moment ( jp) of inertia is varying according to variations
in the payloads (m p). For simplified mathematical modelling, the rail and trolley-
wheel friction force and the flexibility of the wire rope are neglected. The physical
parameters of the gantry crane [15, 18] are given in Table 1.

3 Mathematical Modelling

The total kinetic and potential energy associated with the gantry crane needs to be
derived, and then, the Lagrangian formulation for dynamic modelling is used to
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Fig. 1 Mathematical representation of the 3-D gantry crane using a double-pendulum modelling
approach

Table 1 Parameters of the crane system

Parameter Trolley
mass

Rail
mass

Hook
ball
mass

Payload
ball mass

Hook
moment of
inertia

Payload
moment
of inertia

Hook
rope
length

Payload
rope
length

Symbol mt mr mh m p jh jp l1 l2

Value 1.06 kg 6.4 kg 0.1 kg Variable 0.005 kg-m2 Variable 2.0 m 1.0 m

derive the 3-D gantry crane overall system response. Simulation is performed using
a state-space model of the gantry crane by MATLAB ode45 solver.

3.1 Kinetic Energy

The rail, trolley, hook, and payload position vectors are derived using
Fig. 1. The position vectors are rr = [x, 0, 0]T , rt == [x, y, 0]T ,

rh = [x + L1 sin θ1 sin ϕ1, y + L1 sin θ1 cos ϕ1,−L1 cos θ1]T , and rp = [x +
L1 sin θ1 sin ϕ1+L2 sin θ2 sin ϕ2, y+L1 sin θ1 cos ϕ1+L2 sin θ2 cos ϕ2,−L1 cos θ1−
L2 cos θ2]T , respectively, where the trolley positions in X- and Y-directions are repre-
sented by parameters x and y, respectively. The kinetic energy, KE, of the whole crane
system is given in Eq. (1),

KE = krail + ktrolley + khook + kpayload (1)
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where krail = 1
2 mrṙ2

r , ktrolley = 1
2 mtṙ2

t , khook = 1
2 mhṙ2

h + 1
2 Jh θ̇

2
1 + 1

2 Jh ϕ̇
2
1 , kpayload =

1
2 m pṙ2

p + 1
2 Jp θ̇

2
2 + 1

2 Jpϕ̇
2
2 .

3.2 Potential Energy

The total potential energy, PE, of the whole crane system is given in Eq. (2),

PE = phook + ppayload (2)

wherephook = −mh gL1 cos θ1, ppayload = −m pg(L1 cos θ1 + L2 cos θ2) and g is
the gravity acceleration vector.

3.3 Lagrangian Formulation

The Lagrangian approach as shown in Eq. (3) is used to derive the system equations
of motion for dynamic response analysis.

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Fi , i = 1, . . . , 6 (3)

where L(q, q̇) = KE − PE, q(t) = [
x y θ1ϕ1θ2ϕ2

]T
is the state vector and F =[

Fx Fy0000
]T

is the input excitation force vector, which is defined by a bang–bang
control signal where Fx and Fy denote the input control force acting on the trolley
along with the X- and Y-axis directions.

From Eq. (3), the dynamic model of the crane system is then expressed in the
form of matrices for further conversion in the state-space representation of dynamic
payload simulations.

M(q)q̈ + V (q, q̇) + G(q) = F(t) (4)

The system response can be expressed in the following form of the equation of
motions from Eq. (4).

q̈(t) = M(q)−1(−V (q, q̇) − G(q) + F(t)) (5)

where in the above Eq. (5), the matrices M(q) ∈ R6×6, V (q, q̇) ∈ R6×1, and G(q) ∈
R6×1 represent the Inertia, Centripetal–Coriolis, and gravity terms, respectively, and
these matrices terms are further defined in the given appendix.
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4 Results and Discussions

For swing and motion response of the payload analysis, the trolley of the gantry
crane is excited using a bang–bang signal of amplitude 2 N force along the X-axis
and 1 N of force along the Y-axis. The applied force signal is represented in Fig. 2.
The bang–bang force signal has equal acceleration and deceleration periods. Some
examples of the used bang–bang signal for payload response simulation can be found
elsewhere [15, 18].

Simulation steps using developed algorithms for swing and motion responses of
the payload analysis in both time and frequency domain are shown in Fig. 3.

Fig. 2 Input force excitation applied on the trolley for dynamic payload response

Dynamic 
equations

•Represented in the 
form of matrices

Numerical 
Simulations 
(state space )

•MATLAB 
algorithms using 
ODE45

Response in 
time domain

•Swing angle and 
payload position 
response

Response in 
frequency 
domain

•MATLAB 
algorithms using
Welch’s PSD 
techniques

Fig. 3 Simulation steps using the developed algorithms for dynamic response analysis
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The results given in Fig. 4 show the payload swing angle response (θyz and θxz)
with respect to XZ and YZ planes with the various mass (m p) of the payload. It shows
that the oscillation of the swing angles decreases with increasing mass (m p) of the
payload. For other cases, in the simulation, if we increase the hook rope length (l1),
the swing angles also increase.

Simulation results in Fig. 5a and b show the variation of time response along
X-, Y-, and Z-axis in 3D space of the payload motion with the variation of payloads
mass. It shows that the amplitude of the X-, Y-, and Z-axis oscillation of the payload
decreases with increasing mass of the payload. It is more visible when we see the
3-D phase plot of the payload amplitude oscillations shown in Fig. 5b. It is observed
from Fig. 5b that when the mass of payload increases, the amplitude of the response
decreases.

Fig. 4 Dynamic response of the payload swing angles (rad.) versus time (s)

Fig. 5 Dynamic response of the payload, a time response plot, displacement (m) versus time (s),
b 3-D phase response plot



Dynamic Modelling and Payload Response Analysis of a 3-D Overhead … 195

Fig. 6 Power spectral density of X, Y, and Z payload dynamic response

Table 2 Frequencies of payload response along the X-, Y-, and Z-axis for the first two modes

Payload (kg) Resonance frequency (Hz)

Payload response X-axis Payload response Y-axis Payload response Z-axis

Mode-1 Mode-2 Mode-1 Mode-2 Mode-1 Mode-2

0.1 0.024 0.360 0.036 0.640 0.061 0.660

0.5 0.030 0.374 0.049 0.645 0.062 0.660

0.9 0.042 0.380 0.055 0.650 0.067 0.660

After knowing the dynamic response of the payload along X-, Y-, and Z-axis in
3-D space, the power spectral density (PSD) is then compared and evaluated using
MATLAB algorithms. It is observed from Fig. 6 that the higher the payload mass,
the resonance frequency is also higher, and there is not much frequency variation for
higher modes of vibration. The resonance frequencies for the first two modes and
payloads relation is summarized in Table 2.

5 Conclusion

In the present study, a 3-D gantry crane system considering double-pendulum effect
due to hook and payload has been modelled, and payload response simulation
is performed. Lagrange approach has been used to develop the system equations
of motion. Bang–bang force input is used to simulate the gantry crane payload
dynamic response behaviour. The crane payload position in 3-D space and swing
angle responses have been obtained using the developed dynamic modelling, and
further analysis is performed both in time and frequency domains by developing
MATLAB algorithms. The influence of the parameters such as payload mass and
hook rope length variations has been considered in the gantry crane system dynamic
study and simulation. These dynamic response study may be further useful for effec-
tive payload response control of gantry cranes with varying system parameters. This
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study presented on the dynamics of 3-D gantry crane may also be useful for studying
the dynamic behaviour and control strategies of other types of mobile crane systems.

Acknowledgements The work presented in the paper is the output of a CSIR, India, sponsored
R&D project on Mass Housing Development (HCP-015).

Appendix

M(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 m32 m33 m34 m35 m36

m41 m42 m43 m44 m45 m46

m51 m52 m53 m54 m55 m56

m61 m62 m63 m64 m65 m66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m11 = mh + m p + mr + mt ,

m12 = m21 = 0,

m13 = m31 = L1 cos θ1 sin ϕ1mh + L1 cos θ1 sin ϕ1m p,

m14 = m41 = L1 sin θ1 cos ϕ1mh + m p L1 sin θ1 cos ϕ1

m15 = m51 = L2 sin ϕ2 cos θ2m p,

m16 = m61 = L1 sin θ2 cos ϕ2m p,

m22 = mh + m p + mt ,

m23 = m32 = L1 cos ϕ1 cos θ1mh + L1 cos ϕ1 sin θ2m p,

m24 = m42 = −L1 sin θ1 sin ϕ1mh − m p L1 sin ϕ1 sin θ1,

m25 = m52 = L2 cos ϕ2 cos θ2m p,

m26 = m62 = −L1 sin ϕ2 sin ϕ2m p,

m31 = L1 cos θ1 sin ϕ1mh + L1 cos θ1 sin ϕ1m p,

m32 = L1 cos ϕ1 cos θ1mh + L1 cos θ1 cos ϕ1m p,

m33 = mh L2
1 + m p L2

1 + Jh,

m34 = m43 = m35 = m53 = m36 = m63 = 0,

m44 = −L2
1 cos2 θ1mh − L2

1 cos θ2
1 m p + mh L2

1 + m p L2
1 + Jh,

m45 = m54 = m46 = m64 = 0,

m55 = m p L2
2 + Jp, m56 = m65 = 0,

m66 = m p L2
2 + Jp − L2

1 cos θ2
2 m p

V (q, q̇) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V11

V21

V31

V41

V51

V61

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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V11 = −L1 sin ϕ1θ̇
2
1 sin θ1mh − L1 sin ϕ1θ̇

2
1 sin θ1m p

+ 2L1 cos ϕ1ϕ̇1θ̇1 cos θ1mh + 2L1 cos ϕ1ϕ̇1θ̇1 cos θ1m p

− L1 sin ϕ1ϕ̇
2
1 sin θ1mh − L1 sin ϕ1ϕ̇

2
1 sin θ1m p − L2 sin ϕ2θ̇

2
2 sin θ2m p

+ 2L2 cos ϕ2ϕ̇2θ̇2 cos θ2m p − L2 sin ϕ2ϕ
2
2 sin θ2m p,

V21 = −2L1 sin ϕ1ϕ̇1 cos θ1θ̇1mh − 2L1 sin ϕ1ϕ̇1θ̇1 cos θ1m p

− L1 cos ϕ1θ̇
2
1 sin θ1mh

− L1 cos ϕ1θ̇
2
1 sin θ1m p − L1 cos ϕ1ϕ̇

2
1 sin θ1mh

− L1 cos ϕ1ϕ̇
2
1 sin θ1m p

− 2L2 sin ϕ2ϕ̇2θ̇2 cos θ2m p − L2 cos ϕ2θ̇
2
2 sin θ2m p

− L2 cos ϕ2ϕ̇
2
2 sin θ2m p

V31 = −ϕ̇2
1 L2

1 cos θ1 sin θ1
(
mh + m p

)
,

V41 = 2L2
1 cos θ1mh sin θ1ϕ̇1θ̇1

(
mh + m p

)
,

V51 = −L2
2 cos θ2m p sin θ2ϕ̇

2
2 , V61 = 2L2

2 cos θ2m p sin θ2ϕ̇2θ̇2

G (q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0

mh gL1 sin θ1 + m pgL1 sin θ1

0
m pgL2 sin θ2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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