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Abstract. Identifying vital nodes is a basic problem in social network
research. The existing theoretical framework mainly focuses on the lower-
order structure of node-based and edge-based relations and often ignores
important factors such as interactivity and transitivity between multiple
nodes. To identify the vital nodes more accurately, a high-order struc-
ture, named as the motif, is introduced in this paper as the basic unit
to evaluate the similarity among the node in the complex network. It
proposes a notion of high-order degree of nodes in complex network and
fused the effect of the high-order structure and the lower-order structure
of nodes, using evidence theory to determine the vital nodes more effi-
ciently and accurately. The algorithm was evaluated from the function
of network structure. And the SIR model was adopted to examine the
spreading influence of the nodes ranked. The results of experiments in
different datasets demonstrate that the algorithm designed can identify
vital nodes in the social network accurately.

Keywords: Vital nodes · High-order network · Evidence theory · SIR

1 Overview

In pace with the rapid development of information technology, the forms of
communication and interaction have diversified. The resulting massive data can
not only help us better understand the relationship between people, but also
show the mode of information transmission between people [1–3]. Identifying
vital nodes in the network helps us to guide the information dissemination better.

Centrality is a method which can measure the significance or importance of
actors in social networks. Considerable centrality measures have been carried
out previously for ranking the nodes based on network topology such as Degree
Centrality (DC) [4], Closeness Centrality (CC) [5] and Betweenness Centrality
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(BC) [6,7]. Although the DC is intuitive and simple, we just take into considera-
tion the degree of nodes and ignores the global structure of the network. Whether
a node is important affects the importance of its neighbor nodes, which in the
social network its neighbor nodes would follow the behavior of the former. The
other two metrics based on the global structure of a network can better char-
acterize the importance of nodes, but exhibit some serious drawbacks because
of the computational complexity in large-scale networks [8,9]. Considering the
operating efficiency and experimental results of the algorithm, Chen et al. [8]
proposed an effective Semi-local Centrality. These above methods take nodes
and edges as research objects. Despite the success of these methods in identi-
fying vital nodes, they ignore the possible relationship between nodes, which
may lead us to deviate from the overall cognition of the network. So, an impor-
tant issue is that how to describe the interaction, transitivity and other factors
between nodes.

A number of researches have shown that social networks contain abundant
subgraph structures, which are characterized by transitivity, interaction and so
on [10,11]. Usually, we describe this subgraph structure as network motif or
graphlet [11–13]. Compared with the method of researching from edges and
points, the network structure with small subgraph structure as the research
unit is called high-order network structure. In broader network analysis, high-
order structure is often described through the idea of a network motif. Since
the concept of motif was put forward in 2002 by Moli R et al., most of the
research had centered on how to count the number of motif efficiently in the
network [10,14,15]. Until 2016, Benson et al. proved that motif can be used for
graph clustering and community discovery, and proposed a series of theoretical
basis. The research of high-order network has become one of the important means
of current research [10,15].

The importance of nodes in the network is a vague and relative concept. As it
happens, the Dempster–Shafer evidence theory is a complete theory for dealing
with uncertainty information. It was first proposed by Dempster and then per-
fected by Shafer. Compared with traditional probability theory, D-S evidence
theory can not only express random uncertainty, but also express incomplete
information and subjective uncertainty information [8,16,17]. D-S evidence the-
ory also provides a powerful Dempster combination rule for information fusion,
which can achieve the fusion of evidence without prior information, and can
effectively reduce the uncertainty of the system. On this basis, Wei et al. put
forward an algorithm to rank nodes in weighted networks [9].

In this paper, based on the high-order network analysis and Dempster-Shafer
evidence theory, we designed a high-order evidence semi-local centrality to iden-
tify vital users accurately in the social network. First, we designed a concept
based on high-order structure. And then the low-order information and high-
order information of nodes are regarded as two basic probability assignments
(BPAs). On the one hand, we verified the rationality of the proposed method
through the function of network structure. On the other hand, we adopted the
Susceptible-Infected-Recover (SIR) model to examine the spreading influence of
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the top nodes by different centrality measures. The experiments on real social
networks are applied to show the accuracy of the proposed method.

2 Related Work

High-order thinking has been shown to be useful in many applications such as
social networks, biology, neuroscience, and so on [15]. Network motifs are the
basic building blocks of networks and are also one of the important expressions
of high-order network structure [10,11].

2.1 High-Order Network Structure

Combined with the basic theory of sociology, this paper takes the 3-order motif
as the basic. Figure 1 shows the 13 connection modes of the 3-order motif.
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Fig. 1. All 13 connection modes of the 3-order motif M [15]

A motif M is usually defined as a tuple (B,A) on k nodes, where B is a
k × k binary matrix and A ⊂ {1, 2, · · · , k} is a set of anchor nodes [10].

M (B,A) =
{
(set (v) , set (XA (v))) |v ∈ V k, v1, · · · , vk, distinct,Av = B

}

(1)
Given a motif M, we define the motif-based adjacency matrix by AM =

{aij}N×N . In this paper, we use Benson et al. [11] improved algorithm to get
the motif-based adjacency matrix. So, the algorithm is as follows [11,18]:



104 M. Zhang et al.

Algorithm 1 Algorithm for the motif-based adjacency matrix AM.
Input: Directed network G = (V,E) and selected motif M
Output: AM;
1: pro–processing: If M is M4, ignore all undirectional edges in G. If M is M1 or

M5, ignore all bidirectional edges in G.
2: Obtain the undirected graph G1 by getting rid of the direction of all edges in G.
3: du is the degree of node vi in G1. Sort the nodes in G1 by ascending degree.
4: For every edge undirected edge u,v in G1, if du < dv, add directed edge (u,v) to

G2; otherwise, add directed edge (v,u) to G2.
5: For every node in u in G2 and every pair of directed edges (u,v) and (u,w), check

to see if edge (v,w) or (w,v) is in G2. If so, check whether these three nodes form
motif M in G. If they do, increment the weights of edges (AM)uv, (AM)uw, and
(AM)uv by 1.

return AM as the motif-based adjacency matrix;

Let G = (V,E,AM) be a directed and unweighted graph, where |V | =
{vi|i = 1, 2, 3, . . . , n} is the node set, and |E| = {eij |i, j = 1, 2, . . . , n} is the arc
set, where eij is a directed edge from vi to vj . AM is the motif-based adjacency
matrix.

2.2 Centrality Measures

Roughly speaking, there are two kinds of method about identifying vital nodes
which are based on the number of neighbor and based on path in network. The
former is characterized by the degree of nodes in the network as a measure
of importance. This method is relatively intuitive and has good performance,
such as DC. The latter measures the importance of nodes by controlling the
information flow in the network, such as BC and CC. This kind of method is
relatively complex and not suitable for large-scale networks [20].

The semi-local centrality is a node importance ranking method based on the
number of neighbor in the networks. The method not only considered the neigh-
bors of the nodes but also the neighbors and next neighbors of the neighbors. In
other words, this method has low time complexity and is suitable for large-scale
networks. Semi-local centrality of node vi is defined as [9]:

SLC (i) =
∑

j∈Γ (i)

∑

k∈Γ (j)

Nw (k) (2)

where Nw (k) is the number of the nearest and the nextest neighbors of node
vk, and Γ (i) is the set of the nearest neighbors of node vi.

2.3 Dempster-Shafer Theory of Evidence

The essence of D-S evidence theory is a generalization of probability theory. The
basic event space in probability theory is extended into the power set space of
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the basic event, and the basic probability assignment function is established on
it [13,20].

Let Θ = {θ1, θ2, . . . , θN} be a finite complete set of N elements which is
mutually exclusive. The frame of discernment is the set Θ. The power set of Θ
is denoted as 2Θ which is composed of 2N elements.

2Θ = {∅, θ1, θ2, . . . θN , θ1 ∪ θ2, . . . , θ1 ∪ θ2 ∪ θ3, . . . , Θ} (3)

For a frame of discernment Θ, a basic probability assignment function is a
mapping m : 2Θ → [0, 1], satisfying two conditions as follows:

m (∅) = 0 (4)

and ∑

A⊆Θ

m (A) = 1 (5)

where m is called the basic probability assignment (BPA), and m (A) represents
how strongly the evidence supports A.

In order to combine with information from multiple independent informa-
tion sources, D-S evidence theory provides Dempster’s Rules of Combination
to achieve the fusion of multiple evidence. Its essence is the orthogonal sum of
evidence. {

m (∅) = 0
m (A) = 1

1−k

∑
Ai∩Bi=A m1 (Ai) m2 (Bi)

(6)

where k is a normalization constant, called the conflict coefficient of BPAs.

k =
∑

Ai∩Bi=∅

m1 (Ai) m2 (Bi) (7)

3 High-Order Evidential Semi-local Centrality

In this section, some notations and some knowledge of high-order degree are given
as follows. Two BPAs of a node are obtained Eq. 9 based on the high-order degree
and degree of the node, respectively. An evaluation method of importance of the
node is established by Dempster’s rule of combination [9]. The influence of the
node is identified by a new centrality measure, called the high-order evidential
centrality. Inspired by semi-local centrality [English16], we propose high-order
evidential semi centrality since it not only fuse the internal information of the
network, but also considers the global structure information.

3.1 High-Order Degree

In the high-order network structure, the elements of motif-based adjacency
matrix describe the local connection density of node pair (vi, vj). The higher
the weight, the more the modal structures with the edge of node pairs are, the
worse the anti-attack ability of the node pairs is, the higher the importance of
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the node pairs is. The higher the value of elements is, the more the number of
motifs which contain the edge of node pairs are, that represent the worse the
anti-attack ability of the node pair is, the higher the importance of the node
pairs is [20].

The high-order degree of node vi is the number of times node vi appears
in the given motif. The high-order degree of the node vi denote as Hi. The Hi

algorithm is as follows:

Algorithm 2 Algorithm for the Hi.
Input: Undirected network G1, directed network G2 and selected motif M
Output: The number of M and high-order Hi

1: initialize: the Hi of all nodes in G1.
2: for edge (u, v) node vw in G1 do:
3: if node vw is not node vv:
4: if edge (v, w) in G2:
5: M which consist of node vu, node vv and node vw is isomorphic with

subgraph which consist of node vu, node vv and node vw in G1

6: the value of Hv, Hu and Hw plus one respectively
7: end

3.2 BPAs of Degree and High-Order Degree

A node in the network is either important or not important, so we ascertain a
frame of discernment Θ about each node, so a frame of discernment Θ is given
as [9]:

Θ = {h, l} (8)

where h and l represent important and unimportant respectively which are two
mutually exclusive elements.

The degree and the high-order degree are two indicators of importance about
each node. And then we can obtain these two basic probability assignment func-
tions from different independent sources.

So, two basic probability assignment functions are given as follows:

mdi
: mdi

(h) ,mdi
(l) ,mdi

(θ)
mHi

: mHi
(h) ,mHi

(l) ,mHi
(θ) (9)

where mdi
(θ) and mHi

(θ) represent the probability whether a node is important
or not in the above two indicators. And their value are

mdi
(θ) = 1 −

(
m

di
(h) + m

di
(l)

)

mHi
(θ) = 1 − (

m
Hi

(h) + m
Hi

(l)
) (10)
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mdi
(h) = λi

| ki−km|
σ

mdi
(l) = (1 − λi)

| ki−kM |
σ

mHi
(h) = | Hi−Hm|

δ

mHi
(l) = | Hi−HM |

δ

(11)

where σ and δ are given as:

σ = kM + μ − (km − μ) = kM − km + 2μ
δ = wM + ε − (

wm − ε
)

= wM − wm + 2ε
(12)

μ and ε are given as 0.15. Because the value of μ and ε have no effect on the
results. The influence value of node vi is obtained by Dempster–Shafer theory
of evidence, and is given by [9]:

M (i) = (mi (h) ,mi (l) ,mi (θ)) (13)

Normally, let mi (θ) assign to mi (h) and mi (l) averagely, then

Mi (h) = mi (h) + 1
2mi(θ)

Mi (l) = mi (l) + 1
2mi(θ)

(14)

where Mi (h) and Mi (l) are the probability of importance and unimportance
about node vi, respectively. For node vi, the higher the value of Mi (h) is, the
more important the node is. In other words, the lower the value of Mi (l) is, the
less important the node is [7,21].

The high-order evidential centrality hec (i) of node vi is defined as

hec (i) = Mi (h) − Mi (l) = mi (h) − mi (l) (15)

where hec (i) is a positive or negative number. In order to ensure hec (i) is a
positive number. The numerical treatment and normalization are denoted as
follows,

HEC (i) =
|min (hec)| + hec (i)

∑N
i=1 {|min (hec)| + hec (i)}

(16)

The example is a directed network with 10 nodes, see Fig. 2, and ki, Hi,
mi (h), mi (h) and HEC (i) for a single node is listed in Table 1.

3.3 High-Order Evidential Semi-local Centrality

We can calculate the value of HEC about each node though the above measure.
Inspired by the semi-local centrality measure, we use HEC instead of degree of
each node and then high-order evidential semi-local centrality (HESC) is defined.
The HESC algorithm is as follows:

Q (j) =
∑

kεΓ (j)

Nw (k) (17)
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Fig. 2. High-order structures in network motifs M�

Table 1. An example of a HEC

Nodes ki Hi mi (h) mi (h) HEC (i)

1 5 3 0.9177 0 0.3033

2 3 1 0.2918 0.6452 0.0957

3 1 2 0.4817 0.4573 0.1574

4 3 3 0.9007 0.0316 0.2954

5 0 1 0.0964 0.8747 0.0263

6 1 0 0.0074 0.9466 0

7 3 1 0.2918 0.6452 0.0957

8 1 0 0.0074 0.9466 0

9 1 0 0.0074 0.9466 0

10 0 1 0.0964 0.8747 0.0263

HESC (i) =
∑

jεΓ (i)

Q (j) (18)

where Nw (k) is the sum of HEC of nearest and next nearest neighbors of node
vk, and Γ (i) is the set of the nearest neighbors of node vi.
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4 Example and Experimental Analysis

In this section, we will use the proposed HESC to obtain the ranking of nodes
in three different social networks. Meanwhile, comparing with another four tra-
ditional centrality measures (DC, CC, BC and EC), we will show the difference
between them.

4.1 Datum

We conducted experiments on three social network datasets. Specific Description
about the three datasets is shown below:

Advogato. This is the trust network of Advogato. Advogato is an online com-
munity platform for developers of free software launched in 1999. Nodes represent
Advogato users and a directed edge represent trust relationships called “certi-
fication”. Advogato have three levels of “certification” corresponding to three
edge weights, the weight of master is 1.0, the weight of journeyer is 0.8 and the
weight of apprentice is 0.6. An observer without any trust certifications can only
trust himself, and therefore the network contains loops [22].

Wiki-Vote. This is a social network that describes voting relationships among
Wikipedia users. The network contains all the Wikipedia voting relationships
from the inception of Wikipedia to January 2008. In this network, nodes can be
regard as Wikipedia users and a directed edge from node vi to node vj is that
user vi voted on user vj [23].

Table 2. Dataset statistics about three social networks

Dataset Nodes Edges The number of M1 to M7

Advogato 6.5K 51.1K 18.3K

Wiki-Vote 7.1K 103.7K 608.4K

soc-Epinions1 75.9K 508.8K 1.6M

soc-Epinions1. This data set describes a who-trust-whom online social network
of a general consumer review site Epinions.com. Whether to trust each other is
decided by the members of the site. Reviews are shown to user based on the Web
of Trust and review ratings. Nodes in the network represent consumers, and the
directed edges are the trust relationship between consumers [24] (Table 2).

http://Epinions.com
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4.2 Relation Between Centrality Measures

In order to more intuitively characterize the relationship between different cen-
trality measures, we compared the average centrality value of each node in the
network by averaging over 100 independent runs under different centralities. The
relationship between HESC and the other five centrality measures is shown in
Fig. 4, Fig. 3 and Fig. 5, respectively. The Y-axis is the value of HESC. And the
X-axis is the value of other centrality measures. From the Fig. 4, Fig. 3 and Fig. 5
we can see that the correlation between HESC and DC are the strongest as pos-
itively correlated (i.e., Fig. 4(a), Fig. 3(a) and Fig. 5(a)). And then because the
HESC value of each node is obtained through the HODC value of each node
and the local information of the network is considered at the same time, the
correlation between HESC and DC is positive (Table 3).

4.3 Experimental Results Analysis

We remove the vital nodes in the network in turn, and compare the relative size
of strong connected subgraphs to judge the network invulnerability under static
attack. In this experiment, according to the order of above different centrality
methods, 10 nodes are removed each time, and then the relative size of strongly
connected subgraphs is calculated. Figure 6 shows the change of the relative
size of the strong connected subgraphs corresponding to the five methods in
different datum when removing the topn nodes from the network under static
attack. X-axis represents the number of nodes removed from the network in
order, and Y-axis represents the relative size of strongly connected component
of the network.

Table 3. The number of various motifs in three datasets

M Advogato Wiki-Vote soc-Epinions1

M1 63 6795 7656

M2 2230 17667 84384

M3 3162 15275 328076

M4 1992 2119 160097

M5 4262 462715 531325

M6 3019 45559 281093

M7 3564 58259 231850

In contrast, the HESC method proposed on Advogato performs well. When
the vital nodes are removed, the method has a strong destructive power to
the network in Fig. 6(a). On Wiki-Vote, before removing Top50, the differences
among the methods are small, and the node sorting performance of CC method is
better. However, with the increase of the number of removed nodes, the advan-
tages of HESC and HEC methods are shown, especially when the top 100 is
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(a) DC-HESC (b) CC-HESC (c) BC-HESC

(d) EC-HESC (e) HEC-HESC

Fig. 3. The relationship between HESC and others in Advogato

removed, the relative size of strongly connected subgraphs in HESC method
is the smallest in Fig. 6(b). The HEC and HESC methods proposed are close
to each other on soc-Epinions1, and the performance is only better than CC
method. There are some differences in the methods of identifying vital nodes
based on high-order structure in Fig. 6. But as a whole, with the vital nodes
removed, the more seriously the network is destroyed.

In order to better evaluate our proposed methods, we carries out experi-
ments on SIR model to test the propagation ability of nodes, and compares it
with other algorithms. Nodes in SIR epidemic transmission model have three
possible states at any time: susceptible, infected and recovered. At the time t,
the proportion of these three groups of people in the crowd is used S(t), I(t)
and R(t) to express separately. S(t) represents the proportion of nodes in a
network that are vulnerable to infection. I(t) represents the ability to transmit
disease to other vulnerable nodes in an infected state. Each infected node can
randomly transmit disease to its neighbor nodes through a certain probability.
R(t) represents the proportion of nodes that have been infected but have recov-
ered and have immunity. In the SIR model of complex networks, we assume that
all neighbor nodes around infected nodes have the chance to be infected.

We used the Top-10, Top-50 and Top-100 nodes ranked by various centralities
as infected nodes in the initial network. Then we used the proportion of infected
nodes and recovered nodes in the network to judge the influence of nodes when
the network reaches steady state and compare the differences between different
methods. Figure 7, Fig. 8 and Fig. 9 shows the propagation ability of infected
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(a) DC-HESC (b) CC-HESC (c) BC-HESC

(d) EC-HESC (e) HEC-HESC

Fig. 4. The relationship between HESC and others in Wiki-Vote

(a) DC-HESC (b) CC-HESC (c) BC-HESC

(d) EC-HESC (e) HEC-HESC

Fig. 5. The relationship between HESC and others in soc-Epinions1
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(a) Advogato (b) Wiki-Vote (c) soc-Epinions1

Fig. 6. The relative size of strongly connected component under static attack of dif-
ferent datum

nodes by the top-L nodes as ranked by six centrality measures under these three
datasets.

Comparatively speaking, our proposed HESC is superior to the classical
methods in both propagation range and propagation rate in Advogato dataset
(see Fig. 7). HESC, BC and DC have almost the same performance on Advogato,
because these two centralities are all positively correlated with HESC in this net-
work (see Fig. 4). However, the propagation rate and range of HEC method are
relatively poor, which may be due to the close number of various motifs in this
data set. At this time, the advantage of HEC can not be reflected by taking the
largest number of motifs in the network as the analysis object.

Figure 8(a) shows that HEC and HESC are basically similar to DC in terms
of propagation range and propagation rate in Wiki-Vote. However, with the
increase of infected nodes, HESC is better than traditional measurement meth-
ods in both transmission rate and transmission range (see Fig. 8(b) and 8(c)).

We can see that the transmission range and efficiency of HESC are better
than other methods when Top10 node is used as a source of infection from Fig. 9.

(a) Top10 of Advogato (b) Top50 of Advogato (c) Top100 of Advogato

Fig. 7. Experiment of TOP Nodes as initial infectious source node in Advogato
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(a) Top10 of Wiki-Vote (b) Top50 of Wiki-Vote (c) Top100 of Wiki-Vote

Fig. 8. Experiment of TOP Nodes as initial infectious source node in Wiki-Vote

However, with the increase of infected nodes, the advantages of HESC gradually
diminished. The propagation capability of Top nodes obtained by HEC is similar
to that of HESC in Fig. 5. Furthermore, from the error bar of Fig. 9, we can see
that the results are not sensitive to the dynamic process on networks.

Although HESC method can select more important nodes by the analysis
of the experimental results of different data sets, there are some differences
for different networks. In soc-Epinions1 network, only Top10 nodes have better
propagation ability than other sorting results, which may be due to the large
proportion of strongly connected subgraphs in the network. Therefore, when the
number of selected source nodes is large, BC’s advantages appear.

Table 4, Table 5 and Table 6 show the TOP5 nodes obtained by different
methods in three datasets. Ego network is composed of a centered ego, direct
contacts namely alters, and the iterations among them. We select the most
influential node of the three networks by different centrality measures from
Fig. 10, Fig. 11 and Fig. 12 to get its Ego networks. We try to explain why HESC

(a) Top10 of soc-Epinions1(b) Top50 of soc-Epinions1(c) Top100 of soc-Epinions1

Fig. 9. Experiment of TOP Nodes as initial infectious source node in soc-Epinions 1
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(a) v30 of Advogato (b) v46 (c) v157

Fig. 10. Ego-network of Top1 node by various methods in Advogato

(a) v4037 (b) v2398 (c) v2565

(d) v766

Fig. 11. Ego-network of Top1 node by various methods in Wiki-Vote

(a) v18 (b) v44 (c) v645

Fig. 12. Ego-network of Top1 node by various methods in soc-Epinions1

Table 4. Top-5 nodes by different methods in Wiki-Vote

TOP DC BC CC EC HEC HESC

TOP1 2565 4037 2565 2398 2565 766

TOP2 1549 15 1549 4037 766 2565

TOP3 766 2398 15 15 11 1549

TOP4 11 1549 72 4191 2688 457

TOP5 1166 2535 737 2625 1549 11
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Table 5. Top-5 nodes by different methods in Advogato

TOP DC BC CC EC HEC HESC

TOP1 157 46 157 46 30 157

TOP2 46 30 46 30 328 597

TOP3 597 328 597 328 126 232

TOP4 30 286 172 438 286 593

TOP5 328 719 328 719 172 793

Table 6. Top-5 nodes by different methods in soc-Epinions1

TOP DC BC CC EC HEC HESC

TOP1 18 18 44 18 18 645

TOP2 645 737 763 401 645 634

TOP3 634 136 634 550 634 44

TOP4 763 790 2066 737 143 71399

TOP5 143 143 645 34 790 763

outperforms others by Ego network in these three networks intuitively. The large
solid circle in the center of Fig. 10, Fig. 11 and Fig. 12 is the most influential node
obtained by various measurements. Clearly, the Ego network of the most influ-
ential node in HESC is more compact than other methods. To some extent, this
reflects that when TOP nodes as initial infectious source nodes why the spread-
ing rate of HESC is faster than that of others, and the total number of infected
nodes of HESC is also larger than that of others.

5 Conclusions

This paper reconstructs the initial network by high-order structure. In order to
describe the high-order information such as the interaction between nodes in the
network, it defined the concept of high-order. By fusing the low-order informa-
tion and high-order information of nodes, the HESC was proposed to identify
the vital nodes. At the same time, the network topology and the propagation
dynamic model was used to evaluate the node ranked. The results of experiments
demonstrate that even though not all the nodes in initial network can form a
high-order structure, the nodes that form a higher-order structure play a more
influential role in the network. The influential nodes based on the high-order
structure show slightly different performance in different networks. The propa-
gation ability are better than that compared with influential nodes identified by
other algorithms.
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