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Abstract. The spread of rumors and diseases threatens the development of
society, it is of great practical significance to locate propagation source quickly
and accurately when rumors or epidemic outbreaks occur. However, the topo-
logical structure of online social network changes with time, which makes it
very difficult to locate the propagation source. There are few studies focus on
propagation source identification in dynamic networks. However, it is usually
necessary to know the propagation model in advance. In this paper the label
propagation algorithm is proposed to locate propagation source in temporal
network. Then the propagation source was identified by hierarchical processing
of dynamic networks and label propagation backwards without any underlying
information dissemination model. Different propagation models were applied for
comparative experiments on static and dynamic networks. Experimental results
verify the effectiveness of the algorithm on temporal networks.
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1 Introduction

With the rapid development of social networks represented by Facebook, twitter,
microblog and We-Chat, social network has become a very important information
dissemination platform. At the same time users share information, they also have to face
the adverse effects of rumors and other harmful information. In addition, respiratory
infectious diseases such as tuberculosis and 2019-nCoV are highly infectious and
seriously threaten human health [1–3]. Therefore, it is of great practical significance to
locate source quickly and accurately when rumors or epidemic outbreaks occur.

The spread of rumors or diseases depends on specific networks. For example, the
spread of rumors depends on social networks, and the spread of diseases depends on
human interaction networks. If the infectious source of the disease is determined in a
short period of time, it can better control the spread of the whole disease, narrow its
transmission range, and reduce the threat of infectious diseases to people’s life safety. If
we can quickly locate the source of rumor in the critical period after spreading rumor,
we can reduce the negative impact of rumor on politics, people’s vital interests and
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social stability. Generally, these networks have the characteristics of large scale and
complex connections between nodes. Therefore, how to locate a source of infection or
rumor in network has become a very meaningful and challenging problem.

The methods of propagation source location in static network are mainly divided
into four categories: Propagation source centrality algorithm [4, 5, 9, 10], Belief
propagation algorithm [11, 12], Monte Carlo algorithm [6], and Net-Sleuth algorithm
[6]. The basic idea of propagation source centrality algorithm is directly obtaining
central nodes as infection propagation source; Belief propagation algorithm identify the
propagation source through message-passing on a factor graph; Monte Carlo algorithm
identifies sources based on simulating the spread of disease; And the feature of the Net-
Sleuth algorithm based on the minimum description length is that it does not need the
number of sources. The above algorithms are all directed to solve the problem of
identifying propagation source in static network. However, most real networks are
dynamic and temporal.

In recent years, researchers have begun to focus on the problem of identifying
propagation source in dynamic network. The algorithm based on the shortest temporal
path effectively identifies the propagation source in temporal network [14]; A method
of locating propagation sources based on reverse dissemination strategy was proposed
by Jiang et al. [7]; The algorithm based on the time information of all nodes by
Antulov-fantulin et al. [6]; and sparse signal reconstruction theories has been applied to
locate propagation sources in dynamic network [19]. Although the above algorithm
effectively solves the problem of source identification on dynamic networks, the pre-
condition is to know the underlying propagation model in advance. Obviously, it is
difficult to obtain model information in practice, and it is hard to obtain the true value
of parameters in the preset basic propagation model.

As far as we know, only a few source identification studies have been carried out
without any underlying information propagation model. The label propagation algo-
rithm (LPSI) [8] is the first attempt to solve this problem, which is based on the idea of
source prominence, namely the nodes surrounded by larger proportions of infected
nodes are more likely to be source ones. The main idea of this algorithm is to identify
the propagation source by propagating integer labels in the network. It effectively
solves the problem that the propagation model cannot be known in advance in practice.
However, it is only studied on static networks.

In this paper, we uses the label propagation algorithm to locate the source on the
temporal network, the propagation source is identified by hierarchical processing of
dynamic networks and iterative propagation of the label. Firstly, dividing dynamic
network into multiple single layer static networks. Secondly, label propagation back-
wards from the last layer of the network to the first layer. Finally, the propagation
source is derived based on the node labels of the first layer network. The major
contributions of this paper can be summarized as follows:

• use the label propagation algorithm to locate the propagation source on the temporal
network;

• identify propagation sources without any underlying propagation model information;
• comparative experiments on static and dynamic networks using different propaga-

tion models
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The rest of this paper is organized as follows. In Sect. 2, we introduce the related
work of propagation source identification in static and temporal networks. Section 3
gives the introduction of label propagation method. Section 4 analyzes the algorithm in
detail. Section 5 compares the accuracy of locating propagation source on static net-
work and temporal network under different propagation models. Section 6 summarizes
this paper.

2 Related Work

In the past few years, researchers propose a series of methods to identify propagation
sources in network. According to the time state of the network, they are divided into
propagation source identification methods in static and dynamic networks.

For static networks, Shah et al. [4] put forward the first algorithm to solve the
source identification problem for the SI propagation model on the regular tree network.
Luo et al. [5] used Jordan center estimation (JCE) algorithm to solve the problem of
single source estimation on tree network through Jordan infection center. Fioriti et al.
[9] proposed a propagation source identification algorithm called DA by calculating the
dynamic age of each node in the infection graph. Comin et al. [10] studied an unbiased
betweenness algorithm for computing the centrality of unbiased mediations of all nodes
in an infection graph. Lokhov et al. [11] established a dynamic message-passing
algorithm for single source identification. Altarelli et al. [12] put forward a belief
propagation algorithm (BP) based on factor graph on SIR propagation model. Antulov-
fantulin et al. [6] proposed a source location algorithm based on Monte Carlo with
single source and known states of all nodes. Prakash et al. [6, 13] recommended the
Net-Sleuth algorithm based on the minimum description length in the source identi-
fication problem of multi-source and SI propagation model. Wang et al. [8] proposed a
source identification method based on label propagation, which is the first attempt to
solve the unknown problem of the propagation model in reality.

For temporal networks, Antulov-fantulin et al. [6] proposed a method to locate the
source based on the time information of all nodes. Jiang et al. [7] established a method
of locating propagation sources based on reverse dissemination strategy. Huang et al.
[14] developed a reverse diffusion method to locate the propagation source by calcu-
lating the shortest time distance between nodes. Hu et al. [19] a general framework
locate the source by bridging structural observability and sparse signal reconstruction
theories.

The research goal of this paper is to locate the propagation sources on the dynamic
network. However, the current methods of source identification on the dynamic net-
work depend on the specific propagation model, which is not in line with the char-
acteristics of real dissemination. Therefore, this paper presents a dynamic network
source identification method based on label propagation. Firstly, dividing dynamic
network into multiple single layer static networks. Secondly, label propagation back-
wards from the last layer of the network to the first layer. Finally, the propagation
source is derived based on the node labels of the first layer network.
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3 Methodology

The problem statement and algorithm description are shown in this section. Frequently
used notations are summarized in Table 1.

3.1 Problem Statement

The problem of dynamic network source identification studied in this paper can be
formulated as follows: Given a dynamic network G ¼ V;E;Tð Þ, According to the time
series T ¼ t1; t2; . . .; tLð Þ, the dynamic network is divided into m-layer static network.
A node set V ¼ v1; v2; . . .; vNð Þ with a set Em at layer m 2 1; 2; . . .;Lf g. An infection
node vector Ym ¼ ym1 ; y

m
2 ; . . .; y

m
N

� �
at layer m where ymi ¼ 1 indicates node I is infected

and ymi ¼ �1 otherwise, the goal is to find the original infection source s� � V .
Because the algorithm used in this paper does not depend on the specific propagation
model, it is not necessary to make assumptions on the propagation model.

3.2 Label Propagation Algorithm in Temporal Network

We formally present our method in Algorithm 1. One of the important characteristics of
the label propagation algorithm is that it can identify the source independent of the
propagation model. In this paper, the label propagation algorithm is used to identify the
propagation source in dynamic network, which can be realized through the following
three steps.

Assign Labels. We divide the dynamic network into L-layer static network. Known
the infection node vector Y ¼ Y1; Y2; . . .; YLð Þ when propagating to the last layer
network. Notably, the underlying information propagation model for generating YL is

Table 1. Notation summarization.

Notation Definition Definition

G The topological graph of temporal network
N Number of nodes
L Number of network layers
T ¼ t1; t2; . . .; tLð Þ Time series of temporal network G
V ¼ v1; v2; . . .; vNð Þ Set of vertexes in G
E ¼ E1;E2; . . .;ELð Þ Set of edge sets of L-layer temporal network
Y ¼ Y1; Y2; . . .; YLð Þ Set of infection node vectors of L-layer temporal network

Ym ¼ ym1 ; y
m
2 ; . . .; y

m
N

� �
Infection node vector at layer m in G, m 2 1; 2; . . .;Lf g

Am The adjacency matrix at layer m in G, m 2 1; 2; . . .;Lf g
Pm The label propagation probability at layer m in G, m 2 1; 2; . . .;Lf g
gti mf g i-th node label value of layer m at iteration t, m 2 1; 2; . . .;Lf g
Sm Source estimate set at layer m in G, m 2 1; 2; . . .;Lf g
s� The propagate source
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unknown in our method. Based to the infected node vector YL to assign positive label
(+1) and negative label (−1) to infected and uninfected nodes in the last layer network,
and put the assigned label into g0i Lf g.
Label Propagation. We need to obtain the adjacency matrix Am at layer m, where
Am
ij ¼ 1 if there is a connection between nodes i and j, otherwise Am

ij ¼ 0. Generating
the label propagation probability Pm at layer m from node j to node i based on
adjacency matrix. We start from the last network and reversely execute the label
propagation algorithm. For each layer network, each node obtains a part of label
information from its neighborhood, and retains some label information in its initial
state. Therefore, the label value of node i of layer m at iteration tþ 1 becomes:

gtþ 1
i mf g ¼ a

X
j:j2N ið Þ P

m
ij g

t
j mf gþ 1� að Þymi ð1Þ

where matrix Pm ¼ D �1=2ð ÞAmD �1=2ð Þ, matrix Am is the adjacency matrix, D is a
diagonal matrix with its i; ið Þ-element equal to the sum of the i-th row of A, and
0\a\1 is the fraction of label information that node i gets from its neighbors. N ið Þ
represents the set of neighbors of node i.

In addition to the first layer network, each layer carries out label propagation with
iteration t ¼ 1. For the label of nodes in (m − 1)-layer network, if node i belongs to the
set of source estimation obtained from m-layer network, assign the positive label (+1),
it inherits the label of m-layer network otherwise. Namely,

g0i m� 1f g ¼ 1; i 2 Sm
g0i mf g; otherwise

�
ð2Þ

For each layer network, it is identified as a suspicious propagation source if a node i
meets the following two conditions:

– Node i is initially an infected node;
– The final label value of node i is larger than those of its neighbors.

The first condition of the algorithm is to avoid the interference of uninfected nodes
on the accuracy of source identification. The second condition is based on the principle
of source prominence [10], namely the nodes surrounded by larger proportions of
infected nodes are more likely to be propagation source.

Source Identification. When the label propagates back to the first layer network, the
iterative propagation stops until the node label reaches convergence by Eq. 1. Here,
“convergence” means that the label value of a node does not change in several con-
secutive iterations of the label propagation. It is worth mentioning that for a single-
layer static network, only the node labels need to be iterated to convergence.

Finally, obtain the node with the highest label value from the suspect node as the
propagation source s�.
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otherwise
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3.3 Algorithm Diagram

In order to further understand the algorithm in the section, Fig. 1 shows the process of
propagation source identification in multi-layer dynamic network. The data set used in
the example is a L-layer small world network with N ¼ 10 nodes and average degree of
kh i ¼ 4. Randomly select a source node to propagate through the SI model. We divide
the dynamic network into L-layer static networks by chronological order. As shown in
Algorithm 1, the green node is the suspect sources of each layer, the white point is the
uninfected nodes and the orange one is the propagation source node. First, a set of source
estimation nodes is obtained by Eq. 1 on the last layer network. Then, transfer labels to
node i between layers in reverse by Eq. 2 and label propagation on the new network
layer. Finally, in the first layer network, the label propagates stops until the label
converges. The node with the largest label value is output as the propagation source.

4 Algorithm Analysis

Theoretical analysis [8] and time complexity analysis of the algorithm are shown in this
section.

4.1 Convergence Analysis

The equation for calculating the label of each node at iteration t can be transformed into
another writing method:

gtþ 1 ¼ aPgt þ 1� að Þy ð3Þ

Fig. 1. The process of propagation source identification in multi-layer dynamic network.
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By the initial condition that g0 ¼ y, we get:

gt ¼ aPð Þt þ 1� að Þ
Xt�1

i¼0
aPð Þiy ð4Þ

According to limt!1 aPð Þt¼ 0 and limt!1
Pt�1

i¼0 aPð Þi¼ I � aPð Þ�1, where I is an
n� n identity matrix. Therefore, the label value will converge to:

g� ¼ 1� að Þ I � aPð Þ�1y ð5Þ

It can be seen that the label value will reach convergence after iterative propagation
finally.

4.2 Source Prominence

Source Prominence, namely the node surrounded by larger proportions of infected
nodes are more likely to be source ones. We can understand this idea in two ways, On
the one hand, at the edge of the infected area, nodes tend to have fewer infected
neighbors. On the other hand, in the center of the infected area, nodes tend to have
more infected neighbors. This property has nothing to do with the propagation model,
so we can apply this idea to source identification. The experimental results of this paper
also verify this idea.

4.3 Time Complexity

For a single-layer network label propagation, the time complexity is O t � J � Nð Þ,
where J is the average number of neighbors per node and t is the number of iteration.
Therefore, For a dynamic network, the time complexity is O L � t � J � Nð Þ, where L
is the number of network layer.

5 Experiments

5.1 Experiments Setup

Datasets. In this paper, two kinds of networks are selected for experiments, the first
type are small-world networks, random networks, and scale-free networks. Number of
nodes N ¼ 100; 500, average degree kh i ¼ 6; 8; 10. The second type is the benchmark
adopted by Lin et al. in [15], this data set [16] is a dynamic network of a fixed number
of communities (named SYN-FIX), analogously to the classical benchmark proposed
by Girvan and Newman in [17]. The network consists of 128 nodes divided into four
communities of 32 nodes each.
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Propagation Models. Existing propagation models can be divided into infection
models and influence models. In order to verify that the algorithm can locate rumor
sources without any underlying propagation model information, the experimental part of
this paper mainly uses three models, namely SI model, SIR model and LT model [20].

For SI model, as shown in Fig. 2(a), each node has only two possible states: S and I.
At the initial time of propagation, only one or a few nodes in the network are in state I,
while other nodes are in state S. At each time step of the propagation process, any
nodes in state I infects each neighbor in state S with the same probability p.

For SIR model, as shown in Fig. 2(b), each node has three possible states: sus-
ceptible (S), infected (I), and recovered (R). Every infected node tries to infect its
susceptible (uninfected) neighbors independently with probability p. The infected node
changes from probability q to R state, and the node will always be in R state, and will
not be infected. The infection probability p is chosen uniformly from (0, 1) for the SI
model and SIR model. For the SIR model, an extra recovery probability q is chosen
uniformly from (0, p).

For LT model, there are only two possible states for each node: active state and
inactive state, in which the active state represents that a node receives information in
the propagation process, otherwise it is in the inactive state. As shown in Fig. 2(c),
each node in the inactive state receives information only when the number of nodes in
the active state around it exceeds a certain threshold. Until the sum of the influence of
any active node in the network cannot activate the neighbor node in the inactive state,
the propagation process ends. Assuming that nodes u, v have degrees du and dv, the
infection weight between edges (u, v) is 1=dv, and the infect weight between edges (v,
u) is 1=du. In addition, the threshold of each node is uniformly selected from a small
interval [0, 0.5], in order to infect most of the network.

Evaluation Metrics. We use F-score to evaluate the performance of algorithm.
F-score is a suitable metric for measuring multi-labeled classification problems,

since it is a combination of precision and recall. The definition of F-score is following:

F� score ¼ 1þ b2ð Þ � Precision � Recall
b2 � Precisionð ÞþRecall

ð6Þ

Fig. 2. Propagation Models. (a) SI model with the infection probability p; (b) SIR model with
the infection probability p and the recovery probability q; (c) LT Models with a threshold h.
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In this article, setting parameter b to 1 means that accuracy and recall are treated
equally.

5.2 Results

In order to verify the effectiveness of the algorithm in locating propagation sources on
dynamic networks, 100 independent experiments are carried out on four kinds of
networks. We set the parameter a ¼ 0:5. In each simulation, randomly select a node as
the propagation source, and then use SI model, SIR model and LT model to simulate
the propagation. In different propagation models, this paper studies the comparison of
F-score between dynamic network and static network under different average degree
( kh i ¼ 6; 8; 10) and different network layers (L ¼ 4; 6; 8). In order to verify the
effectiveness of the algorithm when the network scale is expanded, we increase the
number of nodes to 500 for simulation experiments. In addition, the parameter a in
Eq. 1 controls the influence of neighbor nodes in the process of label propagation.
Therefore, this paper studies the optimal value of a by analyzing the influence of
parameter a on the experimental results.

Fig. 3. The comparison of F-score of different average degrees ( kh i ¼ 6; 8; 10) in dynamic
networks and static networks under SI model. (a) Small-world network; (b) Random network;
(c) Scale-free network.
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The comparison of F-score of different degrees of dynamic network and static
network source in SI model, SIR model and LT model can be seen in Fig. 3, Fig. 4,
Fig. 5. Figure 6 shows the comparison of F-score of temporal network and static
network source under different propagation models for the data set called SYN-FIX. It
can be seen that the location accuracy of dynamic source location algorithm is sig-
nificantly higher than that of static location algorithm. The result proves the effec-
tiveness of the algorithm to identify the propagation source on a temporal network.

Fig. 4. The comparison of F-score of different average degrees ( kh i ¼ 6; 8; 10) in dynamic
networks and static networks under SIR model. (a) Small-world network; (b) Random network;
(c) Scale-free network.
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Fig. 5. The comparison of F-score of different average degrees ( kh i ¼ 6; 8; 10) in dynamic
networks and static networks under LT model. (a) Small-world network; (b) Random network;
(c) Scale-free network.

Fig. 6. The comparison of F-score of different propagation models in dynamic network and
static network for SYN-FIX.
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Figure 7, Fig. 8, Fig. 9 shows the comparison of F-score of different network layers
of dynamic network and static network source under SI model, SIR model and LT
model respectively. The location probability of dynamic source location algorithm is
significantly higher than that of static location algorithm. In addition, it can be seen that
the accuracy of source location decreases with the increase of network layers. The main
reason is that when the transmission time is long, information is widely spread in the
network, and the topology will change greatly, which will reduce the accuracy.

Fig. 7. The comparison of F-score of different network layers (L ¼ 4; 6; 8) in dynamic networks
and static networks under SI model. (a) Small-world network; (b) Random network; (c) Scale-
free network.
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Figure 10 shows the comparison of F-score of different propagation models of
dynamic networks and static networks with N ¼ 500. The results show that when the
network scale is expanded, the algorithm is still applicable.

Figure 11 is the result of the change of F-score on small world network with
parameter a under SI model, SIR model and LT model. It is observed that the F-score
decreases when parameter a approaches 0 or 1, regardless of the propagation model
setting. On the other hand, the performances with a 2 0:2; 0:6½ � are always stable and
preferred. The result confirm with the intuition that we should consider both the initial
infection status and the effects from neighbors for source detection.

Fig. 8. The comparison of F-score of different network layers (L ¼ 4; 6; 8) in dynamic networks
and static networks under SIR model. (a) Small-world network; (b) Random network; (c) Scale-
free network.

Identifying Propagation Source in Temporal Networks 85



Fig. 9. The comparison of F-score of different network layers (L = 4, 6, 8) in dynamic networks
and static networks under LT model. (a) Small-world network; (b) Random network; (c) Scale-
free network.

Fig. 10. The comparison of F-score of different propagation models of dynamic network and
static network source with N ¼ 500.
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6 Conclusion

Locating the source in temporal network is a practical research issue. In this paper,
label propagation algorithm is used to locate the source in dynamic network, and the
simulation results on static and temporal network are given under SI model, SIR model
and LT model. The experimental results show that the location accuracy of the tem-
poral network is higher than that of the static network without considering the dynamic
topology changes. In addition, the number of layers of temporal network has a certain
impact on the accuracy of source location.

The algorithm in this paper has a premise that dynamic social networks only
consider edge changes. However, for the online social network represented by micro-
blog, it is in line with the actual situation in a short time. For the case of node and edge
changing at the same time, it will be discussed in the future work.
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