
Container Cluster Scheduling Strategy
Based on Delay Decision Under
Multidimensional Constraints

Yijun Xue1, Ningjiang Chen1,2(&), and Yongsheng Xie1

1 School of Computer and Electronic Information, Guangxi University,
Nanning 53004, China
chnj@gxu.edu.cn

2 Guangxi Key Laboratory of Multimedia Communications and Network
Technology, Nanning 53004, China

Abstract. With the rise of online applications such as machine learning, stream
processing, and interactive data-intensive applications in shared clusters, con-
tainer cluster scheduling in data centers is facing new challenges. In order to
solve the problem that application performance and economic cost cannot be
balanced in a container cluster deploying a hybrid application, this paper pro-
poses a container cluster scheduling strategy based on delay decision under
multi-dimensional constraints. Formal language-based application placement
constraints were introduced, and a task reorder model was established based on
delayed decision-making. The experiments show that this strategy improves
application performance and cluster utilization.

Keywords: Container cluster �Multi-dimensional constraint � Delay decision �
Application performance � Cluster utilization

1 Introduction

With the extensive applications of Hadoop (processing analysis) [1], TensorFlow (deep
learning) [2], core e-commerce [3] and other long-term online running applications,
according to the principle that application resource demand is less than supplied
physical resource, the application and resource are dynamically adjusted at runtime. It
is difficult to apply a cluster resource sharing management model that optimizes supply
and demand management.

Modern large cloud data center container clusters usually run many different types
of applications. In addition to traditional batch processing applications, they also
include stream processing [4], iterative computing [5], data-intensive interactions [6],
and delay-sensitive Online application [7]. Studies [8–10] show that in the production
environment of actual data center clusters, the operational utilization of global cloud
facilities and commercial clusters is only 6% to 12%. We analyzed the set of newly
released tracking data [11] by Alibaba. The statistical results are shown in Fig. 1. There
are space imbalances (heterogeneous resource utilization across machines) and time
imbalances when the cluster is running. (The resource usage time of each machine

© Springer Nature Singapore Pte Ltd. 2020
J. Zeng et al. (Eds.): ICPCSEE 2020, CCIS 1257, pp. 690–704, 2020.
https://doi.org/10.1007/978-981-15-7981-3_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7981-3_51&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7981-3_51&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7981-3_51&domain=pdf
https://doi.org/10.1007/978-981-15-7981-3_51

varies). Alibaba reserves fixed resources for online applications. Unlike batch jobs for
short-term containers, these applications take longer to run, so called long-running
application (LRA). Containers of LRA have a relatively long service life, avoiding
repeated container initialization costs and reducing scheduling load. The overly simple
scheduling strategy will result in poor placement of LRAs tasks, exacerbate these two
imbalances in the cluster, and cause waste of resources.

This paper proposes a cluster scheduling method based on delayed decision and
LRAs. This method uses a formal language to dynamically describe multi-dimensional
constraints and construct a constraint management model. At the same time, the
optimal task scheduling queue is obtained by using the node matching optimization
strategy and multi-attribute decision making. The contributions of this article are
mainly three points:

– A multi-dimensional labeling constraint characterization model is proposed, which
uses the flexibility of formal language to realize the dynamic expression of multi-
dimensional constraints and reduce the constraint violation rate.

– A scheduling management mechanism based on delay decision is proposed, which
includes a node matching optimization strategy and a task reorderer. Using the idea
of delay, tasks are optimally placed, which improves throughput and data
utilization.

– Experimental results show that the average utilization rate of this method is
improved by about 10% compared with the existing cluster scheduling methods,
and the constraint violation rate does not exceed 5%, which effectively ensures the
application performance.

2 Related Work

Some existing scheduling systems for LRA support [12–14] are still in the exploratory
stage for the constraints’ expression between deployed application containers. Simple
affinity and anti-affinity constraints have been partially implemented in a few

Fig. 1. Current status of cluster resource utilization

Container Cluster Scheduling Strategy 691

scheduling systems, such as Mesos [15], YARN [16], Borg [17], but their constraints
are implicitly supported by static machine attributes, lacking some flexibility.

In [16] and [17], YARN and Borg act as matchers between the resource require-
ments of various applications and the resources available on the machine nodes, but
which will cause blocking situations. References [18–20] used a scheduling delay
mechanism to alleviate the head-of-line blocking situation caused by FIFO ordering.
Apollo [21] and Sparrow [22] independently decide where to run tasks to improve
scalability and reduce allocation delays. But for tasks of LRAs, these methods cannot
achieve global optimal allocation. Choosy [23], a resource fair scheduling method,
realizes resource sharing under placement constraints, but lacks research on better
convergence time and constraints between tasks. Paper [24] proposed the Quincy
scheduling strategy to instantly calculate and optimize the global matching of
scheduling decisions through the minimum flow graph. Due to the high complexity of
the graph, there will be a huge delay in the cluster scheduling of large-scale data
centers. To sum up, the existing methods are difficult to achieve flexible expression of
multi-dimensional constraints, and cannot balance scheduling resources and application
performance. There is a high constraint violation rate and a low resource utilization
rate.

3 General Framework of the Method

The approach overview is shown in Fig. 2. In this paper, constructing a constraint
management model with multi-dimensional constraints based on the formal language
of each application. The node matching optimizer and task reorder are used to deter-
mine the scheduling order of the tasks, so as to achieve the optimal placement of tasks.

Fig. 2. Approach overview (The flow of the system approach can be described as follows)

692 Y. Xue et al.

① The LRAs collector collects the load and CPU, memory and other resource
usage of each container and node.
② A performance modeler that builds a constraint management model and char-
acterizes the constraint relationships between containers and nodes.
③ The Task Reorder analyzes multiple characteristics of tasks through multi-
attribute decision-making, establishes a decision matrix, obtains the optimal task
queue scheduling order, and achieves optimal task placement.
④ The node matching optimizer uses the resource utilization rate in the step ① as a
benchmark, uses a set of priority functions to process the nodes in the cluster, and
passes the processing results to the task reorder in real time.
⑤ The container scheduler performs a certain delay scheduling according to the
task queue scheduling order and node processing results.
⑥ After performing container scheduling, continue to execute the steps to form a
method closed loop.

4 Dynamic Characterization of Multidimensional Label
Constraints

In the actual production environment, cluster scheduling needs to meet various con-
straints, but there will always be conflicts, so it is necessary to ensure a low constraint
violation rate. It has an important impact on the performance of the application, which
is possible to further optimize the core of the cluster. Label is a simple but powerful
constraint mechanism for referencing containers of the same or different (possibly not
yet deployed) applications. For example, using the label ‘hb’ to reference the current
and future containers of HBase application. This paper uses a formal language (label) to
specify multi-dimensional constraints for long-running application containers, build a
constraint management model, as shown in Fig. 3.

Fig. 3. Constrains Manager Model, and simply record container information generated by the
application, including application ID, application type, deployment node, and resource
specifications. The node label set is updated in real time. When a container is assigned to a
node, the container label is added to the node label set. Only when the container has completed
execution and is not in a running state, the label associated with the node is removed.

Container Cluster Scheduling Strategy 693

(1) Establish the set of tags: Setting the label set in the unit of node, each label can be
associated with multiple containers on the node;

(2) Specify node group: The predefined node group is a node and a rack. A node
corresponds to a single element of a cluster node. The rack contains all nodes of a
physical machine.

(3) Define constraint forms: Allow application owners and cluster operators to use
labels to specify container placement constraints that reference containers of the
same or different applications, and point to a specific node set of node groups. The
form of the constraint defined in this paper is as follows:

P = subject label, label constraint, node groupf g

subject_label is a label or label association that identifies the container subjected to
constraints; label_constraint is a constraint of the form {p_label, pmin, pmax}, p_label
is the container label (or label association), pmin and pmax are positive integers and
represent the number of containers; node_group represents a node group.

At this paper, there are the following constraints:

Definition 1: Affinity constraints. Coordinating some LRA containers on the same
node or node group can bring benefits to the cluster. Use pmin = 1 and pmax = ∞ to
express affinity constraints.

Definition 2: Anti-affinity constraint. Minimize resource interference between long-
running applications by placing containers on different machines through anti-affinity
constraints inside and between applications, and use pmin = 0 and pmax = 0 to express
anti-affinity (anti-affinity) constraints.

Definition 3: Cardinality constraint. Affinity and anti-affinity constraints represent
the two extremes of container placement. In order to achieve a balance between the
two, a more flexible cardinality constraint is used, which limits the number of juxta-
posed containers. Cardinality constraints are expressed for other values of pmin and
pmax.

5 Scheduling Management Mechanism Based on Delayed
Decision

Considering the constraints between tasks, a reasonable placement decision can be
made, but in the implementation process, it was found that the placement order of the
tasks also has an important impact on resource utilization and constraint violation rates.
As shown in Fig. 4. (a), there are idle resources in the cluster, but there are still waiting
task queues, which reduces the utilization of cluster resources and affects the running
time of jobs, resulting in poor quality of service.

694 Y. Xue et al.

T1

Node A Node B

T2 T3

Node A Node B Node A Node B

T1

T2

T1 T2 T3 T3

Fig. 4. Task deployment results with different queue order: it is assumed that there are two tasks
(T1, T2) have affinity constraints and can only be deployed on node A; task T3 is unconstrained;
each node can only deploy two tasks. The ideal deployment result is Fig. 4. (b), and the actual
deployment result is Fig. 4. (c).

Compared with the queue management functions of existing scheduling systems,
most of them support queuing on nodes, but do not support global task queuing. This
paper combines the multi-dimensional constraints between tasks and considers multiple
task requests at once, and proposes a scheduling management mechanism based on
delay decision, including node matching optimization strategy and task queue
reordering model.

5.1 Strategy of Node Matching Optimization

In practical application scenarios, it is often the case that the working nodes to be
scheduled are “picked”, that is, certain containers are required to be scheduled to run
only on specific hosts, so a node matching optimization strategy is designed in this
paper. The nodes are matched to achieve container scheduling to eligible nodes, and the
nodes are preferably used to implement container scheduling to appropriate nodes.

Considering multiple task requests within a certain time interval p, define a task set
T = T1, T2, . . .; Tnf g. For each task Ti, the basic filtering generally evaluates some
common factors such as node port availability, whether resources are satisfied, and
whether the mounted disks conflict. The constraint filtering generally considers the
anti-affinity constraint relationship between tasks, and takes the difference set. Find the
node set Ni matched by each task.

Use a set of priority functions to process each node in the node set Ni, Affin-
ityPriority, AntiAffinityPriority (there is a constraint relationship between Ti and the
task running in node Nij. Return a function value of 1, otherwise Returns 0). This
article uses a data collector to obtain the total CPU, memory (Nodeij.capacityCPU,
Nodeij.capacityMemory) on the node, and the sum of the requested CPU and memory
(Nodeij.requestCPU) of the container that has been scheduled on this node and the Ti
to be scheduled, Nodeij.requestMemory). The specific formula is as follows:

Nodeij:restCPU ¼ Nodeij:capacityCPU � Nodeij:requestCPU
Nodeij:capacityCPU

� �
ð1Þ

Nodeij:restMemory ¼ Nodeij:capacityMemory� Nodeij:requestMemory
Nodeij:capacityMemory

� �
ð2Þ

Container Cluster Scheduling Strategy 695

priorityFunc4 ¼ 1
2
ðNodeij:restCPUþNodeij:restMemoryÞ � 10 ð3Þ

priorityFunc5 ¼ 10� Nodeij:requestCPU
Nodeij:capacityCPU

� �
� Nodeij:requestMemory

Nodeij:capacityMemory

� �����
���� � 10

ð4Þ

Among them, Nodeij.restCPU and Nodeij.restMemory represent the remaining rates
of CPU and memory resources in Nodeij respectively; the priority function prior-
ityFunc4 is used to evaluate the resource consumption of the node; the priority function
priorityFunc5 is used to evaluate the resource balance of the node. The node’s final score
(anti-affinity constraint) is obtained by adding the values returned by multiple priority
functions. The larger the score, the better the quality of the node. According to the order
of FianlScoreNodeij, the Ti queue of task Ti candidate nodes is formed.

FianlScoreNodeij¼
Xm
t

wt � priorityFunct ð5Þ

5.2 Task Priority Multi-attribute Ranking Model

Tasks have multiple characteristics, which lead to different scheduling orders affecting
the optimal placement of tasks. This paper analyzes the multiple characteristics of tasks
and introduces multi-attribute decision theory to transform the reordering of task
queues into multi-attribute decision problems. The number of nodes matched by the
task, the amount of requested resources of the task, and the starvation status of the task
are of great significance to the task, and their corresponding attribute values are all
expressed in the form of real numbers. This article first makes relevant definitions and
assumptions, and then builds a Task Reorder Model (TRM).

Definition 4: Starvation time STi (Starved Time) of task Ti.

STi ¼ t� aið Þ � p ð6Þ

STi represents the length of the starvation time of the task Ti, which reflects the
starvation state of the task. It is calculated and determined by the current time t, the
task’s arrival time ai, and the scheduling interval p, and they have the same unit of
measurement.

Definition 5: Number of Matched Nodes (NMNi) for task Ti.

NMNi = NiQueue Size ð7Þ

NMNi represents the number of matching nodes of task Ti, and the queue length of
the queue NiQueue of task Ti candidate nodes.

696 Y. Xue et al.

Definition 6: Requested Resource (RRi) of task Ti.

RRi ¼ Resquest:CPUþResquest:Memory ð8Þ

RRi represents the sum of the total request amount of CPU resources and memory
resources of task Ti. Under certain node resources, deploying more tasks can improve
the system throughput.

Multi-attribute decision-making needs to evaluate any task Ti from different attri-
butes to get m evaluation results, which corresponds to the attribute vector of the task
Ti (Ai1, Ai2, Ai3, …, Aim). Collect the task set T according to the evaluation attribute
set Attr Attributes of each task in Ti, thus establishing a decision matrix. The existing
evaluation attributes include the three characteristics of task starvation time STi, the
number of matching nodes NMNi, and the resource request amount RRi. Therefore, the
decision matrix corresponding to this article is shown in the following formula.

E ¼
ST1 NMN1 RR1

ST2 NMN2 RR2

..

. ..
. ..

.

STn NMNn RRn

0
BBB@

1
CCCA ð9Þ

This paper proposes a task queue reordering model (TRM) based on multi-attribute
decision making, which is expressed as {Attr, T, q, E, b, w, w, RANK}. Each element
in the model is:

Attr is the task evaluation attribute set. In this paper, Attr = {starvation time (STi),
number of matching nodes (NMNi), resource request amount (RRi)}; T is the task set
that arrives within the scheduling interval p, T = {T1, T2, …, Tn}; q represents the
mapping relationship: Ti ! (Ai1, Ati2, Ai3, …, Aim), which represents the evalua-
tion of multi-dimensional features of task Ti according to the task evaluation attribute

set Attr; E means according to the task set Decision matrix E ¼
E11 � � � E1m

..

. . .
. ..

.

En1 � � � Enm

0
B@

1
CA

based on attributes of each task,among them, i in Eij represents the i-th task in the task
set T, and j represents the j-th task evaluation attribute value of the i-th task, i
{1, 2, …, n}, j {1, 2, …, m}; b indicates the mapping relationship Attr ! w, and the
subjective setting of the weight vector w according to the evaluation attributes;
w represents the task attribute evaluation attribute weight vector, w = (w1, w2, …,
wn) T and the matrix E in the task priority decision process Decide the results together.
w represents the mapping relationship (w, E) ! RESULT of the decision process.
Task priority selection is performed based on the attribute evaluation attribute weight
vector w and decision matrix E, and the ranking result of the T task set is calculated.
RESULT represents the ranking result of the task. RANK = {r1, r2, …, rn}, where
rk = {Tk, rNbk}, k {1, 2, …, n}.

Using this model to analyze task evaluation attributes, starvation time (STi) and
resource request volume (RRi) are all benefit attributes. The number of matching nodes
(NMNi) is a cost attribute. Because the above three task attribute values have different

Container Cluster Scheduling Strategy 697

dimensions, in order to eliminate the influence on the ranking decision result, these task
attribute values are processed as follows respectively.

The normalization processing of task evaluation attribute starvation time (STi) and
resource request amount (RRi) is as follows:

rij ¼
aij�min

i
aij

max aij
i

�min
i

aij
ð10Þ

The normalized processing of the task evaluation attribute matching node number
(NMNi) is as follows:

rij ¼
max

i
aij� aij

max aij
i

�min
i

aij
ð11Þ

max
i

aij and min
i

aij represent the maximum and minimum values of the element aij

in the j-th feature attribute Aj in the i-th task, rij 2 [0, 1]. The processed decision
matrix is D = (rij) n * m, and then a weighted normalization decision matrix C = wD
is reconstructed by considering the weight w.

C ¼
w1r11 w2r12 � � � wmr1m
w1r21 w2r22 � � � wmr2m
..
. ..

. � � � ..
.

w1rn1 w2rn2 � � � wmrnm

0
BBB@

1
CCCA ð12Þ

Finally, the priority multi-attribute decision evaluation value of task Ti can be
expressed as:

C Tið Þ ¼
Xm
j¼1

wjrij; i ¼ 1; 2; . . .; n ð13Þ

Each task in the task set is sorted according to the value of C (Ti), and the
reordering result RANK is obtained, and finally an optimal task scheduling queue is
formed. The TRM algorithm is shown below.

698 Y. Xue et al.

Algorithm: Task queue reordering algorithm

Input T The set of tasks that arrive within the scheduling interval π

NiQueue Candidate node queue of Ti

w, The set of task attribute weight

Output TQueue Task queue

1 T ={ T1,T2,…,Tn } NiQueue =

2 while (each TiT)

3 STi= (t ai) π

4 NMNi = NiQueue_Size

5 RRi = Resquest.CPU + Resquest.Memory

6 E=build_matrix(STi, NMNi, RRi)

7 for(1i , i n , i)
8 if(j m)then

9 rij=function_Normalized(STi, NMNi, RRi)

10 end if

11 D= build_matrix(rij)

12 C= build_matrix(w,rij)

13
1

m

i j ij
j

C T w r

14 Rank=get_set(C(Ti))

15 TQueue=bulid_queue(RANK)

16 end

6 Experiment

The implementation of the cluster scheduling prototype system MD-Kubernetes
designed in this paper is based on Kubernete. Kubernete is a relatively comprehensive
container scheduling system so far. The overall design is shown in Fig. 5, which
mainly includes Client, Kube-API Server, Resource Manager, Gateway, Node Manager
and other modules.

Container Cluster Scheduling Strategy 699

The experiment is compared with the existing scheduling system to verify the
effectiveness of the system model in the container cluster scenario of hybrid applica-
tions. In the experiment, 10 blade server machines were selected to build a 400 virtual
node cluster simulation system, configured with Intel Core i7, CPU3.40 GHz, 8 GB
memory and Gigabit network card, and these machines were divided into 10 racks.

Software Configuration: In order to realize various configurations in the experiment,
this article extends the workload generator GridMix, which can generate long-term
running application examples of custom constraints. This article mainly deployed the
following applications in the experimental cluster:

(1) HBase instance. Each instance is set up with 10 workers, including simple
operations such as adding, deleting, modifying, and checking. Through the API,
benchmark tests are performed using YCSB and 0.5 TB data.

(2) TensorFlow instance. Each instance is set up with 8 workers and 2 parameter
servers, and runs a machine learning workload involving more than 1,200
iterations.

Each worker is set up with the corresponding configuration, where HBase and
TensorFlow workers use containers configured with <2 GB, 1 CPU>, and the main
workers of TensorFlow instances use containers configured with <4 GB, 1 CPU>.

Placement Constraints: When deploying HBase and TensorFlow instances, we use
the following placement constraints:

(1) Set affinity constraints within the application to minimize network traffic. All
workers deploying the same HBase instance or TensorFlow instance should be on
the same rack;

Fig. 5. Architecture of the Prototypal System

700 Y. Xue et al.

(2) Anti-affinity constraints for different applications. The containers generated by
setting HBase instances and TensorFlow instances should be deployed in different
racks, thereby improving the stability of the service itself.

(3) This paper implements the cardinality constraints between applications. No
more than two HBase workers or four TensorFlow workers are placed on the same
node, which can minimize resource interference.

This article uses the following three scheduling systems for comparison:

MD-Kubernetes: This paper expresses constraints dynamically. Considering multiple
task requests at a time, there is a certain delay. Compared with long-term running
applications, the running time is negligible.

YARN: only supports the affinity for specific nodes/racks, and lacks support for
constraints between applications. Through comparison, you can intuitively see the
impact of constraints on task placement.

Kubernetes: The Kubernetes scheduling system is by far the most complete system
that supports placement constraints, but Kubernetes considers one container request at a
time during scheduling and does not support cardinality constraints.

6.1 Comparison of Application Performance

Deploy 45 TensorFlow instances and 50 HBase instances in the above 400-node
cluster, and submit a job request that uses 50% of the cluster’s memory through the
GridMix workload generator. The running time of the application indicates different
application performance. Figure 6. (a) describes the running time of the deployed
machine learning workflow on TensorFlow, and Fig. 6. (b) describes the running time
of data insertion on the Hbase instance. Box plots to show their runtimes. It can be seen
from the comparison that compared with YARN that does not support constraints
between tasks, the running time of the MD-Kubernetes scheduling instance is reduced
by 2.1 times and 2.4 times from the median and maximum values of YARN. Unpre-
dictability, because the satisfaction of some constraints is random. Compared with
Kubernetes with simple constraints, the running time of TensorFlow instances sched-
uled by MD-Kubernetes is reduced by 32% at the median, and the running time of
HBase instances is reduced by 23% at the median.

Container Cluster Scheduling Strategy 701

6.2 Comparison of Resource Utilization

In order to simulate the real generation of the cluster, GridMix was used to generate the
same load in a 400 virtual node cluster simulation system, and the CPU and memory
resource usage of the cluster was continuously monitored to calculate the average CPU
and memory utilization efficiency of all open containers. By analyzing the average
CPU and memory usage efficiency of a container that is open, you can measure the
proportion of pods (containers) that are open but not working (that is, the idle rate of
container use). When using Kubernetes for scheduling in a cluster, the average CPU
resource utilization of a node is mostly between 20% and 40%, and the average
resource utilization of a node’s memory is mostly between 40% and 60%. Pass this
verification MD-Kubernetes system has the advantage of high resource utilization in
terms of task placement strategy (Fig. 7).

a TensorFlow b HBase insert

Fig. 6. Comparison of application performance

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 21 41 61 81 101

C
PU

 U
til

iz
at

io
n

time (hour)

Kubernetes
MD-Kubernetes

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 21 41 61 81

M
em

or
y

 U
til

iz
at

io
n

time (hour)

Kubernetes

MD-Kubernetes

Fig. 7. Average resource utilization of cluster nodes

702 Y. Xue et al.

7 Conclusions

This paper proposes a constraint expression model based on label to support the
dynamic expression of multi-dimensional constraints for long-term running tasks in a
cluster. A cluster-oriented delay decision scheduling management mechanism guar-
antees the placement quality of long-term running tasks under multi-dimensional
constraints and improves cluster efficiency. The designed MD-Kubernetes prototype
system is implemented on Kubernetes in the form of plug-ins. The constraint expres-
sion model in this paper also has limitations, and further research on the adaptiveness
of cluster scheduling is needed.

Acknowledgment. This work is supported by the Natural Science Foundation of China
(No. 61762008), the Guangxi Natural Science Foundation Project (No. 2017GXNSFAA198141),
and the National Key Research and Development Project of China (No. 2018YFB1404404).

References

1. Vavilapalli, V.K., Murthy, A.C., Douglas, C.: Apache Hadoop YARN: yet another resource
negotiator. In: Symposium on Cloud Computing, pp. 1–16. ACM (2013)

2. Martín, A.: TensorFlow: learning functions at scale. In: ACM Sigplan International
Conference on Functional Programming, p. 1. ACM (2016)

3. Verma, A., Pedrosa, L., Korupolu, M.: Large-scale cluster management at Google with
Borg. In: Tenth European Conference on Computer Systems, pp. 1–17. ACM (2015)

4. Xingcan, C., Xiaohui, Y., Yang, L.: Overview of distributed stream processing technology.
Comput. Res. Develop. 52(2), 318–332 (2015)

5. Abadi, M., Barham, P., Chen, J.: TensorFlow: a system for large-scale machine learning. In:
Usenix Conference on Operating Systems Design and Implementation, pp. 265–283.
USENIX Association (2016)

6. Zaharia, M., Chowdhury, M., Franklin, M.J.: Spark: cluster computing with working sets. In:
Usenix Conference on Hot Topics in Cloud Computing, p. 10. USENIX Association (2010)

7. Apache HBase[EB/OL] (2018). http://hbase.apache.org
8. Jyothi, S.A., Curino, C., Menache, I.: Morpheus: towards automated SLOs for enterprise

clusters. In: Usenix Conference on Operating Systems Design and Implementation, pp. 117–
134. USENIX Association (2016)

9. Rajan, K., Kakadia, D., Curino, C.: PerfOrator: eloquent performance models for Resource
Optimization. In: ACM Symposium on Cloud Computing, pp. 415–427. ACM (2016)

10. Xu, G., Xu, C.-Z.: Prometheus: online estimation of optimal memory demands for workers
in in-memory distributed computation. In: ACM Symposium on Cloud Computing, pp. 655–
667. ACM (2017)

11. Alibaba trace [DB/OL] (2018). https://github.com/alibaba/clusterdata
12. Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-clouds: managing performance interference

effects for QoS-aware clouds. In: European Conference on Computer Systems, Proceedings
of the, European Conference on Computer Systems, EUROSYS 2010, Paris, France, April,
pp. 237–250. DBLP (2010)

13. Avadi, B., Abawajy, J., Buyya, R.: Failure-aware resource provisioning for hybrid Cloud
infrastructure. J. Parallel Distrib. Comput. 72(10), 1318–1331 (2012)

Container Cluster Scheduling Strategy 703

http://hbase.apache.org
https://github.com/alibaba/clusterdata

14. Tumanov, A., Zhu, T., Park, J.W.: TetriSched: global rescheduling with adaptive plan-ahead
in dynamic heterogeneous clusters. In: Eleventh European Conference on Computer
Systems, pp. 35–36. ACM (2016)

15. Hindman, B., Konwinski, A., Zaharia, M.: Mesos: a platform for fine-grained resource
sharing in the data center. In: Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, pp. 429–483. USENIX Association (2010)

16. Karanasos, K., Suresh, A., Douglas, C.: Advancements in YARN resource manager 43(3),
51–60 (2018)

17. Verma, A., Pedrosa, L., Korupolu, M.: Large-scale cluster management at Google with
Borg. In: Tenth European Conference on Computer Systems, pp. 1–17. ACM (2015)

18. Ananthanarayanan, G., Kandula, S., Greenberg, A.: Reining in the outliers in map-reduce
clusters using Mantri. In: Usenix Conference on Operating Systems Design and Implemen-
tation, pp. 265–278. USENIX Association (2010)

19. Ferguson, A.D., Bodik, P., Kandula, S.: Jockey: guaranteed job latency in data parallel
clusters. In: European Conference on Computer Systems, EUROSYS, pp. 99–112 (2012)

20. Zaharia, M., Konwinski, A., Joseph, A.D.: Improving MapReduce performance in
heterogeneous environments. In: Usenix Conference on Operating Systems Design and
Implementation, pp. 29–42. USENIX Association (2008)

21. Boutin, E., Ekanayake, J., Lin, W.: Apollo: scalable and coordinated scheduling for cloud-
scale computing. In: Usenix Conference on Operating Systems Design and Implementation,
pp. 285–300. USENIX Association (2014)

22. Ousterhout, K., Wendell, P., Zaharia, M.: Sparrow: distributed, low latency scheduling. In:
Twenty-Fourth ACM Symposium on Operating Systems Principles, pp. 69–84 (2013)

23. Ghodsi, A., Zaharia, M., Shenker, S.: Choosy: max-min fair sharing for datacenter jobs with
constraints. In: ACM European Conference on Computer Systems, pp. 365–378 (2013)

24. Isard, M., Prabhakaran, V., Currey, J.: Quincy: fair scheduling for distributed computing
clusters. In: IEEE International Conference on Recent Trends in Information Systems,
pp. 261–276 (2009)

704 Y. Xue et al.

	Container Cluster Scheduling Strategy Based on Delay Decision Under Multidimensional Constraints
	Abstract
	1 Introduction
	2 Related Work
	3 General Framework of the Method
	4 Dynamic Characterization of Multidimensional Label Constraints
	5 Scheduling Management Mechanism Based on Delayed Decision
	5.1 Strategy of Node Matching Optimization
	5.2 Task Priority Multi-attribute Ranking Model

	6 Experiment
	6.1 Comparison of Application Performance
	6.2 Comparison of Resource Utilization

	7 Conclusions
	Acknowledgment
	References

