
Superpage-Friendly Page Table Design
for Hybrid Memory Systems

Xiaoyuan Wang1,2,3,4, Haikun Liu1,2,3,4(&), Xiaofei Liao1,2,3,4,
and Hai Jin1,2,3,4

1 National Engineering Research Center for Big Data Technology and System,
Huazhong University of Science and Technology, Wuhan 430074, China

{xiaoyuanw,hkliu,xfliao,hjin}@hust.edu.cn
2 Service Computing Technology and System Lab,

Huazhong University of Science and Technology, Wuhan 430074, China
3 Cluster and Grid Computing Lab, Huazhong University of Science

and Technology, Wuhan 430074, China
4 School of Computer Science and Technology, Huazhong University of Science

and Technology, Wuhan 430074, China

Abstract. Page migration has long been adopted in hybrid memory systems
comprising dynamic random access memory (DRAM) and non-volatile mem-
ories (NVMs), to improve the system performance and energy efficiency.
However, page migration introduces some side effects, such as more translation
lookaside buffer (TLB) misses, breaking memory contiguity, and extra memory
accesses due to page table updating. In this paper, we propose superpage-
friendly page table called SuperPT to reduce the performance overhead of
serving TLB misses. By leveraging a virtual hashed page table and a hybrid
DRAM allocator, SuperPT performs address translations in a flexible and effi-
cient way while still remaining the contiguity within the migrated pages.

Keywords: Page table � Hybrid memory system � Page migration � Multiple
page sizes � Address translation

1 Introduction

Recent years have witnessed many large-footprint applications. Traditional DRAM-
based memory systems are unable to meet the ever-increasing memory demand due to
the limited DRAM scaling in terms of memory density and power efficiency. The
advent of non-volatile memory (NVM) technologies has attracted a lot of interests in
constructing large-capacity and energy-efficient main memory systems with NVMs.
However, since NVM cannot directly replace DRAM due to its shortcomings, such as
lower performance and limited write endurance, hybrid memory systems composed of
DRAM and NVM have been widely studied [1–4]. Most of these studies make efforts
to improve system performance and save energy by using page migration [4, 5].

As the amount of memory required by applications increase significantly, the
number of page table entries (PDEs) also grows rapidly. However, the capacity of
Translation Lookaside Buffer (TLB) which is used to cache virtual-to-physical address

© Springer Nature Singapore Pte Ltd. 2020
J. Zeng et al. (Eds.): ICPCSEE 2020, CCIS 1257, pp. 623–641, 2020.
https://doi.org/10.1007/978-981-15-7981-3_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7981-3_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7981-3_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7981-3_46&domain=pdf
https://doi.org/10.1007/978-981-15-7981-3_46

translations cannot keep pace with the ever-increasing memory capacity due to access
latency, energy consumption, and space constraints. The total address space that the
TLBs can map directly, also known as TLB coverage, is far smaller than applications’
footprint. In this scenario, the system performance is significantly degraded due to TLB
misses. Previous studies show that the performance overhead is even up to 50% when
running memory-hungry applications, i.e. applications with large footprints [6].

There have been a large body of studies on reducing the overheads serving TLB
misses. These studies can be classified into two categories: one is to increase the TLB
coverage (such as superpages, TLB coalescing, and range mapping), and another is to
reduce the serving time of page table walking (PTW) which retrieves the page table
entries (PTEs) to fill the TLBs upon TLB misses. Superpage [7–9] has long been used
to reduce TLB misses. It can significantly improve the TLB coverage, e.g., a 2 MB
superpage can enlarge the TLB coverage by 512 times when compared to a system in
which memory pages are both managed and aligned in 4 KB. However, the using of
superpage hinders lightweight page managements (such as page migration, page
sharing) in hybrid memory systems [5]). TLB coalescing [10–12] and range mapping
[13–15] are both practical and efficient schemes to improve TLB coverage. However,
the frequent TLB updates due to page migrations limit the performance gain of these
schemes.

Another direct and effective approach is to reduce the performance overhead of
retrieving page tables. Since traditional binary-tree-based page table is very costly. For
example, a TLB miss leads to four memory references in x86-64 architecture, and 24
memory references in virtualization environments [16–18]. Thus, it is essential to
redesign the structure of page tables and the corresponding retrieving mechanism to
reduce the cost of page table walking. Hash page table (HPT) leverages a hash function
to map virtual addresses to physical ones in a constant time period. HPT significantly
reduces the overhead of extra memory accesses caused by page table walking, at the
expense of several undesirable advantages. For example, it is unable to support mixed
page size and region mapping, and the cost of large page management is also extremely
high. Inverted page table (IPT) is also developed to improve the physical-to-virtual
address translation. By arranging an entry per memory page, IPT can significantly
reduce the storage and the runtime overhead (such as searching), at the expense of
lower performance of virtual-to-physical address translations. As a result, a hash
function is usually used in IPT to speed up virtual-to-physical address translations,
however, it is hard to support memory management at multiple page sizes.

We find that there is a remarkable contiguity in hot pages, which can be identified
and migrated within a given monitoring period (108 cycles in our experiment) in hybrid
memory systems. Previous works show that these contiguous pages can be leveraged
by TLB coalescing [10–12]. In this paper, we study how to support fast virtual-to-
physical and the reverse address translations while still remaining page contiguity
between migrated pages. To accomplish this goal, several challenges should be
addressed: 1) identify page contiguity, 2) record page contiguity information in page
tables, and 3) efficient virtual-to-physical and reserve address translations.

624 X. Wang et al.

To solve the above challenges, we propose superpage-friendly page table (called
SuperPT), a novel page table design to support multi-grained page migrations in hybrid
memory systems. SuperPT detects page contiguity within migrated pages and records
them in a hash-based virtual page table. By leveraging this contiguity, multi-grained
TLBs can deliver higher performance [10–12, 15]. What’s more, even in systems
without multi-grained TLB support, the system performance can also be improved by
TLB prefetching [19, 20].

The remainder of this paper is organized as follows. Section 2 depicts the back-
ground and motivates of our design for multi-grained page migration in hybrid memory
systems. Section 3 describes SuperPT designs in detail. Experimental results are pre-
sented in Sect. 4. We discuss related work in Sect. 5 and conclude in Sect. 6.

2 Background and Motivation

We first introduce virtual memory and page tables. Next, we experimentally study
memory access statistics of typical applications to motivate the design of SuperPT.

2.1 Virtual Memory and Page Table

To extend the use of physical memory and enable memory protection, virtual memory
is widely used in modern systems. There are two kinds of addresses in these systems,
one for the virtual address space, and another for the physical or real address space. The
virtual address is constructed by CPUs and used by processes, and the physical one is
the real address space in memory systems. In order to accurately and conveniently
perform the translation between virtual addresses and physical addresses, page tables
are used to store and manage the virtual-to-physical address translations. To be specific,
we classify most representative page table structures into the following categories.

Binary-Tree-Based Page Table. Figure 1 (a) shows the overview of binary-tree-
based page table. Once a virtual-to-physical translation is required, the system looks up
the corresponding page table entries layer by layer, thus four memory references are
needed. In a virtualization environment, it even leads to 24 memory accesses per page
table walking [16, 17, 21]. Therefore, this kind of page tables usually cause significant
performance overhead [21]. Despite its high cost, it is widely adopted in modern
computer systems, the reason is that this kind of page table is naturally friendly to
cache locality because this mapping mechanism stores PTEs of adjacent pages in an
adjacent manner.

Inverted Page Table. Figure 1 (b) shows the structure of inverted page table
(IPT) [22]. IPT provides one-page table entry for each physical memory page. Each
entry stores the information of virtual address number (VPN) and the corresponding
process ID (PID). Thus, IPT is able to reduce the memory required to store the page
tables since the number of IPT is equal to the number of physical memory pages.
However, even when application memory requirement is low, the overhead of
searching page tables is still very high upon a memory reference. Moreover, it also

Superpage-Friendly Page Table Design 625

poses other problems: ① Mixed page sizes are hard to support. ② Due to the lack of
tree structure, operations on regions are extremely expensive.

Hashed Page Table. As shown in Fig. 1 (c), VPN is the input of the hashing function.
Through hashing, an entry in the hash table is related to the VPN. If the first field of the
three entries matches the virtual page number (VPN) of the desired page, we get the
physical page number (PPN). If the VPN is not hit, we access the next entry in the
linked list. This hash-function based page table design improves the efficiency of
searching page tables, but it also brings some side effects. ① They are not able to
support multiple page sizes. Since different pages are assigned to different table entries
by the hash function, the page continuity is not guaranteed. ② They lead to poor cache
locality and low performance of TLB prefetching mechanism. Because the address
space is fragmented by hash function, the system cannot guarantee continuous response
to the adjacent address space. In this case, both the page table cache and the TLB
prefetching mechanism are inefficient. ③ Hash collisions are expensive. Since page
table walking tends to be on the critical path of applications, page tables are more
desired to be optimized for speed. Therefore, the system may suffer from high per-
formance overhead due to hash collisions. If the physical page number (PPN) is not hit,
the entries on the collision chain will be checked one by one, causing extremely high
latency of page table retrieving.

2.2 Page Migration in Hybrid Memory Systems

Because NVM shows much lower energy consumption and higher density than
DRAM, it has been studied by many works that prefer to use it to replace DRAM.
However, NVM cannot directly replace DRAM for its shortcomings, such as limited

(a) Binary-tree based page tables

(b) Inverted page tables (c) Hash page tables

Directory Ptr Directory Table OffsetPML4
0111220212930383947

PDPTE

CR3

PML4E

PDE
PTE

Physical Address

12

9

9 9 9

40
40

40
40

40

Pid

VPNPid

OffsetPPNOffsetVPN

Search

Physical Address

i

Virtual Address

i
OffsetVPN

Hash
Function

OffsetPPN

Physical AddressyVirtual Address

Fig. 1. Layout of three kinds of page tables

626 X. Wang et al.

write endurance, high write energy consumption, and high access latency, especially
for write operations [23]. Therefore, the heterogeneous memory system composed of
DRAM and NVM has become a practical approach to the current dilemma. In order to
improve the system performance of these systems, previous works generally leverage
page migration to take advantages of the two storage medium, and overcome their
shortcomings [2–4, 24, 25]. However, the use of page migration in heterogeneous
memory systems brings additional performance overhead, because extra update oper-
ations are required for every page migration operation.

To evaluate the extra memory access times caused by page migration, we run
several representative applications and profile their memory usage in an interval of 108

cycles. These applications are selected from SPEC CPU2006 [26], Parsec3.0 [27], NAS
Parallel Benchmarks [28], and Graph500 [29]. CactusADM, Mcf, and Omnetpp are all
chosen from SPEC CPU2006. Canneal, X264, Facesim, and streamcluster are all multi-
thread applications that chosen from Parsec3.0. MG, UA, and SP are selected from
NAS Parallel Benchmarks. Graph500 is designed to evaluate the performance of
supercomputer by using large scale memory-intensive graph processing algorithms. All
experiments are conducted in a simulated platform, as presented in Sect. 4.1. We have
the following observations.

Observation 1: There is a large number of update operations on page tables
caused by page migration in heterogeneous memory systems.

For each selected application, the extra memory access times caused by page
migration is over 83% on average compare to the no-migration scenarios, as shown in
Fig. 2. On one hand, for applications whose page table operations account for less
memory access, the increment is more pronounced. For example, the memory access
times in Canneal increases by more than two times. On the other hand, for applications
whose page table operations account for most memory access, memory access growth
is also considerable. For example, the memory access times in Omnetpp increases
about five percent. Note that, page migration not only causes increase of page table
operations, but also causes increase of total memory access times.

Fig. 2. Extra accesses caused by page migration in hybrid memory systems

Superpage-Friendly Page Table Design 627

Observation 2: There is a considerable continuity in migrated pages.
Figure 3 shows the cumulative distribution function (CDF) of the proportion of

contiguous pages in the total number of migrated pages. For most applications, we find
that almost 40% of the hot pages in the system are contiguous. For Graph500, the
proportion of contiguous hot pages is over 90%. This implies that taking full advantage
of the continuity of migrated pages can improve the efficiency of page table walking.

These above findings inspire us to conceive and model a new flexible and efficient
memory management mechanism for hybrid memory systems that supporting multi-
grained page sizes.

3 Design and Implementation

In this section, we first give an overview of SuperPT and then present the technical
details of page table operations, hybrid memory allocator, buddy-based garbage col-
lector, and memory fragmentation. At last, we describe some other implementation
issues such as data consistency guarantee and page protection.

3.1 Architecture Overview

Figure 4 depicts the architecture of SuperPT. The hybrid memory controller counts and
records the access information of each page in a given interval (108 cycles in our
experiment). The hot/cold page classify module is added in the hybrid memory

Fig. 3. Cumulative distribution function of contiguous hot pages within a superpage

NVM DRAM

Virtual Address

page table operations

migration

miss

Software Layer Hardware Layer

DRAM
Manager

Page
Migration
Module

update

Buddy-based
Garbage
Collector

TLB
Hierachichy

Hot/Cold Page Classify Module

Virtual
Hashed

Page Table

On-chip
Cache

Hierachichy
miss

Hybrid Memory Controller

Fig. 4. Architecture of SuperPT

628 X. Wang et al.

controller, which analyses access counts of each page in the memory and selects the hot
pages among them.

In the operating system (OS) level, we design a novel page table. Like HSCC [4], a
DRAM cache filter with utility-based migration mechanism is adopted to improve the
performance of DRAM cache. The DRAM cache manager module is responsible for
page allocation and replacement. The migration module moves hot and cold pages
between slow NVM and fast DRAM. To reduce the impact on system performance,
SuperPT performs these modules periodically in the background.

Similar to CHOP [30], active pages in SuperPT are ranked according to the number
of page accesses. We identify the top-N hot pages if the total accesses of them con-
tribute 70% of the application’s memory accesses in every period. When a NVM page
is identified to be a hot page, it would be migrated from NVM medium to DRAM
medium by the migration module. When the migration operation completes, the
mapping of the page should be also updated.

3.2 Virtual Hashed Page Table

Figure 5 shows the structure of virtual hashed page table. The following terms are
used: virtual page number (VPN), virtual superpage number (VSN), index, and offset.
Index indicates the normal page number within a superpage, while offset indicates the
real address within the normal page. When a virtual address comes, VSN is used as the
key to find the location of superpage that the required page stays in. Note that, since the
virtual page number is used as the key in the Hash Function, when a group of
applications with the same or similar access patterns run together, the collision rate of
the hash function increases significantly. To be more specifically, when two identical
workloads running on the same machine, the hot pages they migrate will have the same
virtual address and then be assigned to the same superpage by Hash Function, resulting
in an increased collision rate.

To solve this challenge, the process ID (PID) is used as the key of the hash function
along with the virtual superpage number (VSN). In this way, even the same application
is allocated to different large pages, the use of PID avoids unnecessary hash conflicts.

valid ptr
0

Hashed page table

VSN
VPN

Offset

Hash
Function

1
2

VPN Valid
0 vpn_0 1

...
j vpn_i 1

...
511 vpn_511 0

PID
0
...
1
...
0

...
i

...
4095

VSNPID

Index

Mapping
Table

PSN
PPN

Index Offset

i
j

Index
0

...
511

Inner offset

Inner
Offset

Fig. 5. Virtual hashed page table in SuperPT

Superpage-Friendly Page Table Design 629

3.3 Page Table Operations

Since physical address indexed cache is commonly used in modern computer systems,
mapping virtual addresses to physical ones is on the critical path of applications. At this
time, the system will first access TLBs. Upon a TLB miss, the page table walk
operation is performed for virtual-to-physical address translation.

Lookup: ① Virtual-to-physical address translations. Upon a TLB miss, a hash query
is done to find the corresponding superpage number according to the virtual superpage
number (VSN) and process ID (PID) by the memory manage unit (MMU). Meanwhile,
the index is used as the key to lookup the mapping tables along with the value that the
hash function gives. Note that, since mapping table and hashed page table are searched
in parallel, the lookup overhead is acceptable. If the found hash table entry is valid, the
ptr points to the starting address of the table that consists of 512 normal page table
entries. If the entry is hit (the valid is true), the physical superpage address (i), the inner
offset (j), and offset are used together to form the physical address. ② Physical-to-
virtual address translation. Similarly, the physical address is also divided into three
sections: PSN, index, and offset. By using PSN to search hashed page table, the starting
address of normal page table is obtained, and then index is used to find the related
internal normal page table of the large page to find the required virtual page number
(VPN). At last, the complete virtual address is formed by combining it with the offset.

Insert: When a page or a set of pages are migrated from NVM to DRAM, the cor-
responding new page table entry is inserted into the hash page table. To be more
particular, according to the virtual address information, the hash function is first used to
find the physical superpage address. Second, the corresponding small page within the
superpage is allocated to store the corresponding data. Finally, the corresponding hash
page table, internal page table, and mapping table are updated.

Update: When there is insufficient free small pages within a superpage, or when the
available free DRAM size is too small, the page write-back operation is triggered.
Correspondingly, the content of hash page table also needs to be updated along with
the page write-back. Specifically, SuperPT will find the corresponding physical
superpage according to the VSN, and the corresponding small page is located through
the index field. At last, the page is replaced through a LRU algorithm, and written back
to NVM. Note that, SuperPT significantly reduces the address translation latency due to
its good performance in physical-to-virtual address translation.

Delete: When a process finishes (normally or unexpectedly), its memory space is
reclaimed and the relevant page table entries should be invalidated. SuperPT uses a
lazy invalidation mechanism—reclaiming those pages when they are reallocated or
during garbage collection. Specifically, the PID of the relevant page is checked at the
time of memory allocation or garbage collection, and if its PID exists in the invali-
dation list, the relevant page table entry is invalidated. It is well known that in x86-64
platform, Linux uses 22 bits to identify process numbers (up to 222 processes can be
identified at the same time), and when the number of processes exceeds this threshold,
the system reuses PIDs of destroyed processes for new PID allocation.

630 X. Wang et al.

Page Sharing: Sometimes there may be a part of main memory that shared by more
than one process. In this case, a single page table entry can be mapped to at least two
virtual pages, and then SuperPT leverages a link pointer to bind the information of
those virtual pages to the root page table.

Page Protection: Like traditional page table entry, the PTEs in SuperPT contain
physical address and other various flags. The present bit reflects whether the page is
already in memory or not. The writable bit reflects whether the page is allowed to
write. The user accessible bit reflects whether the page can be accessed by the user
mode code. The write through caching bit reflects whether the writes can be directly
passed to the main memory. The disable cache bit reflects whether the page can be
cached. The accessed bit reflects whether the page has been accessed yet, i.e., when the
page is used, the CPU sets this bit. When a page is written, the dirty bit is set by the
CPU. The global bit reflects whether the page can be flushed from caches or not when
the content is switched. The available bit reflects if the page can be used freely by the
OS or not. If the no execute bit is set, the system forbids executing code on this page.
Since SuperPT supports range mapping, the huge page/null is overridden to reflect this
is a regular page or a range page mapping.

3.4 DRAM Allocator

When a group of pages are identified as hot pages, the page migration module will
migrate them to DRAM. With the virtual address and process number, the system first
uses Hash Function to find the starting address of the corresponding superpage, and
then carries out the corresponding normal page allocation operation. Finally, the system
updates the corresponding page table entries.

Since SuperPT supports multi-granularity page migration and multi-granularity
page mapping, at the end of each page monitoring period, a simple sort is made to
merge the migration requests of small pages with adjacent addresses, making sure that
the adjacent pages remain adjacently after migration as much as possible. However,

20

21

22

23

24

25

26

27

28

29

Index Isbuddy

4 KB4 KB

4 KB4 KB

4 KB4 KB

4 KB4 KB

4 KB

4 KB

4 KB

4 KB

4 KB 4 KB4 KB

4 KB4 KB

4 KB4 KB

4 KB

4 KB 4 KB4 KB

4 KB

4 KB 4 KB4 KB

Superpage

4 KB

4 KB

4 KB

4 KB

4 KB

4 KB

4 KB

4 KB

4 KB

4 KB4 KB 4 KB4 KB

0

1

2

3

4

5

6

7

8

9

Fig. 6. Buddy-based garbage collator in SuperPT

Superpage-Friendly Page Table Design 631

when a set of consecutive pages are migrated together, there may not be enough free
pages for them. At this point, SuperPT splits these pages to fit the available memory
space. This sacrifices some page continuity but has less impact on system performance.

3.5 Buddy Based Garbage Collection

To reduce external fragmentation, we leverage a buddy-system based garbage collector.
It merges adjacent free blocks by keeping track of its neighbors. In particular, a bitmap
is used to track whether neighbors are in use. What’s more, since the memory blocks
are aligned by power-of-two, they could be merged to construct a double-sized block.

As shown in Fig. 6, the space within a superpage is divided into 10 groups, each of
which is a collection of exponential successive pages. For example, each element in
group i represents a set of 2i consecutive pages. In addition, for the convenience of
management and statistics, any element in each group only records the first page
address of the contiguous page addresses within the superpage.

3.6 Data Consistency

Page migrations may raise data inconsistency problems. We address those issues as
follows.

Data Consistency Between DRAM and NVM. As mentioned before, there may be
two replicas of the migrate pages, one is in DRAM and the other is resided in NVM.
Conversely, the operation that mapping a virtual address to physical ones may be
performed by both normal page table used for NVM and Hashed page table used for
DRAM. To guarantee the consistency of the data, we extend the normal page table with
a migration flag (M) by using reserved bit of PTE, identifying whether a page is
migrated or not. Since the normal page table and hashed page table are searched in
parallel, the more efficient hashed page table is always returned first if the page being
searched is in DRAM, so the system always gives high priority to data that has been
cached in DRAM. Even if the normal page table returns data first, the page migration
status can be determined based on the migration flag bit in the PTE to prevent accessing
to the wrong data.

Cache Consistency. To achieve higher performance, a large number of modern pro-
cessors use write-back cache solutions, in which the data modify operations (i.e. writes)
are directed to the cache without informing the main memory about these modifica-
tions. In this way, the memory is finally modified only when the cache is evicted. Since
a set of cache lines may be mapped by a single page, once page migration occurs before
all the cache lines are written back to memory, the stale data may be chosen for
migration, resulting in data inconsistence problems. Clflush instructions is used in
SuperPT to solve this problem. When pages are migrated, all cache lines corresponding
to these pages are invalidated. Meanwhile, the invalidation operation would be
broadcast to other parts in the same cache consistency domain. As a result, the relevant
cache lines throughout the cache hierarchy is either be invalidated (clean pages) or
written back (dirty pages). Finally, before a page is migrated, SuperPT writes back all
the related dirty cache lines to the memory and invalidates all the corresponding clean
cache lines.

632 X. Wang et al.

4 Evaluation

4.1 Experimental Methodology

We implement SuperPT in a full-system simulator by integrating Zsim [31] and
NVMain [33]. Zsim is based on Pin tools [32], and we leverage it to simulate on-chip
systems, because it is fast and supports x86-64 multi-core and many-core architectures
well. Meanwhile, we also add many OS-level functions to Zsim, such as memory
allocator, memory management unit (MMU) for TLB, and page table simulation. As a
widely studied cycle-accurate memory simulator, NVMain is used in SuperPT to
simulate the hybrid memory system composed of DRAM and NVM in detail.

Configuration. Table 1 depicted the experimental platform and detailed configuration.
We choose PCM as the representative storage medium of memory for it has been
widely studied. The timing parameters are referred to previous works [4, 5, 34]. In
addition, the latencies of manage mechanisms that associated with data consistency,
such as Clfulsh and data migration are modeled in detail based on the timing param-
eters of on-chip systems and memory.

Table 1. System configuration of simulated platform

CPU 8 cores, 3.2 GHz, out-of-order

TLB
hierarchy

L1
DTLB

32 entries for 2 MB superpages, 64 entries for 4 KB small pages in
each core, 4-way set-associate, 1 cycle per access

L2
DTLB

512 entries for 2 MB superpages, 1024 entries for 4 KB pages, both
can be used for Data and Instruction. 8-way set-associate, 8 cycles
per access

Cache
hierarchy

L1
Cache

Private 64 KB in each core, 4-way, split Data and Instruction,
3-cycles per access

L2
Cache

Private 256 KB in each core, 8-way, set associate, 10-cycles per
access

L3
Cache

Shared 8 MB, 16-way set-associate, 34 cycles per access

DRAM 4 GB, channel-rank-bank-row-col: 1-4-32-32768-64, FR-FCFS, Bandwidth
(GB/Sec): 10.7, Timing (cycles): (cas-red-rp-ras: 7-7-7-18), Read Delay (ns):
13.5, Write Delay (ns): 28.5

PCM 32 GB, channel-rank-bank-row-col: 4-8-64-65536-64, FR-FCFS, Bandwidth
(GB/Sec): 10.7, Timing (cycles): (cas-red-rp-ras: 9-37-100-53), Read Delay
(ns): 13.5, Write Delay (ns): 171

Superpage-Friendly Page Table Design 633

Alternative Policies. To better evaluate the system performance, SuperPT is com-
pared with several alternative page migration mechanisms for heterogeneous memories
as follows.

①Flat-static: 4 GB DRAM and 32 GB NVM are both used as main memory in the
same address space [4], and are managed at 4 KB granularity. Based on the capacity
ratio of DRAM to NVM, the data is evenly distributed in the address space. Since the
fast DRAM and slow NVM are used indiscriminately in this system, there is no page
migration between DRAM and NVM. This system is used as a baseline for
comparison.

②HSCC: This is a state-of-the-art hybrid main memory system with traditional four-
level page tables [4]. HSCC leverages a utility-based page migration strategy to migrate
hot pages between fast DRAM and slow NVM.

③DRAM: This is a memory system consisting of only 32 GB DRAM, which is used
as the applications’ performance upper bound.

Benchmarks. As shown in Table 2, we choose several representative applications
from SPEC CPU2006 [26], Parsec [27], NAS Parallel Benchmarks [28], and Graph500
[29]. CactusADM, Mcf, and Omnetpp are chosen from SPEC CPU2006. Among them,
CactusADM is designed as a computational kernel to represent many programs in
numerical relativity. Mcf is designed to solve a scheduling problem in public mass
transportation. Omnetpp is implemented to simulate discrete event of large Ethernet
networks. Canneal, X264, and Streamcluster are all multiple thread workloads chosen
from Parsec3.0. MG, UA, and SP are chosen from NAS Parallel Benchmarks. MG is a
simple multiple-grid kernel that needs highly structured communication at long dis-
tance and used to evaluate data communication both for short and long distance. UA
solves heat equation with convection and diffusion from moving ball. SP leverages
scalar penta-diagonal to solve nonlinear PDEs problems. Graph500 is designed to
evaluate the performance of supercomputer by using large scale memory-intensive
graph processing algorithms. To verify the effectiveness of the system in running the
same application, we ran eight instances for each application at the same time.

Table 2. Workloads for evaluation

Workloads Applications

SPEC CPU 2006 CactusADM x8, Mcf x8, Omnetpp x8
Parsec 3.0 Canneal x8, X264 x8, Streamcluster x8
NPB MG x8, UA x8, SP x8
Large footprints Graph500 x8, GUPS x8
Mix1
Mix2
Mix3

CactusADM x2 + Mcf x2 + Canneal x2 + Omnetpp x2
Canneal x2 + X264 x2 + SP x2 + GUPS x2
Mcf x2 + X264 x2 + SP x2 + UA x2

634 X. Wang et al.

4.2 Extra Memory Accesses Time

Figure 7 shows the memory access times (MAT) caused by page migration of each
workload in our experiment, and all the result are normalized to the baseline system
(Flat-static). SuperPT significantly reduces the MAT of those applications with lower
data locality and large footprint. For example, for Canneal and GUPS, SuperPT can
reduce 24.3% and 23.2% access times, respectively. Meanwhile, the access counts of
mixed workloads with different applications, such as Mix1, Mix2, and Mix3, are also
significantly reduced. Compared to HSCC, SuperPT reduces 19.3% memory accesses
on average. This indicates that SuperPT significantly reduces the extra memory
accesses due to page migrations. Moreover, the well page contiguity deliver higher
performance to the page table walker cache.

4.3 Application Performance

Figure 8 shows the instructions per cycle (IPC) of every workload, all normalized to
the Flat-static system. For applications with poor locality and large footprint (such as
Canneal and GUPS), SuperPT can significantly improve system performance. We also
notice that for highly parallel applications, such as MG, UA, and SP, although SuperPT
reduced the proportion of memory access times by a considerable amount, the per-
formance improvement of SuperPT on such applications is not very significant due to
the small proportion of memory access caused by page table access (Fig. 2). Overall,
SuperPT improves system performance by 77.9% and 9.5% on average, compared to
Flat-static and HSCC, respectively. The performance gap between SuperPT and the
upper bound (DRAM) is only 6.8% on average.

Fig. 7. Normalized memory access times relative to the flat system

Superpage-Friendly Page Table Design 635

4.4 DRAM Allocation Collision

Figure 9 shows the hash conflict rate caused by DRAM allocation in SuperPT. To
evaluate the performance of hash function in SuperPT, we compare SuperPT with
several open-source hash functions, such as VHPT-remainder1, VHPT-wyhash2. We
have the following observations: ① SuperPT brings a very low conflict rate (less than
0.1% on average), especially for applications with small memory footprint, such as
CactusADM. ② More efficient hash algorithms can significantly reduce the conflict
rate, such as SuperPT-wyhash, which reduces the conflict rate by 84.4% on average,
compared to SuperPT-remainder. Since a higher conflict rate is also associated with
higher performance overhead, SuperPT adopts the hash function of SuperPT-wyhash in
order to reduce system overhead.

Fig. 8. Normalized IPC relative to the flat system

Fig. 9. Conflict rate of DRAM allocation

1 Remainder is a simple hash function design with remainder operation.
2 Wyhash [35] is a fast hash function on x86-64 without quality problems.

636 X. Wang et al.

To further study how the hash conflicting rate in SuperPT is sensitive to DRAM
size, we run selected workloads with different DRAM capacity. As shown in Fig. 10,
the conflict rate is calculated as the ratio of the number of conflicts to the total number
of allocated pages. We find that, the conflict rate in SuperPT is less than 1% for most
evaluated applications as long as the DRAM capacity is large than 4 GB. Moreover,
the larger memory capacity leads to a lower collision rate.

4.5 Storage and Runtime Overheads

In common x86-64 systems, 46 bits are used for physical address and 48 bits for virtual
address. Since 20 bits are needed for identifying the offset inner a superpage, the virtual
superpage number (VSN) uses 28 bits. Similarly, 26 bits are needed for physical
superpage number (PSN). Thus, to store the virtual hashed page table (VHPT),

SuperPT consumes 4096� 26þ 16ð Þ
8�1024 ¼ 13:5KB. The mapping table uses 9�512

8�1024 ¼ 0:56KB.

Meanwhile, to index the normal pages in the superpage, 22þ 34þ 1ð Þ�512�4096
8�1024�1024 ¼

14:25MB are needed to store the mappings between inner small pages and superpages.
In all, the total memory usage is 14.25 MB. This storage overhead is negligible in
modern computers which usually have several terabytes memory.

Figure 11 shows the breakdown of performance overhead caused by page table
walking (PTW), DRAM mapping, Allocate pages, Confliction, Clflush, and TLB
shootdown. All these operations are modeled by adding reasonable latencies in our
simulator. We find that the runtime overhead of these selected programs varied greatly.
For applications with large footprint and good hot page contiguity, such as MG, SP,
mix2, and mix3, conflicts accounts for a larger partition of runtime overhead. In
summary, the runtime performance overhead of SuperPT is 3.7% on average. This
overhead is acceptable given the large performance benefits of employing multi-
grained pages and efficient page table policy.

Fig. 10. DRAM collision rate sensitive to different DRAM size

Superpage-Friendly Page Table Design 637

5 Related Work

Page Contiguity. There has been a number of studies on exploring page contiguity to
improve the TLB performance. Gorman et al. [36] design a new memory allocator in
the operating system to mitigate memory fragmentation and promotes contiguity by
aggregating pages based on the relocation information of them. Libhugetlbfs [37]
exposes a user interface to programs to explicitly use huge pages. GLUE [12] leverages
a single speculative superpage translation in the TLBs to map contiguous small pages.
To reduce the overhead of page table walk, previous works [38, 39] allow the verifi-
cation of speculative translations off the critical path of program execution. GTSM [40]
leverages page contiguity at the hardware layer to construct superpages, even in system
with retired bits. A large number of previous works focus on leveraging page contiguity
to reduce TLB misses and to mitigate memory fragmentation (e.g., internal and external
memory fragmentations). By using memory compaction, contiguous memory alloca-
tors (CMAs) [41] migrate memory fragmentation and offer a large contiguous memory
space. By aggressively merging discrete physical frames into contiguous regions,
Translation Ranger [14] enlarges the reach of contiguity-aware TLBs.

Contiguity-Aware TLBs. To leverage the page contiguity, TLB coalescing [10, 11,
42] and memory management unit (MMU) cache coalescing [6] are designed to
increase the coverage of TLBs and MMU caches. To further enlarge TLB reach to
cover the modern gigabyte-to-terabyte physical memory, direct segments [43] leverage
a large segment to do fast address mapping between contiguous virtual address region
and contiguous physical address region. Redundant memory mappings (RMM) [15]
significantly enlarge TLB coverage by using range TLBs to map regions that both
contiguous in virtual and physical addresses.

Fig. 11. Breakdown of running time overhead in SuperPT

638 X. Wang et al.

6 Conclusion

Energy efficiency in heterogeneous memory systems made up of DRAM and NVMs.
However, page migration brings some side effects to the system, such as extra memory
access due to page table modification and being hard to remain the contiguity of pages.
In this paper, we propose a Superpage-friendly Page Table called SuperPT to reduce
the overheads serving TLB misses. By leveraging a virtual hashed page table and a
hybrid DRAM allocator, SuperPT conducts the address translation in a flexible and
efficient way while rarely destroy the contiguity within the migrate pages. Experimental
results show that SuperPT significantly reduces memory access times by 19.3% on
average and thus improves system performance by 9.5% on average.

References

1. Dhiman, G., Ayoub, R., Rosing, T.: PDRAM: a hybrid pram and dram main memory
system. In: Proceedings of the 46th Annual Design Automation Conference, pp. 664–469.
ACM, New York (2009)

2. Qureshi, M.K., Srinivasan, V., Rivers, J.A.: Scalable high performance main memory system
using phase-change memory technology. In: Proceedings of the 36th Annual International
Symposium on Computer Architecture, pp. 24–33. ACM, New York (2009)

3. Ramos, L.E., Gorbatov, E., Bianchini, R.: Page placement in hybrid memory systems. In:
Proceedings of the International Conference on Supercomputing, pp. 85–95. ACM, New
York (2011)

4. Liu, H., et al.: Hardware/software cooperative caching for hybrid DRAM/NVM memory
architectures. In: Proceedings of the International Conference on Supercomputing, pp. 26:1–
26:10. ACM, New York (2017)

5. Wang, X., et al.: Supporting superpages and lightweight page migration in hybrid memory
systems. ACM Trans. Archit. Code Optim. 16(2), 11:1–11:26 (2019)

6. Bhattacharjee, A.: Large-reach memory management unit caches. In: Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 383–394. ACM,
New York (2013)

7. Romer, T.H., Ohlrich, W.H., Karlin, A.R., Bershad, B.N.: Reducing TLB and memory
overhead using online superpage promotion. In: Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pp. 176–187. ACM, New York (1995)

8. Talluri, M., Hill, M.D.: Surpassing the TLB performance of superpages with less operating
system support. In: Proceedings of the Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 171–182. ACM, New
York (1994)

9. Swanson, M., Stoller, L., Carter, J.: Increasing TLB reach using superpages backed by
shadow memory. In: Proceedings of the 25th Annual International Symposium on Computer
Architecture, pp. 204–213. IEEE Computer Society, Washington, DC (1998)

10. Pham, B., Vaidyanathan, V., Jaleel, A., Bhattacharjee, A.: Colt: coalesced large-reach TLBs.
In: Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 258–269. IEEE Computer Society, Washington, DC (2012)

Superpage-Friendly Page Table Design 639

11. Pham, B., Bhattacharjee, A., Eckert, Y., Loh, G.H.: Increasing TLB reach by exploiting
clustering in page translations. In: Proceedings of the 2014 IEEE 20th International
Symposium on High Performance Computer Architecture, pp. 558–567. IEEE Computer
Society, Washington, DC (2014)

12. Pham, B., Veselý, J., Loh, G.H., Bhattacharjee, A.: Large pages and lightweight memory
management in virtualized environments: can you have it both ways? In: Proceedings of the
48th International Symposium on Microarchitecture, pp. 1–12. ACM, New York (2015)

13. Gandhi, J., et al.: Range translations for fast virtual memory. IEEE Micro 36(3), 118–126
(2016)

14. Yan, Z., Lustig, D., Nellans, D., Bhattacharjee, A.: Translation ranger: operating system
support for contiguity-aware TLBs. In: Proceedings of the 46th International Symposium on
Computer Architecture, pp. 698–710. ACM, New York (2019)

15. Karakostas, V., et al.: Redundant memory mappings for fast access to large memories. In:
Proceedings of the 42nd Annual International Symposium on Computer Architecture,
pp. 66–78. ACM, New York (2015)

16. Bhargava, R., Serebrin, B., Spadini, F., Manne, S.: Accelerating two-dimensional page
walks for virtualized systems. In: Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 26–35.
ACM, New York (2008)

17. Gandhi, J., Basu, A., Hill, M.D., Swift, M.M.: Efficient memory virtualization: reducing
dimensionality of nested page walks. In: Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 178–189. IEEE Computer Society,
Washington, DC (2014)

18. Yan, Z., Veselý, J., Cox, G., Bhattacharjee, A.: Hardware translation coherence for
virtualized systems. In: Proceedings of the 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture, pp. 430–443. ACM, New York (2017)

19. Kandiraju, G.B., Sivasubramaniam, A.: Going the distance for TLB prefetching: an
application-driven study. In: Proceedings of the 29th Annual International Symposium on
Computer Architecture, pp. 195–206. IEEE, Anchorage (2002)

20. Saulsbury, A., Dahlgren, F., Stenström, P.: Recency-based TLB preloading, In: Proceedings
of the 27th Annual International Symposium on Computer Architecture, pp. 117–127. ACM,
New York (2000)

21. Yaniv, I., Tsafrir, D.: Hash, don’t cache (the page table). In: Proceedings of the 2016
ACM SIGMETRICS International Conference on Measurement and Modeling of Computer
Science, pp. 337–350. ACM, New York (2016)

22. Stallings, W.: Operating Systems: Internals and Design Principles, 7th edn. Pearson/Prentice
Hall, Upper Saddle River (2011)

23. Raoux, S., et al.: Phase-change random access memory: a scalable technology. IBM J. Res.
Dev. 52(4.5), 465–479 (2008)

24. Park, H., Yoo, S., Lee, S.: Power management of hybrid DRAM/PRAM-based main
memory. In: Proceedings of the 48th Design Automation Conference, pp. 59–64. ACM,
New York (2011)

25. Wei, W., Jiang, D., McKee, S.A., Xiong, J., Chen, M.: Exploiting program semantics to
place data in hybrid memory. In: Proceedings of the 2015 International Conference on
Parallel Architecture and Compilation, pp. 163–173. IEEE Computer Society, Washington,
DC (2015)

26. SPEC CPU2006. https://www.spec.org/cpu2006. Last Accessed 21 Nov 2019
27. Parsec. http://parsec.cs.princeton.edu/index.htm. Last Accessed 21 Nov 2019
28. Bailey, D., et al.: The NAS parallel benchmarks. Int. J. Supercomput. Appl. 5(3), 63–73

(1991)

640 X. Wang et al.

https://www.spec.org/cpu2006
http://parsec.cs.princeton.edu/index.htm

29. Graph500. http://graph500.org/. Last Accessed 21 Nov 2019
30. Jiang, X., et al.: CHOP: adaptive filter-based DRAM caching for CMP server platforms. In:

Proceedings of the Sixteenth International Symposium on High-Performance Computer
Architecture, pp. 1–12. IEEE Computer Society, Washington, DC (2010)

31. Sanchez, D., Kozyrakis, C.: ZSim: fast and accurate microarchitectural simulation of
thousand-core systems. In: Proceedings of the 40th Annual International Symposium on
Computer Architecture, pp. 475–486. ACM, New York (2013)

32. Luk, C.K., et al.: Pin: Building customized program analysis tools with dynamic
instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 190–200. ACM, New York (2005)

33. Poremba, M., Zhang, T., Xie, Y.: NVMain 2.0: a user-friendly memory simulator to model
(non-)volatile memory systems. IEEE Comput. Archit. Lett. 14(2), 140–143 (2015)

34. Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as a scalable
DRAM alternative. In: Proceedings of the 36th Annual International Symposium on
Computer Architecture, pp. 2–13. ACM, New York (2009)

35. Wyhash. https://github.com/rurban/smhasher. Last Accessed 21 Nov 2019
36. Gorman, M., Healy, P.: Supporting superpage allocation without additional hardware

support. In: Proceedings of the 7th International Symposium on Memory Management,
pp. 41–50. ACM, New York (2008)

37. Huge Pages Part 2 (Interfaces). https://lwn.net/Articles/375096/. Last Accessed 21 Nov 2019
38. Barr, T.W., Cox, A.L., Rixner, S.: SpecTLB: a mechanism for speculative address

translation. In: Proceedings of the 38th Annual International Symposium on Computer
Architecture, pp. 307–318. ACM, New York (2011)

39. Papadopoulou, M.M., Tong, X., Seznec, A., Moshovos, A.: Prediction-based superpage-
friendly TLB designs. In: Proceedings of the 2015 IEEE 21st International Symposium on
High Performance Computer Architecture, pp. 210–222. IEEE Computer Society, Wash-
ington, DC (2015)

40. Du, Y., Zhou, M., Childers, B.R., Mossé, D., Melhem, R.: Supporting superpages in non-
contiguous physical memory. In: Proceedings of the 2015 IEEE 21st International
Symposium on High Performance Computer Architecture, pp. 223–234. IEEE Computer
Society, Washington, DC (2015)

41. Corbet, J., Rubini, A., Kroah-Hartman, G.: Linux Device Drivers: Where the Kernel Meets
the Hardware. 3rd edn. O’Reilly Media, Sebastopol (2005)

42. Wang, X., Liu, H., Liao, X., Jin, H., Zhang, Y.: TLB coalescing for multi-grained page
migration in hybrid memory systems. IEEE Access 8, 66304–66314 (2020)

43. Basu, A., Gandhi, J., Chang, J., Hill, M.D., Swift, M.M.: Efficient virtual memory for big
memory servers. In: Proceedings of the 40th Annual International Symposium on Computer
Architecture, pp. 237–248. ACM, New York (2013)

Superpage-Friendly Page Table Design 641

http://graph500.org/
https://github.com/rurban/smhasher
https://lwn.net/Articles/375096/

	Superpage-Friendly Page Table Design for Hybrid Memory Systems
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Virtual Memory and Page Table
	2.2 Page Migration in Hybrid Memory Systems

	3 Design and Implementation
	3.1 Architecture Overview
	3.2 Virtual Hashed Page Table
	3.3 Page Table Operations
	3.4 DRAM Allocator
	3.5 Buddy Based Garbage Collection
	3.6 Data Consistency

	4 Evaluation
	4.1 Experimental Methodology
	4.2 Extra Memory Accesses Time
	4.3 Application Performance
	4.4 DRAM Allocation Collision
	4.5 Storage and Runtime Overheads

	5 Related Work
	6 Conclusion
	References

