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Abstract. An end-to-end channel attention and pixel attention network
(CP-Net) is proposed to produce dehazed image directly in the paper.
The CP-Net structure contains three critical components. Firstly, the
double attention (DA) module consisting of channel attention (CA) and
pixel attention (PA). Different channel features contain different levels of
important information, and CA can give more weight to relevant informa-
tion, so the network can learn more useful information. Meanwhile, haze
is unevenly distributed on different pixels, and PA is able to filter out
haze with varying weights for different pixels. It sums the outputs of the
two attention modules to improve further feature representation which
contributes to better dehazing result. Secondly, local residual learning
and DA module constitute another important component, namely basic
block structure. Local residual learning can transfer the feature informa-
tion in the shallow part of the network to the deep part of the network
through multiple local residual connections and enhance the expressive
ability of CP-Net. Thirdly, CP-Net mainly uses its core component, DA
module, to automatically assign different weights to different features to
achieve satisfactory dehazing effect. The experiment results on synthetic
datasets and real hazy images indicate that many state-of-the-art sin-
gle image dehazing methods have been surpassed by the CP-Net both
quantitatively and qualitatively.

Keywords: Image dehazing · Channel attention and pixel attention ·
Residual learning

1 Introduction

In the past 20 years, the problem of image dehazing has aroused wide attention
in the computer vision field. Haze is a common atmospheric phenomenon caused
by small floating particles such as dust and smoke in the air. These floating
particles greatly absorb and scatter light, resulting in reduced image quality.
Under the influence of haze, many practical applications such as video surveil-
lance, remote sensing, and autonomous driving are vulnerable to threat, and
advanced computer vision jobs such as segmentation [23–25] and object detec-
tion [11,21,22] are difficult to complete. Therefore, image dehazing has become
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an increasingly important technique and its purpose is to restore a hazy image to
a haze-free image (see Fig. 1). Most of the successful approaches depend on the
physical scattering model [3–5], which can be expressed by the following formula

I(z) = J(z)t(z) + A(1 − t(z)) (1)

Where I is a hazy image, J is a haze-free image, t is the transmission map and
A is the global atmosphere light.

(a) Hazy Image (b) Our dehazed Image

Fig. 1. An example of image dehazing

When the atmosphere is uniform, the transmission map t can be expressed
as

t(z) = e−βd(z) (2)

where β is the atmosphere scattering parameter and d is the scene depth.
Equation 1 can also be transformed into the following form

J(z) =
I(z) − A

t(z)
+ A (3)

We know from Eq. 3 that since A and t have an infinite number of solutions, it
is a pathological problem to use the atmospheric scattering model to dehaze. If
A and t can be appropriately evaluated by leveraging the captured hazy image,
a clear dehazing image we can get. However, it is often challenging to complete
that.

Many early dehazing methods, such as [8,18,26,27] were based on atmo-
spheric scattering models. [9,20] discovered the effective dark channel prior
(DCP). In a haze-free image, every local area is likely to have shadows, or some-
thing of pure color, or something of black. Therefore, it is very likely that each
local area will have at least one color channel with a low value. This statistical
law is called Dark Channel Prior. However, the dark channel prior is not very
suitable for images with the sky. DCP points out some pixels always have at
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least one color channel with a very low value in most local areas. This also indi-
rectly proves that different channel characteristics contain different degrees of
important information. The representation of network will be greatly limited if
all features are treated equally.

Convolutional neural network (CNN) are widely used in computer vision.
Many methods based on convolutional neural networks have excellent results
in the field of image processing. One of the advantages of deep CNN model
compared to traditional image processing algorithms is that it avoids the com-
plex pre-processing of the image, especially manual participation in the image
pre-processing process. Up to now, CNN has been widely used in various image-
related applications. In the field of image dehazing, almost all methods are based
on CNN. For example, DCP, AOD-Net [2], MSCNN [9], EPDN [31]. These dehaz-
ing methods have achieved very remarkable results.

The attention mechanism [14–16] is often used in convolutional neural net-
works, because it can improve the performance of the network remarkably.
Inspired by the work [12], a new double attention (DA) module is proposed. Our
DA module combines channel attention and pixel attention. DA can give differ-
ent channel features and pixel features different weights. For example, important
feature will be given greater weight, less important feature will be given less
weight.

The deeper (complex, more parameters) CNN network is, the more expressive
it is. [10] proposed ResNet which is conducive to training deep models based on
convolutional neural networks. We incorporate the attention mechanism and
the skip connection into DA module. CP-Net utilizes multiple local residual
connections to not only transmit the information in the shallow part of the
network to the deep part of the network as completely as possible, but also
deepen the depth of the network and improve the network performance.

Many dehazing methods nowadays utilize peak signal to noise ratio (PSNR)
and structure similarity (SSIM) indicators to measure the quality of dehazed
image recovery. For human subjective evaluation, we also provide a large number
of network outputs from corrupted inputs. Experimental results demonstrate
that our network exceeds the previous state-of-the-art methods in terms of both
the PSNR and SSIM metrics and qualitative comparisons. Not only that, we
also made an ablation analysis to prove the effectiveness of our DA module.

The main contributions of our work can include the following:

1. We design a fully end-to-end single image dehazing algorithm CP-Net, which
can directly output dehazing image without relying on the atmosphere scat-
tering model in Eq. 1. It achieves state-of-the-art performance on both syn-
thetic and real hazy images;

2. We combine the channel attention and pixel attention mechanism to design a
new double attention (DA) module. DA module can focus more attention on
important channel information and pixel information. The sum of the outputs
of two attention module can further improve the capacity of CP-Net;

3. We combine double attention (DA) module and local residual learning to
design a new basic block. Local residual learning can transfer the feature
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information in the shallow part of the network to the deep part of the network
through multiple local residual connections, DA module can give different
channel features and pixel features different weights;

4. Our CP-Net contains multiple basic block connections, which not only reduces
the loss of information during the flow, but also increases the depth of the
network. In addition, CP-Net can also automatically learn different weights
for different features.

2 Related Works

Most previous dehazing methods rely on Eq. 1. As we mentioned above, the
atmosphere scattering model is ill-conditioned because global atmospheric light
and transmission map can not be accurately estimated. No matter which method
is used, we can not escape obtaining accurate transmission map and global atmo-
spheric light. Traditional methods can only use different image statistical priors
as constraints to minimize the information loss caused by corruption procedure.
Modern methods can only use a large number of constraints to learn useful
information in image continuously, but the structural design of dehazing net-
work limits the performance.

The dehazing method introduced in [6] makes use of the Dark Channel Prior
(DCP), which estimates the transmission map. However, this prior is proved to
be unreliable when the scene objects are similar to the atmospheric light. Color
attenuation prior was proposed by [7]. It points out that there is a linear rela-
tionship between the depth, brightness, and saturation of the hazy image, which
can be used to form a function formula. The measure of calculating the optical
transmission of foggy scene based on a single input image is proposed by [28],
which assumed a premise that the surface shadow and the transfer function are
statistically independent. [19] proposed a method (NLD) for estimating trans-
mission map based on global priors to recover the clean image, and the algorithm
assumes that the color of pixel points in a haze-free image can be clustered into
hundreds of compact clusters in RGB space. Because the prior is based on the
assumption under ideal conditions, the prior-based dehazing methods will fail in
certain scenarios, such as bad natural weather.

In recent years, deep learning technology has been greatly developed. The
emergence of large synthetic datasets [6] have solved the problem of data scarcity,
which has also directly promoted the widespread development of data-driven
image dehazing algorithms. Although these algorithms reduce the reliance on
handmade priors, they still rely on the traditional strategies mentioned above.
For example, DehazeNet [1] is an end-to-end system that directly learns and esti-
mates the mapping relationship between a hazy image and its transmission map.
[9] leverages a Multi-Scale CNN (MSCNN) that can estimate the transmission
very well.

By transforming Eq. 1, the AOD-Net [2] no longer needs to estimate transmis-
sion map and atmospheric light. [13] propose a hazy image restoration method
based on threshold fusion network (GFN) which consists of an encoding and
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decoding network. EPDN [31] simplifies the image dehazing problem to the
image-to-image translation problem, which is embedded by the generative adver-
sarial network (GAN) and does not depend on the physical scattering model.

Fig. 2. Channel Attention and Pixel Attention Network (CP-Net) architecture

3 Channel Attention and Pixel Attention Network
(CP-Net)

The detailed structure of CP-Net is described in Fig. 2. The input of CP-Net
is a hazy image, which first goes through a convolutional layer, then is sent to
six Group Architectures with multiple long skip connections and a convolutional
layer. The output of convolutional layer is then fused with the output of shallow
feature extraction part via element-wise addition. Finally, the features will flow
into the reconstruction part, and then a dehazed image will be obtained.

In addition, local residual learning and B Basic Block structures constitute
a Group Structure; Double Attention (DA) module and the skip connection
constitute a Basic Block. Channel Attention and Pixel Attention constitute DA
module.

We will introduce DA module and Basic Block structure in detail in Sect. 3.1
and 3.2 respectively. Finally, we will introduce Group Architecture and Global
Residual Learning in detail in Sect. 3.3.

3.1 Double Attention (DA)

Because the distribution of haze on the image is not uniform, the network
we designed can deal with different channel features and pixel features differ-
ently. Double Attention (see Fig. 3) is comprised of pixel attention and channel
attention. DA can help our CP-Net assign different weights to each Channel of
input features, extract more critical and important information, and make more
accurate judgments of CP-Net. Next, we will elaborate on how CP-Net assigns
weights to each channel feature and pixel feature.
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Fig. 3. Double Attention module

Channel Attention (CA). The main task of channel attention is to assign
different weights to different channel features. By using the global average pool-
ing, we transform the global spatial information on the channel into a channel
descriptor.

gc = Gp(F ) =
1

H × W

H∑

i=1

W∑

j=1

Fc(i, j) (4)

Where Gp is the global pool function, Fc(i, j) represents the pixel value of the
position (i, j) on the c-th channel Fc, and the feature map with the shape of
C×H×W turns into the attention map of C×1×1. The features are processed
by two convolutional layers, a ReLu activation function and a latter softmax
function, and then the attention map is obtained, that is, the weights of different
channels.

CAc = S (Conv (δ (Conv (gc)))) (5)

Where the S and δ represent the softmax and ReLu functions, respectively.
By merging the weights of the channel CAc and the input F by element-wise

multiplication, we can get the output of the CA module.

Fc = CAc ⊗ F (6)

Pixel Attention (PA). Since the haze is distributed differently in different
pixels of hazy image, the pixel attention (PA) module we proposed can learn
the informative contextual feature of each pixel. Each pixel in the hazy image is
treated differently by PA module which can pay more attention to those critical
pixels.

Firstly, the input F are processed by two convolutional layers and a ReLu
activation function.
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F ′ = Conv(δ(Conv(F ))) (7)

Then the feature map F ′ passes through a convolution layer and a sigmoid
activation function, respectively.

F1 = σ (Conv (F ′)) (8)

F2 = σ (Conv (F ′)) (9)

Where the σ represents the sigmoid function. The shape of the feature map F ′,
F1 and F2 remain unchanged as C × H × W.

In order to get pixel attention weight map, we merge F1 and F2 by element-
wise multiplication.

PA = F1 ⊗ F2 (10)

At the end, we get the output of PA module by fusing PA and F by element-wise
multiplication.

Fp = PA ⊗ F (11)

As shown in Fig. 3, we finally merge Fc and Fp by element-wise sum to further
improve the performance of the network. The final output of DA module is F ∗.

F ∗ = Fc + Fp (12)

3.2 Basic Block Structure

As is shown in Fig. 4, the basic block structure is composed of double attention
(DA) module and local residual learning. Local residual learning can transfer
the feature information in the shallow part of the network to the deep part of
the network through multiple local residual connections, DA module can give
different channel features and pixel features different weights.

Fig. 4. Basic block structure
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3.3 Group Architecture and Global Residual Learning

Our CP-Net contains six Group Architectures. A Group Architecture contains a
skip connection and B basic blocks. Our B basic blocks are connected in sequence,
followed by a convolutional layer. We fuse the input of Group Architecture and
the output of the last convolutional layer by element-wise sum, which not only
helps to reduce the loss of information in the flow process, but also helps to
deepen the depth of the network. We added three additional convolutional layers
and a global learning module after the last Group Architecture. Combining the
features of the shallow part of the CP-Net and the features of the deep part
through element-wise sum can significantly improve the dehazing effect of our
network.

3.4 Loss Function

To train the proposed CP-Net, L1 loss, perceptual loss and SSIM loss are
employed.

L1 Loss. Through L2 loss is widely used in many image dehazing networks,
[32] proved that L1 loss can achieve higher PSNR and SSIM than L2 loss. Given
an input hazy image I, the output of CP-Net is CP(I) and the ground truth is
J . Then the L1 loss over N samples can be written as

L1 =
N∑

i=1

‖CP (Ii) − Ji‖1 (13)

Perceptual Loss. The perceptual loss leverages multi-scale features extracted
from a pre-trained deep neural network to quantify the visual difference between
the estimated image and the ground truth. In this paper, we adopt the VGG16
[30] pre-trained on ImageNet [29] and the three stages (ReLu1-2, ReLu2-2 and
ReLu3-3). The perceptual loss is defined as

Lp =
3∑

j=1

1
Cj × Hj × Wj

‖∅j(CP(I)) − ∅j(J)‖22 (14)

where ∅j(CP(I)) (∅j(J)), j = 1, 2, 3, denote the aforementioned three VGG16
feature maps associated with the dehazed image CP(I) and the ground truth J ,
and Cj , Hj and Wj specify the dimension of ∅j(CP(I)) (∅j(J)), j = 1, 2, 3.

SSIM Loss. SSIM is proposed to measure the structural similarity between
two images. It can be written as

SSIM(CP (I), J) =
2μCP (I)μJ + C1

μ2
CP (I) + μ2

J + C1
· 2σCP (I)J + C2

σ2
CP (I) + σ2

J + C2
(15)
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Where μx, σ2
x are the average value and the variance of x, respectively. σxy is

the covariance of x and y. C1, C2 are constants used to maintain stability. SSIM
ranges from 0 to 1. SSIM Loss can be expressed by the following formula

Ls = 1 − SSIM(CP (I), J) (16)

Total Loss. We take the sum of the L1 loss, the perceptual loss and the SSIM
loss as the total loss L

L = L1 + αLp + βLs (17)

Where α and β are positive weights. We set α and β to be 0.04 and 0.5, respec-
tively.

3.5 Detailed Implementation of CP-Net

In this section, we specify the implementation details of our proposed CP-Net.
We set up 6 Group Structures. Each Group Structure contains B = 14 Basic
Blocks. The convolution layers kernel size of Channel Attention and Pixel Atten-
tion is set to 1×1, but other convolution layers kernel size is 3×3. Every Group
Structure and every Basic Block Structure output 64 features which keep size
fixed.

4 Experiments

4.1 Datasets and Metrics

During experiment, we used a synthetic dataset RESIDE [11] containing indoor
and outdoor scenes. The indoor dataset contains 28850 hazy images and 2885
clear images for training. These hazy images are generated by corresponding
clean images. The outdoor dataset contains 31430 hazy images and 898 clear
images. The scatter parameters range from 0.04 to 0.2; the global atmosphere
light changes from 0.8 to 1.0. Synthetic Objective Testing Set (SOTS) is used
as the test dataset which contains 500 outdoor and 500 indoor images. We com-
pare PSNR, SSIM and visualized dehazing results with previous state-of-the-art
dehazing methods on our test dataset. In addition, we also conducted comparison
experiments on Realistic Hazy Images.

4.2 Training Settings

In order to get a fine dehazing effect, random rotation and horizontal flip strate-
gies are adopted to augment the training dataset. Two patches with a size of
240 × 240 are randomly cropped on the hazy image and its corresponding haze-
free image as the inputs of CP-Net. CP-Net is trained for 1 × 106, 1 × 105 steps
on indoor and outdoor datasets, respectively. CP-Net is optimized by Adam
Optimizer, where the number of β1 and β2 is set up 0.9 and 0.999, respectively.
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We set the initial learning rate as 1 × 10−4. We leverage cosine annealing
strategy [17] to adjust the learning rate from the initial value to 0. We define
T as the total number of training steps, and η as the initial learning rate. The
learning rate ηt is shown below at step t.

ηt =
1
2

(
1 + cos

(
tπ

T

))
η (18)

All experiments are carried out with a Tesla V100 GPU.

4.3 Results on RESIDE Dataset

We compare our CP-Net both quantitatively and qualitatively with the previ-
ous state-of-the-art dehazing methods that include DCP, NLD, AOD-Net and
EPDN. Table 1 shows the quantitative comparisons of our CP-Net and other
networks in terms of PSNR and SSIM. It is clear that our experimental results
are superior to previous advanced dehazing methods in terms of PSNR and
SSIM. Not only that, but we also made a comparison of visualization in Fig. 5
for qualitative comparisons.

Table 1. Quantitative comparisons on SOTS for different methods.

Methods Indoor Outdoor

PSNR SSIM PSNR SSIM

DCP 16.52 0.7433 17.48 0.7081

NLD 19.73 0.8043 17.72 0.8413

AOD-Net 21.15 0.8654 22.98 0.8982

EPDN 26.89 0.9401 22.05 0.9186

Ours 31.72 0.9858 30.47 0.9815

As is shown in Fig. 5, the top two lines are the results of indoor comparison,
and the bottom two lines are the results of outdoor comparison. We can clearly
discover that the dehazing images produced by DCP are very different from the
real clear images (GT ) in color, and the image details are seriously lost. This is
because DCP uses prior assumptions. Images recovered by The NLD have a lot
of black spots and the sky is highlighted. The dehazed images produced by AOD-
Net have a little color distortion and some residual haze. However, our network
can well preserve the true details of the images whether it is processing indoor
or outdoor scenes. We can hardly see residual haze on our restored images.

We also evaluate the results on real hazy images and observe that although all
models are trained with outdoor synthetic dataset RESIDE, our model can still
produce better dehazed images. To a certain extent, our network can effectively
remove haze, while maximizing the retention of image details. However, the
images recovered from other networks not only have a lot of haze, but also are
not as good as our network in terms of color fidelity and image detail.
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(a) Inputs (b) DCP (c) NLD (d) AODNet (e) EPDN (f) Ours (g) GT

(A) Indoor and outdoor results

(a) Input (b) DCP (c) NLD (d) AOD-Net (e) EPDN (f) Ours

(B) Real hazy image results

Fig. 5. Qualitative comparisons on SOTS and Realistic Hazy Images testset

5 Ablation Analysis

In order to prove the rationality of our proposed CP-Net structure, we also
designed two other networks defined as C-Net and P-Net. The only difference
with CP-Net is that C-Net and P-Net contain only Channel Attention and Pixel
Attention, respectively.

We use the same method which is used to train CP-Net to train the C-Net
and P-Net. The final experimental results are shown in Fig. 6 and Table 2.

Table 2. Quantitative comparisons of Ablation Analysis.

Methods Indoor Outdoor

PSNR SSIM PSNR SSIM

C-Net 29.98 0.9748 29.00 0.9713

P-Net 28.53 0.9621 28.45 0.9589

CP-Net 31.72 0.9858 30.47 0.9815
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(a) Input (b) C-Net (c) P-Net (d) CP-Net (e) GT

(A) Indoor results

(a) Input (b) C-Net (c) P-Net (d) CP-Net (e) GT

(B) Outdoor results

Fig. 6. Qualitative comparisons of Ablation Analysis (color figure online)

Firstly, in the indoor results of Fig. 6, the area marked by the red box contains
a large number of black spots in the image recovered by C-Net, but P-Net can
restore the area well. In the area marked by the yellow box, P-Net produces a
large area of shadow with navy blue light and C-Net can maintain the exact
details of the area well. CP-Net can accurately restore these two areas at the
same time and generate a dehazed image closer to the ground truth image.

Secondly, in the outdoor results of Fig. 6, the area marked by the red box
contains a lot of haze in the image recovered by C-Net, but P-Net can remove
the haze from the area cleanly. In the area marked by the yellow box, P-Net
distorts the color, producing a thick black line but C-Net can restore this area
well. CP-Net can accurately restore these two areas to produce a clearer image.

In order to further verify the superiority of CP-Net again, we compare CP-
Net, C-Net and P-Net with respect to PSNR and SSIM. The comparative results
are shown in Table 2. The results indicate that CP-Net is superior to C-Net and
P-Net, and has achieved the highest PSNR and SSIM.

The above shows that Channel Attention and Pixel Attention are similar to
a complementary relationship, and the fusion of the information captured by
them can further enhance the effect of image dehazing.

6 Conclusion

We propose a new end-to-end single image dehazing network (CP-Net). Although
our network structure is simple, it can surpass many previous state-of-the-art
dehazing methods. CP-Net mainly leverages the combination of channel atten-
tion and pixel attention mechanisms. The combination of channel attention and
pixel attention treats the information in the feature maps differently, filters out
important information, and achieves excellent dehazing effect.
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