
An Incremental Partitioning Graph Similarity
Search Based on Tree Structure Index

Yuhang Li1, Yan Yang1,2(&), and Yingli Zhong1

1 School of Computer Science Technology, Heilongjiang University,
Harbin, China

yangyan@hlju.edu.cn
2 Key Laboratory of Database and Parallel Computing of Heilongjiang Province,

Harbin, China

Abstract. Graph similarity search is a common operation of graph database,
and graph editing distance constraint is the most common similarity measure to
solve graph similarity search problem. However, accurate calculation of graph
editing distance is proved to be NP hard, and the filter and verification frame-
work are adopted in current method. In this paper, a dictionary tree based
clustering index structure is proposed to reduce the cost of candidate graph, and
is verified in the filtering stage. An efficient incremental partition algorithm was
designed. By calculating the distance between query graph and candidate graph
partition, the filtering effect was further enhanced. Experiments on real large
graph datasets show that the performance of this algorithm is significantly better
than that of the existing algorithms.

Keywords: Graph similarity search � Similarity search � Graph partition

1 Introduction

In recent years, a large number of complex and interrelated data has grown. In order to
ensure the integrity of data structure, it is modeled as a graph, and graph search
operations are frequently used in database retrieval, so it is widely concerned. Due to
the inevitable natural noise and human error input in real life, it is very necessary to
search the similarity of graphs. It aims to search the set of graphs similar to the query
graphs specified by users in large graph database. At present, there are many indicators
to measure the similarity of graphs, such as the largest common subgraph [1, 2], edge
missing [3]. Among them, the most commonly used similarity measure is the graph
editing distance (GED), which can not only accurately capture the structural differences
between graphs, but also can be applied in various fields, such as computer vision
handwriting recognition [4], molecular analysis of compounds [5].

Therefore, this paper studies graph similarity search based on graph editing distance
constraint: given a graph database and a query graph, the user gives GED threshold, the
graph set in query graph database with graph editing distance within the threshold. The
graph editing distance GED G1;G2ð Þ refers to two graphs G1 and G2. It is the minimum
number of operations to convert G1 to G2 by inserting and deleting vertices/edges or
relabel labels. But calculating the GED of two graphs has been proved to be NP hard [6].

© Springer Nature Singapore Pte Ltd. 2020
J. Zeng et al. (Eds.): ICPCSEE 2020, CCIS 1257, pp. 16–32, 2020.
https://doi.org/10.1007/978-981-15-7981-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7981-3_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7981-3_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7981-3_2&domain=pdf
https://doi.org/10.1007/978-981-15-7981-3_2

At present, the most widely used method to calculate the GED is A* algorithm [7], and
literature [2] shows that the A* algorithm cannot calculate the editing distance of graphs
with more than 12 vertices. Therefore, the solution of search problem in large graph
database adopts the frame of filter and verification. Generally, a set of candidate graphs
is generated under some constraints, and then GED is calculated for verification. At
present, many different GED lower bounds and pruning technologies have been pro-
posed, such as k-AT [8], GSimSearch [9], DISJOINT-PARTITION BASED FILTER
[10], c-star [11], but they all share a lot of common substructures, resulting in the loose
GED lower bounds. Inves [15] proposes a method of incremental graph partition, and
considers the distance between partitions, but the filtering conditions of this method are
too loose. Based on Inves, this paper makes the following contributions:

• We study the idea of incremental partition from a new perspective, and use the idea
of q-gram to enhance the partition effect, so as to reduce the number of candidate
sets.

• We propose a clustering index framework, which optimizes the K-Means clustering,
uses the dictionary tree structure as the index, uses the dynamic algorithm to divide
the incremental graph, and groups the similar graph according to the graph division
structure to enhance the filtering ability.

• We have carried out a wide range of experiments on datasets, and the results show
that the algorithm in this paper is significantly better than the existing algorithm in
performance.

2 Preliminary

2.1 Problem Definition

For the convenience of illustration, this paper focuses on simple undirected label graph,
and the method can also be extended to other types of graphs. Undirected label graph G
is represented by triple Vg;Eg; Lg

� �
, where Vg is the vertex set, Eg � Vg � Vg is the

edge set, Lg is a function that maps vertices and edges to labels. Vg uð Þ is the label of
vertex u, Vg uð Þ is the label of edge u; vð Þ. In practical applications, labels can be
expressed as properties of vertices and edges, such as chemical composition of com-
pounds, chemical bonds, etc.

The editing operation of a graph refers to the editing operation of converting from
one graph to another, including:

– Insert an isolated labeled vertex in the graph
– Remove an isolated labeled vertex from the graph
– Insert a labeled edge in the graph
– Delete a labeled edge in the graph
– Relabel a vertex label
– Relabel an edge label

An Incremental Partitioning Graph Similarity Search Based on Tree Structure Index 17

The graph editing distance between graph G1 and G2 refers to the minimum
number of graph editing operations converted from G1 to G2, expressed as
GED G1;G2ð Þ.
Example 1. Figure 1 shows two graphs G1 and G2, in which the vertex label is a
chemical molecule and the edge label (single line and double line) is a chemical bond.
G1 can be converted to G2 by changing u3 label to ‘S’, u4 label to ‘N’, deleting double
key edge u6; u7ð Þ, and insert single key edge u6; u7ð Þ. Therefore, GED G1;G2ð Þ ¼ 4.

Definition 1. (graph similarity search problem) Given graph database D ¼ G1;f
. . .;Gng, a query graph Q, and GED threshold s, the problem of graph similarity search
is to find the set of graphs satisfying GED Gi;Qð Þ� s;Gi 2 D.

2.2 Related Work

Recently, much attention has been paid to graph similarity search. The previous work is
to use the overlapping substructures of different graphs to filter, and then carry out
expensive GED calculation.

k-AT [8] is inspired by the idea of q-gram of approximate string matching. By
decomposing the graph into several subgraphs, the lower limit of editing distance is
estimated by using the number of common subgraphs, and the inverted index is
established by using the extracted features. However, k-AT algorithm is only suitable
for sparse graphs. GSimSearch [9] proposes path based q-grams, which uses matching
and mismatching features, and proposes a local label filtering method in its verification
phase. Although it solves the limitation of k-AT, the paths overlap each other, and the
partition size is fixed, resulting in poor pruning function.

c-star [10] uses 1-gram to construct star structure based on k-AT, and uses binary
matching between star structures to filter. On the basis of traditional c-star, DISJOINT-
PARTITION BASED FILTER [11] will tighten the filter lower bound of c-star by
removing the leaf nodes, but this method still shares many common substructures,
making the editing distance lower limit too loose. CSI_GED [2] based on the com-
bination of edge mapping and backtracking algorithm, in the verification phase faster
calculation of the graph GED. GBDA [12] proposes the graph branch distance and
estimates the graph edit distance using probability method, but when calculating the
prior distribution, the sampling of data is not accurate.

Fig. 1. Data graph G1 and G2

18 Y. Li et al.

Pars [13] adopts random graph partition strategy, and proposes non overlapping
and variable size graph partition. ML_index [14] uses vertex and edge tag frequency to
define partition, and proposes selective graph partition algorithm, so as to improve
filtering performance. Both Pars and ML_index use graph as index features, but large
graph creation index costs a lot. In this paper, the dynamic algorithm is used to divide
the graph incrementally, and a clustering index based on dictionary tree is proposed to
enhance the filtering performance, so as to ensure its search performance in large-scale
graph database.

3 IP-Tree Algorithm

3.1 Partition Based Filtering Scheme

Because it is very expensive to calculate the GED of each graph and query graph in a
large graph database, this paper uses the filter and verification framework to calculate
the GED lower bound between the candidate graph and query graph by using the
partition method before calculating the GED accurately, so as to filter the candidate set
and reduce the cost of calculating the GED accurately. Before we formally introduce
the filter framework, we start with defining the induced subgraphs of graph partitions.

Definition 2. (induced subgraph isomorphism) Given a graphG1 and a graphG2, if there
is a mapping f : VG1 ! VG2 satisfying (1) 8u 2 VG1 ; f uð Þ 2 VG2 ^ LG1 uð Þ ¼ LG2 f uð Þð Þ
(2) 8u 2 VG1 ; 8v 2 VG2 ; LVG1

u; vð Þ ¼ LVG2
f uð Þ; f vð Þð Þ, it is said that the graph G1 is the

induced subgraph isomorphism of the graph G2, expressed as G1 � G2.

Example 2. Figure 2 shows three graphs P1, P2 and G1. It can be found that P1 is not
the induced subgraph isomorphism of G1, because LP1 u2; u3ð Þ 6¼ LG1 u2; u3ð Þ, P2 is the
induced subgraph isomorphism of G1.

Definition 3. (graph division) The division of graph G is P Gð Þ ¼ p1; . . .; pkf g, where
pk satisfies the condition: (1) 8i; pi � G (2) 8i; j;Vpi \ ;Vpj ¼ £ s:t: i 6¼ j (3) VG ¼
[k

i¼1Vpi .

Fig. 2. Induced subgraph isomorphism

An Incremental Partitioning Graph Similarity Search Based on Tree Structure Index 19

Definition 4. (partition matching) Given a graph G1 and G2, a partition p 2 P G1ð Þ, if
p � G2, then partition p is the matching partition of graph G2, otherwise partition p is
the mismatching partition of graph G2.

Lemma 1. Given graph G1 and graph G2 and partition P G1ð Þ of graph G1,
lb G1;G2ð Þ ¼ pj jp�P G1ð ÞV p*G2j is a lower bound of GED G1;G2ð Þ.
Proof. Because G1 partitions do not overlap and the editing operation of each partition
does not affect other partitions, there is at least one editing operation from G1 to G2 for
each mismatched partition.

Corollary 1. Given graph G1, G2, the division of graph G1 and given GED threshold s,
if lb G1;G2ð Þ[s, then graph G1 is pruned and GED does not need to be calculated.

Example 3. Given two graphs G1 and G2 as shown in Fig. 1, the GED threshold s. If
we divide G1 into p1; p2; p3f g according to the method shown in Fig. 3(a), we need to
calculate GED of G1 and G2 according to corollary 1. If we divide G1 into p

0
1; p

0
2; p

0
3

� �

according to the method shown in Fig. 3(b), according to corollary 1, we can prune it
directly without calculating GED.

It can be seen that the compactness of lb G1;G2ð Þ depends on the partition method
of G1, but the enumeration of all the partition methods is too time-consuming. Based on
Inves [15], this paper studies the idea of incremental partition from a new perspective,
and uses the idea of q-gram to enhance the partition effect and reduce the number of
candidate sets.

3.2 Optimized Incremental Partition

In this section, we introduce an incremental partition strategy. The core idea is to
minimize the editing of each mismatched partition p, that is, if some vertices of the
partition p are deleted, the partition p will become a matching partition.

Definition 5. (incremental partition) Given two graphs G1 and G2, the incremental
partition of G1 is to extract the smallest mismatched partition from G1. First, we obtain
the vertex set VG1 ¼ u1; . . .; unf g of graph G1. We put the vertices in VG1 into a

Fig. 3. Two divisions of figure G1 in Fig. 1

20 Y. Li et al.

partition p in order until we put a vertex uiþ 1 to make p*G2 stop partition. At this
time, G1 is divided into P G1ð Þ ¼ p;G1=pf g, where G1=p refers to the induced sub-
graph composed of removing the vertices in the partition p. Repeat G1=p division until
G1=p � G2 or G1=p ¼ £.

The graph partition generated by Definition 5 satisfies the following properties,
given two graphs G1 and G2, If G2 uses incremental partition, the division is
P gð Þ ¼ p1; . . .; pk � 1; pkf g, then the p1; . . .; pk � 1 does not match the G2, pk matches
G2. Therefore, lb G1;G2ð Þ ¼ k � 1.

Example 4. Given two graphs G1 and G2 as shown in Fig. 1, G1 is divided incre-
mentally. The process is shown in Fig. 4. First, select the vertex u1; u2; u3f g from G1 to
form the partition p1 as shown in Fig. 4 (a). Because p1 � u3f gð Þ�G2

V
p1 * G2,

partition p
0
2 continues to be divided until it is shown in Fig. 4 (b). Because p4 ¼ £, the

incremental division ends, lb G1;G2ð Þ ¼ 3.

After the incremental partition of the graph, it can be found that the last vertex put
into the partition in each partition results in the mismatch between the partition and the
target graph. As shown in the partition p1 in Fig. 4 (a), the insertion of vertex u3 makes
p1 * G2, which indicates that the editing operation should be concentrated near the
vertex u3, not only that, the first selected vertex also has an impact on the subsequent
entire incremental partition.

Therefore, the last vertex in the partition is taken as the starting vertex, and the
partition is re divided in the same way. While maintaining connectivity, the points that
may generate editing operations should be considered as early as possible, so as to
reduce the size of mismatched partition.

Example 5. As shown in Fig. 5, suppose the vertex order of graph X is u1; u2; u3;f
u4; u5g. According to the incremental partition scheme, we choose the first partition p
as u1; u2; u3f g, X=p � Y , then lb X; Yð Þ ¼ 1. We reorder the mismatched partition and
get the new vertex order u3; u2; u1f g of the partition. Then we get the first partition p as
u3; u2f g, X=p*Y . We continue to partition and get the second partition u1; u4f g,

X=p � Y . We get a closer GED lower bound lb X; Yð Þ ¼ 2.

Fig. 4. Incremental division of G1 in Fig. 1

An Incremental Partitioning Graph Similarity Search Based on Tree Structure Index 21

In this paper, the q-gram method is used to enhance the partition effect. Before
incremental partition, the two graphs are decomposed into 1-gram to obtain the dif-
ferent structures of the two graphs. The vertices with the lowest frequency in the
different structures are most likely to be relabel. The vertices are arranged in ascending
order of frequency, and the incremental partition is carried out in this order.

Example 6. The graphs G1 and G2 in Fig. 1 are decomposed to get the 1-gram of G1

and G2 shown in Fig. 6. Comparing the different structures of G1 and G2, it can be
found that the different structures are pink nodes, and the vertices with the lowest
frequency in G1 are yellow vertices. The vertices in G1 are arranged in ascending order
according to the frequency, and the vertex sequence u3; u4; u2; u6; u7; u5; u1f g is
obtained, as shown in Fig. 7, incrementally partitions in this vertex order.

Fig. 5. Repartition mismatch partition

Fig. 6. 1-grams of graphs G1 and G2 in Fig. 1

Fig. 7. Optimization increment division of G1 in Fig. 1

22 Y. Li et al.

The algorithm of incremental partitioning method is summarized in Algorithm 1.

Given a pair of graphs G and Q, the algorithm uses the incremental partition
method to partition, so as to calculate the lower limit lb G;Qð Þ.

Firstly, the q-grams algorithm is used to count the frequency to determine the
vertex order of G (line 1), Then, the isomorphic test of induced subgraph of G is
performed based on this order, and the unmatched vertex position of G in Q (line 2) is
returned. If the number of unmatched vertex positions returned exceeds the number of
vertex sets in G, then this pair of matching, return 0 (lines 3–5). Otherwise, the
mismatched vertices are placed in partition p (line 6). Using 7–11 lines to reduce the
size of the partition, reorder the vertices in the partition P (line 8), continue to perform
the induced subgraph isomorphism test (line 9) on Q in this order, and return the
unmatched vertex position (line 10) of G in Q until the partition p does not change.
Then the partition p is separated from G to get G0 (line 12). Iterate over the number of
partitions in G0 and return lb G;Qð Þ (line 13).

3.3 Validation Algorithm

In the process of verification, A* algorithm is used to calculate GED. The performance
of A* algorithm depends on the accuracy of the estimation of edit distance generated
by unmapped vertices. In order to improve the accuracy of distance estimation, this
paper uses the idea of bridge to predict the editing distance of unmapped vertices more
accurately.

An Incremental Partitioning Graph Similarity Search Based on Tree Structure Index 23

Definition 6. (bridge) Given a partition p, the bridge of vertex u 2 p is the edge of
vertex u and v, where v 62 p.

Given a partition p in the graph partition of graph G1, and a partition m matching
the partition p in G2, it is assumed that the vertex u 2 p of graph G1 is mapped to the
vertex v 2 q of graph G2. Then, the edit distance between vertices u and v is
Be u; vð Þ ¼ C Lbr uð Þ; Lbr vð Þð Þ, where Lbr uð Þ represents the set of labels of the bridge of
vertices u, C X;Yð Þ ¼ max X � Yj j; Y � Xj jð Þ. The bridge editing distance from parti-
tion p to partition m is B p;mð Þ ¼ P

u!v2M Be u; vð Þ, where m is the mapping of all
vertices of partition p and partition M.

Example 7. Given the graphs G1 and G2 in Fig. 1, it is assumed that the matched
partition is p1 ¼ u1; u2ð Þ, and the partition p matches m1 ¼ v5; v6ð Þ in G2, as shown in
Fig. 8, Be u1; v5ð Þ ¼ 1, because there is no bridge in u1, and there is a bridge in v5,
which is the same as Be u2; v6ð Þ ¼ 1, so B p1;m1ð Þ ¼ 1þ 1 ¼ 2.

When using the A* algorithm to calculate GED G1;G2ð Þ, for the known vertex
mapping set M, where u ! v 2 M; u 2 VG1 ; v 2 VG2 , we can get the predicted edit
distance of unmapped vertices, as shown in Eq. 1.

h0ðMÞ ¼ BðMÞþC LG1 u0ð Þ; LG2 v0ð Þð ÞþC LG1 u0; v0ð Þ; LG2 u0; v0ð Þð Þ ð1Þ

Where u0, v0 is the unmapped vertex, and the optimized A* algorithm is shown in
Algorithm 2.

Fig. 8. Edit distance of matching partitioned bridges

24 Y. Li et al.

First, initialize the set Mmin storing the minimum overhead mapping and the can-
didate mapping set Map (line 1), which maps the first vertex of graph G to all vertices
in Q (line 2–4). Select the Map with the minimum accumulated known overhead and
prediction overhead as Mmin, and delete it from the map (line 6–7). If Mmin is already a
complete Map, if the editing distance of the map exceeds s, return sþ 1, otherwise
returns the edit distance of the map. (line 8–13) if all vertices in VG are mapped, and it
is not a complete mapping, it means that the remaining vertices in VQ need to be
mapped to null, otherwise, the mapping will continue in order (line 14–22).

An Incremental Partitioning Graph Similarity Search Based on Tree Structure Index 25

3.4 Clustered Index Structure

In order to search in graph database faster, we propose a tree structure based on
dictionary tree based on k-means. To enhance filtering, we try to assign more similar
graphs to the same set. Then, a tree index is constructed for each set. In this paper, the
i-th cluster is represented as Ci, and its corresponding tree index is expressed as Ti.
When searching in the graph database, we search each index and merge the results of
all searches. For a given query graph Q, if it shares a few graph partitions with Ci, most
of the subtrees in Ti will be pruned to speed up the search time.

K-means algorithm is a common clustering algorithm. In this paper, the distance
measure is defined as the GED lower bound of graph partition, and the center of
clustering is expressed as Ci.

In order to solve the problem that k-means needs to specify the number of parti-
tions, this paper proposes a method to keep the center of each cluster as far away from
each other as possible. Firstly, the center of the first cluster is initialized randomly, and
then the graph furthest from the current cluster center is selected as the new center
iteratively until all graphs are close enough to the center of the cluster in which they are
located. All partitions in the center of each cluster are counted, sorted according to the
number of times that the graph in the cluster contains partitions, and a tree index is
constructed based on the dictionary tree. The index has the following properties:

– The root node does not store data, and each path represents a partition of the cluster
center map.

– Each node except the root node stores a set of graphs.
– From the root node to a node, the partition on the path belongs to every graph in the

graph set.

Example 7. Given the D ¼ fG1; . . .;Gng of graph database, first select G1 as the center
of the first cluster, calculate the distance between G1 and other graphs, and obtain the
division P G1ð Þ ¼ p1; p2; p3; p4f g of G1, select the farthest graph Gk as the center of the
second cluster, calculate the distance between Gk and other graphs, and update each
cluster. Calculate the distance from the graph in each cluster to the cluster center,
calculate the average distance, select the graph that is far away from both clusters as the
new cluster center, iterate repeatedly until the distance between all vertices in the
cluster and the cluster center is less than the average distance, or the cluster reaches the
upper limit. Suppose that the cluster with G1 as the center contains the graph
G2;G4;G5;G8, where p1 � G2 ^ p1 � G4, p2 � G2 ^ p2 � G5, p3 � G2 ^ p3 �
G5 ^ p3 � G8, p4 � G5 according to the number of times that the graph in the cluster
contains the partition Row sorting gets the partition order p3; p1; p2; p4f g, and the tree
index is constructed as shown in Fig. 9.

The algorithm for building the clustered index is shown in Algorithm 3.

26 Y. Li et al.

Fig. 9. Edit distance of matching partitioned bridges

An Incremental Partitioning Graph Similarity Search Based on Tree Structure Index 27

Firstly, a graph is randomly selected as the center point C1 (line 1) of the first
cluster, and then the distance from the center point of the cluster to other graphs (line 2)
is calculated. The graph C2 with the farthest editing distance C1 is found as the new
cluster center vertex (line 3), calculate the distance from the graph in each cluster to the
center of the cluster, find the average distance, select the graph that is far away from
each cluster as the new cluster center, iterate repeatedly until the distance between all
points in the cluster and the center of the cluster is less than the average distance, or the
cluster reaches the upper limit (line 4–15). Get the partition in the center of each cluster
(line 16–18).

For each cluster, the dictionary index is formed according to the graph containing
partition in the cluster. The node in the tree is the set of graph, and the edge is the
partition. It is constructed from the root node. If the partition P belongs to the current
graph, when there is no partition p in the child of the root, an empty set node is inserted.
If the partition P is the last structure belonging to the current graph, the current graph is
inserted into the node (line 20–28).

4 Experiment

4.1 Data Set and Experimental Environment

In this paper, the real graph data set in graph similarity search field is selected.

1. AIDS: it is a data set of antiviral screening used in NCI/NIH development and
treatment plan. It contains 42390 compounds, with an average of 25.4 vertices and
26.7 edges. It is a large graph database often used in the field of graph similarity
search.

2. Protein: it comes from protein data bank and contains 600 protein structures, with
an average of 32.63 vertices and 62.14 edges. It contains many dense graphs and
has fewer vertex labels.

See Table 1 for data statistics, where LV and LE are vertex and edge labels.

For each data set, we use 100 random samples as query graphs. The index con-
struction time, the size of the index, the query response time based on the GED
threshold, and the size of the candidate set to be verified are compared in several
aspects. All algorithms in this paper are implemented in Java. All experiments are run
on MacBook Pro with inter Corei7 with 2.6 GHz and MacOS 10.14.6 (Mojave) system
diagram with 16 GB main memory.

Table 1. AIDS and Protein data set

Data set Gj j Vj jarg Ej jarg LVj j LEj j
AIDS 42390 25.40 26.70 62 3
Protein 600 32.63 62.14 3 5

28 Y. Li et al.

4.2 Comparison of Existing Technologies

In this paper, three commonly used algorithms are selected for comparison:

1. Pars: Pars [13] uses random partitioning strategy to propose a non overlapping,
variable size graphics partitioning strategy and generate index. It is the most
advanced partitioning method at present.

2. ML-index: ML-index [14] adopts a multi-layer graph index method. It contains L
different layers, each layer represents a lower GED based on the partition, and a
selection method is selected to generate the index. In this paper, the number of
layers is defined as 3.

3. Inves: Inves [15] uses incremental partitioning method to divide the candidate graph
accurately and gradually according to the query graph, so as to calculate the lower
bound of their distance.

First of all, considering the time of index construction, as shown in Fig. 10. Notice
that y-axis is log-scaled in all experiments. The Inves algorithm does not establish an
index during the search process, and here it is modified using the tree index proposed in
this article, so the index construction time is consistent with Ip-tree. Therefore, it is not
shown in Fig. 10. Pars takes more time to build index, because it involves complex
graph partition and sub graph isomorphism test in the index construction phase. In this
paper, Ip-tree algorithm needs to cluster graph data, build index, and test some graph
partition and subgraph isomorphism, so the time is slightly slower than ML-index.

Figure 11 shows that under the AIDS data set, when the threshold changes, the
processing time of different algorithms changes. Because the AIDS data set graph is
large, we can clearly see that with the increase of threshold, the response time of all
algorithms becomes longer. The algorithm in this paper is faster than other algorithms
in processing time. Due to the small number of graphs in the protein data set, the GED
threshold range is expanded to 1–8 in this paper. As shown in Fig. 12, the algorithm in
this paper fluctuates slowly when the threshold rises.

Fig. 10. Index construction time under AIDS and protein datasets

An Incremental Partitioning Graph Similarity Search Based on Tree Structure Index 29

Finally, this paper compares the number of candidate sets, as shown in Fig. 13 and
Fig. 14. It can be found that the filtering effect of this algorithm is the best when the
threshold value is in the range of 1–3.

Fig. 11. Response time of AIDS

Fig. 12. Response time of Protein

Fig. 13. AIDS candidate set size

30 Y. Li et al.

5 Conclusion

In this paper, we improve the existing algorithm Inves, and propose a dictionary tree
based clustering index structure. The main idea is incrementally partition the candidate
graph according to the query graph, and calculate its GED lower bound. Using clus-
tering method, we cluster similar graphs and construct tree index, speed up the filtering
of candidate graphs, and use the optimized A* algorithm to realize the accurate cal-
culation of GED in the verification stage. Experiments on real large graph datasets
show that the performance of algorithm proposed is significantly better than that of
existing algorithms.

Acknowledgment. The Natural Science Foundation of Heilongjiang Province under Grant Nos.
F2018028. Received 2000-00-00, Accepted 2000-00-00.

References

1. Shang, H., Lin, X., et al.: Connected substructure similarity search. In: SIGMOD 2010,
pp. 903–914 (2010)

2. Gouda, K., Hassaan, M.: CSI_GED: an efficient approach for graph edit similarity
computation. In: ICDE 2016, pp. 265–276 (2016)

3. Zhu, G., Lin, X., et al.: TreeSpan: efficiently computing similarity all-matching. In:
SIGMOD 2012, pp. 529–540 (2012)

4. Maergner, P., Riesen, K., et al.: A structural approach to offline signature verification using
graph edit distance. In: ICDAR 2017, pp. 1216–1222 (2017)

5. Geng, C., Jung, Y., et al.: iScore: a novel graph kernel-based function for scoring protein-
protein docking models. Bioinformatics 36(1), 112–121 (2020)

6. Zeng, Z., Tung, A.K.H., et al.: Comparing stars: on approximating graph edit distance.
PVLDB 2(1), 25–36 (2009)

7. Riesen, K., Emmenegger, S., Bunke, H.: A novel software toolkit for graph edit distance
computation. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR
2013. LNCS, vol. 7877, pp. 142–151. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38221-5_15

Fig. 14. Protein candidate set size

An Incremental Partitioning Graph Similarity Search Based on Tree Structure Index 31

https://doi.org/10.1007/978-3-642-38221-5_15
https://doi.org/10.1007/978-3-642-38221-5_15

8. Wang, G., Wang, B., et al.: Efficiently indexing large sparse graphs for similarity search.
IEEE Trans. Knowl. Data Eng. 24(3), 440–451 (2012)

9. Zhao, X., Xiao, C., Lin, X., Wang, W., Ishikawa, Y.: Efficient processing of graph similarity
queries with edit distance constraints. VLDB J. 22(6), 727–752 (2013). https://doi.org/10.
1007/s00778-013-0306-1

10. Zheng, W., Zou, L., et al.: Efficient graph similarity search over large graph databases. IEEE
Trans. Knowl. Data Eng. 27(4), 964–978 (2015)

11. Ullmann, J.R.: Degree reduction in labeled graph retrieval. ACM J. Exp. Algorithmics 20,
1.3:1.1–1.3:1.54 (2015)

12. Li, Z., Jian, X., et al.: An efficient probabilistic approach for graph similarity search. In:
ICDE 2018, pp. 533–544 (2018)

13. Zhao, X., Xiao, C., et al.: A partition-based approach to structure similarity search. PVLDB
7(3), 169–180 (2013)

14. Liang, Y., Zhao, P.: Similarity search in graph databases: a multi-layered indexing approach.
In: ICDE 2017, pp. 783–794 (2017)

15. Kim, J., Choi, D.-H., Li, C.: Inves: incremental partitioning-based verification for graph
similarity search. In: EDBT 2019, pp. 229–240 (2019)

32 Y. Li et al.

https://doi.org/10.1007/s00778-013-0306-1
https://doi.org/10.1007/s00778-013-0306-1

	An Incremental Partitioning Graph Similarity Search Based on Tree Structure Index
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Problem Definition
	2.2 Related Work

	3 IP-Tree Algorithm
	3.1 Partition Based Filtering Scheme
	3.2 Optimized Incremental Partition
	3.3 Validation Algorithm
	3.4 Clustered Index Structure

	4 Experiment
	4.1 Data Set and Experimental Environment
	4.2 Comparison of Existing Technologies

	5 Conclusion
	Acknowledgment
	References

