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Abstract. Deep learning methods are applied into structured data and in typi-
cal methods, low-order features are discarded after combining with high-order
featuresfor prediction tasks. However, in structured data, ignorance of low-order
features may cause the low prediction rate. To address this issue, in this paper,
deeper attention-based network (DAN) is proposed. With DAN method, to keep
both low- and high-order features, attention average pooling layer was utilized
to aggregate features of each order. Furthermore, by shortcut connections from
each layer to attention average pooling layer, DAN can be built extremely deep to
obtain enough capacity. Experimental results show DAN has good performance
and works effectively.
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1 Introduction

Deep learning [12] has been receiving widespread attention since Krizhevsky et al. pro-
posed AlexNet [11], which won the championship on imagenet dataset [3] in 2012.
Numerous experiments have established that deep learning has led to many break-
throughs across various areas including natural language processing [4], computer
vision [6], speech and audio processing and many other areas [19]. However, less
research has focused on processing structured data using deep learning methods.

Data in many areas is structured, such as recommender systems [18]. In traditional
methods, linear models are applied to structured inputs, such as LR, FTRL [13]. How-
ever, these methods lack the ability to combined features. In contrast, due to the ability
of automatically combine features, in recent years, researchers have gradually started
using deep learning methods to process structured data. Typically efforts fall into two
groups. One is multilayer perceptron (MLP) [16], which is used as backbone to learn
interactions among features, such as Wide&Deep [2], Deep&Cross [17], and DIN [20].
And for the other, common methods combine Factorization Machine [15] and MLP.
Factorization Machine is used to model the pairwise interactions between features, and
then high-order feature interactions are learned by MLP such as PNN [14], DeepFM [5]
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and NFM [8]. These methods aim at combining low-order features to obtain higher-
order features. Nevertheless, only higher-order features are used for predictions. Unlike
meaningless single pixel which needs to be combined into higher-level abstract features
in an image, features of all orders in structured data are meaningful for predictions.

Recently, the number of samples and feature sizes in structured data are getting
larger and larger. It is necessary to build a network with large capacity. In other areas of
deep learning, some methods have made many breakthroughs. Typically works to build
large capacity networks include ResNet [7], DenseNet [10] and so on. The key point of
these methods to make networks deeper is to address the gradient vanishing problem by
shortcut connections.

In order to address the above problems, we propose Deeper Attention-Based Net-
work (DAN), which is based on MLP. Considering the need for feature information
of all orders, DAN use attention average pooling layer to convert the outputs of all
MLP hidden layers into a fixed-length vector, which contains information of all order
features. Furthermore, in DAN, only one dense layer is stacked after attention average
pooling layer. Hence, all parameters of DAN are very closed to the output. DAN will
not encounter gradient vanishing. In this paper, our main contributions are summarized
as follows:

• We propose a novel network architecture DAN, which can aggregate the features
of each order through attention average pooling layer. By automatically adjusting
attention weight parameters in pooling layer, DAN can focus on higher-order or
lower-order features to adapt different datasets.

• Also, we design shortcut connections through attention average pooling layer and
only one stacked dense layer after it. Despite the depth is significantly increased,
DAN does not suffer from gradient vanishing.

2 Preliminary

Before introducing our proposed method, we give a brief review of the feature repre-
sentation and multilayer perceptron (MLP).

2.1 Feature Representation

Structured data includes numerical and categorical values. Numerical values refer to
continuous and discrete values such as [height = 1.75, age = 23]. In contrast, categorical
values are in a limited set, for example, [gender = Female]. The normalized numerical
values can be used directly as the input of deep neural networks. In general, categorical
value is represented by a one-hot vector such as [gender = Female] and [1, 0], [gen-
der = male] and [0, 1].

However, due to sparsity and high dimensionality, one-hot vectors are not suitable
as deep neural network inputs. In order to better extract categorical feature to improve
performance, high dimensional sparse one-hot vectors are embedded into low dimen-
sional dense vector spaces [1]. For i-th categorical feature ti, which is a one-hot vector,
let Ei = [e1i , e

2
i , · · · , ek

i ] ∈ R
d×k represents the i-th embedding matrix, where d is the

dimension of low dimensional dense vector, k is the size of i-th feature value set.
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Then, all embedding vectors of categorical features and normalized numerical fea-
tures are concatenated into the input vector x = [e1, e2, · · · , em, v1, · · · , vn], where e
is the embeddings of categorical features with the number m. And v is the embeddings
or values of numerical features with the number n.

2.2 MLP

Multilayer perceptron provides a universal approximation framework by stacking hid-
den layers [9]. Hence, it is fully capable of learning higher-order interactions among
features in structured data. Firstly, categorical features are transformed into low-
dimensional dense vectors through embedding matrix. Then low-dimensional dense
vectors and continuous features are as the input of MLP. MLP extracts higher-order
features by stacking more hidden layers. Formally, the definition of l-th hidden layers
is as the follow:

Al = σ(WlAl−1 + bl), (1)

where Wl, bl denotes weight matrix and bias, σ is non-linear activation function,
Al, Al−1 denotes the output of this and last layer, specially, A0 is the input matrix
X consisting of all input vectors x.

3 Deeper Attention-Based Network

Deeper Attention-Based Network (DAN) is based on MLP. There are two motivations
behind it. Firstly, without discarding any information, DAN keeps the features of each
order for predictions. In this paper, we use attention average pooling layer to aggregate
the features of all orders. To build large capacity networks is our second motivation.
Thus, there are shortcut connections in DAN. Making all learned parameters closed to
the output, after aggregation, DAN only stack one dense layer. At last, we also theo-
retically prove why DAN can be built very deep. The architecture of DAN is shown in
Fig. 1.

Notation: Let Ai denote the output of i-th layer, Wi, bi denote the weight matrix and
bias, A0 is the input matrix X consisting of all input vectors x.

3.1 Feature Aggregation

In order to obtain the abstract features of each layer, we must extract the output of
all hidden layers of the MLP. Next, we aggregate all outputs as the input of a shallow
feedforward neural network with a fix-length input. Nevertheless, the number of the
outputs changes as the hidden layers are stacked. It is a common practice to transform
the list of vectors to get a fixed-length vector via a pooling layer:

C = pooling(A0, A1, · · · , AL), (2)

where Ai is the output of i-th layer, L is the number of MLP hidden layers, C is a
fix-length vector. The most common pooling operations are max pooling and average
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Fig. 1. The architecture of DAN based on MLP

pooling. Max pooling selects the maximum value and average pooling calculates the
average value of each position among all vectors. In this paper, our purpose is to take
into account the abstract features of each level, we use average pooling without drop-
ping any values.

In addition, on various datasets and tasks, the output decision focuses on different
levels of the abstract features. Attention average pooling with learnable weight param-
eters is used to address it in DAN:

pooling(A0, A1, · · · , AL) =
L∑

i=1

αiAi, (3)

where αi denotes learnable weight parameter. Through backpropagation algorithm,
DAN can automatically find one group of adaptive weight parameters for the spe-
cific datasets and tasks. For a DAN with l hidden layers, if [α1, α2, · · · , αl−1, αl] =
[0, 0, · · · , 0, 1], DAN is the same as a MLP. Hence, our proposed DAN contains MLP
and has larger capacity than MLP. The optimal solution of DAN must be at least equal
to the MLP. Intuitively, DAN has a better performance than MLP.

3.2 Deeper Network

Gradient vanishing is the problem that must be considered when building deeper net-
works. To tackle these problems, in this paper, we make the trainable parameters closer
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to the output by shortcut connections. In DAN, all layers containing trainable parame-
ters have a path directly connected to the input of the pooling layer. After the pooling
layer, we just stack a single dense layer to avoid the trainable parameters being too far
from the output:

ŷ = σ(WC + b), (4)

where C is the output of pooling layer, W, b is weight matrix and bias of last layer,
ŷ is the output of DAN. In last layer, two most commonly used non-linear activation
function σ are sigmoid and softmax.

3.3 Theoretical Proof

We study the back-propagated gradient of the Loss function on the inputs weights at
each layer in DAN. There are L − l + 1 path to the output from l-th layer in DAN. For
weight matrix Wl of l-th layer, the gradient of the Loss function is as follows:

∂Loss

∂Wl
=

L∑

i=l

∂Al

∂Wl
· ∂Ai

∂Al
· ∂C

∂Ai
· ∂Loss

∂C
, (5)

∂Loss

∂Wl
=

L∑

i=l

αi
∂Al

∂Wl

i∏

j=l+1

∂Aj

∂Aj−1
· ∂Loss

∂C
, (6)

where αi denotes learnable weight parameter of i-th layer, Aj denotes the output of i-th
layer. In the formula (6), there is always one term αl · ∂Al

∂Wl
· ∂Loss

∂C where gradients are
only propagated three times. Thus, no matter how deep the network layer is, DAN will
not encounter the problem of gradient vanishing.

Since the gradient of all parameters will not be too small, during the training pro-
cess, the convergence speed of DAN will be relatively fast. Fast convergence speed is
very important for large data sets.

4 Experiments

4.1 Experimental Settings

Dataset. We evaluate the effectiveness of DAN on two public datasets. Criteo dataset
was used for the Display Advertising Challenge hosted by Kaggle and includes 45
million users’click records. Porto Seguro dataset was used to predict the probability
that an auto insurance policy holder files a claim.

Evaluation Metrics. To evaluate the performance, we adopt AUC (Area Under ROC)
and Logloss. AUC is a widely used metric in CTR prediction field. It sets different
thresholds to evaluate model performance. And Logloss is the value of Loss function
where a lower score indicates a better performance.
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Models for Comparisons. We compare DAN with two models: basic model (MLP)
and DeepFM which includes MLP and Factorization Machine (FM).

Hyper-parameter Settings. To be fair, all models use the same setting of hyper-
parameters shown in Table 1.

Table 1. Hyper-parameters setting

Criteo Porto Seguro

Embedding size 32 8

Hidden layer width 256 64

Hidden layer depth 5, 10, 20, 50, 100 5, 10, 15, 20, 25

Batch size 256 256

Learning rate 3e−5 with Adam 3e−5 with Adam

Dropout rate 0.5 0.5

Training epochs 1 to 10 1 to 20

Table 2. The best result on two datasets

Criteo Porto Seguro

AUC Logloss AUC Logloss

MLP 0.8028 0.4656 0.6290 0.1529

DeepFM 0.8015 0.4546 0.6260 0.1531

DAN 0.8037 0.4478 0.6330 0.1524

4.2 Performance Evaluation

In this section, we evaluate model performance on Criteo and Porto Seguro datasets
based on the hyper-parameters listed in last section. While keeping other hyper-
parameters constant, we gradually make the network deeper. Then the best results are
chosen for different models on both dataset and shown as Table 2.

Overall, DAN beats other competitors in AUC and Logloss. In fact, compared
with other models, our proposed model improves performance as the number of lay-
ers increases. In next section, we show the details through experiments of Comparison.

4.3 Layer Depth Study

In this section, first we list the details of different layers. Next, we observe the trend of
the evaluation score with epochs. Furthermore, we analyze the reasons for the experi-
mental results.
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Details. In our experiments, we mainly explore the effect of the layer depth which is
closely related to model capacity. Let layer depth be [5, 10, 20, 50, 100] or Criteo while
keeping other hyper-parameters constant.

Table 3. AUC of different layers on Criteo

5 10 20 50 100

MLP 0.8028 0.8017 0.7931 0.500 0.500

DeepFM 0.8015 0.8015 0.7987 0.7862 0.7866

DAN 0.8032 0.8033 0.8035 0.8035 0.8037

Table 4. Logloss of different layers on Criteo

5 10 20 50 100

MLP 0.4656 0.4672 0.4673 0.5692 0.5692

DeepFM 0.4546 0.4633 0.4730 0.4638 0.4634

DAN 0.4482 0.4481 0.4479 0.4479 0.4478

Table 3 to Table 4 show AUC and Logloss with different layers. We have the fol-
lowing observations:

• Our proposed model DAN outperforms MLP and DeepFM with any layer depth.
This verifies the usefulness of combining features of each order.

• The performance of MLP and DeepFM drops sharply when the network is extremely
deep. However, due to no gradient vanishing, the deeper network has higher perfor-
mance for DAN.

• DeepFM has better performance than MLP with network very deep. The reason is
consistent with the intuition behind DAN. There is a short path from input to output
through FM. The trainable parameters in FM component are closed to the output of
DeepFM.

Trends. Firstly, we observe the trends of the AUC and Logloss curves under the con-
dition that the layer depth is 5 without gradient vanishing. Then, to highlight the key
advantage of DAN, we adjust the layer depth to 100 for Criteo.

Fig. 2. Trends of layer depth 5 on Criteo Fig. 3. Trends of layer depth 100 on Criteo

Figure 2 compares the AUC and Logloss of DeepFM, MLP and DAN of each epoch
with the layer depth 5. We observe that DAN converges faster and obtains a better
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Logloss and AUC score than MLP and DeepFM, which indicates that DAN can fit the
data better because of greater capability. Faster convergence speed of DAN helps us get
better performance in less time that is important for actual productions.

Figure 3 shows the key advantage of DAN, which can be built extremely deep and
obtain better performance. The deeper networks mean that the greater capability. How-
ever, with the network depth significantly increasing, MLP completely degrades with
AUC 0.5 which means random prediction. Although there is a short path to the output
in Factorization Machine, DeepFM’s performance still drops significantly. Only DAN
gets benefit from the very deep architecture.

5 The Conclusions

In this paper, we propose DAN based on MLP. DAN gains performance improvement
with any layer depth by extracting the features of each order and being built more deep.
The results show that DAN has faster convergence speed and better performance when
architecture is very deep.
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