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Abstract. Approximate Bayesian Computation (ABC) is a popular approach for
Bayesian modeling, when these models exhibit an intractable likelihood. How-
ever, during each proposal of ABC, a great number of simulators are required
and each simulation is always time-consuming. The overall goal of this work is
to avoid inefficient computational cost of ABC. A pre-judgment rule (PJR) is pro-
posed, which mainly aims to judge the acceptance condition using a small frac-
tion of simulators instead of the whole simulators, thus achieving less computa-
tional complexity. In addition, it provided a theoretical study of the error bounded
caused by PJR Strategy. Finally, the methodology was illustrated with various
examples. The empirical results show both the effectiveness and efficiency of
PJR compared with the previous methods.
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1 Introduction

The crucial component of Bayesian statistics is to estimate the posterior distribution of
parameter θ with given observations y. The posterior distribution, denoted as p(θ|y),
satisfies that

p(θ|y) = p(y|θ)p(θ)
p(y) ∝ p(y|θ)p(θ), (1)

where p(y) =
∫

p(y|θ)p(θ)dθ is the normalizing constant and computationally ineffi-
cient in general. p(y|θ) and p(θ) represent likelihood function and the prior distribution,
respectively. However, the likelihood p(y|θ) is not always intractable due to the lager
sample size and high dimension of parameters. Approximate Bayesian Computation
(ABC) methods provide likelihood-free approach for performing statistical inferences
with Bayesian models [5,17,26]. The ABCmethod replaces the calculation of the likeli-
hood function p(y|θ) in Eq. (1) with a simulation of the model that produces an artificial
data set {xi}. The most influential part of ABC is to construct some metric (or distance)
and compare the simulated data {xi} to the observed data {yi} [6,15]. Recently, ABC
has gained popularity particularly for the analysis of complex problems arising out of
biological sciences (e.g. in population genetics, ecology, epidemiology, and systems
biology) [5,24,27].
c© Springer Nature Singapore Pte Ltd. 2020
J. Zeng et al. (Eds.): ICPCSEE 2020, CCIS 1257, pp. 230–246, 2020.
https://doi.org/10.1007/978-981-15-7981-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7981-3_15&domain=pdf
https://doi.org/10.1007/978-981-15-7981-3_15


Improving Approximate Bayesian Computation with Pre-judgment Rule 231

There are at least three leaps in the development of ABC, we denote as algorithms
A, B and C. Algorithms of type A, the simplest algorithm of ABC proposed in [25], is
listed as follows:

– A1. Sample θ from the prior distribution p(θ).
– A2. Accept the proposed θ with probability h proportional to p(y|θ). Return to A1.

Concretely, if θ∗ denotes the maximum-likelihood estimator of θ, the acceptance prob-
ability h can be directly set as:

h = p(y|θ)
c , (2)

where c can be any constant greater than p(y|θ∗). Unfortunately, the likelihood function
p(y|θ) is computationally expensive or even intractable. Hence Algorithm A1 is not
practical.

Many variants are proposed, among which one common approach is algorithms of
type B [19]:

– B1. Sample θ from the prior distribution p(θ).
– B2. Generate x given the parameter θ via the simulator, i.e., x ∼ p(·|θ).
– B3. Accept the proposed θ if x = y. Return to B1.

The success of algorithm B depends on the fact that simulating from p(·|θ) is easy for
any θ, a basic assumption of ABC. To discriminate simulated data x from the obser-
vation y, we call x pseudo-observation here. Moreover, in Step B3, S(x) = S(y) is
employed instead of x = y in practice, where S(x) represents the summary statistics
of x. It has been shown that if the statistics used in likelihood function are sufficient,
then Algorithm B sample correctly from the true posterior distribution. Here, for ease
of exposition, we use x = y instead of S(x) = S(y). Whereas the acceptance criteria
x = y is too restrictive here, leading the acceptance rate intolerably small. One might
resort to relaxing the criteria as algorithm C [21]:

– C1. Sample θ from the prior distribution p(θ).
– C2. Generate x given the parameter θ via the simulator, i.e., x ∼ p(·|θ).
– C3. Calculate the similarity between observations y and simulated data x, denoted

ρ(x, y)1.
– C4. Accept the proposed θ if ρ(x, y) ≥ ξ (ξ is a prespecified threshold). Return to
C1.

Notice that in Step C2, a quantity of pseudo-observations x are simulated from
p(·|θ) independently, i.e., x = {x1, ..., xS}, xi∼p(·|θ) i.i.d., where S is the num-
ber of simulators in each proposal and always fixed, independent of θ. The similarity
ρ(x, y) can be represented in terms of the average similarity between xi and y such that

ρ(x, y) = 1
S

S∑

i=1

πζ(xi|y), where πζ(·|y) is an ζ-kernel around observation y2.

It is apparent that the choice of S plays a critical role in the efficiency of the algo-
rithm. Obviously a large S will degrade the efficiency of ABC. In contrast, if S is small,

1 ρ(S(x), S(y)) is replaced by ρ(x, y), similar with Step C3.
2 E.g., ζ-kernel can be chosen as πζ(x1|x2) = (1/

√
2πζ) exp(−‖x1 − x2‖2/2ζ2).
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though leading a significant reduction for each θ in computation, the samples may fail
to converge to the target distribution [4]. Moreover, it is awful to spend amounts of com-
putation (S simulations) for just 1 bit information, namely accept or reject the proposal.
A natural question is proposed: can we simulate a small number of pseudo-observations
in Step C2 and maintain the convergence to the target distribution simultaneously? Or
can we find a tradeoff between efficiency and accuracy? Here, we claim it is feasible.

In this paper, we devise Pre-judgment (PJR) rule, adjusting number of simulators
dynamically, instead of using a constant S. In short, we firstly generate small amount of
data and estimate a rough similarity. If the similarity is far away from the prespecified
threshold (say, in Step C4, ξ), then we judge (accept/reject) the proposal ahead. Oth-
erwise, we draw more data from the simulator and repeat the evaluation until we have
enough evidence to make the decision. Empirical results show that majority of these
decision can be made based on a small amount of simulators with high confidence, thus
lots of computations are saved.

The remainder of the paper is organized as follows. Section 2 describes our algo-
rithm and Sect. 3 provides theoretical analysis. A toy model is shown in Sect. 4.1 to
show some properties of PJR based method. Furthermore, the empirical evaluations are
given in Sect. 4.2. Finally, the last section is devoted to conclude the paper.

2 Methodology

In this section, we will review the relative works and then present our method. Firstly,
we introduce how pre-judgment rule (PJR) accelerate ABC rejection method. Then we
adapt PJR strategy to ABC-MCMC framework [20].

2.1 Related Works

In this section, we briefly review the related studies. Firstly, we focus on recent devel-
opments in ABC community. Though allowing parallel computation, ABC is still in
its infancy owing to the large computational cost. Many approaches are proposed to
scale up ABC in machine learning community. Concretely, [22,29] introduced Gaus-
sian process to accelerate ABC. [23] made use of the random seed in sampling pro-
cedure and transform ABC sampler into an deterministic optimization procedure. [21]
adapted Hamiltonian Monte Carlo to ABC scenario, allowing noise in estimated gra-
dient of log-likelihood by borrowing the idea from stochastic gradient MCMC frame-
work [1,2,11,12,18,28] and pseudo-marginal MCMC methods [3,14].

In addition, theoretical works has become popular recently [4,7,8,30]. Some works
focus on the selection of summary statistics [9,13]. Different from these methods, PJR
strategy essentially alleviates the computational burden in ABC rejection step, which
can be extended to any ABC scenario, e.g., ABC rejection approach and ABC-MCMC
proposed in this paper.
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2.2 PJR Based ABC: (PJR-ABC)

In the Algorithm A, the likelihood is not available explicitly. Thus we resort to approx-
imate methods by introducing the simulated data x, as follows:

p(y|θ) =
∫

δD(x − y)p(x|θ)dx ≈
∫

πζ(x|y)p(x|θ)dx ≈ 1
S

S∑

i=1

πζ(xi|y), (3)

where δD(·) is the Dirac delta function. Then a relaxation is employed by introducing
an ζ-kernel around the observation y. The last approximate equality use a Monte Carlo
estimate of the likelihood via S draws of x from simulator p(·|θ).

On the other hand, for Algorithm C, the similarity between pseudo-observations x
and raw observations y can be expressed as the mean similarity between each simulator
output xi and y

ρ(x, y) = 1
S

S∑

i=1

πζ(xi|y). (4)

From Eq. (3) and (4), it is validated that Algorithm A is equivalent to Algorithm
C in essence. Then acceptance conditions in both Step A2 and Step C4 are equivalent
to performing a comparison (between z and z0, defined later). Specifically, firstly we

compute z = 1
S

S∑

i=1

πζ(xi|y), where xi∼p(·|θ) i.i.d., and then compare it with z0, a

constant. If z > z0, accept the proposed θ. If z ≤ z0, reject it, where z0 is a prespecified
threshold, say, in Step C4, z0 corresponds to ξ3.

To guarantee the convergence to the true posterior, S should be a large number,
which means each proposal needs S simulations [4]. However, spending quantities of
computation (i.e., simulating S pseudo-data x1, . . . , xS) to get just one bit of infor-
mation, namely whether to accept or reject a proposal, is likely not the best use of
computational resources.

To address this issue, PJR is devised to speedup the ABC procedure. We are willing
to tolerate small error in this step to achieve faster judgement. In particular, we firstly
draw a small number of pseudo-observations x and estimate a rough z. If the difference
between z and z0 is significantly larger than the standard deviation of z, we claim that z
is far away enough from z0 confidently and make the decision by comparing the rough
z with z0. Otherwise, we draw more pseudo-observations to increase the precision of z
until we have enough evidence to make the decision.

More formally, checking the acceptance condition can be reformulated to the fol-
lowing statistical hypothesis test.

H1 : z > z0, H2 : z ≤ z0.

In order to test the hypothesis, we are able to generate infinitely many pseudo-
observations from p(·|θ). On the other hand, we expect to simulate less pseudo-
observations owing to computational cost.

3 In Step A2, z0 is more complex. Checking the acceptance condition is equivalent to judging
z
c

> u, where c is defined in Eq. 2 and u ∼ Uniform(0, 1).
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To do this, we proceed as follows. We compute the sample mean z̄ and sample
standard deviation sz as

zi = πζ(xi|y), z̄ = 1
nzi, sz =

√
z̄2−(z̄)2

n−1 , (5)

where z̄2 represents the mean of z2. Then we compute the test statistics t via

t = z̄−z0
sz

. (6)

It is assumed that n is large enough here. Under this situation central limit theorem
(CLT) kicks in and the test statistic t follows the standard Student-t distribution with
n−1 degrees of freedom. Note that when n is large enough, Student-t distribution with
n−1 degrees of freedom is close to the standard normal distribution. Then we compute
η defined as:

η = 1 − ψn−1(|t|), (7)

where ψn−1(·) is the cdf of the standard Student-t distribution with n − 1 degrees of
freedom.

Then we provide a threshold ε, e.g., ε = 0.1. If η < ε, we make a decision
that z is significantly different from z0. Then we accept/reject θ via comparing z̄ and
z0. If η ≥ ε, it means that we do not have enough evidence to decide. Thus more
pseudo-observations are drawn to reduce the uncertainty of z. Note that when S pseudo-
observations are drawn, the procedure would be terminated and it reduces to previous
ABC algorithm. The resulting algorithm can be seen in Algorithm 1.

The advantage of PJR-ABC is that we can often make confident decisions with si

(si � S) pseudo-observations and reduce computation significantly. Though PJR-ABC
brings error in judgement, we can use the computational time we save to draw more
samples to offset the small bias. Worth to note that ε can be regarded as a knob. When ε
approaches to 0, we make almost the same decision with the ABC rejection method but
requires masses of simulators. On the other hand, when ε is high, we make decisions
without sufficient evidence and the error would be high. This accuracy-efficiency trade-
off will be empirically verified in Sect. 4.1.

2.3 PJR Based Markov Chain Monte Carlo Version of ABC: PJR-ABC-MCMC

The ABC rejection methods are easy to implement and compatible with embarrass-
ingly parallel computation. However, when the prior distribution is long way from
posterior distribution, most of the samples from prior distribution would be rejected,
leading acceptance rate too small, especially in high-dimensional problem. To address
this issue, a Markov Chain Monte Carlo version of ABC (ABC-MCMC) algorithm is
proposed [20]. It is well-known that MCMC has been the main workhorse of Bayesian
computation since 1990s and many state-of-the-art samplers in MCMC framework can
be extended into ABC scenario, e.g., Hamiltonian Monte Carlo can be extended to
Hamiltonian ABC [21]. Hence ABC-MCMC [20] is a benchmark in ABC community.
Now we show that our PJR rule can be adapted to the ABC-MCMC framework. First,
ABC-MCMC is briefly introduced:
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Algorithm 1. PJR-ABC

Require: θ drawn from prior p(θ), {si}k
i=0: a strictly increasing sequence satisfying that si ∈

N+, s0 = 0 and sk = S. knob ε.
Ensure: accept/reject θ
1: for i = 1 : k do
2: draw |si − si−1| pseudo-observations xsi−1+1, xsi−1+2, . . . , xsi from simulator p(·|θ),

compute the corresponding zsi−1+1, . . . , zsi and store, where zi = πζ(xi|y).
3: Set n = si.
4: Update the mean z̄ and std sz using Equation (5).
5: Compute the test statistics t via Equation (6).
6: Compute η via Equation (7).
7: if η < ε then
8: if z̄ > z0 then
9: accept the proposed θ and break.
10: else
11: reject the proposed θ and break.
12: end if
13: end if
14: end for
15: if z̄ > z0 then
16: accept the proposed θ.
17: else
18: reject the proposed θ.
19: end if

– D1. Given the current point θ, θ′ is proposed according to a transition kernel q(θ′|θ).
– D2. Generate x′ from the simulator p(·|θ′).
– D3. Compute the acceptance probability α defined in Eq. 8.
– D4. Accept θ′ with probability α. Otherwise, stay at θ. Return to D1.

In MCMC sampler, MH acceptance probability α is defined as

α = min
{
1, p(θ′)p(y|θ′)q(θ|θ′)

p(θ)p(y|θ)q(θ′|θ)
}
. (8)

In likelihood-free scenario, the acceptance probability of ABC-MCMC is

α = min
{
1,

p(θ′)
S∑

s=1
πζ(x

′
s|y)q(θ|θ′)

p(θ)
S∑

s=1
πζ(xs|y)q(θ′|θ)

}
,

where xs∼p(·|θ) i.i.d. and x′
s∼p(·|θ′) i.i.d. The acceptance of proposal is determined

by following form:

u < α = min
{
1,

p(θ′)
S∑

s=1
πζ(x

′
s|y)q(θ|θ′)

p(θ)
S∑

s=1
πζ(xs|y)q(θ′|θ)

}
,
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where u ∼ Uniform(0, 1). This is equivalent to the following expression:

u <
p(θ′) 1

S

S∑

s=1
πζ(x

′
s|y)q(θ|θ′)

p(θ) 1
S

S∑

s=1
πζ(xs|y)q(θ′|θ)

.

Note that {x1, ..., xS} is given in ABC-MCMC, then define the fixed part z0 and test
variable z, we obtain that

z0 = p(θ)
p(θ′)

1
S

S∑

s=1
πζ(xs|y) q(θ′|θ)

q(θ|θ′)u, z = 1
S

S∑

s=1
πζ(x′

s|y),

where z can be further simplified into the following form, similar to PJR-ABC: z =
1
S

S∑

i=1

zi, where zi = πζ(x′
i|y).

Following PJR-ABC, we test the following hypothesis H1 : z0 > z vs H2 : z0 < z.
Then the sample mean z̄, the sample standard deviation sz and the test statistics t can
be calculated as shown in Eq. (5) and (6), same with PJR-ABC. The resulting algorithm
is similar and not listed.

3 Theoretical Analysis

In this section, we study the theoretical properties for PJR strategy. Specifically, we
provide the error analysis for both PJR-ABC and PJR-ABC-MCMC. Since every time
we accept/reject a proposal in PJR-ABC/PJR-ABC-MCMC, we deal with a hypothesis
testing problem. We are attempting to bound the error caused by such a testing problem
first. Then we build the relationship between such a single test error and total error for
both PJR-ABC and PJR-ABC-MCMC. Now we focus on the error caused by a single
testing problem. In hypothesis testing problem, two types of error are distinguished. A
type I error is the incorrect rejection of a true hypothesis while the type II error is the
failure to reject a false hypothesis. Now we discuss the probabilities of these two errors
in a single decision problem.

Theorem 1. The probability of both the error I and II decreases approximately expo-
nentially w.r.t. the sample size of z (sample size of z corresponds to s1, . . . , sk in Algo-
rithm 1).

Proof. We assume that ψn−1(·) is the cdf of standard Student-t distribution with degree
n − 1. For simplicity, we first discuss the probability of type I error, i.e., the incorrect
rejection of a true hypothesis. It would be easy to extend the conclusion into the type II
error owing to the symmetry.

In this case, z > z0. Suppose the number of sampled z is n. The test statistics t
satisfies that t = z̄−z0

sz
, following the standard Student-t distribution with degree n − 1.

The standard Student-t distribution is approaching to the standard normal distribution
when the degree n − 1 is large enough. Hence, many properties of normal distribution
can be shared.
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Given the knob parameter ε, according to the monotonicity of the function ψn−1(·)
on R, we know that there exists a unique s such that ψn−1(s) = ε. Moreover, since z̄ =
z1+z2+...+zn

n and t = z̄−z0
sz

∼ ψn−1(·) ≈ N (0, 1), we have that zi can be seen as sam-
pled independent identically distributed from N (z0, nsz), i.e., zi∼N (z0, nsz) i.i.d.

The type I error only occurs when z̄−z0
sz

< s. That is,
∑n

i=1 zi < n(szs+z0). Thus,
we can have the probability of type I error via integrating over the space (z1, z2, . . . , zn)
and

∑n
i=1 zi < n(szs + z0).

Pr (Type I error) = Pr(
∑n

i=1 zi < n(szs + z0))
=

∫
· · ·

∫ ∫ (z1,z2,··· ,zn),
∑n

i=1 zi<n(szs+z0)

−∞ ψ′(z1)ψ′(z2) . . . ψ′(zn)dz1dz2 . . . dzn

=
∫ n(szs+z0)−z1−...−zn−1

−∞ · · ·
∫ ∫ z1

−∞ ψ′(z1)ψ′(z2) . . . ψ′(zn)dz1dz2 · · · dzn

= ψn−1(z1)ψn−1(z2) . . . ψn−1(n(szs + z0) − z1 − . . . − zn−1)

where ψ′(·) and ψn−1(·) represent the pdf and cdf of the standard Student-t distribution
with n − 1 degree of freedom.

This completes the proof.

The above theorem demonstrates that the error during a single judge can be negli-
gible as long as the number of sampled z is large enough. Based on this theorem, the
following assumption are reasonable.

Assumption 1. The probability of error produced by a single hypothesis testing prob-
lem in both PJR-ABC and PJR-ABC-MCMC can be upper-bounded, denoted by
δ1, δ2 → 0+, for PJR-ABC and PJR-ABC-MCMC, respectively.

In Bayesian inference, we are interested in the posterior average, defined as φ̄ �∫
θ
φ(θ)p(θ|y)dθ for some test function φ(θ) of interest. For a given numerical method

(say, PJE-ABC or PJR-ABC-MCMC) with generated samples {θ1, . . . , θM}, we use the
sample average φ̂ defined as φ̂ = 1/M

∑M
l=1 φ(θl) to approximate φ̄. Before providing

a bound for the bias of a PJR-ABC algorithm, we make a mild assumption first.

Assumption 2. The prior average of φ(·) is bounded away from infinity, i.e.,
∫

θ

φ(θ)p(θ)dθ < +∞.

Theorem 2. Under Assumption (1) and (2), the bias of PJR-ABC can be upper-

bounded as: |Eφ̂ − φ̄| ≤ C1δ1, where C1 =
∫

θ
φ(θ)p(θ)dθ

p(y) is a constant, p(y) denotes
the normalizing constant.

Proof. In ABC rejection method, each θ drawn from p(θ) is independent. The error
at θ caused by PJR is denoted by ξ(θ), which is assumed to be a perturbation on the
true likelihood. Thus the estimated likelihood function can be represented as p̂(y|θ) =
p(y|θ) + ξ(θ), where |ξ(θ)| ≤ δ1 owing to the boundedness of single error, described
in Assumption 3.

E(φ̂) = 1
p(y)

∫
φ(θ)p̂(y|θ)p(θ)dθ

= 1
p(y)

∫
φ(θ)p(y|θ)p(θ)dθ + 1

p(y)

∫
φ(θ)ξ(θ)p(θ)dθ

(9)
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The first term in RHS of Eq. (9) is the expectation of the true posterior distribution.
While the second term is the error. We can observe that the error is upper bounded.

1
p(y)

∫
φ(θ)ξ(θ)p(θ)dθ ≤ 1

p(y) |δ1|
∫

φ(θ)p(θ)dθ = C1|δ1|,

where C1 =
∫

φ(θ)p(θ)dθ
p(y) is bounded followed from the fact that both 1

p(y) and
∫

φ(θ)p(θ)dθ are bounded away from +∞.
This completes the proof.

In PJR-ABC, each sample is independent with each other. However, in PJR-ABC-
MCMC, all the samples are in a single chain, leading the analysis more complicated.
Here, the distance between probability distributions is measured by the total variational
distance (TVD),4 described as follows.

Theorem 3. Under Assumption 3, for any posterior distribution, there exists a constant
C2 such that the discrepancies between the true posterior distribution S0 and the sta-
tionary distribution of our PJR-ABC-MCMC algorithm Sε can be upper bounded as:
dv(S0, Sε) ≤ C2δ2.

Proof. We firstly focus on the error for a single step. Based on this, the error about the
stationary distribution is derived. The transition kernel of the ABC-MCMC algorithm
can be written as

T0(θ, θ′) = Pa(θ, θ′)q(θ′|θ) + (1 − Pa(θ, θ′))δD(θ′ − θ),

where δD(·) is the Dirac delta function, Pa(θ, θ′) is the acceptance probability. Sim-
ilar definition of transition kernel of PJR-ABC-MCMC hold for Tε(θ, θ′) and accep-
tance probability Pa,ε(θ, θ′).

The discrepancies between Pa(θ, θ′) and Pa,ε(θ, θ′) is defined as: δPa(θ, θ′) �
Pa,ε(θ, θ′) − Pa(θ, θ′). For every (θ, θ′), according to the error for a single test, there
exists an upper bound for δPa(θ, θ′), i.e., |δP (θ, θ′)| ≤ δmax for ∀ (θ, θ′).

Then the total variational distance for a single step can be upper bounded for any
distribution P as:
∫

θ′ |(PT ε)(θ′) − (PT 0)(θ′)|dΩ(θ′) =
∫

θ′ |
∫

θ
(T0(θ, θ′) − Tε(θ, θ′))dP (θ)|dΩ(θ′)

=
∫

θ′ |
∫

θ
(T0(θ, θ′) − Tε(θ, θ′))dP (θ)|dΩ(θ′)

=
∫

θ′ |
∫

θ
(q(θ′|θ) − δD(θ′ − θ))(δP (θ, θ′))dP (θ)|dΩ(θ′)

≤
∫

θ′
∫

θ
|(q(θ′|θ) − δD(θ′ − θ)| · |δmax| · dP (θ)dΩ(θ′)

≤ δmax
∫

θ′ |
∫

θ
q(θ′|θ)dP (θ′)|dΩ(θ′)

+ δmax
∫

θ′ |
∫

θ
δD(θ′ − θ)dP (θ′)|dΩ(θ′) = 2δmax

Then apply Lemma 1, substitute 2δmax into δ in Eq. 10 we prove Theorem 3. This
completes the proof.

4 The total variation distance between two distribution P and Q, absolutely continuous w.r.t.
measure Ω, is defined as dv(P, Q) � 1/2

∫
θ
|fP (θ) − fQ(θ)|dΩ(θ), where fP (·) and fQ(·)

are their respective densities.
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Lemma 1 [16].Given two transition kernels, T0 and Tε, whose stationary distributions
are denoted by S0 and Sε, if T0 satisfies the following contraction condition with a
constant η ∈ [0, 1) for all probability distribution P:

dv(PT0,S0) ≤ ηdv(P,S0)

and the one step error between T0 and Tε is upper bounded uniformly with a constant
δ > 0 as:

dv(PT0,PTε) ≤ δ,∀P (10)

then the distance between S0 and Sε can be bounded as: dv(S0, Sε) ≤ δ
1−η

Theorem 2 and 3 indicate that the error is proportional to the single testing error.
Combining this result with Theorem 1, we know that the bias of both PJR-ABC and
PJR-ABC-MCMC can be bounded.

4 Numerical Validation

In this section, we use a toy model to demonstrate both PJR-ABC and PJR-ABC-
MCMC.

4.1 Synthetic Data

We adopt the gamma prior with shape α and rate β, i.e., p(θ) = Gamma(α, β). The
likelihood function is exponential distribution, i.e., x ∼ exp(1/θ). Let observations are
generated via y = 1

N

∑N
i=1 ei, where ei ∼ exp(1/θ∗),N is the number of observations.

Regarding the selection of the sequence {si}k
i=1 (s0 = 0), we find geometric sequence

is the usually the best choice, thus is used in both Sect. 4.1 and 4.2. The common ratio
of the geometric sequence is usually set to 1.5–2. The true posterior is a gamma distri-
bution with shape α+N and rate β +Ny, i.e., p(θ|y) = Gamma(α+N,β +Ny). In
particular, we set S = 1000, N = 20, y = 7.74, α = β = 1, θ∗ = 0.15 in this scenario.
We run chains of length 50K for ABC-MCMC and PJR-ABC-MCMC and 100K for
ABC and PJR-ABC. For each method, we conduct 5 independent trials and report the
average value. In this paper, the choice of proposal distribution in both ABC-MCMC
and PJR-ABC-MCMC is a Gaussian distribution centered at current θ.

First, we investigate how the performance (both efficiency and accuracy) changes as
a function of the knob ε empirically. For each ε ∈ {0, 0.01, 0.03, 0.07, 0.1, 0.2, 0.3}, we
record both efficiency5 and accuracy6. ε = 0 means the PJR-ABC/PJR-ABC-MCMC
reduce to ABC/ABC-MCMC approach. The results are reported in Fig. 1. We find that
smaller ε usually leads to higher accuracy and less efficiency, validating the statement
about ε mentioned in Sect. 2. Hence, the empirical trade-off between efficiency and
accuracy can be controlled by adjusting ε. In the following, we set ε = 0.1. In Fig. 3,
we show the trace plots of the last 1K samples from a single chain for ABC-MCMC

5 Measured in term of number of simulator.
6 Measured in term of TVD with the true posterior distribution.
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and PJR-ABC-MCMC. It is a positive result, indicating PJR-ABC-MCMC preserve
the ability of exploration to the parameter space compared with ABC-MCMC. The
empirical histograms of θ for all the methods are presented in Fig. 2. We find that all of
them are close to the desired posterior. In Table 1 we show

– the average Total Variational Distance7 (between the true posterior and the ABC
posteriors) and the corresponding standard deviation using the first 10K samples
and whole chain;

– the average number of simulators.

We can observe that our PJR based ABC rejection and ABC-MCMC achieve similar
result with original algorithm in convergence to the target posterior distribution. Fur-
thermore, PJR strategy can accelerate both ABC and ABC-MCMC in terms of number
of simulators.

(a) PJR-ABC (b) PJR-ABC

(c) PJR-ABC-MCMC (d) PJR-ABC-MCMC

Fig. 1. Demonstration problem. TVD and number of simulations as a function of the knob ε.

4.2 Real Applications

The Popular Ricker Model. In this section, we show the application of our method on
the popular Ricker model [31]. The Ricker model, a classic discrete population model

7 Note that in experiment the total variational distance is estimated empirically owing to the
absence of explicit formulae.
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Fig. 2. Demonstration problem. The empirical histograms of θ for all the methods.
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Fig. 3. Demonstration problem. Trace plot of last 1K samples, where ε = 0.1.
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Fig. 4. Ricker model. Empirical histogram of parameter θ = (log r, σ, φ) generated by ABC-
MCMC.
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Fig. 5. Ricker model. Empirical histogram of parameter θ = (log r, σ, φ) generated by PJR-
ABC-MCMC.
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Fig. 6. Ricker model. Trajectories of each pair of two parameters over the last 200 time-steps
generated by our PJR-ABC-MCMC.

Table 1. Results for the demonstration problem in terms of TVD (Total Variational Distance)
and number of simulators. Note that for TVD the value below is the actual value times 100
(mean± std). Simulators represent the total number of pseudo-observations from the simulator.
For the first two approaches, we draw 100K samples while for the last two approaches, 50K
samples are drawn.

Algorithm 10K Whole chain Simulators

ABC 8.48 ± 0.89 6.15 ± 0.03 100M

PJR-ABC 8.68 ± 0.45 6.11 ± 0.02 9M

ABC-MCMC 6.43 ± 0.03 5.96 ± 0.04 50M

PJR-ABC-MCMC 6.48 ± 0.07 6.03 ± 0.04 4.7M

used in ecology, gives the expected number of individuals in current generation as a
function of number of individuals in previous generation. This model is commonly used
as an exampler of complex model [29] because it cause the collapse of standard statisti-
cal methods due to near-chaotic dynamics [31]. In particular, Nt denote the unobserved
number of individuals in the population at time t while the number of observed individ-
uals is denoted by Yt. The Ricker model is defined via the following relationships [31]

Nt+1 = rNtexp(−Nt + et), Yt ∼ Poisson(φNt),
et ∼ N (0, σ2),
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where each et (t = 1, 2, ...,) is independent and Yt only depends on Nt. In this model,
the parameter vector is θ = {log r, σ2, φ}. y1:T = {y1, ..., yT } ∈ R

T is the time-series
of observations. For each parameter, we adopt the uniform prior as

log r ∼ Uniform(3, 6), σ ∼ Uniform(0, 0.8),
φ ∼ Uniform(4, 20).

The target distribution is the posterior of θ given observations y1:T , i.e., p(θ|y1:T ). Arti-
ficial dataset is generated using θ∗ = (3.8, 0.3, 10.0). We compare PJR-ABC-MCMC
method with ABC-MCMC. For ABC-MCMC, we run the simulator S = 2000 times
at each θ to approximate the likelihood value. The knob ε is set to be 0.1. For sum-
mary statistics, we follow the methods described in [29], which contain a collection of
phase-invariant measures, such as coefficients of polynomial autogressive models.

Effectiveness: Figure 4 and 5 show the empirical histogram of parameter of interest
θ = (log r, σ, φ) generated by ABC-MCMC and PJR-ABC-MCMC, respectively. Fur-
thermore, we present the scatter plots of trajectories for every two parameters in Fig. 6.
We can observe that the mode of the empirical posterior is close to the θ∗ and the
posteriors produced by the two algorithms are similar, showing the success of PJR-
ABC-MCMC in Ricker model.

Efficiency: The simulation procedure is complex and dominate in computational time.
Therefore, the running time of samplers is almost proportional to the number of sim-
ulators. Specifically, sampling 1K parameters, ABC-MCMC requires 2M simulators
(S = 2000) while PJR-ABC-MCMC only requires about 371K simulators. We con-
clude that majority of the decision can be made based on a small amount of simula-
tors with high confidence. Hence, our PJR strategy accelerates ABC-MCMC algorithm
greatly in Ricker model.

4.3 Apply to HABC-SGLD

In this part, we apply our method to SGLD (Stochastic Gradient Langevin Dynam-
ics, [28]) version of HABC (Hamiltonian ABC) proposed in [21].

In each iteration of SGLD, a mini-batch Xn of size n is drawn to estimate the gra-
dient of log-posterior. The proposal is

θ′ ∼ q(·|θ,Xn) = N (θ + α
2 ∇θ{N

n

∑
i∈Xn

log p(xi|θ) + log p(θ)}, α)

It can be shown that when the stepsize α approaches to zero, the acceptance proba-
bility approaches to 1 [28]. Based on this, the MH correction step is ignored. However,
the assumption that α → 0 is too restrictive. In practice, to keep the mixing rate high,
we always choose a reasonably large α. Under this situation, SGLD can not converge
to target distribution in some cases. The detailed reasons can be found in [16].

In ABC scenarios, conventional MH rejection step is time-consuming. So our
method fit to this problem naturally. Specifically, we consider an L1-regularized lin-
ear regression model. This model has been used in [16] to explain the necessity of MH
rejection in SGLD. We explore its effectiveness in ABC scenario.
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Given a dataset {ui, vi}N
i=1, where ui are the predictors and vi are the targets.

Gaussian error model and Laplacian prior for parameter θ ∈ R
D are adopted, i.e.,

p(v|u, θ) ∝ exp(−λ
2 (v − θT u)2) and p(θ) ∝ exp(−λ0‖θ‖1). We generate a synthetic

dataset of size N = 10000 via vi = θT
0 ui + ξ, where ξ ∼ N (0, 1/3) and θ0 = 0.5,

following [16]. For pedagogical reason, we set D = 1. Furthermore, we choose λ = 1
and λ0 = 4700 so that the prior is not washed out by the likelihood.

Here, standard MCMC sampler is employed as the baseline method. And we run
the HABC-SGLD without rejection and HABC-SGLD with rejection (PJR-HABC-
SGLD). The empirical histograms of samples obtained by running different samplers
are shown in Fig. 7. We observe that the empirical histogram of samples obtained from
PJR-HABC-SGLD is much closer to the standard MCMC sampler than that of HABC-
SGLD, thus verifying the effectiveness of PJR-HABC-SGLD.
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Fig. 7. Application to HABC-SGLD. Empirical histogram of samples obtained by different sam-
plers. We can observe that HABC-SGLD fails to converge to the posterior distribution in this
situation. But PJR correction version of HABC-SGLD converges to the posterior.

5 Conclusion

In this paper, we have proposed pre-judgment Rule to accelerate ABC method. Com-
putational methods adaptive to ABC rejection method and ABC-MCMC are provided
as PJR-ABC and PJR-ABC-MCMC respectively. We analyze the error bound produced
by PJR strategy. Our methodology establishes its practical value with desirable accu-
racy and efficiency. Finally, as a future direction, we plan to integrate PJR strategy with
neural network as [24].
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