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Abstract. With the advent of big data, the cost of index recommen-
dation (IR) increases exponentially, and the portability of IR model
becomes an urgent problem to be solved. In this paper, a fine-grained
classification model based on multi-core convolution neural network
(CNNIR) is proposed to implement the transferable IR model. Using the
strong knowledge representation ability of convolution network, CNNIR
achieves the effective knowledge representation from data and workload,
which greatly improves the classification accuracy. In the test set, the
accuracy of model classification reaches over 95%. CNNIR has good
robustness which can perform well under a series of different learning
rate settings. Through experiments on MongoDB, the indexes recom-
mended by CNNIR is effective and transferable.
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1 Introduction

Database administrators (DBAs) usually need efforts to determine the best index
for current applications [16]. It means that finding the best index for the current
dataset and workload has always been a challenging task. To some extent, DBAs
rely on so-called design consulting tools [2,7,10], which provide advice based on
statistical data. However, due to the uncertainty and one sidedness of statistical
data [9], DBAs usually find it difficult to make the best choice according to the
experiences. With the development of informationization, the size of database
increases explosively. As a result, DBAs need a lot of statistical data and efforts
to index large-scale data. In order to solve these problems, scholars began to
study automatic index recommendation (IR).

Nowadays, we are faced with two major challenges in IR. On the one hand,
is that IR consumes a large amount of resources on the massive data, and thus it
is impractical to solve IR problem in large scale data by using iterative method
[3,5,14]. On the other hand, it is difficult to define the criteria of IR, some-
times IR lower the performance when the criteria selected are inappropriate.
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For example, only taking into account the workload without considering the
original data, it is incomplete and sometimes lowers the performance.

IR has always been a challenge problem, which has been studied since 1970,
such as literature [15,18] For the first time, reference [3] proposed the IR of
RDBMS, which used the concept of “atomic configuration” mentioned in ref-
erence [13]. The system iterated from a single index to find all the best index
configuration under the whole load. In reference [5,14], the candidate indexes
were selected first, and then the indexes were iterated under these candidates.
Through the above method, DBAs can find the best index by iterating on the
original data set, without statistics and consultation. But it is impossible to find
the most suitable index iteratively when there is a large amount of data, since we
are unable to afford the cost of iterative recommendation for big data. What’s
more, the model is not transferable, and it needs to be re-trained when a new
dataset is added, which is obviously inefficient.

In recent years, scholars have proposed some solutions based on machine
learning [4,16], which can make IR more flexible. Reference [16] proposed a
NoDBA system, which used reinforcement learning method for IR. It uses real
measurement results or workload prediction results as reward function to deter-
mine whether a field should be indexed or not. Reinforcement learning method
can automatically recommend index without a large number of data statistics
and consultation. In reference [4], the author converted IR to a two-classification
problem for improving recommendation precision. Since there is no need for a
large number of iterations by using the classification model to determine whether
the index is established, the model can greatly reduce the resource consumption.
However, the above research still does not solve the problem of model migration.
That is, when we want to recommend indexes for datasets, we must rely on the
current datasets to train the model. E.g. We need to deal with IR on 10,000,000
datasets and 50,000,000 workloads. Using the model in [4–6,9,13–16] requires
training at least 10,000,000 times to get the recommended index of all datasets.
In the background of big data, each training will consume a lot of resources, so
the mobility of the model has become an important problem to be solved.

To solve the above problems, this paper studies the transferability of the
IR model for the first time and proposes a general multi-classification model
(CNNIR) to solve the problem. The author considers the influence of dataset fea-
tures (DF) and workload features (WF) which fundamentally affect IR results.
Because the data in real life can always be divided into several kinds of distri-
bution, we build CNNIR on the basis of DF distribution and WF distribution
so that CNNIR can achieve better transferability. In summary, this paper firstly
studies how to break the gap between different data sets from the perspective
of data distribution, and really considers using one IR model to fit all data
distribution.

CNNIR is a multi-classification model based on multi-core convolutional neu-
ral network. The input of CNNIR is data sequence (DS) and workload sequence
(WS), and the output is index configuration containing some fine-grained charac-
teristics of index. CNNIR uses convolution neural network to convolute sequence
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by multiple convolution kernels for learning features efficiently. The output of
CNNIR contains a four-dimensional vector to illustrate the index configuration.
It is a multi-classification model, more fine-grained IR, greatly improving the
efficiency of the workload.

In summary, this paper makes the following contributions: (1) We propose a
new idea from the perspective of data distribution to solve the problem of IR. (2)
We propose a technique for characterizing data and workload into vectors. (3)
We propose a transferable multi-classification model to solve IR problem. (4) We
tested the model’s portability on the classic NoSQL MongoDB, and evaluated
the accuracy and robustness of CNNIR.

Our paper organized as follows. Section 2 defines the problem and introduces
data vectorization. Then we illustrate CNNIR in details in Sect. 3. In Sect. 4,
extensive experiments are conducted to test the accuracy and transferability of
CNNIR. Finally, we make a conclusion for our contributions in Sect. 5.

2 Featurization

2.1 Problem Definition

With the development of network interconnection, the storage of semi-structured
data becomes more and more important, and the IR approaches on semi-
structured data could be applied on structured data. In this paper, we con-
sider the IR problem on the semi-structured dataset. The input of this prob-
lem is document data (D) and workload (W ). The output is the proper index
configurations.

Fig. 1. Structure of IC problem

In this paper, the IR problem (see Fig. 1) is transformed into two sub-
problems. One is frequent field mining. The other is fine-grained index clas-
sification (IC) on frequent fields in the red box of Fig. 1. Since W in real life is
usually huge, it will inevitably contain many fields with few queries. It is mean-
ingless working on these fields. It can greatly speed up the recommendation by
filtering out the fields with few queries in advance. Since the frequent itemset
mining has been well studied, we attempt to use the classic frequent itemset
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Fig. 2. Structure of IC problem

mining algorithm, FP growth [6] to discover the fields, which accomplish the
mining by accessing data twice compared to Apriori [1].

Thus, we focus on the IC problem, as is demonstrated in Fig. 2 in this paper.
The input of this problem is D which contains all values of a field, and W
which consisted of queries. Then, in the next subsection, we will illustrate the
vectorization for normalizing the input of classification task in the red box of
Fig. 1.

2.2 Vectorization

We first describe how to vectorized D. Due to the large scale of the D, which
is difficult to be directly used for model training, we consider using sampling
method. Since stratified sampling can largely retain the features of D, and is
widely used in various fields [11,12,19]. In this paper, we use the stratified sam-
pling in the original data as the first step of the vectorization for reducing data
size. Our stratified sampling (as shown in the Fig. 3) is divided into two steps:
(1) sampling is conducted according to whether the data is empty, (2) sampling
is conducted on non-empty data in lexicographic order. The two-level stratified
sampling can retain the features of the original data greatly, which is the basis
of the best IR.

Fig. 3. Structure of stratified sampling
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W consists of a series of queries. For the current classification, only the
data related to the field affect the index configuration. Therefore, we extract
all the data in the workload involved in the current classification as part of the
model input. For example, query0 = {name: “Amy”}, query1 = {name: “Tom”},
query2 = {age: 46}. The result of extracting “name” field is [“Amy”,“Tom”],
and the result of extracting “age” field is [46].

For the result of preprocessing W and D, we employ a more fine-grained
character (e.g. a to z, 1 to 9) level encoding method [20] as shown in the Fig. 4
to encoding them. As we know, one-hot coding is a common coding method in
natural language processing. String-level encoding is very space-consuming. For
example, to encode 1000 words, we need one-hot vector of 1000 dimensions in
string-level encoding. In big data, data dimension is very high. Therefore, we
consider more fine-grained encoding based on characters. The characters in the
dictionary are limited, which greatly reduces the sparsity of encoding compared
with the string-level one-hot coding.

Fig. 4. Sample of coding

3 Classification Model

In this section, we introduce a classification model CNNIR to solve the IC prob-
lem defined in Sect. 2.1.

3.1 Classification Task

We transform IC problem in Sect. 2.1 to a classification task. The input of this
task is the vector obtained in Sect. 2.2. The output is a four-dimensional vector
which illustrates the index configuration of the field. The first dimension indi-
cates whether the field is indexed, the second dimension indicates whether the
index is sparse, the third dimension indicates whether the index is partial, and
the fourth dimension indicates whether the hash or b-tree index is established.
With the above four dimensions as output, we transform IC problem to a classi-
fication task, and then build a multi-classification model, as shown in Fig. 5, to
solve this problem.
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Existing IR method does not consider the transferability of the model. When-
ever IR is needed for a new data set, these models always need to be trained. Our
model considers from the perspective of data distribution, and studies whether
the data with the same distribution will have the same index recommendation.
And then, we introduce the CNNIR to achieve above targets. Our model learns
the features of data distribution in order to achieve transferability.

For our CNNIR, when it is trained according to D and W under a certain
distribution, any data with the same distribution can use this model to process-
ing IR problem. For example, consider two data sets with four workloads, D =
[d1, d2], Wd1 = [w1, w2, w3, w4] and Wd2 = [w1, w2, w3, w4] with the same distri-
bution. The index classification model can classify the remaining untrained but
equally distributed data (d2 and Wd2) after we use the d1 and Wd1 for training.

Fig. 5. Structure of CNNIR

3.2 Model Framework

The framework of our solution for the classification problem is shown in Fig. 5,
and the input data is the vectorized data obtained in Sect. 2.2. The convolu-
tion layer is composed of several convolution kernels with different sizes, which
can convolute the information under different steps to achieve better learning
effectiveness. The max pooling layer is dynamic in order to make the convolu-
tional output consistent. The length of pooling window is calculated by the blow
formula.

pooll =
convshape0

z

The convshape0 is the length of first dimension in convolution output, and z
is the normalization parameter. The flatten layer spreads the pool layer output
into a one-dimensional vector to connect the full connection layer.



General Model for Index Recommendation 9

We list more detailed configuration information of models in Table 1. There
are five convolution kernels, each of which can be convoluted in a different
range and can learn more knowledge representation. Considering the amount
of network parameters and representation effectiveness, it is inappropriate that
our normalization parameter is too big or too small. Finally, we set z = 100
as normalization configuration. As we can see in Table 1, the convolution ker-
nel [5, 7, 26] corresponds to pooling kernel [60, 1, 1] and the convolution kernel
[10, 7, 26] corresponds to pooling kernel [30, 1, 1]. Then, we can get the same
output dimension ([None, 100, 2]) in different convolutional kernel. Addition-
ally, due to the lack of training data, we use dropout [17] technology to avoid
over fitting of neural network.

Table 1. Configuration of CNNIR framework

Layers Configuration Output shape

Input layer [None, 30000, 7, 26]

Convolution layer [5, 7, 26] ∗ 2, [10, 7, 26] ∗ 2,
[20, 7, 26] ∗ 2, [30, 7, 26] ∗ 2,
[50, 7, 26] ∗ 2

[None, 6000, 1, 1, 2], [None, 3000, 1, 1, 2],
[None, 1500, 1, 1, 2], [None, 1000, 1, 1, 2],
[None, 600, 1, 1, 2]

Max-pooling layer [60, 1, 1], [30, 1, 1] [15, 1, 1],
[10, 1, 1] [6, 1, 1]

[None, 100, 2], [None, 100, 2] [None100, 2],
[None, 100, 2] [None, 100, 2]

Flatten layer [None, 1000]

Full connected layer 64, dropout = 0.1, relu [None, 64]

Output layer 4, dropout = 0.1, sigmoid [None, 4]

CNNIR with different kernels improve the accuracy of classification and has
a good transferability. Convolutional neural network has been used in image
classification field, which can improve the classification accuracy greatly. In this
paper, multi-core convolution neural network is used to learn and represent the
data and workload. By learning the features of data segments with different
convolution steps, we can learn more data distribution features. The index con-
figuration is determined by the original data distribution and workload data
distribution of the field and the correlation between the two data sequences. For
example, for a query on documents, building a sparse index on a sparse field is
better than building a general index. When the query in a workload only involves
a part of data, it is better to build a partial index on this field than to build a
general index. CNNIR is able to distinguish the above situations by classification
method.

3.3 Key Technical Points

In this section, we introduce the key technical points of CNNIR.

(1) Our model has transferability. By using multi-core convolution to learn data
distribution features, we can achieve good representation learning for model
transferability.
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(2) We use character-level one-hot coding instead of string-level representation,
which greatly reduces the dimension of input vector.

(3) We define more fine-grained classification output, which can make more
detailed recommendation on the index, and greatly improve the efficiency
of the workload execution.

(4) Our model has strong expansibility, and we can realize more diverse index
classification by redefining the output vector.

4 Experimental Results

Our experiment is divided into two parts, one is to test the accuracy, robustness
and convergence of CNNIR (in Sect. 4.2), and the other is to test the IR effec-
tiveness and universality of the CNNIR (in Sect. 4.4). Our experiments run on
machines with Intel Core i5 4210U, 8G of RAM and a 480G of disk.

4.1 Datasets

In this paper, we develop a benchmark to generate random document data with
various configurations. We use it to generate various data distribution for neural
network training and testing. The configurations are as follows: the number of
documents, the data distribution (normal distribution or uniform distribution),
the number of document fields, the sparsity of each field in the document (if the
sparsity is 0.9, only 90% of documents have this field), the cardinality of each
field (if the cardinality is 0.1, it means that the cardinality of this field is 0.1 by
the number of fields in all documents), and the random seed (used to determine
the seed generated by the random number and ensure the repeatability of the
experiment). We generate dataset1 and dataset2 which is equally distributed to
conduct our experiments.

4.2 Results of Model Performance

In this section we test the accuracy, robustness and convergence of the model.
We divide dataset 1 into 80% training set and 20% test set. According to the
training set and test set, we test the curve of model loss and the accuracy with the
number of iterations under different learning rates (LR). CNNIR has a powerful
classification ability through multi-core convolution learning. As shown in the
Fig. 9, after 50 iterations, the classification accuracy of the model in the test
set is over 95%. As shown in Fig. 6, 7, 8, 9, CNNIR has good robustness and
can perform well under various learning rates. We use Adam Optimizer [8] for
efficient stochastic optimization to train our model, which only requires first-
order gradients with little memory requirement. Figure 9 clearly shows that the
model can converge rapidly through several iterations under the learning rate of
0.01, 0.001 and 0.0001.
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Fig. 6. Loss of different LR in training set

Fig. 7. Accuracy of different LR in training set

Fig. 8. Loss of different LR in test set
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Fig. 9. Accuracy of different LR in test set

4.3 Workload

We use four types of workloads in Table 2 to test the IR efficiency of the model.
Theoretically, two conditions should be taken into account when building indexes
for these four types of workloads. The first is that when the query only involves
a part of data, it is more proper to use a partial index instead of normal index.
The second is that it is better to build a B-tree when the query data contains a
large number of range queries, and it is better to build a hash index when the
query data contains a large number of equivalent queries. We will discuss the IR
performance of the model for these workloads in next section.

Table 2. Workloads

Workloads Selections

W1 10,000 equivalent queries which are
evenly distributed in the original data

W2 10,000 range queries which are evenly
distributed in the original data

W3 10,000 equivalent queries which are
distributed in part of the original data

W4 10,000 range queries which are
distributed in part of the original data

4.4 The Experimental Results of Efficiency

In this section, we tested the efficiency on the workloads defined in Sect. 4.3. We
use dataset1 to train the model, and then test it with dataset1 and dataset2.
Since it takes too long to test all queries in each workload, we randomly select
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five queries from each workload. As shown in Table 3, through the index con-
figurations from CNNIR, the average execution time of each query can be over
200 times faster than before. What’s more, CNNIR only trained on dataset1
also performs well on dataset2, so it has been proved that CNNIR is a general
model. That is to say, we only need to train once on CNNIR to make the model
suitable for all the data with the same distribution, which can greatly reduce
the resource consuming.

Table 3. Workload execution time

Dataset1 Dataset2

Workloads NoIndex [ms] CNNIR [ms] Workloads NoIndex [ms] CNNIR [ms]

W1:Q1 581.43 2.17 W1:Q1 798.80 2.45

W1:Q2 539.74 2.30 W1:Q2 541.10 2.32

W1:Q3 562.95 2.20 W1:Q3 542.76 2.27

W1:Q4 563.45 2.30 W1:Q4 574.98 2.27

W1:Q5 540.77 2.23 W1:Q5 550.04 2.16

W2:Q1 802.64 4.90 W2:Q1 724.54 3.43

W2:Q2 678.20 3.84 W2:Q2 716.98 5.56

W2:Q3 671.12 3.96 W2:Q3 713.30 3.80

W2:Q4 729.89 3.83 W2:Q4 770.02 3.86

W2:Q5 679.75 3.84 W2:Q5 690.09 3.51

W3:Q1 608.23 2.20 W3:Q1 567.71 2.34

W3:Q2 594.85 2.33 W3:Q2 561.83 2.91

W3:Q3 604.54 2.29 W3:Q3 563.07 2.39

W3:Q4 568.63 2.31 W3:Q4 542.59 3.48

W3:Q5 571.95 2.64 W3:Q5 528.28 2.55

W4:Q1 623.17 3.77 W4:Q1 638.14 2.85

W4:Q2 670.29 2.94 W4:Q2 609.24 3.42

W4:Q3 607.25 2.54 W4:Q3 611.63 3.00

W4:Q4 923.00 2.72 W4:Q4 614.00 3.36

W4:Q5 946.13 2.91 W4:Q5 596.52 2.45

Total 653.40 2.91 Total 622.78 3.02

5 Conclusion

This paper focuses on the migration of the IR model in big data. We transform
the IR problem into a fine-grained multi-classification problem, and propose a
model based on convolutional neural network to solve the classification prob-
lem. Two data sets and some workloads for model testing are generated by our
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benchmark. CNNIR uses the strong representation learning ability of convolu-
tional neural network. As we can see in Sect. 4.2, CNNIR with a strong classifi-
cation ability achieves over 95% accuracy on the test set. CNNIR is robust and
performs well at several learning rates. According to the experimental results in
Sect. 4.4, it is demonstrated that CNNIR has excellent universality. CNNIR only
trained by dataset1 can achieve high efficiency on untrained dataset2 which has
the same distributed dataset with dataset1. In summary, our migration model
can reduce the resource consumption of IR by a big margin in big data. In the
future, we will consider the case of multi-field IR problem by using Bayesian
network to analyze the relationship between each field.
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